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Abstract
We review recent findings in the application of indirect inference to DSGE
models. We show that researchers should tailor the power of their test to the
model under investigation in order to achieve a balance between high power
and finding a robust model; this will involve choosing only a limited number
of variables on whose behaviour they should focus. Also recent work reveals
that it makes little difference which these variables are or how their behaviour
is measured whether via a VAR, IRFs or moments. We also review identifica-
tion issues, how to test part of a model and whether alternative evaluation methods such
as forecasting or likelihood ratio tests are potentially helpful.
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1 Introduction

Indirect Inference is a method for estimating and testing models of any size, complexity
or nonlinearity by comparing the behaviour of data simulated from the model with that
of selected observed data where behaviour is summarised by a set of descriptive
features, known as the auxiliary model. In estimation the parameters of the structural
model are chosen to best match its simulation with the selected data. In testing the
simulation of the model with a given set of parameter estimates is compared with the
selected data. This gives a joint test of the given parameter values and the structure of
the model. Rather than using asymptotic theory, by simulating the model many times,
in estimation, it is possible to derive numerical distributions of the estimated parameters
and, in testing, the numerical distribution of the test statistic can be employed.

The use of indirect inference in estimating and testing macroeconomic and other
structural models is not a well-known empirical tool among economists. It attracted
attention in the 1990s as a way of estimating nonlinear models and a variety of papers
were written then on its estimation properties, essentially seeking to discover whether it
could mimic the asymptotic properties of maximum likelihood (it did). But its potential
role in testing models, especially in small samples, and its properties as an estimator in
small samples, was not explored until the work described here which began around
2000. It is particularly useful for testing DSGE models which, as they are commonly
estimated by Bayesian methods, tend not to be subjected to any formal statistical test.
Le et al. (2016a) have provided a survey of testing DSGE models using indirect
inference. In this paper we extend their survey by covering recent research which
addresses a number of questions that have arisen in the use of indirect inference.

The earlier survey discussed the power of indirect inference tests in small samples,
comparing this with the power of tests based on frequentist likelihood methods. It also
suggested ways in which modellers could use this power to determine the robustness of
their model, especially when used for policy analysis. It was assumed in that survey that
the auxiliary model would be a VAR of low order in a few variables while the structural
model would be a DSGE model, whether of small size as in Clarida et al. (1999), or
large as in Smets and Wouters (2007). Since then the method has been applied to
microeconomic and trade models where the features of the structural model are quite
different; we do not explicitly consider these models here, but the questions we
examine and the answers we give can be easily extended to them.

We address the following issues. In section 2 we discuss some important method-
ological issues in testing DSGE macroeconomic models such as whether it is worth
testing DSGE models when, as some claim, they are irredeemably mis-specified a
priori and, if it is, how best to estimate and test DSGE models. In section 3 we compare
the power of indirect inference tests with the main alternative frequentist method, the
likelihood ratio test in small samples. Asymptotically, the two cannot be distinguished
under the usual assumption that the model is true. In part, but for completeness, this
section recaps material from our earlier survey. In section 4, we review the evidence
related to a variety of issues that arise when carrying out the indirect inference test, such
as how many and which variables should be used in the auxiliary model, and whether
moments, IRFs or a VAR are preferable auxiliary models. In section 5 we review the
relationship between indirect inference and identification. In section 6 we conclude
with a review of our main findings. Some of these issues have been addressed in
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published papers, including our own, in which case we have drawn on these in
summary form to bring them into this conspectus of available work. We hope this will
be helpful to applied economists using indirect inference.

2 Methodological Issues in Testing DSGE Macroeconomic Models

2.1 Why Test a Mis-Specified Model?

It is nearly 40 years since DSGE models (in the form of RBC models) were first used in
macroeconomics and, arguably, are now the standard approach. Throughout this time,
and continuing to this day, their use has been heavily criticised from a number of
perspectives. We will consider some criticisms often made by classically-trained
econometricians.

A philosophical question in testing DSGEmodels raised by some econometricians is
whether these models should be dismissed because they are so ‘unrealistic’ that one
must consider them as inherently ‘mis-specified’ and so cannot be treated as ‘true’ for
testing purposes. There is an irony in this as the impetus behind the use of DSGE rather
than traditional macroeconomic models was Lucas’s critique that the latter were
essentially reduced form and not structural models and therefore could not be used
for policy or control purposes.

Influenced by the Lucas critique, the focus in DSGE models is on structural
modelling (estimating deep structural rather than Breduced-form^ parameters). This
has resulted in DSGE models being smaller and simpler than traditional
macroeconometric models, especially in their dynamic specification. The smallness
of DSGE models reflects the influence of Friedman’s (1953) advocacy of the use of
simple rather than complicated models but it makes them more likely to be rejected by
the data than traditional macroeconometric models. Traditional models usually have a
flexible, and sometimes data-determined, dynamic specification which gives them a
better chance of passing statistical tests, though it raises the question of whether this is
due to data-mining. An example of a DSGE model that focuses on structural specifi-
cation with hardly any structural dynamics is the Smets and Wouters (2007) DSGE
model of the United States. Significantly, the disturbances in this model are very highly
serially correlated, which could indicate severe dynamic mis-specification. The rejec-
tion of DSGE models using conventional testing procedures and the frequent presence
of highly serially correlated structural disturbances, have all contributed to undermining
the high ideals originally envisaged for the DSGE approach to macroeconomic model-
ling and may explain why some econometricians regard DSGE models as mis-specified
and of little empirical relevance.

The issue of the ‘truth’ of models has a long history in economics and statistics. It
was also addressed by Friedman (1953) who argued that the appropriate criterion for
judging economic models is their predictive ability and not their ‘realism’ or ‘truth’.
Rather than dismiss DSGE models as ‘incredible’, as some have done, or accept that
there is no point in testing them because they would fail the test, it would be better to
find a way of putting them on firmer statistical foundations. Thus a test of these models
should not be about whether or not they are ‘true’ but whether they are ‘pseudo-true’
meaning able to match the data of interest. This idea was developed from testing non-
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nested hypotheses by Cox (1961, 1962). Indirect inference tests proceed on this basis;
the model is treated as though true and, if rejected, is assumed to be mis-specified. The
usefulness of the test is judged by its power which, in the case of indirect inference
tests, we have found to be very high and superior to likelihood based tests.

2.2 How Best to Test and Estimate DSGE Macroeconomic Models?

The issue of how best to test and estimate DSGE models also has a long history. In an
interview with Evans and Honkapohja (2005) Tom Sargent, referring to rational
expectations models, remarked that Lucas and Prescott thought that likelihood ratio
tests were rejecting Btoo many good models^ and that Bcalibration was intended as a
balanced approach to professing that your model, though not correct, is still worthy as a
vehicle for quantitative policy analysis^. The clear implication is that DSGE models,
although possibly mis-specified, may still be ‘good’ in some a priori sense even if
rejected statistically, and that calibrating rather than estimating DSGE models using
classical econometric methods was a way of imposing a priori knowledge of the model
parameters.

If traditional macroeconometric models are not structural but, due to the flexibility
this allows, particularly in their dynamic specification, they can be specified in such a
way that they pass statistical tests, whereas DSGE models are structural, deliberately
simple and, because they are usually rejected using classical inference, strong prior
restrictions are imposed in their estimation. One reason why classical likelihood
methods are likely to reject mis-specified models is that they take account of all of
the model’s features and parameters, and not just its key features which may be well
specified. For example, the RBC model’s long-run properties may be good but the
short-run properties may be poor because there is little information on how to specify
them. Consequently, failure to allow sufficient lags in the dynamics could easily result
in rejection even though the long-run characteristics of the model may be acceptable.
Likelihood methods deal with this by just choosing the parameter values to best fit the
dynamics revealed in the data and may generate biased estimates in order to do so. This
has led to the counter criticism that conventional econometric models and methods
arelikely to involve a strong element of data-mining. In effect, Lucas and Prescott were
looking for a way to give more weight to some features of the model than others.

Subsequently a compromise was reached between the strong use of a priori knowl-
edge in calibration and classical estimation through the use of Bayesian methods. If the
mode of the posterior distribution is chosen as the point estimate of a parameter then, in
effect, the Bayesian estimate is a weighted average of the prior and the likelihood
functions where the weights reflect the precision of the two types of information; the
tighter the prior or the the less informative the data likelihood, the more the posterior
estimates are dominated by prior beliefs.

