
Numerical Algorithms
https://doi.org/10.1007/s11075-024-01790-3

ORIG INAL PAPER

Properties and practicability of convergence-guaranteed
optimization methods derived fromweak discrete
gradients

Kansei Ushiyama1 · Shun Sato1 · Takayasu Matsuo1

Received: 31 August 2023 / Accepted: 20 February 2024
© The Author(s) 2024

Abstract
The ordinary differential equation (ODE) models of optimization methods allow for
concise proofs of convergence rates through discussions based on Lyapunov functions.
The weak discrete gradient (wDG) framework discretizes ODEs while preserving the
properties of convergence, serving as a foundation for deriving optimization methods.
Although various optimization methods have been derived through wDG, their prop-
erties and practical applicability remain underexplored. Hence, this study elucidates
these aspects through numerical experiments. Particularly, although wDG yields sev-
eral implicit methods, we highlight the potential utility of these methods in scenarios
where the objective function incorporates a regularization term.

Keywords Convex optimization · Proximal gradient method · Numerical analysis ·
Discrete gradient

1 Introduction

In this paper, we consider the unconstrained convex optimization problem

min
x∈Rd

f (x).

B Kansei Ushiyama
ushiyama-kansei074@g.ecc.u-tokyo.ac.jp

Shun Sato
shun@mist.i.u-tokyo.ac.jp

Takayasu Matsuo
matsuo@mist.i.u-tokyo.ac.jp

1 Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku 113-8656, Tokyo, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-024-01790-3&domain=pdf

Numerical Algorithms

One approach to analyze and derive optimizationmethods for this problem ismodeling
thembyordinary differential equations (ODEs). This approach has been considered for
a long time, startingwith themodeling of the steepest descent method by gradient flow.
Further, it has received more attention in recent years since the derivation of an ODE
model of Nesterov’s accelerated gradient method (NAG) by Su–Boyd–Candès [1].

One of the advantages of considering ODE models is that we can analyze conver-
gence rates of, for example, the objective function succinctly in continuous time via
Lyapunov functions which express the rate explicitly. This framework of Lyapunov
analysis has been organized by [2, 3], and applied to various ODEs (e.g., [4–6].)

The weak discrete gradient (wDG) is a concept proposed in [7] to transfer the
Lyapunov analysis in continuous-time ODEs to discrete-time optimization methods.
It represents a class of gradient evaluation methods that satisfy conditions necessary
to reproduce the continuous proof in discrete systems. By discretizing ODEs using
wDGs,we have an abstract optimizationmethod that contains a variety of optimization
methods. Additionally, selecting a wDG yields a concrete optimization method with
a convergence rate guarantee. However, [7] did not discuss which specific wDG is
suitable for optimization in practice, and only limited preliminary numerical examples
are given in the appendix section.

Therefore, in this paper, we examine the properties and performance of the methods
obtained by discretizing the following accelerated gradient flows with wDGs more
intensively numerically:

ẋ = 2

t
(v − x), v̇ = − t

2
∇ f (x) (for convex f), (1)

ẋ = √
μ(v − x), v̇ = √

μ(x − v − ∇ f (x)/μ) (for μ-strongly convex f). (2)

A differentiable function f is said to be μ-strongly convex if it satisfies

μ

2
‖y − x‖2 ≤ f (y) − f (x) − 〈∇ f (x), y − x〉,

and f is said to be L-smooth if it satisfies

L

2
‖y − x‖2 ≥ f (y) − f (x) − 〈∇ f (x), y − x〉.

The above ODEs are models for Nesterov’s famous accelerated gradient method for
convex functions [8] and strongly convex functions [9].

In this paper, we discuss the following three issues based on numerical experiments:

1. Differences between wDG discretizations and other discretizations: As wDG
schemes for the accelerated gradient flow are different from NAG, we aim to com-
pare them. Additionally, since the wDG schemes do not coincide with any typical
numerical methods for ODEs, we compare themwith the partitioned Runge–Kutta
method, which is a natural choice for the ODE.

