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Abstract
The paper incorporates newmethods of numerical linear algebra for the approximation
of the biharmonic equation with potential, namely, numerical solution of the Dirichlet
problem for (

d

dx

)4

u(x) + c(x)u(x) = φ(x), 0 < x < 1.

High-order discrete finite difference operators are presented, constructed on the basis
of discrete Hermitian derivatives, and the associated Discrete Biharmonic Operator
(DBO). It is shown that the matrices associated with the discrete operator belong
to a class of quasiseparable matrices of low rank matrices. The application of qua-
siseparable representation of rank structured matrices yields fast and stable algorithm
for variable potentials c(x). Numerical examples corroborate the claim of high order
accuracy of the algorithm, with optimal complexity O(N ).
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Numerical Algorithms

1 Introduction

In this paper,we propose a novel algorithm for the numerical solution of the biharmonic
equation in an interval, involving a potential, as follows:

(
d

dx

)4

u(x) + c(x)u(x) = φ(x), 0 < x < 1, (1.1)

u(0) = u′(0) = u(1) = u′(1) = 0. (1.2)

Here, the function φ(x) and the potential c(x) are given functions.

It is assumed that zero is not an eigenvalue of the operator
( d
dx

)4 + c(x) so that
(1.1) has a unique solution. That can always be achieved by a suitable constant shift
of the potential.

We use a high-order finite-difference scheme, based on the Hermitian derivative
and the resulting “Discrete Biharmonic Operator” (DBO) as outlined in the paper
[10]. In particular, the scheme used here is not new, but the algorithm offered for
the resolution of the ensuing linear system is new, leading to an optimal O(N ) com-
plexity. This is achieved by an application of the theory of quasiseparable matrices
as is explained below. The implementation of the scheme leads to a system of linear
algebraic equations (

A B
C D

) (
u
ux

)
=

(
y
0

)
(1.3)

with N × N tridiagonal matrices matrices A, B,C, D and a given N -dimensional
column y. Here, N is the number of the nodes in the grid. Assuming that the matrix
D is invertible, the 2N × 2N system is reduced to N × N system

Zu = (A − BD−1C)u = y. (1.4)

The fact that the discrete solution u converges (as N → ∞) to the exact solution
u(x) has been established in [3].

The paper [2] dealt with the case of zero potential c(x) ≡ 0. In this case, the pro-
posed algorithmwas based on the FFT transform and led to an O(N log N ) complexity
algorithm. In a more general case of a nonzero potential, the matrix A is not Toeplitz
and so the FFT-based algorithm does not work. This case is assumed to be treated via
perturbation theory.

In the present paper, we suggest a completely different paradigm for the algebraic
treatment of the system (1.3). It is based on the theory of quasiseparable representations
of matrices and their inversion. It permits the incorporation of a general potential. We
refer to the treatise [8] for a detailed exposition of this theory.

Here, we need to consider a rather special case of the abovementioned theory. We
show that in the context of the system (1.3) with a general symmetric tridiagonal A,
the matrix of the problem Z belongs to a special class of rank structured matrices.
More precisely, the part below the first subdiagonal in the matrix Z ( j ≤ i − 2) is
given via a product of scalar parameters that can be readily calculated.
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The full matrix is given by the following formulas:

Zi j =

⎧⎪⎪⎨
⎪⎪⎩

di , 1 ≤ j = i ≤ N ,

δi−1, 1 ≤ j = i − 1 ≤ N − 1,
p(i − 1)q(i − 2), 3 ≤ i ≤ N , j = i − 2,
p(i − 1)a(i − 2) · · · a( j + 1)q( j), 1 ≤ j ≤ i − 3 ≤ N − 3.

(1.5)

The parameters in the RHS of (1.5) are computed in a straightforward way from
the given matrices A, B, C, D [7, Algorithm 6.1]. Indeed, this is the “heart of the
algorithm” proposed here.

In fact, assuming that Z is a strongly regular matrix, the parameters in (1.5) are
readily implemented in expressing Z as a classical “Left· Diag·Right” product

Z = (I + L)�(I + Lt ), (1.6)

where � is an invertible diagonal matrix and L is a lower triangular matrix with
zero diagonal. Based on this factorization, the solution to (1.4) follows a well-known
procedure.

Overall, we obtain a linear O(N ) complexity algorithm for any nonconstant poten-
tial. We present some numerical tests that corroborate the linearity and the good
accuracy of our algorithm for a variety of potentials. The condition that Z is strongly
regular is not necessary. In our next publications, we intend to present another inver-
sion algorithm free of this restriction. Surely this alternative algorithm is longer and
more complicated than the algorithm of the present paper.

The paper consists of thirteen sections. In Section2, we present the formulation
of the boundary value problem, describe the Hermitian finite-difference operators,
and obtain the discrete analog of the basic equation. In Section3, we recall the basic
facts pertaining to the quasiseparable representation which is the foundation of the
algorithm. In Section4, we reduce the system (1.3) to matrix equation in the class
of rank structured matrices. In Section5, we present an inversion algorithm for the
tridiagonal matrix D, which is the main tool in the quasiseparable frame. The proof
is postponed to Appendix 1 in Section 13. Section6 is in fact the central part of the
paper. Here, we show that the part i > j + 1 of the matrix Z of the problem admits
the representation (1.5) and derive an algorithm to compute the parameters of the
representation (1.5) ( by means of quasiseparable generators) as well as the elements
of the diagonal and subdiagonal of the symmetric matrix Z . These data are precisely
the input for the “Left· Diag·Right” factorization algorithm in [7, Theorem 7.1]. The
construction of (1.6) is described in Section 7, subject to the assumption that Z is a
strongly regular matrix. Based on this factorization, we recall in Section 8 the classical
procedure for solving (1.4) when Z is given by (1.6). In Section 9, we summarize the
final complete algorithm in the form as it is used in the numerical tests. In Section 10,
we consider the case of zero potential for which the Green function of the problem is
explicitly available, see (10.3).
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Section 11 contains the results of numerical experiments. Appendix 1 (Section 13)
contains the proof of the inversion algorithm for the tridiagonal matrix D. Finally,
in Appendix 2 (Section 14), we present for completeness the basic foundation of the
quasiseparable representation of matrices.

NOTATION Submatrices in this paper are indicated inMATLAB style, i.e., for amatrix
A, A(m : n, t : s) selects rows m to n and columns t to s. A colon without an index
range selects all the rows and columns, for instance, for an m × n matrix B, we have
B(:, j) = B(1 : m, j) for any j with 1 ≤ j ≤ n.