As a result of using Bayesian methods to estimate DSGE models, the models are
rarely tested for mis-specification. This is despite the fact that the models are almost
certainly to some degree incorrect. It is usually regarded as sufficient that the coefficient
estimates are significantly different from zero as judged from their posterior distribu-
tion. It is common to find that the priors for the parameters are close to their posterior
distributions. This could be interpreted in two ways. Either it implies that the priors are
very strong relative to the data likelihood and so dominate the posterior thereby
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undermining this check on model specification. Or, the data likelihood is small
implying that the model would not fit the data using classical inference which suggests
either that the model is mis-specified, or that these data are not very informative.

Indirect inference is ideally suited to testing a previously estimated model such as a
Bayesian estimated DSGE model. As we know that a DSGE model is not a ‘true’
representation of an economy the test should be interpreted not as whether the model is
true’ but whether it is ‘pseudo-true’ and hence provides a sufficiently good represen-
tation of the data as determined by the probability that the model is not rejected by the
test. As useful as this is, it is still somewhat of a blunt instrument as, in the event that
the model is rejected, it does not reveal which features of the model are causing the
rejection. We have attempted to address this issue in Minford et al. (2019) by proposing
an indirect inference test of parts of a model rather than the whole model. We found that
the rejection of the whole Smets-Wouters model of the United States (Smets and
Wouters 2003) was likely to be due to mispecification of the wage-price sector of the
model.

2.3 The Auxiliary Model

The early, calibrated, RBC models were evaluated against the data by comparing data
simulated from the calibrated model with observed data by the method of Bmatching
the moments^. This consists of inspecting the variances, covariances and serial corre-
lation of the two sets of data. Inspecting the moments is not a formal statistical test but it
does illustrate the use of an auxiliary model to evaluate a model by comparing
simulated and observed data. In order to obtain a formal statistical test it is necessary
to derive a single statistic that summarises the model. Indirect inference provides such
as test through a comparison of the properties of an auxiliary model that is estimated on
the simulated and the observed data. There is more than one choice of which property
to base the test on. Examples are (i) the scores, (ii) the estimated coefficients of the
auxiliary model, and (iii) the impulse response functions.

A natural choice of the auxiliary model is the VAR solution of a DSGE model: a
detailed example is provided in Appendix 1.

It can be shown that a linearised DSGE model of general form

Etytþ1 ¼ Ayt þ Czt

where the variables yt are determined by the model and zt are exogenous variables,
including shocks, has the solution

yt ¼ Pyt−1 þ Σ∞
s¼0QsEtztþs þ Rzt−1 þ Sξt

where ξt = yt − Et − 1yt. And if the exogenous variables are generated by the VAR

ztþ1 ¼ Bzt þ εtþ1

then Etzt + s = Bszt, (s > 0) and so the solution is the VARX

yt ¼ Pyt−1 þ Hzt þ Rzt−1 þ Sξt
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and the complete data set (yt, zt) is the VAR

yt
zt

� �
¼ M

yt−1
zt−1

� �
þ N

ξt
εt

� �
:

Hence, a VAR is a natural choice of auxiliary model.
We may note in passing that the form of the solution of DSGE models implies that

their forecasting performance will be similar to that of a VAR unless there is better
information available about future values of the exogenous variables, for example,
where the exogenous variables are policy variables and there is a credible and accurate
announcement of the future policy stance. Supporting evidence for this is provided by
Wieland and Wolters (2012) and Wickens (2014).

We have based our indirect tests on a comparison of the VAR coefficients from
simulated and observed data. Using impulse response functions would just involve
using functions of these coefficients. We have also found that using VARs of low order
in only a few variables provide an indirect test with good power even for a large model
such as that of Smets and Wouters which has a reduced form solution that is a VAR of
fourth order in seven variables. And we have found that using numerical estimates of
the distribution of the test statistic gives tests of higher power than those based on the
asymptotic distribution of the test statistic. This may reflect the small sample sizes
available for estimating and testing DSGE models consisting of 200 or less
observations.

Although a formal test of a DSGE model should clearly be carried out, matching the
moments in the way used to evaluate RBC models does have some advantages.
Whereas testing the whole model via a single statistic can be carried out in a way
consistent with statistical theory, inspecting individual elements of the model can help
reveal which parts of the model best capture the data and which don’t. Thus, as
discussed in more detail in Wickens (2012), the basic RBC model based on a single
productivity shock such as that of King et al. (1988) produces simulated moments
which show that consumption is not smoothed as much as the theory predicts, and that
real wages are not as flexible as predicted. Much of the subsequent development of
DSGE models was to produce models that fitted the data for these features. Another
way of focussing on the aspects of the model that are inconsistent with the data, and do
so in a formal statistical manner is, as noted earlier, to test parts of the model. .

3 Testing DSGE Models by Frequentist Methods-Indirect Inference
and the Likelihood Ratio

In our previous survey we devoted much space to comparing the standard ‘direct
inference’ test, the likelihood ratio test (LR), to the indirect inference test (IIW) in
the context of small samples. (The two test procedures are explained in detail in
Appendix 2). We showed two main things. First, that the LR test had no power against
a mis-specified model, whereas the IIW test had very high power, effectively rejecting a
mis-specified model 100% of the time. Secondly, in the situation where the model is
well specified but the parameters are numerically inaccurate, we found that the IIW test
had considerably more power, rejecting models whose parameters were randomly
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wrong by 5–7% for 100% of the time, whereas the LR test rejects such models with
only small frequency; to reject 100% of the time it needs parameters to be wrong by as
much as 20%.

We explained these results by noting that the LR test, when faced with a numerically
incorrect model, is similar in power to an indirect inference test where the distribution
of the auxiliary model parameters - e.g. the VAR coefficients - is found from the data,
as opposed to the restricted model. Thus, here, the IIW test is simulated from the
structural model being tested, and the distribution of the VAR coefficients that this
structural model implies is used in the test. Plainly this distribution closely reflects the
features of the structural model. By contrast, the LR test takes the distribution implied
by the sample data, as generated by the (unknown) true model.

The low power of the LR test when the model is mis-specified (but has unrestricted
error dynamics) has a different cause. When one tests such a mis-specified model by
LR, one first has to estimate it by ML. Thus one is asking: is this (mis-specified)
structural model generating the data sample? To give the model the best chance of
passing the test, first one re-estimates the model together with its unrestricted error
dynamics. In finding a model with best fit, ML will use the estimates of the error
processes thereby minimising the forecast error that the LR test is based on. As a result,
finds a well-fitting model by substituting fitted error processes that are good at creating
low forecast error. Thus it is hard to distinguish the mis-specified model from the true
model using the LR test. Moreover, the data sample from the true model will also easily
fit the mis-specified model. By contrast when one re-estimates the mis-specified model
by II, there is simply no way the structural model can generate the same data behaviour
as the true model. Whatever estimates are found will generate different reduced form
behaviour. Hence the very high rejection rate. We show the key results from our
previous paper on this and report some further findings.

3.1 Mis-Specification

First we show the experiment where we test a mis-specified model. The Table below
shows the results when the true (Smets-Wouters) model is New Keynesian and the mis-
specified is a New Classical version and for the reverse case where the true model is
New Classical and the mis-specified model is New Keynesian. As can be seen, the
power of the II test is close to 100%, whereas that of the LR test is zero (Table 1).

We now investigate a more subtle form of mis-specification. It takes the form of a
failure to include in our model features from a more complex model that is in fact
generating the data. A fortiori an LR test would again be unable to detect this more
subtle form of mis-specification.

Table 1 Power of the test to
reject a false model

Percentage Rejected

NK data NC data

NC Model NK Model

II 99.6% 77.6%

LR 0% 0%
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We set up a Monte Carlo experiment in which the data generating process (DGP) is a
more complex model. Our starting point will be, as in Le et al. (2011, 2016a), the
Smets-Wouters model of the US where the data are from the early 1980s. Le et al.
(2011, 2016b) found that this model when modified to allow for a competitive sector
and for banking, can explain well the main US macro variables: output, inflation and
interest rates. It is this model, and versions similar to it, that we have used in previous
Monte Carlo experiments.