123

Numerical Algorithms

2. Practicability of implicit methods: Most wDG discretizations yield implicit
schemes. In optimization, implicit methods are not favored because of their high
computational complexity per iteration. In numerical analysis, however, it is com-
mon to employ implicitmethods to solve “stiff” equations due to their high stability.
In contrast to explicit methods, which can only compute numerical solutions with a
small time stepwidth due to their lower stability, the use of implicit methods allows
for a much larger time step width. Consequently, despite the higher computational
cost per step, the overall cost is reduced, enabling the attainment of numerical
solutions at more advanced time points. We point out that a similar phenomenon
occurs in optimization as well. Specifically, for “stiff” optimization problems,
implicit methods can converge more rapidly in terms of overall computational
cost compared to explicit methods.

3. Efficiency of variants of the proximal gradient method derived by wDG dis-
cretizations: We can create a new wDG by summing two wDGs. This property
allows us to produce variants of the proximal gradient method with convergence
rate guarantees. We verify their performance through numerical experiments.

Issues 1 and 2 will be discussed in Sect. 3 and Issue 3 in Sect. 4.
Before proceeding, let us summarize the insight in [7, Appendix I] here, in which

simple numerical illustrations were given for both convex and strongly convex cases.
For the convex case, the paper considered NAG for convex functions, and an explicit
wDG scheme for convex functions, which is a variant of (5) below (this is almost
the only explicit scheme we can naturally think of out of the wDG framework for
convex functions). They were tested for a simple quartic function and the following
was obtained: the performance was roughly the same for both methods, while the per-
formance of the wDG scheme was slightly better asymptotically. For strongly convex
case, we can think of various explicit wDG schemes. There, two explicit wDG schemes
(which are called wDGEX_sc and wDGEX2_sc in the present paper; see below) and
NAG for strongly convex functions were tested for a simple quadratic function. The
numerical experiment suggested the following: again, the performance of these three
methods was quite similar, while trajectories in the solution space were considerably
different. In both convex and strongly convex cases, the actual convergence rates were
much better than the theoretical estimates, which is not surprising since the theoretical
estimate is the estimate for the worst-case functions.

In the numerical experiments carried out in the present study, we have the following
settings. First, we mainly focus on strongly convex cases, since in the convex case,
the only explicit wDG scheme was already tested in [7] as noted above, and few
are left for investigation (an exception will be given in the last numerical example.)
Second, we observe the convergence in the gradient norm, i.e., ‖∇ f (x)‖2, instead of
f (x) itself, although the wDG framework provides convergence rate guarantees with
respect to the latter. This is because we also deal with objective functions whose exact
minimums are unknown. The profiles remain informative in view of the inequality
‖∇ f (x)‖22 ≤ 2L(f (x)− f �), which holds for any L-smooth convex functions. Finally,
we assume the existence of the optimal solution x� and the optimal value f � = f (x�).

123

Numerical Algorithms

2 Preliminary: weak discrete gradient [7]

In this section, we briefly review the wDG.
In the Lyapunov analysis of ODEs, we derive convergence rates by showing the

nonincrease of rate-revealing Lyapunov functions (by showing (d/dt)E(t) ≤ 0). For
accelerated gradient flows (1) and (2), the following functions serve as Lyapunov
functions:

E(t) = t2(f (x) − f �) + ‖v − x�‖2 for (1), and (3)

E(t) = e
√

μt
(
f (x) − f � + μ

2
‖v − x�‖2

)
for (2). (4)

Since these E’s are non-increasing and the terms involving ‖v − x�‖2 are nonnega-
tive, we can derive immediately the convergence rate f (x(t)) − f � = O

(
1/t2

)
and

O
(
e−√

μt
)
.

wDGs represent a class of gradient approximations that, given an optimizationODE
and its Lyapunov function for the rate analysis, provides a discretization of the ODE
that preserves its convergence rate.