2 Themodel Dirichlet problem and the discretization

We consider the numerical solution of the biharmonic equation on an interval

(
d

dx

)4

u(x) + c(x)u(x) = φ(x), 0 < x < 1 (2.1)

subject to Dirichlet boundary conditions

u(0) = u′(0) = u(1) = u′(1) = 0. (2.2)

Here, φ(x) is a continuous function. By “solution of the problem” (2.1)-(2.2), we
mean a continuous function u(x) on the segment [0, 1] having a fourth-order derivative
u(4)(x) in [0, 1].

To get the numerical solution of the problem (2.1)-(2.2), we start with the definition
of the grid on the interval. In this paper, we use a uniform grid

x j = jh, 0 ≤ j ≤ N + 1, h = 1

N + 1
.

We denote the values of the potential and the right part of (2.1) on the grid by

c j = c(x j ), φ j = φ(x j ), j = 0, . . . , N + 1,

and form the N + 2-dimensional columns c = col(c j )
N+1
j=0 , φ = col(φ j )

N+1
j=0 . The

corresponding unknown values of the solution u(x) and its derivative u′(x) on this
grid are displayed as the columns of the size N + 2 as u∗ = col(u(x j ))

N+1
j=0 and

(u∗)′ = col(u′(x j ))N+1
j=0 .

In the numerical solution of the problem, we are looking for an approximation of
the solution, i.e., an N + 2-dimensional vector column ũ = col(u j )

N+1
j=0 , and of its

derivatives, i.e., a vector ũ′ = col((ux ) j )
N+1
j=0 . We apply here an approach suggested in

the paper [4, Appendix] and the monograph [10]. In accordance with these references,
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the values u j , (ux ) j are determined via a system of linear algebraic equations

(2u j − u j+1 − u j−1) + h

2
((ux ) j+1 − (ux ) j−1) + h4

12
c ju j = h4

12
φ j , 1 ≤ j ≤ N ,

h2
(
1

6
(ux ) j−1 + 2

3
(ux ) j + 1

6
(ux ) j+1

)
= h

2
(u j+1 − u j−1), 1 ≤ j ≤ N ,

u0 = uN+1 = (ux )0 = (ux )N+1 = 0.
(2.3)

The boundary value problem (2.1), (2.2) is thus reduced to a problem in numerical
linear algebra.

The last equalities in (2.3) surely follow from the boundary value conditions (2.2).
Following (2.3), we set h0 = h4

12 and define the N × N matrices

A0 =

⎛
⎜⎜⎜⎜⎜⎝

2 + h0c1 −1 0 . . . 0 0
−1 2 + h0c2 −1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 2 + h0cN−1 −1
0 0 0 . . . −1 2 + h0cN

⎞
⎟⎟⎟⎟⎟⎠

, (2.4)

B0 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
−1 0 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 0 1
0 0 0 . . . −1 0

⎞
⎟⎟⎟⎟⎟⎠

, C0 =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 . . . 0 0
1 0 −1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 0 −1
0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠

, (2.5)

D0 =

⎛
⎜⎜⎜⎜⎜⎝

2
3

1
6 0 . . . 0 0

1
6

2
3

1
6 . . . 0 0

...
...

...
. . .

...

0 0 0 . . . 2
3

1
6

0 0 0 . . . 1
6

2
3

⎞
⎟⎟⎟⎟⎟⎠

. (2.6)

Here, A0, B0,C0, D0 are tridiagonal matrices. Set

ak = 2 + h0ck, k = 1, . . . , N , b0 = −1, a = 2

3
, b = 1

6
. (2.7)

We have

A0(i, i) = ai , i = 1, . . . , N , A0(i, i + 1) = A0(i + 1, i) = b0, i=1, . . . , N−1,

B0(i, i) = 0, i=1, . . . , N , B0(i, i + 1)=1, B0(i+1, i) = −1, i =1, . . . , N−1,

C0 = Bt
0,

D0(i, i) = a, i = 1, . . . , N , D0(i, i + 1) = D0(i + 1, i) = b, i = 1, . . . , N − 1.
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Thus, we have reduced (2.3) to the computation of the N -dimensional vectors
u = col(u j )

N
j=1 and ux = col((ux ) j )Nj=1 as components of the solution of the system

of linear algebraic equations

(
A0

h
2 B0

h
2C0 h2D0

) (
u
ux

)
=

(
h4
12 f
0

)
(2.8)

with the given N -dimensional vector

f = col(φ j )
N
j=1. (2.9)

We set y = h4
12 f.

3 The scalar quasiseparable representations

Let A be an N × N matrix and let l be a nonnegative entire number. We say that the
sets of numbers p(i) (i = l + 1, . . . , N − l), q( j) ( j = 1, . . . , N − l), a(k) (k =
2, . . . , N − l) form a scalar quasiseparable representation of the part i − j ≥ l ofA
if its entries are given by the equalities

A(i, j)=
{
p(i − l + 1)a(i − l) · · · a( j + 1)q( j), 1 ≤ j ≤ i − l − 1 ≤ N − l − 1,
p(i − 1 + 1)q(i − l), l + 1 ≤ i ≤ N , j = i − l

(3.1)
The parameters p(i), q( j), a(k) of this representation are called scalar quasiseparable
generators. The part i − j ≥ l admits a scalar quasiseparable representation if and
only if

rankA(k + l : N , 1 : k) ≤ 1, k = 1, . . . , N − l,

see [7, Section 5.2].
For instance, for a tridiagonal matrix, the strictly lower triangular part i − j > 1

admits a scalar quasiseparable representation with generators p(i) = 1, a(k) =
0, q( j) = A( j, j +1). The inverse of a tridiagonal matrix is a so called Green matrix
(see [7, Section 6.3]). Recall that a matrix B is said to be a “lower Green of order one
matrix” if the relations

rankB(k : N , 1 : k) = 1, k = 1, . . . , N (3.2)

hold. Hence, it follows that the lower triangular part {i − j ≥ 0} of the matrix B has
a scalar quasiseparable representation. Such a representation is obtained in Section5
for the matrix D−1. The scalar quasiseparable representation

Z(i, j) =
{
p(i − 1)a(i − 2) · · · a( j + 1)q( j), 1 ≤ j ≤ i − 3 ≤ N − 3,
p(i − 1)q(i − 2), 3 ≤ i ≤ N , j = i − 2

obtained in Theorem 6.1 for the part {i − j ≥ 2} of the matrix Z plays a crucial role
in the design of the fast algorithm.
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4 The class of matrices and equations