To this model we can add money and a regime shift contingent on the state of the
economy, from the Taylor Rule to the zero bound, as in Le et al. (2016b). This makes
the model’s parameters state-contingent so that it has this form of nonlinearity. We then
treat this nonlinear model as if it were the DGP generating the data. Using the indirect
inference test with a VAR as the auxiliary model we estimate the power function for the
falseness criterion described above in order to assess the sensitivity of the power
function to the presence of greater nonlinearity in the true model than the ‘assumed
true’ DSGE model we started with.

We looked at three very similar models, of varying complexity. All three are based
on the Smets-Wouters model as modified in Le et al. (2011). Model 1 is that model
exactly. Model 2 is,that model with the financial shock replaced by the Bernanke et al.
(1999) model of banking (the ‘financial accelerator’). Model 3 is the same model,
together with an extension in which collateral is required and base money acts as cheap
collateral, and the additional nonlinearity of the zero bound constraint, triggered
whenever the Taylor Rule interest rate falls below a low threshold. These last two
models are set out in Le et al. (2016b).

From the point of view of ‘realism’ and ‘truth’ we regard model 3 as the most
realistic, model 2 as a linear approximation to it, and model 1 as a simpler approxima-
tion to model 2. We investigate whether in each case the simpler, less realistic, model
can be treated as a valid approximation to the more realistic one.

We carried out the following three experiments with sample sizes between 75 and
200, and with 1000 sample replications. Our IIW test was based in all cases on the
coefficients of a three variable VAR(1) in (y, π, R); as is the usual practice in applying
these tests, it also includes the three variances making 12 parameters in all. Table 2
shows that in all cases there is an overwhelming probability of rejection, close to 100%
and falling to 80% with the smallest sample size of 75 and the two models closest in
complexity (models 1 and 2).

The models used for this experiment were those that Le et al. (2011, 2016a, b) where
the parameters were estimated by indirect estimation using US data. In practice, when
we carry out the IIW test on a model for a particular sample we re-estimate the model
for each sample generated by the true model. As this is highly time-consuming, we did

Table 2 Testing mis-specified models: percentage rejection rates using IIW

3 variable VAR(1) T = 200 T = 125 T = 75

1) Generating data from model 2 as true data, testing model 1 by IIW 99.9 98.2 79.7

2) Generating data from model 3 as true data, testing model 2 by IIW 100 99.3 95.2

3) Generating data from model 3 as true data, testing model 1 by IIW 100 100 98.1
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it selectively for two model pairs and different sample sizes: for a sample of 125, model
3 is the complex model and model 1 is the simpler model; with a sample of 75, model 2
is the complex model and model 1 is the simpler model.

Table 3 shows that the rejection rate for model 1 for the first pair is still
100%, even though there is some increase in closeness. Thus, even for a
sample as small as 125, the rejection of mis-specification remains virtually
100%. In the second case, Table 4, where model 1 is tested using data from
model 2 with a sample of only 75, it is somewhat harder to distinguish model
1 from model 2, the two closest models: the rejection rate falls to 68.6%.
However, rejection is still overwhelmingly probable. As noted above, an LR
test would have had zero power for these mis-specification tests; plainly, the IIW test
provides considerable power against mis-specification.

To summarise, we have found that our IIW test can establish a) whether a
model can predict relevant features of the data and, if so, b) the bounds within
which we can be sure of its specification and parameter values. For the widely-
used DSGE model examined here, we found that, if the model passes the test
about the behaviour of three key macro variables, then its power largely guarantees that
no other specification can be correct, and its parameter values lie within a 7–10% region
of those estimated.

3.2 Parameter Inaccuracy within a Correct Specification

We now consider for a wide variety of VAR auxiliary models how the LR test performs,
as compared with the IIW test for different levels of structural parameter inaccuracy.
Our results, based on the simulations of the structural model being tested, are reported
in Table 5.

Two things can be seen in the comparison of these two tests in the bottom two
panels. First, in general, the power of the LR test does not reach 100% rejection until
the model parameters reach 20% falsity regardless of the VAR order which reflects the
detail with which data behaviour is described. The IIW test has high power even when
the detail is kept rather low - e.g. with a VAR(1) in just three variables. Thus, we find
that a structural model that is just 7% false is rejected with 98% frequency. Second, and
by contrast, as the detail included in the VAR description rises with higher order, the
IIW test acquires more power.

Turning to the top panel, where the II test is carried out using the distribution of VAR
coefficients derived from the data sample VAR itself (i.e. unrestricted by the structural
model being tested), two things emerge. First, as the size of the VAR increases, the
information from the data sample is increasingly unable to provide well-defined

Table 3 Transformed Wald for model 1 when tested on model 3 samples, T = 125

Transformed Wald Min Max Mean Rejection rate

(Critical value = 1.645)

Re-estimated by II 1.686 79.314 21.739 100%

Original estimates 2.459 9.07E+15 2.57E+14 100%
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estimates of the distribution of the VAR coefficients. This is because the variation in too
many coefficients has to be evaluated on too little data. Second, for lower order VARs,
where evaluation is possible, the power is similar to that of the LR test. This is because,
as noted in Appendix 2, these two tests are transforms of each other and therefore tend
to produce similar test results.

This section has summarised the findings of our earlier survey paper, from which we
concluded that, whatever VAR was used as the benchmark comparator model, LR tests
would provide little or no power against mis-specification, and rather low power
against numerical inaccuracy. It has also added a further result, namely, that more
subtle aspects of mis-specification can be detected with high precision by indirect
inference tests. Next we focus just on the IIW test, considering how best to use it and in
what particular form.

Table 4 Transformed Wald for model 1 when tested on model 2 samples, T = 75

Transformed Wald Min Max Mean Rejection rate

(Critical value = 1.645)

Re-estimated by II 1.480 8.412 2.409 68.6%

Original estimates 1.291 11.818 2.909 79.7%

Table 5 Comparison of rejection rates at 95% level for Indirect Inference and Direct Inference

VAR — no of coefficients TRUE 1% 3% 5% 7% 10% 15% 20%

IIW TEST with unrestricted VAR

variable VAR(1) — 4 5.0 6.2 20.3 69.6 61.0 99.8 100.0 100.0

variable VAR(1) — 9 5.0 3.4 7.5 30.7 75.0 97.4 100.0 100.0

variable VAR(2) — 18 5.0 3.8 5.2 19.1 57.5 84.3 98.4 99.5

variable VAR(3) — 27 5.0 3.9 6.4 21.6 54.5 84.0 97.5 98.7

variable VAR(1) — 25 5.0 2.8 3.2 2.6 5.4 6.2 4.5 100.0

variable VAR(3) — 147 5.0 5.1 3.4 1.4 0.9 0.2 0.0 100.0

IIW TEST with restricted VAR

variable VAR(1) — 4 5.0 9.8 37.7 80.8 96.8 100.0 100.0 100.0

variable VAR(1) — 9 5.0 9.5 36.1 71.0 98.1 100.0 100.0 100.0

variable VAR(2) — 18 5.0 8.3 35.5 80.9 96.9 100.0 100.0 100.0

variable VAR(3) — 27 5.0 9.2 32.9 78.0 95.1 100.0 100.0 100.0

variable VAR(1) — 25 5.0 17.8 85.5 99.8 100.0 100.0 100.0 100.0

variable VAR(3) — 147 5.0 77.6 99.2 100.0 100.0 100.0 100.0 100.0

LIKELIHOOD RATIO TEST

variable VAR(1) — 4 5.0 12.0 28.3 45.9 63.4 83.2 97.0 99.7

variable VAR(1) — 9 5.0 9.4 21.8 37.5 58.9 84.0 99.0 100.0

variable VAR(2) — 18 5.0 8.9 20.7 36.8 57.6 82.9 98.7 100.0

variable VAR(3) — 27 5.0 8.9 20.4 36.7 56.7 82.2 98.7 100.0

variable VAR(3) — 147 5.0 5.7 10.6 23.6 46.3 83.2 99.6 100.0
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4 Comparing Different Ways of Carrying out the IIW Test- Monte Carlo
Experiments with Small Samples

4.1 Different Variables and Different Features

There are a variety of practical concerns about best to carry out indirect inference tests.
One is whether it matters which features of the data are chosen as the
‘descriptors’ for the Wald test. As noted above above, a VAR is a natural
choice of auxiliary model and the test can be based on its moments, its
coefficients or its associated impulse response functions; the test results are
largely the same. The key element in the power of the test is how many of
these descriptors are used; this relates to the point made above that using more
is equivalent to requiring the model to replicate more detailed features of the data, as
with pixels in a photograph. Thus we showed above how increasing the number of VAR
coefficients raised the power.