Definition 1 (Weak discrete gradient) A gradient approximation∇ f : Rd ×R
d → R

d

is said to be weak discrete gradient of f if there exists α ≥ 0 and β, γ with β +γ ≥ 0
such that the following two conditions hold for all x, y, z ∈ R

d :

f (y) − f (x) ≤ 〈∇ f (y, z), y − x〉 + α‖y − z‖2 − β‖z − x‖2 − γ ‖y − x‖2,
∇ f (x, x) = ∇ f (x).

The following functions are wDGs.

Proposition 1 Suppose that f : Rd → R is a μ-strongly convex function. Let (L) and
(SC) denote the additional assumptions: (L) f is L-smooth, and (SC) μ > 0. Then,
the following functions are wDGs:

1. If ∇ f (y, x) = ∇ f (x) and f satisfies (L), then (α, β, γ) = (L/2, μ/2, 0).
2. If ∇ f (y, x) = ∇ f (y), then (α, β, γ) = (0, 0, μ/2).
3. If ∇ f (y, x) = ∇ f (x+y

2) and f satisfies (L), then (α, β, γ) = ((L +
μ)/8, μ/4, μ/4).

4. If ∇ f (y, x) = ∇AVF f (y, x) and f satisfies (L), then (α, β, γ) = (L/6 +
μ/12, μ/4, μ/4).

5. If∇ f (y, x) = ∇G f (y, x) and f satisfies (L)(SC), then (α, β, γ) = ((L+μ)/8+
(L − μ)2/16μ,μ/4, 0).

6. If ∇ f (y, x) = ∇IA f (y, x) and f satisfies (L)(SC), then (α, β, γ) = (dL2/μ −
μ/4, μ/2,−μ/4).

Here, Gonzalez discrete gradient [10] is as follows:

∇G f (y, x) := ∇ f

(
y + x

2

)
+ f (y) − f (x) − 〈∇ f

(y+x
2

)
, y − x〉

‖y − x‖2 (y − x).

123

Numerical Algorithms

Itoh–Abe discrete gradient [11] is as follows:

∇IA f (y, x) :=

⎡
⎢⎢⎢⎢⎣

f (y1,x2,x3...,xd)− f (x1,x2,x3,...,xd)
y1−x1

f (y1,y2,x3...,xd)− f (y1,x2,x3,...,xd)
y2−x2

...
f (y1,y2,y3,...,yd)− f (y1,y2,y3...,xd)

yd−xd

⎤
⎥⎥⎥⎥⎦

,

and average vector field (AVF) [12] is as follows:

∇AVF f (y, x) :=
∫ 1

0
∇ f (τ y + (1 − τ)x)dτ.

Given an ODE and its rate-revealing Lyapunov function, we can derive a wDG
scheme that ensures a decrease in the Lyapunov function. Here are the convergence
rate theorems of wDG discretizations of ODE (1) and (2) with respect to Lyapunov
functions (3) and (4). In the following schemes, δ+ denotes the forward difference
operator with time step h, e.g., δ+x (k) := (x (k+1) − x (k))/h.

Proposition 2 (Convex case, Theorem 5.4 in [7]) Let ∇ f be a wDG of f and suppose
that β ≥ 0, γ ≥ 0. Let f be a convex function that additionally satisfies the necessary
conditions that the wDG requires. Let

{(
x (k), v(k)

)}
be the sequence given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ+x (k) = δ+Ak

Ak

(
v(k+1) − x (k+1)

)
,

δ+v(k) = −δ+Ak

4
∇ f

(
x (k+1), z(k)

)
,

z(k) − x (k)

h
= δ+Ak

Ak+1

(
v(k) − x (k)

)
(5)

with
(
x (0), v(0)

) = (x0, v0), where Ak := A(kh). Then, if Ak = (kh)2 and h ≤
1/

√
2α, the sequence satisfies

f
(
x (k)

)
− f � ≤ 2‖x0 − x�‖2

Ak
.