The system (2.8) belongs to a wider class of systems of linear algebraic equations. We
consider systems of the form

(
A B
C D

) (
u
ux

)
=

(
y
0

)
(4.1)

with N × N matrices A, B,C, D and the given N -dimensional column y.
Assume that the matrix D and the matrix Z = A − BD−1C are invertible. Using

the equation Cu + Dux = 0 and invertibility of the matrix D, we reduce the system
(4.1) to the equation

Zu = (A − BD−1C)u = y. (4.2)

Comparing with (2.8), we have

A = A0, B = h

2
B0, C = C0

h

2
, D = h2D0, y = h4

12
f

with the matrices A0, B0,C0, D0 and the vector column f as in (2.4), (2.5) and (2.9).
Here, A0, B0,C0, D0 are tridiagonal matrices. Using the formula (4.2), we get

u =
(
A0 − 1

4
B0D

−1
0 C0

)−1

y. (4.3)

We now assume that the matrices A, B,C, D are tridiagonal and real. Moreover,
the matrices A and D are symmetric, and the matrices B and C satisfy the condition
B = Ct ; this means that the matrix Z is real and symmetric.

Furthermore, we assume that the tridiagonal matrix D and the matrix Z are strongly
regular. For a matrix A = {ai j }Ni, j=1 (see for instance [8, Section 1]), this means that

all the leading submatrices Ak = {ai j }ki, j=1 are invertible. In particular, the matrix A
itself is invertible. A strongly regular matrix admits the factorization

A = (I + L)�(I + Lt ), (4.4)

where� = diag{γ1, γ2, . . . , γN } is an invertible diagonal matrix with diagonal entries

γ1 = detA1, γk = detAk

detAk−1
, k = 2, . . . , N , (4.5)

and L is a lower triangular matrix with zero diagonal. The strong regularity means
that the values γk in (4.5) are well defined and nonzeros.

The condition that Z is strongly regular is not necessary. In our next publications,
we intend to present another inversion algorithm free of this restriction. Surely this
alternative algorithm is longer and more complicated than the algorithm of the present
paper.

123



Numerical Algorithms

5 The inversion of a tridiagonal matrix

The first step of the procedure is the inversion of a tridiagonal real symmetric matrix.
This problemwas treated bymany authors, see [6, 9, 12] and the literature cited therein.
However, as far as we know, the quasiseparable representations of the inverses to
tridiagonalmatrices have never been considered in detail.We present here an algorithm
for the computation of the quasiseparable representation of the inverse to a strongly
regular tridiagonal matrix. The following lemma seems to be new. The advantages of
using of the quasiseparable structure in the inversion of tridiagonal and, more general,
band matrices were discussed in the recent paper [5] by Paola Boito and the second
author.

Lemma 5.1 Let D be a strongly regular tridiagonal matrix with nonzero entries

D(i, i) = di , i = 1, . . . , N , D(i, i + 1) = D(i + 1, i) = bi , i = 1, . . . , N − 1.

Then, the values γk, k = 1, . . . , N are determined via recursive relations

γ1 = d1, γk = dk − b2k−1

γk−1
, k = 2, . . . , N . (5.1)

Moreover, the matrix D−1 is given by the formulas

(D−1)i j =
⎧⎨
⎩

θi a(i − 1) · · · a( j), 1 ≤ j < i ≤ N ,

θi , 1 ≤ i = j ≤ N ,

a(i) · · · a( j − 1)θ j , 1 ≤ i < j ≤ N ,

(5.2)

where the parameters of the representation are determined via

fk = bk
γk

, k = 1, . . . , N − 1, (5.3)

a(k) = − fk, k = 1, . . . , N − 1 (5.4)

and

θN = 1/γN , θk = 1

γk
+ f 2k θk+1, k = N − 1, . . . , 1. (5.5)

The proof is carried out in Appendix 1.
One can check easily that the matrix D0 in (2.6) strongly regular. For instance,

one can prove that in this case, γk ≥ 1/3, k = 1, 2, . . . . Indeed, we have γ1 =
2/3 > 1/3, and if γk−1 ≥ 1/3 then using (5.1) with dk = 2/3, bk−1 = 1/6, we get
γk = 2/3 − 1

γk−1

1
30 ≥ 2/3 − 1/12 > 1/3.
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6 Thematrix of the problem

The material in this section is the “heart of the matter” of this paper. We derive for the
matrix of the problem a representation that fits the direct application of an algorithm
presented in the paper [7].More precisely, we show that the part i− j ≥ 2 of thematrix
Z defined in (4.2) admits a scalar quasiseparable representation and we compute the
corresponding scalar quasiseparable generators, as well as diagonal and subdiagonal
entries of this symmetric matrix.

Theorem 6.1 Assume that the conditions of Lemma 5.1 hold. Applying the algorithm
from this lemma to the matrix D, we determine the values a(k) (k = 1, . . . , N − 1)
and θk (k = 1, . . . , N − 1). Set a(0) = a(N ) = θ0 = θN+1 = 0. Assume that

A(i, i) = ai , i = 1, . . . , N , A(i, i + 1) = A(i + 1, i) = b0, i = 1, . . . , N − 1,

The matrix
Z = A − BD−1C (6.1)

is given by the formulas

Zi j =

⎧⎪⎪⎨
⎪⎪⎩

di , 1 ≤ j = i ≤ N ,

δi−1, 1 ≤ j = i − 1 ≤ N − 1,
p(i − 1)q(i − 2), 3 ≤ i ≤ N , j = i − 2,
p(i − 1)a(i − 2) · · · a( j + 1)q( j), 1 ≤ j ≤ i − 3 ≤ N − 3,

(6.2)

where

di = ai − 1

4
αi − 1

4
θi+1ηi , i = 1, . . . , N , (6.3)

δ j = b0 − 1

4
θ j+2a( j +1)η j − 1

4
(θ j a( j −1)− θ j+1a( j)), j = 1, . . . , N −1, (6.4)

p(i − 1) = −1

2
αi , i = 3, . . . , N , (6.5)

q( j) = η j
1

2
, j = 1, . . . , N − 2. (6.6)

with auxiliary parameters

αi = θi−1 − θi+1a(i)a(i − 1), i = 1, . . . , N , (6.7)

η j = 1 − a( j)a( j − 1), j = 1, . . . , N . (6.8)

Proof Consider first the matrix product S = BD−1C . From the definition of the
matrices B and C , it follows that the rows of the matrix B = Ct and the columns of
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the matrix C have the form