Another concern is the choice of variables used for the data description. For
example, in evaluating the Smets-Wouters model we showed test results using the
three main macro variables, output, inflation and interest rates. Would it be any
different had we used three other variables, say consumption, investment and
real wages? The answer is no, or there is a negligible difference, (Meenagh
et al. 2018) as any three variables give much the same results. The reason is
related to the last issue: provided the same amount of information about the
data features is included, the test works similarly. One can think of each piece
of information as being a nonlinear combination of the model’s structural
coefficients; the question is whether this is matched by their effect on the data.
The number of pieces of information gives the number of matches required by the test.
What matters is the amount: more VAR coefficients for example, but not which VAR
coefficients (Tables 6 and 7).

This may appear to be puzzling; the original idea in DSGE modelling of comparing
the moments of data simulated from the model with those from the observed data
stressed that it was good to select data features of interest to the user. We have found in
our Monte Carlo work on the small sample properties of the IIW test that, provided the
number of descriptive features is held constant, whichever variables are focused on, and
however their behaviour is measured, whether by moments, IRFs or VAR coefficients,
the IIW tests provide roughly the same power and estimates with much the same bias.
Why is this?

Table 6 Power of the II test across data descriptors

Rejection Rate

Degree of falseness 0% 1% 3% 5% 7% 10% 15% 20%

Var coeffs 0.05 0.128 0.866 0.997 1.000 1.000 1.000 1.000

IRF 0.05 0.140 0.852 0.998 1.000 1.000 1.000 1.000

Moment 0.05 0.114 0.326 0.665 0.913 0.997 1.000 1.000

Three variables are used in VAR are (y, pi, r), as in Le et al. (2011). Source: Minford et al. (2016)
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An analogy would be with taking a fingerprint or footprint or skin sample from a
person; given that person’s DNA, each would be a test of whether that person was the
source. Here we take a sample of behaviour and ask whether it comes from this DSGE
model? It would seem that provided our data sample is of reasonable size and samples
enough features, it can act as a rather accurate test of whether the DSGE model
generated it.

For policymakers this is a reassuring conclusion. If they find a model that passes
ANY of these tests, whichever they choose, they can establish from the test’s power
with certainty how false their model could be, in different respects that concern them.
Usually they will be concerned with ‘general falseness’ where any or all of their
parameters could be mis-estimated: they can then say within what bounds the param-
eters would lie for their model. They could use this to calculate robustness tests for their
policy proposals.

4.2 Forecasting Tests

In effect the within-sample LR test assesses how accurate a model is for ‘nowcasting’
as it is based on the size of within-sample predictive errors. The next Table shows the
power of out-of-sample forecasting LR tests for three variables jointly 4 and 8
quarters ahead, together with the IIW test. It can be seen that the out-of-sample
LR test has weak power compared to the IIW test; the rejection rises close to 100% only
with 20% or more falsity. Non-stationarity does not appear to affect these results
(Table 8).

Table 7 Power of the II test across variable choice

Rejection Rate

Degree of falseness 0% 1% 3% 5% 7% 10% 15% 20%

(y, pi, r) 0.05 0.128 0.866 0.997 1.000 1.000 1.000 1.000

(c, i, l) 0.05 0.094 0.561 0.923 0.986 1.000 1.000 1.000

(q, w, r) 0.05 0.072 0.276 0.771 0.984 1.000 1.000 1.000

VAR coefficients used as data descriptors, as in Le et al. (2011). Source: Meenagh et al. (2018)

Table 8 Rejection rates for wald
and likelihood ratio for 3 variable
VAR(1)

Source: Minford et al. 2015,
Table 2, p 341

% mis-specified II Wald in-sample Joint 3:4Q :8Q

True 5.0 5.0 5.0

19.8 6.0 4.9

52.1 9.4 5.2

87.3 15.3 6.0

99.4 22.9 6.6

100.0 36.2 9.8

100.0 73.8 29.5

100.0 99.8 90.7
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4.3 Tests of Parts of Models

The focus in our tests to this point has been on a full DSGE model. As noted earlier, if
the full model fails the test then it is necessary to find out which parts of the
model are causing the rejection it in order to re-specify the model.
Alternatively, the investigator may not have the time and resources to construct
or investigate a full model and would be satisfied with using a few equations of a
partially specified model. Minford et al. (2019) have proposed a limited information
indirect inference test for testing a subset of equations of the full DSGE model. Like the
indirect inference test for a full DSGE model, this limited information test of part of the
model is very powerful.

The test exploits a useful way to carry out the limited information estimation of a
part of a simultaneous equation system. The idea is to replace the structural equations
that are not to be tested by their reduced form solution while keeping the structural
equations that are to be tested and then to carry out the indirect inference test
for the resulting completed model. In practice the unrestricted auxiliary model
is used to replace the structural equations not tested. As a result the equations
in the auxiliary model based on the simulated data from the completed model
will be the same as those for the observed data. The test of the subset of interest is
therefore based solely on the two sets of estimates of the other auxiliary equations. The
simulated data from the completed model can also be used for the analysis of a partially
specified model.

To illustrate the use of this test we examine the specification of two sectors of the
SWmodel: the wage-price equations and the consumption-investment equations. Using
an auxiliary VAR(1) model the limited information and full model tests of the wage-
price sector have the power properties reported in Table 9.

The corresponding tests of the consumption-investment equations have the power
properties reported in Table 10.

For both sectors the power of the limited information and the full informa-
tion tests are similar. However, the power of the tests of the wage-price sector
are much higher than those of the consumption-investment equations. The first
implication is that there is little or no loss in power from using the limited
information test. A second implication is that the behaviour of the Smets-
Wouters model is much more sensitive to the specification of the wage-price
sector than the consumption-investment equations. This suggests that the reason
the original full Smets-Wouters model is rejected is that the wage-price sector is
mis-specified; anymispecification of the consumption-investment equations appears not
to affect the full model.

Table 9 Rejection Rates at 95% level: falseness is given by ± alternation, test 3 variables (yt, pt, rt) VAR(1)

Falseness is given by ± x% alternation

0% 1% 3% 5% 7% 10% 15% 20%

Using VAR 0.050 0.076 0.345 0.923 1.000 1.000 1.000 1.000

Using Full Model 0.050 0.074 0.385 0.973 1.000 1.000 1.000 1.000
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5 Estimation in Small Samples

So far in this review we have considered only the properties of tests of models,
especially their power in small samples, for models that have already been estimated.
In the case of DSGE macroeconomic models this is typically by Bayesian methods for
which the model is not subject to a test except, possibly, by inspection of the
significance of the posterior estimates via their posterior distribution. We have previ-
ously noted some problems in interpreting such a check. If the prior dominates the
likelihood function and hence the posterior then such a check will not reveal how well
the model fits the observed data. We have also noted the claim that classical likelihood-
based methods tend to reject too many Bgood^ models, hence the use of Bayesian
estimation to limit the role of observed data. One reason why likelihood methods may
produce estimates not consistent with theory is that they attempt to find a model of best
fit. If the model is mis-specified then it will produce biased estimates in order to
maximise the fit. This may be why Bgood^ models are often rejected, meaning the
estimated parameters are not compatible with economic theory. Nonetheless, we have
found that models estimated by maximum likelihood and tested using the LR test have
low power compared with indirect inference. Specifying the model with unrestricted
error dynamics is often found to be a way of improving the in-sample fit of models
estimated by maximum likelihood, but it may also have the effect of lowering the
power of the LR test, especially in small samples.