Proposition 3 (Strongly convex case, Theorem 5.5 in [7]) Let ∇ f be a wDG of f and
suppose that β +γ > 0. Let f be a strongly convex function that additionally satisfies

123

Numerical Algorithms

the necessary conditions that the wDG requires. Let
{(
x (k), v(k)

)}
be the sequence

given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ+x (k) = √
2(β + γ)

(
v(k+1) − x (k+1)

)
,

δ+v(k) = √
2(β + γ)

(
β

β + γ
z(k) + γ

β + γ
x (k+1) − v(k+1) − ∇ f (x (k+1), z(k))

2(β + γ)

)
,

z(k) − x (k)

h
= √

2(β + γ)
(
x (k) + v(k) − 2z(k)

)
(6)

with
(
x (0), v(0)

) = (x0, v0). Then, if h ≤ h :=
(√

2(
√

α + γ − √
β + γ)

)−1
, the

sequence satisfies

f
(
x (k)

)
− f � ≤

(
1 +√

2(β + γ)h
)−k(

f (x0) − f � + β‖v0 − x�‖2
)
.

In particular, the sequence satisfies

f
(
x (k)

)
− f � ≤

(
1 −

√
β + γ

α + γ

)k(
f (x0) − f � + β‖v0 − x�‖2

)
,

when the optimal step size h = h is employed.

3 Features of wDG schemes

3.1 Target methods

In this section, we discuss the features of the wDGmethod by numerically comparing
them to existing optimization methods and numerical methods. We consider wDG
methods derived from the accelerated gradient flow for strongly convex functions (2).

• wDGEX_sc: An explicit method obtained by the following instantiation: we first
replace ∇ f (x (k+1), z(k)) with ∇ f (x (k+1), x (k)) in the abstract scheme (6), which
gives a convergent wDG scheme with a worse convergence rate [7]. However, this
scheme is more natural as a numerical method. We then set ∇ f (y, x) = ∇ f (x)
(Item 1 of Proposition 1) to find

⎧⎪⎪⎨
⎪⎪⎩

δ+x (k) = √
2(β + γ)

(
v(k+1) − x (k+1)

)
,

δ+v(k) = √
2(β + γ)

(
β

β + γ
x (k) + γ

β + γ
x (k+1) − v(k+1) − ∇ f (x (k))

2(β + γ)

)
.

For L-smooth functions, the convergence rate is f (x (k)) − f � ≤ O
(
(1 − μh)k

)

if h ≤ 1/L .

123

Numerical Algorithms

• wDGEX2_sc: An explicit method obtained by using ∇ f (y, x) = ∇ f (x) in the
abstract scheme (6). The convergence rate and the step-size restriction are shown
in the proposition.

• wDGagr_sc: An explicit method obtained by considering another Lyapunov func-
tion

E = f (x) − f � + 4

9
μ

(
‖v − x�‖2 − 1

2
‖v − x‖2

)
.

This function is proposed in [13] and shown to decrease faster than (4); however
this does not guarantee faster convergenceof f since 4

9μ
(‖v − x�‖2 − 1

2‖v − x‖2)
is not always positive. We can derive an abstract wDG method for the ODE that
ensure the corresponding non-increase of E :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ+x (k) = √
2(β + γ)

(
v(k+1) − x (k+1)

)
,

δ+v(k) = √
2(β + γ)

(
2β

β + γ
z(k) + 2γ

β + γ
x (k+1) − 2v(k+1) − 9∇ f (x (k+1), z(k))

8(β + γ)

)
,

z(k) − x (k)

h
= √

2(β + γ)
(
x (k) + v(k) − 2z(k)

)
.