B(i, :) = (
01×(i−2) −1 0 1 01×(N−i−1)

)
,

C(:, i) =

⎛
⎜⎜⎜⎜⎝

0(i−2)×1
−1
0
1

0(N−i−1)×1

⎞
⎟⎟⎟⎟⎠ , i = 1, . . . , N

(6.9)

with taking empty matrices for zero and negative indices. Let Q be an N × N matrix,
the matrix SQ = BQC is obtained by the formulas

SQ(i, j) = (Q(i + 1, :) − Q(i − 1, :))C(:, j)

and next using (6.9), we get

SQ(i, j) = −Q(i−1, j + 1)+Q(i−1, j−1)+Q(i + 1, j + 1)−Q(i + 1, j−1),

i, j = 1, . . . , N . (6.10)

Hence, the main diagonal of the matrix SQ is determined via

SQ(i, i) = −Q(i − 1, i + 1) + Q(i − 1, i − 1)+Q(i + 1, i + 1)−Q(i + 1, i − 1),

i = 1, . . . , N .

If thematrix Q is real symmetric, we have Q(i−1, i+1) = Q(i+1, i−1). Therefore,

SQ(i, i)=−Q(i−1, i + 1) + Q(i−1, i − 1) + Q(i+1, i+1) − 2Q(i+1, i−1),

i = 1, . . . , N . (6.11)

For the subdiagonal entries, i.e., for i = j +1, for the real and symmetric Q, we have

SQ( j + 1, j) = Q( j + 2, j + 1) − Q( j + 2, j − 1) − Q( j + 1, j) + Q( j, j − 1),

j = 1, . . . , N − 1. (6.12)

Now, we can give the details of the matrix Z . Assume that Q = D−1 and apply
Lemma 5.1. Using (5.2), we get

Q(i − 1, i − 1) = θi−1, Q(i + 1, i + 1) = θi+1,

Q(i + 1, i − 1) = θi+1a(i)a(i − 1) = Q(i − 1, i + 1).

Inserting this in (6.11) and using (6.1), we get

di = ai − 1

4
(−2θi+1a(i)a(i − 1) + θi−1 + θi+1), i = 1, . . . , N .
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Notice that

−2θi+1a(i)a(i−1)+θi−1+θi+1 = (θi−1−θi+1a(i)a(i−1))+θi+1(1−a(i−1)a(i))

and using (6.7), (6.8), we get (6.3).
Next using (5.2), we have

Q( j + 2, j + 1) = θ j+2a( j + 1),

Q( j + 2, j − 1) = θ j+2a( j + 1)a( j)a( j − 1),

Q( j, j + 1) = Q( j + 1, j) = θ j+1a( j), Q( j, j − 1) = θ j a( j − 1).

(6.13)

Inserting (6.13) in (6.12) and using (6.1), we obtain

δ j = b0 − 1

4
[(θ j+2a( j + 1)(1 − a( j)a( j − 1)) + (θ j a( j − 1) − θ j+1a( j))],

j = 1, . . . , N − 1

and using (6.8), we get (6.4).
Finally, for 1 ≤ j < j + 2 ≤ i ≤ N using (5.2) again, we have

Q(i + 1, j + 1) = θi+1a(i),

Q(i + 1, j − 1) = θi+1a(i) · · · a( j + 1)a( j)a( j − 1),

Q(i − 1, j + 1) = θi−1a(i − 2) · · · a( j + 1),

Q(i − 1, j − 1) = θi−1a(i − 1) · · · a( j + 1)a( j)a( j − 1).

Inserting this in (6.10), we get

SQ(i, j) = 1

2
(θi+1a(i)a(i − 1) − θi−1)a(i − 2) · · · a( j + 1)(1 − a( j)a( j − 1))

1

2
.

Using (6.1), (6.7), and (6.8), we obtain

Z(i, i − 2)= p(i − 1)q(i − 2), 3≤ i ≤N , Z(i, j)= p(i − 1)a(i − 2) · · · a( j + 1)

q( j), 1 ≤ j ≤ i − 3 ≤ N − 3

with p(i − 1), q( j) as in (6.5), (6.6) which completes the proof. 	

One can check that the condition c(x) ≥ 0, which implies ck ≥ 0, is sufficient for the
matrix Z to be strongly regular.

7 The LR factorization

We are now able to apply certain results and algorithms obtained in the paper [7].
Using Theorem 7.1 from [7], we have the following.
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Theorem 7.1 Let Z be the matrix from Theorem 6.1. Assume that Z is strongly regular,
meaning that it admits the factorization

Z = (I + L)�(I + Lt ), (7.1)

where � is an invertible diagonal matrix and L is a lower triangular matrix with zero
diagonal.

The nonzero part of the matrix L is given by the formulas

Li j =
⎧⎨
⎩

βi−1, 1 ≤ j = i − 1 ≤ N − 1,
p(i − 1)g(i − 2), 3 ≤ i ≤ N , j = i − 2
p(i − 1)a(i − 2) · · · a( j + 1)g( j), 1 ≤ j ≤ i − 3 ≤ N − 3,

(7.2)

where p(i), a(k) are the same as in Theorem 6.1 and the values βi (i = 2, . . . , N −
1), g( j) ( j = 1, . . . , N − 2) as well as the diagonal entries of the matrix � =
diag (w1, . . . , wN ) are determined via the following algorithm.

1. Compute

w1 = d1, β1 = δ1/w1, g(1) = q(1)/w1, h1 =
(

β1
g(1)

) (
δ1 q(1)

)

2. For k = 2, . . . , N − 2 Compute the 3 × 3 matrix

Hk =
⎛
⎝ 1 0
0 p(k)
0 a(k)

⎞
⎠ hk−1

(
1 0 0
0 p(k) a(k)

)
,

wk = dk − Hk(1, 1),

ek =
(

δk
q(k)

)
− Hk(2 : 3, 1),

(
βk

g(k)

)
= ek

1

wk
,

hk = Hk(2 : 3, 2 : 3) +
(

βk

g(k)

)
· eTk .

Recall that here Hk(2 : 3, 1) selects the entries 2,3 from the first column of the
matrix Hk and so on.

3. Compute the 2 × 2 matrix

HN−1 =
(
1 0
0 p(N − 1)

)
hN−2

(
1 0
0 p(N − 1)

)
,

wN−1 = dN−1 − HN−1(1, 1),

βN−1 = (δN−1 − HN−1(2, 1))/wN−1,

hN−1 = HN−1(2, 2) + βN−1(δN−1 − HN−1(2, 1)).