Indirect estimation is an alternative to both Bayesian and maximum likelihood
estimation. We have found that it provides an estimator with smaller biases than
maximum likelihood, typically around 1% for the average absolute bias across the
DSGE parameters. This property comes from the high power of the test in rejecting
false parameter values: the IIW tends to rise increasingly rapidly as the parameter
estimates diverge from the true values. Regardless of whether the estimator is based on
VAR coefficients, IRFs or moments, the small sample bias is small: it is essentially the
same for the first two, with a slightly larger bias for moments. To illustrate, when one
compares the indirect estimates based on these three descriptors using different three-
variable sets, we find that the bias is small and hardly differs. These results are reported
in Tables 11 and 12.

α income share of capital
h external habit formation
ιp degree of price indexation
ιw degree of wage indexation

Table 10 Rejection Rates at 95% level: falseness is given by ± alternation, test 3 variables (yt, pt, rt) VAR(1)

Falseness is given by ± x% alternation

0% 1% 3% 5% 7% 10% 15% 20%

Using VAR 0.050 0.051 0.086 0.094 0.123 0.174 0.311 0.288

Using Full Model 0.050 0.055 0.057 0.056 0.056 0.069 0.103 0.140
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ξp degree of price stickiness
ξw degree of wage stickiness
φ elasticity of the capital adjustment cost function
Φ 1 + the share of fixed costs in production
ψ elasticity of the capital utilization adjustment cost
rΔy Taylor rule coefficient
ρ Taylor rule coefficient (interest rate smoothing)
rπ Taylor rule coefficient
ry Taylor rule coefficient
σc elasticity of intertemporal substitution for labor
σl elasticity of labor supply to real wage

This bias can be driven as low as one wishes by increasing the number of features in
the auxiliary model, as the power rises with the number of features until the point is
reached where the full reduced form VAR is used (or its equivalent in moments or
IRFs). This is because the indirect estimator and the indirect inference test are based on
the same objective function: deviations of the estimates of the parameters of the
auxiliary model from simulated and observed data. The bias reduction comes at the
cost of the indirect inference test having extremely high power against even the
slightest parameter falsity. It follows that if one has a tractable model that is not exactly
the true model the parameter values it will estimate a) may not pass this powerful test -

Table 11 Bias of II estimates by using different data descriptors

Data Descriptor VAR coeffs IRF Moments

II estimates II estimates II estimates

True Values Mean Std Bias Mean Std Bias Mean Std Bias

α 0.19 0.189 0.020 0.32% 0.191 0.021 0.37% 0.197 0.018 1.50%

h 0.71 0.692 0.065 2.51% 0.684 0.069 3.61% 0.669 0.049 2.77%

ιp 0.22 0.221 0.023 0.45% 0.223 0.026 1.32% 0.229 0.021 4.08%

ιw 0.59 0.586 0.060 0.69% 0.584 0.068 0.96% 0.570 0.058 3.40%

ξp 0.65 0.664 0.068 2.08% 0.659 0.074 1.35% 0.674 0.063 3.71%

ξw 0.73 0.725 0.075 0.71% 0.731 0.083 0.17% 0.702 0.073 3.82%

φ 5.48 5.531 0.557 0.93% 5.555 0.608 1.36% 5.712 0.524 4.24%

Φ 1.61 1.607 0.166 0.16% 1.635 0.182 1.53% 1.576 0.140 2.14%

ψ 0.54 0.540 0.057 0.00% 0.543 0.062 0.57% 0.561 0.051 3.88%

rΔy 0.22 0.222 0.023 1.05% 0.222 0.024 1.09% 0.210 0.020 1.38%

ρ 0.81 0.787 0.047 2.80% 0.770 0.060 4.95% 0.842 0.058 3.91%

rπ 2.03 2.007 0.188 1.12% 1.992 0.204 1.86% 1.965 0.188 3.20%

ry 0.08 0.079 0.009 1.25% 0.081 0.009 1.38% 0.082 0.008 2.96%

σc 1.39 1.358 0.137 2.29% 1.377 0.155 0.95% 1.356 0.132 2.45%

σl 1.92 1.930 0.208 0.54% 1.944 0.211 1.24% 1.981 0.191 1.18%

Average 0.113 1.13% 0.124 1.51% 0.106 3.04%

The true parameter values are from Smets and Wouters (2007), Table 4. Three variables used in VAR are (y, pi,
r), as in Le et al. (2011) Std denotes sdandard deviation. Source: Meenagh et al. (2018).
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as they are simply the values that get closest to passing it, b) may not pass the weaker-
powered test either - as they were not selected as the values that get closest to passing
this weaker test. From the user’s viewpoint the key aim is to find a tractable model with
parameter values that pass the test; having found such a model it is then possible to
assess the robustness of the whole-model results to potential falsity, as described earlier.
If, however one cannot find a model that passes the test, there is no way to make this
assessment. Hence our view is that it is best to use in indirect estimation the same
criterion as for the indirect test statistic that was given above.

It is notable that Dridi et al. (2007) propose a two-step procedure to achieve both
objectives: estimation and evaluation of mis-specified DSGE models. In the first step
the model is estimated using a well chosen set of moments; in the second step, the
model is evaluated with chosen features of the data that the model tries to replicate.
They derive the asymptotic distribution of the test statistic under the hypothesis that the
DSGE model is mis-specified and therefore use the variance-covariance matrix from
the unrestricted VAR. Hall et al. (2012), and Guerron-Quintana et al. (2017) use the
IRFs as the data descriptor in the auxiliary model and discuss both the small sample and
large sample properties of the indirect approach to estimation, but not as a method of
testing a model. As we have seen above, Minford et al. (2016) compare the test with
different data descriptors and find that mostly the properties are quite similar. The two
ways of conducting indirect estimation are, of course, closely related.

Table 12 Bias of II estimates by using different variable combinations

Var Comb (y, pi, r) (c, i, l) (q, w, r)

II estimates II estimates II estimates

True Values Mean Std Bias Mean Std Bias Mean Std Bias

α 0.19 0.189 0.020 0.32% 0.188 0.021 1.2% 0.193 0.020 1.74%

h 0.71 0.692 0.065 2.51% 0.711 0.073 0.2% 0.674 0.057 5.08%

ιp 0.22 0.221 0.023 0.45% 0.215 0.025 2.3% 0.223 0.024 1.40%

ιw 0.59 0.586 0.060 0.69% 0.571 0.068 3.2% 0.580 0.063 1.70%

ξp 0.65 0.664 0.068 2.08% 0.635 0.073 2.3% 0.666 0.069 2.53%

ξw 0.73 0.725 0.075 0.71% 0.727 0.082 0.4% 0.719 0.080 1.49%

φ 5.48 5.531 0.557 0.93% 5.385 0.613 1.7% 5.575 0.579 1.73%

Φ 1.61 1.607 0.166 0.16% 1.595 0.141 0.9% 1.583 0.172 1.69%

ψ 0.54 0.540 0.057 0.00% 0.524 0.062 3.0% 0.553 0.057 2.36%

rΔy 0.22 0.222 0.023 1.05% 0.218 0.025 1.1% 0.217 0.024 1.49%

ρ 0.81 0.787 0.047 2.80% 0.797 0.088 1.6% 0.816 0.065 0.74%

rπ 2.03 2.007 0.188 1.12% 2.015 0.234 0.7% 1.983 0.205 2.32%

ry 0.08 0.079 0.009 1.25% 0.078 0.009 2.3% 0.080 0.009 0.10%

σc 1.39 1.358 0.137 2.29% 1.370 0.156 1.4% 1.345 0.141 3.26%

σl 1.92 1.930 0.208 0.54% 1.876 0.218 2.3% 1.957 0.204 1.93%

Average 0.113 1.13% 0.123 1.70% 0.118 1.97%

The true parameter values are from Smets and Wouters (2007), Table 4. VAR coefficients are used as data
descriptors, as in Le et al. (2011). Source:Meenagh et al. (2018).
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6 Identification

There has been a persistent suspicion that DSGE model parameters cannot be uniquely
recovered from the data. In other words, the model is not identified. Canova and Sala
(2009) and Le et al. (2012) have provided examples of the lack of identification of
DSGE models in the New Keynesian model, see also Appendix 1. In response to such
concerns various efforts have been made to establish whether various prominent DSGE
macro models are identified. One avenue has been to use the rank condition which tests
whether, with no limits on data availability, a DSGE model’s parameters can be
uniquely discovered - Iskrev (2010), Komunjer and Ng (2011), Qu and Tkachenko
(2012). Another avenue is to use indirect inference in the way suggested by Le et al.
(2017). These two methods establish ‘precise’ identification - i.e. whether, in the
presence of unlimited data, another set of parameters can be found that generate exactly
the same reduced form as the DSGE model in question.