We omit the proof of the non-increase property. We set ∇ f (y, x) = ∇ f (x) to
obtain an explicit method. Owing to the aforementioned reason, the convergence
rate of the method is not known. It is interesting to numerically observe how the
fast decrease in the above E affects the actual performance.

• wDGIE_sc: An implicit method obtained by letting ∇ f (y, x) = ∇ f (y) (Item 2
of Proposition 1) in (6).

• wDGAVF_sc: An implicit method obtained by letting ∇ f (y, x) = ∇AVF f (y, x)
(Item 4 of Proposition 1) in (6). Note that if f is quadratic, this method is the same
as the implicit midpoint rule ∇ f (y, x) = ∇ f ((y + x)/2).

• wDGIA_sc:An implicitmethod obtained by letting∇ f (y, x) = ∇IA f (y, x) (Item
6 of Proposition 1) in (6).

We compare these methods to Nesterov’s accelerated gradient method for μ-
strongly convex functions whose continuous limit is also (2):

• NAG_sc: ⎧
⎪⎨
⎪⎩

x (k+1) = y(k) − s∇ f (y(k)),

y(k+1) = x (k+1) + 1 − √
μs

1 + √
μs

(x (k+1) − x (k)),

where s is a step size. For L-smooth functions, its convergence rate is f (x (k)) −
f � ≤ O

((
1 − √

μs
)k) if s ≤ 1/L .

wDGEX2_sc and NAG_sc have the same best convergence rate among those explicit
methods when h = 1/(

√
L − √

μ) and s = 1/L respectively.
We also compare wDGmethods to a partitioned Runge–Kutta method and its mod-

ified version.

123

Numerical Algorithms

• pRK: An explicit partitioned Runge–Kutta method (cf. [14]) for (2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z(k) − x (k) =
√

μh

2
(v(k) − z(k)),

v(k+1) − v(k) =√
μh

(
z(k) − v(k+1) − ∇ f (z(k))

μ

)
,

x (k+1) − z(k) =
√

μh

2
(v(k+1) − z(k)).

(7)

The convergence rate is O
((
1 + √

μh
)−k

)
for h ≤ 4

√
μ/L (see Appendix A.1),

• pRK2: A modified version of (7)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z(k) − x (k) =
(
1 −

√
μh

2

)√
μh(v(k) − z(k)),

v(k+1) − v(k) =√
μh

(
z(k) − 1

2
v(k) − 1

2
v(k+1) − ∇ f (z(k))

μ

)
,

x (k+1) − z(k) =μh2

2
(v(k+1) − z(k)) +

(
1 −

√
μh

2

)√
μh2

v(k+1) − v(k)

h
.

(8)

The convergence rate is O

((
1−√

μh/2
1+√

μh/2

)k)
for h ≤ √

1/L (see Appendix A.2).

3.2 Numerical experiments

We compare the above methods in terms of trajectories and function decrease. The test
problem is the 2-dimensional quadratic function minimization minx∈R2 f (x) where

f (x) = 1

2
x�Ax + b�x, A =

(
0.101 0.099
0.099 0.101

)
, b =

(
0.01
0.02

)
. (9)

This function is 0.002-strongly convex and 0.2-smooth.
First, we compare explicit methods. Figure1 shows the results when the baseline

step size is set to s0 = 1/L for NAG_sc and h0 = 1/(
√
L−√

μ) for the othermethods,
which are theoretical maximum step sizes for NAG_sc and wDG2_sc respectively.
Each method is run with step sizes that are constant multiple of s0, h0.

The trajectories can be roughly classified into those of (wDGEX_sc, pRK),
(NAG_sc, wDGEX2_sc, pRK2) and (wDGagr_sc). The first group trajectories oscil-
late similarly to the original ODE trajectory, and the same level of oscillation is
maintained for larger step sizes. The second group trajectories oscillate less and
cease to oscillate as h increases. pRK2 has a smaller upper step size to converge than
wDGEX_sc and wDGEX2_sc, which seems to explain that the solutions of pRK2 are
more oscillatory near h0. wDGagr_sc shows unstable trajectories even at small step
sizes, diverging at a step size of about h = 0.6h0, which is still a step size where the
Lyapunov function decreases theoretically.