4. Compute wN = dN − hN−1.

123



Numerical Algorithms

8 The solution of the system

Based on the LR factorization in Theorem 7.1, we obtain easily the solution of the
equation Zu = y as it is shown [7, Section 6, Algorithm 8.1].

Algorithm 8.1 1. Compute the solution v of the equation (I + L)v = y.
1.1. Start with v(1) = y(1) and compute v(2) = y(2) − β1v(1).
1.2. Compute z2 = g(1)v(1), v(3) = y(3) − β2v(2) − p(2)z2.
1.3. For i = 3, . . . , N − 1 compute

zi = a(i − 1)zi−1 + g(i − 1)v(i − 1), v(i + 1) = y(i + 1) − βiv(i) − p(i)zi .

2. Compute the solution χ of the equation �χ = v.

χ(i) = v(i)/wi , i = 1, . . . , N .

3. Compute the solution u of the equation (I + Lt )u = χ .
3.1. Start with u(N ) = χ(N ) and compute u(N − 1) = χ(N − 1) − βN−1u(N ).
3.2. Compute ρN−2 = p(N − 1)u(N ), u(N − 2) = χ(N − 2)−βN−2u(N − 1)−

g(N − 2)ρN−2.
3.3. For i = N − 3, . . . , 1 compute

ρi = a(i + 1)ρi+1 + p(i + 1)u(i + 2), u(i) = χ(i) − βiu(i + 1) − g(i)ρi .

9 The complete algorithm

Combining the results of the preceding sections, we can now state the full algorithm:

Algorithm 9.1 1. FollowingLemma 5.1, compute the representation of thematrix D−1

as follows.
Determine auxiliary variables

γ1 = a, γk = a − b2

γk−1
, k = 2, . . . , N fk = b

γk
, k = 1, . . . , N − 1

and set
a(0) = 0, a(k) = − fk, k = 1, . . . , N − 1, a(N ) = 0.

Compute

θN = 1/γN , θk = 1

γk
+ f 2k θk+1, k = N − 1, . . . , 1.

2. Following Theorem 6.1, determine the representation of the matrix Z as follows.
Compute

αi = θi−1 − θi+1a(i)a(i − 1), ηi = 1 − a(i)a(i − 1), i = 1, . . . , N
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and then compute

di = ai − 1

4
αi − 1

4
θi+1ηi , i = 1, . . . , N ,

δi = b0 − 1

4
θi+1a(i)ηi−1 − (θi−1a(i − 2) − θi a(i − 1)), , i = 1, . . . , N ,

p(i − 1) = −1

2
αi , i = 3, . . . , N ,

q( j) = η j
1

2
, j = 1, . . . , N − 2.

3. Following Theorem 7.1, compute the factorization (7.1).
3.1. Compute

w1 = d1, β1 = δ1/w1, g(1) = q(1)/w1, h1 =
(

β1
g(1)

) (
δ1 q(1)

)

3.2. For k = 2, . . . , N − 2 compute

Hk =
⎛
⎝ 1 0
0 p(k)
0 a(k)

⎞
⎠ hk−1

(
1 0 0
0 p(k) a(k)

)
,

wk = dk − Hk(1, 1),

ek =
(

δk
q(k)

)
− Hk(2 : 3, 1),

(
βk

g(k)

)
= ek

1

wk
,

hk = Hk(2 : 3, 2 : 3) +
(

βk

g(k)

)
· eTk .

3.3. Compute

HN−1 =
(
1 0
0 p(N − 1)

)
hN−2

(
1 0
0 p(N − 1)

)
,

wN−1 = dN−1 − HN−1(1, 1),

βN−1 = (δN−1 − HN−1(2, 1))/wN−1,

hN−1 = HN−1(2, 2) + βN−1(δN−1 − HN−1(2, 1)).

3.4. Compute wN = dN − hN−1.
4. Following Algorithm 8.1, compute the solution of the system Zu = y.

4.0. Compute y(i) = h4
12φi , i = 1, , N.

4.1.1. Start with v(1) = y(1) and compute v(2) = y(2) − β1v(1).
4.1.2. Compute z2 = g(1)v(1), v(3) = y(3) − β2v(2) − p(2)z2.
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4.1.3. For i = 3, . . . , N − 1 compute

zi = a(i − 1)zi−1 + g(i − 1)v(i − 1), v(i + 1) = y(i + 1) − βiv(i) − p(i)zi .

4.2. Compute the solution χ of the equation �χ = v.

χ(i) = v(i)/wi , i = 1, . . . , N .

4.3.1. Start with u(N ) = χ(N ) and compute u(N − 1) = χ(N − 1) − βN−1u(N ).
4.3.2. Compute ρN−2 = p(N − 1)u(N ), u(N − 2) = χ(N − 2) − βN−2u(N −

1) − g(N − 2)ρN−2.
4.3.3. For i = N − 3, . . . , 1 compute

ρi = a(i + 1)ρi+1 + p(i + 1)u(i + 2), u(i) = χ(i) − βi u(i + 1) − g(i)ρi .

Here, zi , ρi are auxiliary variables.
All this algorithm requires O(N ), i.e., linear in N , number of arithmetic operations,

in contrast to O(N 2) in a general case and also with O(N log N ) in the based on FFT
algorithm in the case of constant potential.

Numerical evidence is given below in Section11.4.

10 A fast algorithm for the zero potential

For the case of zero potential c(x) = 0 in [4] using the kernel method, an explicit
solution of (4.3) was obtained via

u j = h
N∑
j=1

K (xi , x j )φ j , j = 1, . . . , N (10.1)

with

K (x, y) =
{ 1

6 (1 − x)2y2[2x(1 − y) + x − y], y ≤ x,
1
6 (1 − y)2x2[2y(1 − x) + y − x], x ≤ y.

(10.2)

Notice that the expression in the brackets may be done as

2x(1 − y) + x − y = (
x −1

) (
3 − 2y

y

)
.

Setting

ϕ(x) = 1

6
(1 − x)2

(
x −1

)
, ψ(x) = (

3 − 2x x
)
x2,

we get

K (x, y) =
{

ϕ(x)ψ t (y), y ≤ x,
ψ(x)ϕt (y), x ≤ y.