A related issue is that of ‘weak identification’. By this is meant whether individual
model parameter values can be distinguished with any confidence from other values
from some false, competing, version of the model. As the data sample becomes smaller
this becomes of increasing concern; when data is unlimited this reduces to the same as
precise identification. In practice data is limited and so one would like to examine
identification in the context of much, but not unlimited, data. This can be addressed by
indirect inference by asking how much power the test has against false parameter
values in relevant data sample sizes. Le et al. (2017) find that Smets-Wouters param-
eters are generally strongly identified according to this criterion but, in a small three
equation New Keynesian model similar to that of Clarida et al. (1999), several
parameters suffer from weak identification.

This analysis used the model’s full reduced form which gives maximum discrimi-
nation against false parameter values. In practice we use, as we have seen, a low order
VAR in only a few variables (or the equivalent in moments or IRFs). Does using such a
low-order approximation to the reduced form create a weakness of identification?

We know that the Smets Wouters model is identified in the sense that its full reduced
form is unique to it - see Le et al. (2017). We may, however, be concerned that as we
reduce the number of variables and the order of the VAR that is approximating
the reduced form, the amount of information included drops sufficiently to give
very imprecise estimates of the DSGE model parameters. When the sample is
also small, this problem could become more acute. We then have the problem of
weak identification.

This problem can be investigated through Monte Carlo experiments. We falsify
individual parameters of the Smets Wouters model progressively and check the rejec-
tion rate over many samples from the true model. If the power is poor so that
the rejection rate barely rises with such falsity then we can regard the param-
eters as weakly identified as, plainly, we cannot distinguish well between
possible false and true parameter values. The results of this experiment are reported in
Table 13.

This exercise shows that rejection rates vary across parameters: while the rejection
rates of three of the parameters rise only slowly, rejection rates for the others rise quite
fast. This mirrors the findings of Le et al. (2017) for the full VAR reduced form of the
Smets and Wouters model and a large sample. It seems that reducing the VAR to be of
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order 1 with only three variables and using a much smaller sample, does not create
weak identification.

7 Conclusions

Indirect Inference is a method for testing and estimating models of any size, complexity
or nonlinearity by comparing the behaviour of data simulated from the model with that
of selected observed data where behaviour is summarised by a set of descriptive
features, known as the auxiliary model. Its use in the testing and estimation of macro-
economic and other structural models has increased in the past few years. Nonetheless,
as it is a relatively novel procedure, many questions remain about its detailed applica-
tion. As these questions go beyond the scope of the survey in Le et al. (2016a), we
update that survey by providing answers to some of these additional questions.

The earlier survey discussed the power of indirect inference tests in small samples in
comparison with tests based on the main frequentist testing alternative using the data
likelihood. The survey suggested ways in which modellers could use this power to
determine the robustness of their policy or other user results. In that survey it was
assumed that the auxiliary model would be a VAR of low order in a few variables while
the structural model would be a DSGE model of some sort.

In this update we have discussed the view that DSGE models are so unrealistic that it
is pointless to test them. We have argued that the main purpose of testing is to establish
whether, even if they are mis-specified, they are robust enough to be of practical use
and they should be regarded as pseudo-true for the purposes of hypothesis testing. As

Table 13 Rejection rates for individual parameters falsified

Degree of Falseness

1% 2% 3% 5% 10% 20% 50% 75%

α 0.0700 0.0720 0.0720 0.0710 0.0810 0.1230 0.6020 0.9480

h 0.0720 0.0710 0.0760 0.0900 0.1950 0.6720 1.0000 1.0000

ιp 0.0700 0.0700 0.0700 0.0720 0.0730 0.0790 0.1000 0.1350

ιw 0.0690 0.0690 0.0690 0.0760 0.0830 0.1820 0.8490 0.9870

ξp 0.0670 0.0620 0.0650 0.0670 0.1440 0.6360 0.9950 0.9960

ξw 0.0710 0.0740 0.0770 0.0860 0.0970 0.4970 1.0000 1.0000

φ 0.0700 0.0700 0.0700 0.0710 0.0710 0.0700 0.0740 0.1410

Φ 0.0700 0.0690 0.0720 0.0770 0.0930 0.2420 0.5230 0.8340

ψ 0.0700 0.0700 0.0710 0.0740 0.0720 0.0780 0.3270 0.9930

rΔy 0.0690 0.0710 0.0690 0.0750 0.1260 0.5070 1.0000 1.0000

ρ 0.0870 0.1570 0.3590 0.8910 1.0000 1.0000 1.0000 1.0000

rπ 0.0750 0.0850 0.1160 0.2160 0.8710 1.0000 1.0000 1.0000

ry 0.0710 0.0690 0.0680 0.0770 0.1380 0.5370 1.0000 1.0000

σc 0.0710 0.0720 0.0730 0.0750 0.1050 0.3140 1.0000 1.0000

σl 0.0700 0.0720 0.0730 0.0740 0.0770 0.0800 0.1060 0.1390
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DSGE models models are commonly estimated using Bayesian methods in which the
priors often dominate the data likelihood, but not as a result tested, a check on the
robustness of the estimates seems to us to be advisable.

Indirect inference requires the use of an auxiliary model. We have reported results
from our previous work and from new results obtained for this paper which show how
the choice of auxiliary model affects the power of the test. We have found that using a
VAR of low order in only a few variables may be adequate for providing a powerful test
of a large model such as that of Smets and Wouters (2007) even though its true reduced
form is a much higher order VAR in more variables. Moreover, the selection of which
variables to use in the auxiliary VAR model is found to make little difference. It also
makes little difference to the test results whether one uses a VAR as the auxiliary model
or moments (as in the Simulated Method of Moments) or impulse response functions as
in some recent applied work.

We also showed how one can test parts of models using indirect inference. There is
little or no loss of power compared to using the full model. We have shown how
indirect inference tests can be used to check both the precise and weak identification of
DSGE models, although their identification does not seem to be much of a problem in
practice. Likelihood ratio tests often have low power within sample, we have shown
that they also have low power in forecasting tests out of sample.

In summary, we continue to think, as suggested in the original survey of Le et al.
(2016a), that indirect inference provides a powerful test of structural macro models,
which enables policymakers and other users to assess rather accurately how robust their
models are to possible errors of specification and estimation.

Appendix 1: The auxiliary model: a VAR representation of a DSGE
model

There are several ways of deriving a VAR representation of a DSGE model. We make
use of the ABCD framework of Fernandez-Villaverde et al. (2007). We consider solely
what these authors call the ‘square’ case, where the number of errors and the number of
observable variables are the same. We also consider only DSGE models with no
observable exogenous variables. Both the Smets-Wouters model (Smets and Wouters
2003, 2007) and the 3-equation model New Keynesian model used by Le et al. (2017)
and Liu and Minford (2014) for their numerous IIW tests fit this framework. (Other
classes of models, for example those with ‘news shocks’, require a different treatment
which is beyond our scope here.)

To illustrate, consider the 3-equation New Keynesian model of Le et al. (2017):1

πt ¼ ωEtπtþ1 þ λyt þ eπt; ω < 1

yt ¼ Etytþ1−
1

σ
rt−Etπtþ1ð Þ þ eyt

rt ¼ γπt þ ηyt þ ert
eit ¼ ρiei;t−1 þ εit i ¼ π; y; rð Þ

ð1Þ

1 Further lags in both endogenous variables and the errors could be added; but for our main treatment we
suppress these. Our results can be extended to deal with them, without essential change.
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This has the solution

πt

yt
rt

2
4

3
5 ¼ KH

eπt
eyt
ert

2
4

3
5 ð2Þ

where.