123

Numerical Algorithms

Fig. 1 Trajectories and convergences of ‖∇ f (x(k))‖ by explicit methods for Problem (9). The initial point
is (2, 3)

Meanwhile, there is almost no difference in the decrease in f for the methods
other than wDGagr, except that the decrease by wDG_sc and pRK is not monotone.
wDG_agr decreases f faster than the other methods for the step sizes that do not cause

123

Numerical Algorithms

divergence, but even at h = 0.5h0, just before the divergence, it was not much faster
than the other methods at h = h0.

Next,we compare the implicitmethods andNAG_sc. Figure2 shows the results. The
trajectories of NAG_sc and wDGIE_sc oscillate similarly and smaller as h goes to h0.
wDGAVF_sc shows a larger oscillation than those two. The trajectory of wDGIA_sc
is quite different from the other ones, showing a qualitatively different behavior from
that of the original ODE.

Implicit methods demonstrate their strength when the objective function is a “stiff”
function with either a large L or L/μ. In explicit methods, strict step-size constraints
due to stiffness lead to very slow convergence. Conversely, implicit methods tend to
have looser step-size constraints as long as the scheme is solvable. Hence, for implicit
methods, the computational cost per step becomes significantly higher, but for stiff
objective functions, this can pay off, resulting in faster overall convergence times
compared to explicit methods. Let us consider the following optimization problem as
an example, in which μ is very small.

f (x) = 1

2
x�Ax + log

(
d∑

i=1

exp(0.05xi)

)
, A =

⎛
⎜⎜⎜⎝

1 1/2 · · · 1/d
1/2 1/3
...

. . .

1/d 1/(2d − 1)

⎞
⎟⎟⎟⎠ ,

(10)
where x = (x1, . . . , xd)� ∈ R

d and d = 10.
For this problem, the results of applying WDG_sc, and WDGIE_sc are shown in

Fig. 3. In terms of total computation time, the implicit method converges faster.
In the next section,we consider exploiting implicitwDGmethods for not necessarily

stiff problems by assuming f is a sum of convex functions.

4 Variants of proximal gradient method

4.1 Our interests

In this section, we consider the following problem:

min
x∈Rd

f (x) = min
x∈Rd

{ f1(x) + f2(x)}, (11)

where f1 is convex and L-smooth, and f2 is convex and easy to compute its proximal
map

Proxh f2(x) := arg min
y∈Rd

{
f2(y) + 1

2h
‖y − x‖2

}
.

Examples of f2 are L1, L2 regularization terms λ‖x‖1, λ‖x‖22 and indicator function
ιC (x) of a convex set C ⊆ R

d , i.e., ιC (x) := 0 if x ∈ C and ιC (x) := ∞ if x /∈ C .

123

Numerical Algorithms

Fig. 2 Trajectories and convergences of ‖∇ f (x(k))‖ by implicit methods for Problem (9). The initial point
is (2, 3)

123

Numerical Algorithms

Fig. 3 Convergences of ‖∇ f (x(k))‖ by wDGEX_sc and wDGIE_sc for Problem (10). The horizontal axis
is the execution time; in the range shown in the figure, wDGEX_sc has 14,000 iterations and wDGIE_sc has
1,000 iterations. Experimental settings: Google colabolatory (OS: Ubuntu 22.04.2 LTS, CPU: Intel Xeon
2.20 GHz, Memory: 12 GiB, language: python 3.10.12)

The proximal gradient method defined below is a popular method to solve (11):

x (k+1) = Proxh f2(x
(k) − h∇ f1(x

(k))).