(10.3)
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Thus, using (10.1), we get

ui = h
N∑
i=1

K (xi , x j )φ j = h
i∑

j=1

ϕ(xi )ψ
t (x j )φ j + h

N∑
j=i+1

ψ(xi )ϕ
t (x j )φ j

which implies
ui = h(ϕ(xi )χi + ψ(xi )zi ), i = 1, . . . , N (10.4)

with

χi =
i∑

j=1

ψ t (x j )φ j , i = 1, . . . , N , zi =
N∑

j=i+1

ϕt (x j )φ j , i = N − 1, . . . , 1.

Here, the sums are obtained recursively via relations

χ0 = 0, χi = χi−1 + ψ t (xi )φi , i = 1, . . . , N , zN = 0, zi = zi+1 + ϕt (xi )φi ,

i = N − 1, . . . , 1. (10.5)

Combining (10.4) and (10.5) together, we obtain the following procedure of linear
O(N ) complexity.

Algorithm 10.1 Set χ0 = 02×1 and for i = 1, . . . , N compute χi = χi−1 +ψ t (xi )φi .
Set zN = 02×1 and for i = N − 1, . . . , 1 compute zi = zi+1 + ϕt (xi )φi .
For i = 1, . . . , N compute ui = h(ϕ(xi )χi + ψ(xi )zi ).

11 Numerical results

In the numerical results section, we consider problems of the form

u(4) + c(x)u = φ, 0 < x < 1,
u(0) = u′(0) = u(1) = u′(1) = 0.

(11.6)

We measure the error e(xi ) = ucomp)i − uexact (xi ) using the norms |e|2 and |e|∞
where

|e|2 =
√∑N

i=1 h|(ucomp)i − uexact (xi )|2,

|e|∞ = max1≤i≤N |(ucomp)i − uexact (xi )|,
(11.7)

The rate of convergence is defined as follows. Assume that the discrete l2 norm
|e|2 on a coarse mesh h1 is |e|2,h1 and that the discrete l2 norm |e|2 on a finer mesh
h2 = 0.5h1 is |e|2,h2 , then the rate of convergence is defined as

Rate = log2(|e|2,h1/|e|2,h2). (11.8)

Similarly for the rate of convergence for the discrete infinity norm.
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Table 1 Example 1: The equation is u(4) + u = −8π4 cos(2πx) + sin2(πx), with the exact solution
u(x) = sin2(πx), where |e|h is the discrete l2 norm and |e|∞ is the error in l∞
Mesh N = 31 Rate N = 63 Rate N = 127

|e|2 1.2733e−06 4.01 7.8936e−08 4.45 3.3490e−09

|e|∞ 2.0793e−06 4.01 1.2891e−07 4.54 5.5324e−09

11.1 Example 1

Here, we consider the problem (11.6) with c(x) = 1.

u(4) + u = φ(x), 0 < x < 1,
u(0) = u′(0) = u(1) = u′(1) = 0.

(11.9)

The exact solution is u(x) = sin2(πx); therefore, the right-hand side φ(x) of the
differential equation is φ(x) = −8π4 cos(2πx) + x sin2(πx). The numerical errors
are shown in Table 1.

11.2 Example 2

Here, we consider the problem (11.6) with c(x) = x

u(4) + xu = φ(x), 0 < x < 1,
u(0) = u′(0) = u(1) = u′(1) = 0.

(11.10)

The exact solution is u(x) = sin2(πx); therefore, the right-hand side φ(x) of the
differential equation is φ(x) = −8π4cos(2πx)+ sin2(πx). The numerical errors are
shown in Table 2.

In Fig. 1, we display the plots of the numerical solution (left) and the error (right).

11.3 Example 3

Here, we consider the problem (11.6) with c(x) = 1/((x − 0.5)2 + ε).

u(4) + c(x)u = φ(x), 0 < x < 1,
u(0) = u′(0) = u(1) = u′(1) = 0.

(11.11)

The numerical errors are shown in Table 3.

Table 2 Example 2: The equation is u(4) + x u = −8π4 cos(2πx) + x sin2(πx), with the exact solution
u(x) = sin2(πx), where |e|h is the discrete l2 norm and |e|∞ is the error in l∞
Mesh N = 31 Rate N = 63 Rate N = 127

|e|2 1.2745e−06 4.01 7.9058e−08 4.31 3.9849e−09

|e|∞ 2.0814e−06 4.01 1.2911e−07 4.30 6.5439e−09
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Fig. 1 Example 2: The equation is u(4)+x u = φ(x), with the exact solution u(x) = sin2(πx): Left: Exact
solution (solid line) and computed solution (circles) for N = 127 and Right: The error ucomp − uexact for
N = 127

Table 3 Example 3: The equation is u(4) + c(x)u = φ(x), with the exact solution u = p(x) sin(1/q(x)),
where p(x) = 16x2(1 − x)2, with ε = 0.05, c(x) = 1/q(x)

Mesh N = 63 Rate N = 127 Rate N = 255

|e|2 3.9970e−04 4.28 2.057e−05 4.07 1.2285e−06

|e|∞ 1.1831e−03 4.27 6.1119e−05 4.06 3.6724e−06

Here, |e|h is the discrete l2 norm and |e|∞ is the error in l∞

Fig. 2 Example 3: The equation is u(4) + c(x) u = φ(x), with exact solution u(x) = p(x) sin(1/q(x)),
where p(x) = 16x2(1 − x)2, q(x) = (x − 0.5)2 + ε, with ε = 0.05 and c(x) = 1/q(x): Left: Exact
solution (solid line) and computed solution (circles) for N = 255 and Right: The error ucomp − uexact for
N = 255
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Table 4 Complexity of the Algorithm

N 2047 Rate 4096 Rate 8191 Rate 16381

time(sec.) 0.1410 0.849 0.2539 0.923 0.4814 0.924 0.9243

We show here that the computed complexity of the algorithm is O(Nα), where α is close to 1

We pick an exact solution u of the form u = p(x) sin(1/q(x)), where p(x) =
16x2(1 − x)2, q(x) = (x − 0.5)2 + ε, with ε = 0.05. In addition, c(x) = 1/q(x).
The right-hand side φ(x) of the equation is φ(x) = u(4)(x) + c(x)u(x).

In Fig. 2, we display the plots of the numerical solution (left) and the error (right).

11.4 Numerical evidence on the complexity of the algorithm

In Table 4, we display computational times in seconds as N grows for Example 3.
All this algorithm requires O(N ), i.e., linear in N , number of arithmetic operations,

in contrast to O(N 2) in a general case and also with O(N log N ) in the based on FFT
algorithm in the case of constant potential.