K ¼

1þ η
σ
−ρπ λ −

λ
σ

−
1

σ
γ−ρπð Þ 1−ωρy −

1

σ
1−ωρrð Þ

γ− γ−
η
σ

� �
ρπ λγ þ η−ηωρy 1− 1þ ωþ λ

σ

� �
ρr þ ωρ2r

2
666664

3
777775;

H ¼
H11 0 0
0 H22 0
0 0 H33

2
4

3
5;

H11 ¼ 1

1þ ηþ λγ
σ

−
λ
σ
þ ω 1þ η

σ

� �� �
ρπ þ ωρ2π

H22 ¼ 1

1þ ηþ λγ
σ

−
λ
σ
þ ω 1þ η

σ

� �� �
ρy þ ωρ2y

H33 ¼ 1

1þ ηþ λγ
σ

−
λ
σ
þ ω 1þ η

σ

� �� �
ρr þ ωρ2r :

or
zt ¼ Φet ð3Þ

et ¼ Pet−1 þ εt ð4Þ

where z
0
t ¼ πt; yt; rt½ �; e0

t ¼ eπt; eyt; ert
� 	

;Φ ¼ K � H : Thus the matrix Φ is restricted,
having 9 elements but consists of only 5 structural coefficients (the ρi can be
recovered directly from the error processes), implying that the model is over-
identified according to the order condition. The model is not identified, how-
ever, if the ρi = 0 for all i.2

The solved structural model can be written in ABCD form as follows where y
(replacing z above) is now the vector of endogenous variables and x (replacing e above)
is the vector of error processes:

xt ¼ Axt−1 þ Bεt

2 Le et al. (2017), also establish that it is identified using the IIW test in unlimited-size sampling.
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yt ¼ Cxt−1 þ Dεt

where A ¼ P ¼
ρπ 0 0
0 ρy 0
0 0 ρr

2
4

3
5;B ¼ I ;C ¼ ΦP;D ¼ Φ:

Note that yt =Φxt is the (solved) structural model. Hence xt =Φ−1yt. The VAR
representation is3

yt ¼ ΦPΦ−1yt−1 þ Φεt ¼ Vyt−1 þ ξt ð5Þ

We may also note that

yt ¼ Φ∑∞
i¼0P

1εt−1 ¼ ∑∞
i¼0P

1ξt−i

More generally, the solution of a linearised DSGE model (including the SW model and
the 3-equation model) can be summarised by a state-space representation:4

xt ¼ Axt−1 þ Bεtyt ¼ Cxt

where xt is an n × 1 vector of possible unobserved state variables, yt is a k × 1 vector of
variables observed by an econometrician, and εt is an m × 1 vector of economic shocks
affecting both the state and the observable variables, i.e., shocks to preferences,
technologies, agents’ information sets, and economist’s measurements. The shocks εt
are Gaussian vector white noise satisfying E εtð Þ ¼ 0;E εtε

0
t


 � ¼ I . The matrices A, B
and C are functions of the underlying structural parameters of the DSGE model. Using
the ABCD framework of Fernandez-Villaverde et al. (2007), the state-space represen-
tation can be written as the VAR

yt ¼ Vyt−1 þ ηt ð6Þ

where E ηtη
0
t


 � ¼ ΦΦ
0 ¼ Σ.

We have assumed that the DSGE model includes no observable exogenous vari-
ables. If it does then the solution to the DSGE model contains exogenous variables as
well as lagged endogenous variables: in general, lagged, current and expected future

3 If the DSGE model also had one-period lags in one or more of the equations so that the solution became
zt =Φet +Λzt − 1 then we would obtain a VAR(2) as follows:

(1) xt = Axt − 1 + Bεt
(2) yt =Cxt − 1 +Dεt +Λyt − 1

Using xt − 1 =Φ−1(yt − 1 −Λyt − 2) we obtain

yt ¼ ΦPΦ−1 þ Λ

 �

yt−1−Φ
−1Λyt−2 þ Φεt

4 The solution of the model can be obtained by using either Blanchard and Kahn (1980) or Sims (2002) type of
algorithms.
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exogenous variables. If, however, the exogenous variables are assumed to be generated
by a VAR process then the combined solution of both the endogenous and exogenous
variables is a purely backward-looking model that can be represented as a VAR.5

Appendix 2: The LR and the IIW test statistics- asymptotic comparisons

In indirect inference we do not impose the restrictions on the coefficients of the
auxiliary model that are implied by the structural model. Instead, we estimate the
auxiliary model on data simulated from the structural model and compare these
estimates with those obtained from using the observed data. In both cases the auxiliary
model is estimated without any coefficient restrictions. The restrictions imposed by the
DSGE model are reflected in the simulated data and not through explicit restrictions on
the auxiliary model.

Since both the LR test and the IIW test involve estimation of an unrestricted VAR,
first we briefly review the maximum likelihood estimation (MLE) of a standard
unrestricted VAR. Consider a randomly generated sample of yt of size T. If ηt is
assumed to be NID(0,Σ) then the log-likelihood function is

lnL V ;Σð Þ ¼ −
Tn
2
ln 2πð Þ þ T

2
lnjΣj þ 1

2

T

t¼1
yt−Vyt−1ð Þ0Σ−1 yt−Vyt−1ð Þ

� �

Maximising with respect to Σ−1 gives

∂lnL V ;Σð Þ
∂Σ−1 ¼ T

2
Σ−

1

2

T

t¼1
yt−Vyt−1ð Þ yt−Vyt−1ð Þ0

Setting this to zero and solving gives the MLE estimator of Σ as

Σ
94
¼ 1

T

T

t¼1
yt−Vyt−1ð Þ yt−Vyt−1ð Þ0 ð7Þ

Substituting this back into the likelihood function gives the concentrated likelihood

lnL V ;Σ
94

� �
¼ −

Tn
2
ln 2πð Þ þ T

2
lnjΣ

94
j þ Tn

2

� �

Maximising this with respect to V is identical to minimising lnjΣ94 j with respect to V.
Thus

∂lnjΣ
94
j

∂V
¼ 2Σ−1

94 T

t¼1 yt−Vyt−1ð Þy0
t−1 ¼ 0

5 For further discussion on the use of a VAR to represent a DSGE model, see for example Canova (2005),
Dave and De Jong (2007), Del Negro and Schorfheide (2004, 2006) and Del Negro et al. (2007a, 2007b)
(together with the comments by Christiano (2007), Gallant (2007), Sims (2007), Faust (2007) and Kilian
(2007)), and Wickens (2014).
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and hence the MLE of V is

V̂ ¼ T
t¼1yty

0
t−1

� �
T
t¼1yt−1y

0
t−1

� �−1

and can be calculated by applying OLS to each equation separately. The MLE of Σ
becomes

Σ
94
¼ 1

T

T

t¼1
yt−V̂yt−1

� �
yt−V̂yt−1

� �0

ð8Þ

In order to find the variance matrix of V̂ it is convenient to re-express the VAR.
Denoting the T observations on the ith element of yt as the T × 1 vector yi and of ηt as ηi,
each equation of the VAR may be written as

yi ¼ Zvi þ ηi ð9Þ

where v
0
i is the ith row of V and Z is a T × k matrix with tth row yt − 1. The VAR may now

be written in matrix form as

Y ¼ Xvþ η ð10Þ

where

Y ¼
y1
:
yT

2
4

3
5;X ¼

Z ::: 0
:: :: ::
0 ::: Z

2
4

3
5 ¼ I k⊗Z; :::η ¼

η1
:
ηT

2
4

3
5; :::v ¼ v1

:
vk

2
4

3
5

⊗ denotes a Kronecker product. Hence η is N(0,Ω) where Ω =Σ⊗ IT. Generalised least
squares estimation gives the MLE of v as

v
94 ¼ X

0
Ω−1X

� �−1
X

0
Ω−1Y ¼ Ik⊗ Z

0
Z

� �−1
Z

0
� �

Y ¼ vþ I k⊗ Z
0
Z

� �−1
Z

0
� �

η

In general v94 is a biased estimate of v as Z consists of lagged endogenous variables, but

plim v94 ¼ v and the limiting distribution of
ffiffiffiffi
T

p
v94 −vð Þ is N(0,W) where

W ¼ plimT Ik⊗ Z
0
Z

� �−1
Z

0
� �

Σ⊗ITð Þ Ik⊗ Z
0
Z

� �−1
Z

0
� �0

¼ Σ⊗ plimT−1Z
0
Z

� �−1

The LR test

The LR test for a DSGE model based on the observed data compares the likelihood
function of the auxiliary VAR derived from the DSGE model with the likelihood
function of the unrestricted VAR computed on the observed data. The former is based
on the estimate of the variance matrix of the structural errors from the solution to the
DSGE model. On the assumption that the auxiliary model is the solution to the DSGE
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model and is a VAR, this is also the error variance matrix of a restricted version of the
auxiliary VAR. The latter is based on the estimate of the error variance matrix of the
unrestricted auxiliary VAR. As the auxiliary model is a VAR, the LR test is, in effect,
based on the one-period ahead forecast error matrix. Thus, the logarithm of the
likelihood ratio test is

LR ¼ 2 lnLU−lnLRð Þ ¼ T lnjΣRj−lnjΣ̂j
 � ð11Þ

where LR and LU denote the likelihood values of the restricted and unrestricted VAR,
respectively, and ΣR and Σ^ are the restricted and unrestricted error variance matrices.
Note that, given estimates of the DSGE model, we can solve the model for v, and hence

we can calculate ηt and ΣR ¼ T−1T
t¼1ηtη

0
t. Note also that the LR test can be routinely

transformed into a (direct inference) Wald test between the unrestricted and the
restricted VAR coefficients, v.