For differentiable f2, computing this iteration is equivalent to solving the equation

x (k+1) − x (k)

h
= −∇ f1(x

(k)) − ∇ f2(x
(k+1)),

which is known as an IMEX-scheme for the gradient flow ẋ = −∇ f1(x) − ∇ f2(x),
that is, the combination of the explicit Euler discretization of −∇ f1 and the implicit
Euler discretization of −∇ f2. Since these types of discretization are members of the
wDG and the sum of two wDGs is also a wDG, the convergence rate of this method
is the result of the unified analysis for wDG schemes (this framework is valid for the
non-differentiable f2 using subdifferentials).

Now we consider using another wDG to discretize −∇ f2:

x (k+1) − x (k)

h
= −∇ f1(x

(k)) − ∇ f2(x
(k+1), x (k)),

and assume that this scheme is easily solvable for x (k+1). As said before, most wDG
methods are implicit and the high computational complexity generally discourages
their application to large-scale problems except for highly stiff case, as discussed
in the previous section. However, in the current setting, these implicit methods can

123

Numerical Algorithms

be efficiently computed, similar to the proximal gradient methods with L1 or L2

regularizations.
FISTA is the accelerated method of the proximal gradient method and its scheme

is ⎧⎨
⎩
x (k+1) = Proxh f2(y

(k) − h∇ f1(y
(k)))

y(k+1) = x (k+1) + k

k + 3
(x (k+1) − x (k)),

for the convex function f , and

⎧⎪⎨
⎪⎩

x (k+1) = Proxh f2(y
(k) − h∇ f1(y

(k)))

y(k+1) = x (k+1) + 1 − √
μh

1 + √
μh

∇(x (k+1) − x (k))

for strongly convex f . In this study, we distinguish these two methods by calling them
FISTA_c and FISTA_sc.

The continuous limits of these methods are the accelerated gradient flows (1)
and (2). In addition to the above gradient flow case, the abstract schemes (5) and (6)
with the wDG defined by∇ f (y, x) = ∇ f1(x)+∇ f2(y, x) produce new optimization
methods similar to FISTA:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x (k+1) − x (k) = 2k + 1

k2
(v(k+1) − x (k+1)),

v(k+1) − v(k) = −2k + 1

4
h2(∇ f1(z

(k)) + ∇ f2(x
(k+1), z(k))),

z(k) − x (k) = 2k + 1

(k + 1)2
(v(k) − x (k))

(12)

for convex f , and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x (k+1) − x (k) = √
2(β + γ)h

(
v(k+1) − x (k+1)

)
,

v(k+1) − v(k) = √
2(β + γ)h

(
β

β + γ
z(k) + γ

β + γ
x (k+1) − v(k+1)

− 1

2(β + γ)
(∇ f1(z

(k)) + ∇ f2(x
(k+1), z(k)))

)
,

z(k) − x (k) = √
2(β + γ)h

(
x (k) + v(k) − 2z(k)

)

(13)

for strongly convex f . If ∇ f2 is wDG with parameters (α2, β2, γ2), then ∇ f (y, x) =
∇ f1(x) + ∇ f2(y, x) is wDG with parameters (L1/2 + α2, μ1/2 + β2, γ2), where
we assume that f1 is L1-smooth and μ1-strongly convex. Therefore, Proposi-
tion 2 implies that the scheme (12) satisfies f (x (k)) − f � ≤ O

(
1/k2

)
if h ≤

1/
√
L1 + 2α2, and Proposition 3 implies that the scheme (13) satisfies f (x (k))− f � ≤

123

Numerical Algorithms

O
(
(1 + √

μ1 + 2β2 + 2γ2h)−k
)
if h ≤ (

√
L1 + 2α2 + 2γ2 −√

μ1 + 2β2 + 2γ2)−1.
In particular, by selecting ∇ f2(x (k+1), z(k)) = ∇ f2(x (k+1)), these schemes have the
same rate as FISTA but different iterative formulas, which we call IMEX_c/sc for
(12)/(13). Using other wDGs for −∇ f2 in place of the implicit Euler method, we
can create different methods. In this study, we consider AVF ∇ f2(x (k+1), z(k)) =∫ 1
0 ∇ f2(τ x (k+1) + (1 − τ)z(k))dτ and we call them AVFEX_c/sc.
Our interest is the practical behavior of these wDG methods compared to FISTA.