12 Summary

We have performed several numerical tests which assure the fourth order conver-
gence of the scheme for the biharmonic equation also in case of the presence of a
variable potential c(x). In the example c(x) = 1 (a positive constant), in the second
example c(x) = x (a non negative function on the interval (0, 1)), and in the third
example c(x) = x but for the case of highly oscillatory solution. In Table 4, we have
displayed the computational time for the whole numerical procedure in cases where
N = 2047, 4096, 8191, 15381 (N is doubled throughout the test), and we obtain the
running time is growing as O(N ), as expected from the design of the scheme.

Appendix 1

Proof of Lemma 5.1 Using the Gaussian eliminations algorithm, see for instance [11,
p.165,177], we get

A = LDLt

with

L =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0
f1 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . fN−1 1

⎞
⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎜⎜⎜⎝

γ1 0 . . . 0 0
0 γ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . γN−2 0
0 0 . . . 0 γN

⎞
⎟⎟⎟⎟⎟⎠

,
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where the numbers γk, k = 1, . . . , N and fk, k = 1 . . . , N − 1 are determined via
(5.1), (5.3). The matrix L is the product of elementary matrices F = F̃1 · · · F̃N−1,
where

F̃k = Ik−1 ⊗ Fk ⊗ IN−k−1, Fk =
(

1 0
fk 1

)
, k = 1, . . . , N − 1.

Here, ⊗ stands for a tensor product. Consider the inverse matrix A−1. We have

A−1 = (L−1)t · D−1 · L−1. (13.1)

One can see easily that
L−1 = L̃ N−1 · · · L̃1 (13.2)

with
L̃k = Ik−1 ⊗ Lk ⊗ IN−k−1, k = 1, . . . , N − 1. (13.3)

Lk =
(

1 0
− fk 1

)
, k = 1, . . . , N − 1 (13.4)

and also
(L−1)t = (L̃1)

t · · · (L̃ N−1)
t (13.5)

(L̃k)
t = Ik−1 ⊗ Lt

k ⊗ IN−k−1, k = 1, . . . , N − 1. (13.6)

Lt
k =

(
1 − fk
0 1

)
, k = 1, . . . , N − 1, (13.7)

and
D−1 = diag

(
γ −1
1 , . . . , γ −1

N

)
. (13.8)

Next, we compute the matrix A−1 via the factorization

A−1 = (L̃1)
t · · · (L̃ N−1)

t · D−1 · L̃ N−1 · · · L̃1 (13.9)

We set
Dk = D−1(1 : k, 1 : k), k = 1, . . . , N , (13.10)

it is clear that

Dk =
(
Dk−1 0
0 γ −1

k

)
, k = 2, . . . , N . (13.11)

Next set
�N = DN , �k = (L̃k)

t�k+1 L̃k, k = N − 1, . . . , 1. (13.12)

Define the N − k + 1-dimensional vector columns Tk, k = N , . . . , 1 via recursive
relations

TN = θN , Tk =
(

θk
Tk+1a(k)

)
, k = N − 1, . . . , 1 (13.13)
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with the parameters θk, a(k) as in (5.5), (5.4). The relations (13.13) are equivalent to
the formulas

Tj = col
(
θka

>
k, j−1

)N

k= j
=

⎛
⎜⎜⎜⎝

θ j

θ j+1a( j)
...

θNa(N − 1) · · · a( j)

⎞
⎟⎟⎟⎠ , j = 1, . . . N . (13.14)

Set Gk = A−1(k : N , k : N ), k = 1, . . . , N . Thus, (5.1) is equivalent to the relations

A−1( j, j : N ) = G j (:, 1) = Tj , j = 1, 2, . . . , N . (13.15)

We prove (13.15) by the backward induction. For j = N using we have

A−1(N , N ) = GN = γ −1
N = θN = TN . (13.16)

Assume that for some k with N − 2 ≥ k ≥ 1, the relations

G j (:, 1) = Tj , j = k + 1, . . . , N (13.17)

hold. This implies that

Gk+1 =
(

θk+1 a(k + 1)T t
k+2

Tk+2a(k + 1) Gk+2

)
. (13.18)

To get such a representation for Gk , we use the formulas (13.1)-(13.12). Using the
formulas (13.1), (13.2), (13.5), and (13.12), we get

Gk = �k−1(k : N , k : N ).

Using the formula �k−1 = (L̃k−1)
t�k L̃k−1 and (13.3), (13.4), (13.6), (13.7), we

obtain

�k−1 =

⎛
⎜⎜⎝

Ik−2 0 0 0
0 1 − fk−1 0
0 0 1 0
0 0 0 IN−k

⎞
⎟⎟⎠ · �k ·

⎛
⎜⎜⎝

Ik−2 0 0 0
0 1 0 0
0 − fk−1 1 0
0 0 0 IN−k

⎞
⎟⎟⎠ .

So we get that in fact

Gk = �k(k : N , k : N ), k = N , . . . . (13.19)

From here, using also (13.9) and (13.12), (13.10), we obtain

�k =
(
Dk−1 0
0 Gk

)
. (13.20)
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Moreover, using the formula �k = (L̃k)
t�k+1 L̃k , we have

�k = (L̃k)
t

⎛
⎝ Dk−1 0 0

0 γ −1
k 0

0 0 Gk+1

⎞
⎠ L̃k (13.21)

and next using (5.4) and

Gk =
⎛
⎝ 1 a(k) 0
0 1 0
0 0 IN−k−1

⎞
⎠

(
γ −1
k 0
0 Gk+1

) ⎛
⎝ 1 0 0
a(k) 1 0
0 0 IN−k−1

⎞
⎠ .

From here, using the direct computations, we get

Gk =
⎛
⎝ θk a(k)θk+1 a(k)a(k + 1)T t

k+2
θk+1a(k) θk+1 a(k + 1)T t

k+2
Tk+2a(k + 1)a(k) Tk+2a(k + 1) Gk+2

⎞
⎠ .

Hence, using (reftk), we get

Gk =
(

θk a(k)T t
k+1

Tk+1a(k) Gk+1

)

which completes the proof. 	


Appendix 2

The scalar quasiseparable representations are a particular case of so called quasisepa-
rable (separable type) representations of matrices studied in details in [8]. We present
here the basic definitions and facts.

Let A be an N × N matrix. Consider the ranks of the maximal submatrices of A
entirely located in the strictly lower triangular part

rankA(k + 1 : N , 1 : k) = rk, k = 1, . . . , N − 1.