To obtain the power function of the LR test we endow the structural model with false
values of the structural coefficients and compare the restricted VAR with the unrestrict-
ed VAR on the observed data which are assumed to be generated by the true model.
The implied false model has the VAR

yt ¼ V Fyt−1 þ ηFt ð12Þ

The forecast errors for the false model are

ηFt ¼ yt−V Fyt−1 ¼ ηt þ V−V Fð Þyt−1 ¼ ηt þ qt

where qt = Yt − 1(v − vF). If we let

ΣF ¼ 1

T

T

t¼1
ηFtη

0
Ft ¼

1

T

T

t¼1
ηt þ qtð Þ ηt þ qtð Þ0

then the LR test for the false model is given by:

LRF ¼ T 1njΣ F j−1njΣ̂
� 	 ð13Þ

Thus the power of the test derives from the distance

lnjΣF j−lnjΣRj: ð14Þ

The IIW test

In the IIW test we simulate data from the solution to the already estimated
DSGE, randomly drawing the samples from the DSGE model’s structural errors.
We then estimate the auxiliary VAR using these simulated data. We repeat this
many times to obtain the average estimate of the coefficients of the VAR which
we take as the estimate of the unrestricted VAR. The simulated VAR may be
written
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yS;t ¼ VSyS;t−1 þ ηSt

where yS, t is the data simulated from the DSGEmodel and VS is the (average estimate of
v) or, in the form of eqs. (9) and (10), as

yS;i ¼ ZSv S;i; þ ηS;iY S ¼ X SvS þ ηS

where E ηS;iη
0
S;i

� �
¼ ΣS . The IIW test statistic, which computes the distance of these

estimates from the unrestricted estimates based on the observed data, is:

IIW ¼ v̂−vS
h i0

W−1
S v̂−vS
h i

ð15Þ

where WS is the covariance matrix of the limiting distribution of vS, and is
given by

WS ¼ ΣS⊗ plimT−1Z
0
SZS

� �−1
ð16Þ

On the null hypothesis that the DSGE model — and hence the auxiliary VAR — are
correct, the asymptotic distribution of the estimate of vS is the same that of the MLE v̂.

Moreover, asymptotically, this IIW statistic will have the same distribution as v̂−v½ �0
W−1 v̂−v½ � and hence will have the same critical values.6 In general, the IIW statistic

differs from a standard Wald statistic in indirect inference which is v̂−vS½ �0W−1 v̂−vS½ �
where W is the covariance matrix of the unrestricted model; we refer to this as the
unrestricted IIW statistic.

The power of the IIW test is calculated, like that for the power calculations for the
LR test, by simulating the DSGE model using false values of its coefficients and now
using these data to estimate the unrestricted VAR from eq. (12). The IIW statistic is then
computed from

IIW ¼ v̂−vF
h i0

W−1
F v̂−vF
h i

ð17Þ

where vF is the mean vector of coefficients and WF is their variance matrix, which
corresponds to WS. Consider the decomposition

v̂−vF ¼ v̂−v
� �

þ v−vFð Þ:

It follows that the IIW statistic can be decomposed as

v̂−vF
h i0

W−1
F v̂−vF
h i

¼ η
0
I k⊗ Z

0
Z

� �−1
Z

0
� �0

W−1
F Ik⊗ Z

0
Z

� �−1
Z

0
� �

ηþ v−vF½ �0W−1
F v−vF½ �

ð18Þ

6 The IIW test can also be carried out for a sub-set of ν.
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¼ η
0
Σ−1⊗plimT Z

0
Z

� �−1
� �

ηþ v−vF½ �0W−1
F v−vF½ � ð19Þ

where the last term is based on the difference between the true and the false values of
the coefficients. Hence the power of the IIW test derives from the second term on the
right-hand side of eq. (19).

Comparing the power of the two tests

We have seen that the LR test compares the one-step ahead forecast error
matrix of the unrestricted VAR with that of the model-restricted VAR using the
observed data, whereas the IIW test asks whether the distribution of the VAR
coefficients based on the simulated data (the restricted model) covers the VAR coeffi-
cients based on the observed data (the unrestricted model). We have also found that on
the null hypothesis that the DSGE model is true the limiting distributions of the two sets
of estimates are the same. It follows from eq. (7) that, on the null hypothesis, the error
variance matrix using simulated data is

ΣS ¼ 1

T

T

t¼1
ySt−VSyS;t−1

 �

ySt−VSyS;t−1

 �0 ¼ 1

T

T

t¼1
yt−VSyt−1ð Þ yt−VSyt−1ð Þ0 þΔ

¼ Σ
94
þ V̂−VS

� �1
T

T

t¼1
yt−1y

0
t−1 V̂−VS

� �0

þΔ

where Σ^ is the error variance matrix of the unrestricted VAR using the observed data

and Δ is Op T−1
2

� �
.

Using the result that vec(AXB) = (B′⊗ A)vec(X), and vec(V′) = v, it can be
shown that

vec V̂−VS

� �1
T

T

t¼1
yt−1y

0
t−1 V̂−VS

� �0� �
¼ v

0
I⊗

1

T

T

t¼1
yt−1y

0
t−1

� �
v

Hence,

LR ¼ T lnjΣS j−lnjΣ̂j
 � ¼ T lnj1þ V̂−VS

 �

1
T
T
t¼1yt−1y

0
t−1 V̂−VS

 �0

þΔ

jΣ̂j

" #

¼ T lnj1þ ν̂−vSð Þ0 Σ̂⊗
1

T

T

t¼1
yt−1y

0
t−1

� �−1

ν̂−vSð Þ þ Δ

jΣ̂j j
" #

→IIW þ Op T−1
2

� �

In other words, on the null hypothesis that the DSGE model is the true model, the LR
test based on observed data is asymptotically equivalent to using the IIW test, which is
based on simulated data.

In the power calculations we use

LR ¼ T lnjΣF j−lnjΣ̂j
 � ¼ T lnjΣS j−lnjΣ̂j
 �þ T lnjΣF j−lnjΣS jð Þ
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The power of the test derives from the last term which reflects the difference between
VS and VF. This makes Δ of order Op(1), which does not vanish as T→∞, but causes
the power of the test to tend to unity.

It is worth relating this finding to the work of Dridi et al. (2007) who propose a Wald
II test that treats the model being investigated as mis-specified; they therefore use the
variance-covariance matrix from the unrestricted VAR which is generated by the
unknown true model. This II test is asymptotically equivalent to the LR test, as we
have seen, and differs from the IIW test proposed here which is based on the restricted
VAR generated by the DSGE model being investigated- in effect this IIW test treats the
DSGE model as pseudo-true and therefore as the null. In what follows we systemat-
ically compare the small sample properties of these different tests; as we will see the
IIW test has the greatest power. It is really irrelevant whether the DSGE model being
tested is regarded as ‘mis-specified’ or not, since as we have already argued, this not the
issue: the issue is whether such a model is sufficiently close to the data on the test
chosen to be regarded as ‘pseudo-true’. For establishing this it is helpful to have a test
with as much potential power as possible; as we will show below, that potential power
can then be tailored flexibly to the user’s problem.
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