The numbers rk, k = 1, . . . , N − 1 are called lower rank numbers of the matrix A.
Let r = max1≤k≤N−1 rk be the maximal lower rank number of A, we say that A is
lower quasiseparable of order r .

In accordance with the lower rank numbers, see [7, Section 5.2], the strictly lower
triangular part of A admits the following parametrization. There exist the integers
tk, k = 1, . . . , N and the tk−1-dimensional rows p(k) (k = 2, . . . , N ), the tk-
dimensional columns q(k) (k = 1, . . . , N − 1), the tk × tk−1 matrices a(k) (k =
2, . . . , N − 1) such that the equalities

Ai j = p(i)a(i − 1) · · · a( j + 1)q( j), 1 ≤ j < i − 1 ≤ N − 1, Ai,i−1

= p(i)q(i − 1), 2 ≤ i ≤ N . (14.1)
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hold. The representation (14.1) is called the lower quasiseparable representation of
A, and the parameters p(k) (k = 2, . . . , N ), q(k) (k = 1, . . . , N − 1), a(k)(k =
2, . . . , N − 1) are said to be lower quasiseparable generators of the matrix A with
orders tk, k = 1, . . . , N−1. The representation (14.1) is not unique, but for amatrixA
with the lower rank numbers rk, k = 1, . . . , N −1 for any set of lower quasiseparable
generators, the orders tk satisfy the inequalities ([7, Lemma 5.8])

rk ≤ tk, k = 1, 2, . . . , N − 1.

Moreover ([7, Theorem 5.9, Corollary 5.0]), there exist a lower quasiseparable repre-
sentation (14.1) with minimal orders, i.e., with orders equal to the corresponding rank
numbers

rk = tk, k = 1, 2, . . . , N − 1.

For an N ×N matrix with the given elements, a set of lower quasiseparable generators
may be determined in O(N 2) arithmetic operations ([7, Theorem 5.9]). In many cases,
in particular in this paper quasiseparable generators, are given in advance.

The quasiseparable generators are not unique, and the choice depends on the con-
crete algorithm we use.

A similar structure is defined for the upper triangular part of a matrix. Consider the
ranks of the maximal submatrices ofA entirely located in the strictly upper triangular
part

rankA(1 : k, k + 1 : N ) = sk, k = 1, . . . , N − 1.

The numbers sk, k = 1, . . . , N − 1 are called upper rank numbers of the matrix A.
Let s = max1≤k≤N−1 sk be the maximal upper rank number of A, we say that A is
upper quasiseparable of order s.

In accordance with the upper rank numbers, the strictly upper triangular part of A
admits the parametrization.

Ai j = g(i)b(i + 1) · · · b( j − 1)h( j), 1 ≤ i < j − 1 ≤ N − 1, Ai,i−1

= g( j − 1)h( j), 2 ≤ j ≤ N . (14.2)

with the sk-dimensional rows g(k) (k = 1, . . . , N−1), the sk−1-dimensional columns
h(k) (k = 2, . . . , N ) and the sk−1 × sk matrices b(k) (k = 2, . . . , N − 1).
The representation (14.2) is called the upper quasiseparable representation of A,
and the parameters of this representation g(k) (k = 1, . . . , N − 1), h(k)(k =
2, . . . , N ), b(k) (k = 2, . . . , N − 1) are said to be upper quasiseparable genera-
tors of the matrix A with orders sk, k = 1, . . . , N − 1. A matrix which is lower
quasiseparable of order r and upper quasiseparable of order s is said to be quasisepa-
rable of order (r , s).

For the products of matrices in (14.1) and (14.2), we use the following notations.
For i > j , we define the operation a>

i j via

a>
i j = a(i − 1) · · · a( j + 1), i > j + 1, a>

j+1, j = I
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and for i < j the operation b<
i j via

b<
i j = b(i + 1) · · · b( j − 1), j > i + 1, b<

j−1, j = I .

It is clear that the relations

a>
i j = a>

i,ka
>
k+1, j , i > k ≥ j (14.3)

and
b<
i j = b<

i,k+1b
<
k, j , i ≤ k < j .

hold.
Thus, the entries of any matrix A are represented in the form

Ai j =
⎧⎨
⎩

p(i)a>
i j q( j), 1 ≤ j < i ≤ N ,

d(i), 1 ≤ i = j ≤ N ,

g(i)b<
i j h( j), 1 ≤ i < j ≤ N

(14.4)

with the lower and upper quasiseparable generators defined above and diagonal entries
d(i) i = 1, . . . , N . For a symmetric A, upper generators are not needed and we have

Ai j = qt (i)(at )<i j p
t ( j), 1 ≤ i < j ≤ N . (14.5)

Every matrix is quasiseparable with some order. If we take the order (r , s) to be
fixed, we obtain a special class of matrices. Since for an invertibleA the rank numbers
of the inverse are the same ([8, Corollary 6.3]) as for the original matrix, such a class is
invariant under inversion. For instance, the class of lower quasiseparable of order one
matrices contains tridiagonal and unitary Hessenberg matrices as well as the inverses
to them.

Quasiseparable representations of the form (14.4) are used also for block matri-
ces. For a block square matrix with entries of sizes mi × n j , i, j = 1, . . . , N ,
where mi , n j ≥ 0 and

∑N
i=1 mi = ∑N

i=1 ni , the quasiseparable representation is
defined via (14.4) withmatrix entries. Here, quasiseparable generators are thematrices
p(i) (i = 2, . . . , N ), q( j) ( j = 1, . . . , N −1), a(k) (k = 2, . . . , N −1); g(i) (i =
1, . . . , N−1), h( j) ( j = 2, . . . , N ), b(k) (k = 2, . . . , N−1); d(k) (k = 1, . . . , N )

of sizesmi×ti−1, t j×n j , tk×tk−1;mi×si , s j−1×n j , sk−1×sk,mk×nk , respectively.
In practice, quasiseparable representations are used for matrices with quasisepara-

ble orders r , s essentially smaller than the size N of a matrixA. In this case, the matrix
with N 2 entries turns out to be parametrized via O(N ) parameters which are qua-
siseparable generators. Moreover, using quasiseparable representation, one can obtain
various algorithms with lower complexity. The multiplication by vector algorithm via
quasiseparable generator costs O(N ) arithmetic operations instead of O(N 2) in the
unstructured algorithms and the solution of a system of linear algebraic is performed
via O(N ) operations in contrast to O(N 3) in the general case. In the applications to
numerical methods for differential equations, we obtain algorithms with linear in the
number of the points in the grid complexity.
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