In the following section, we apply FISTA and wDGmethods to several test problems.
For strongly convex problems min f , we use _sc methods, and for convex but not
strongly convex problems, we use _c methods.

4.2 Numerical experiments

In this section, we consider several (strongly) convex functions as f1 and two reg-
ularization terms as f2: L2 regularization f2(x) = λ

2‖x‖22 and L1 regularization
f2(x) = λ‖x‖1. For L2 regularization problems, we compare FISTA_sc, IMEX_sc
and AVFEX_sc; note that adding the L2-regularization term makes any original con-
vex objective functions (f1(x)) strongly convex. For L1 regularization problems, since
f2(x) = λ‖x‖1 is not differentiable, ∇AVF f2 cannot be a wDG, and we should aban-
don it. Thus, we only consider FISTA_sc and IMEX_sc when f1 is strongly convex,
and FISTA_c and IMEX_c when f1 is not strongly convex (but convex). The used
step size is the theoretical maximum value that guarantees the convergence rate.

We consider the following four problems.

Problem 1

f1(x) = 1

2
x�Ax + b�x, where A =

(
0.101 0.099
0.099 0.101

)
, b =

(
0.01
0.02

)
.

This function is 0.002-strongly convex and 0.2-smooth.
The result of L2 regularization f2(x) = λ

2‖x‖22 is presented in Fig. 4. The shapes of
trajectory are almost the same among the three methods and λ’s except that FISTA_sc
overruns at the first step. For λ = 0.01, IMEX_sc and AVFEX_sc show slightly
faster convergence than FISTA_sc, and the decrease by AVFEX_sc is oscillatory. For
λ = 0.001, AVFEX_sc is faster than the other two methods. For λ = 0.0001, the
three methods have the same convergence speed. Notably, the computational com-
plexities per step of the tested methods are roughly the same, and the comparison of
the convergence profiles against steps is fair. This notice applies to similar figures in
this section.

The result of L1 regularization f2(x) = λ‖x‖1 is Fig. 5. In this case, FISTA_sc and
IMEX_sc show similar trajectories and convergences in λ = 0.01, 0.001 and more
λ’s.

123

Numerical Algorithms

Fig. 4 Trajectories and convergences of ‖∇ f ‖ by FISTA_sc, IMEX_sc and AVFEX_sc for Problem 1 with
the L2 regularization

123

Numerical Algorithms

Fig. 5 Trajectories and convergences of ‖∇ f ‖ by FISTA_sc and IMEX_sc for Problem 1 with the L1

regularization

Problem 2

f1(x) = 10

4

(
1

2

[
x1

2 +
1000∑
i=1

(xi − xi+1)
2 + x1000

2

]
− x1

)
.

This function has L ≈ 10 and μ ≈ 1.57 × 10−2.
Figure 6 shows the convergence of ‖∇ f ‖. Similar to Problem 1, in the L2 regular-

ization setting, IMEX_sc and AVFEX_sc are faster than FISTA_sc at large λ, and they
have the same speed at small λ. In the L1 regularization setting, there is no difference
in the convergence of ‖∇ f ‖ between FISTA_sc and IMEX_sc for λ = 0.1 and some
more λ’s.

123

Numerical Algorithms

Fig. 6 Convergences of ‖∇ f ‖ for Problem 2 by FISTA_sc, IMEX_sc and AVFEX_sc for the L2 regular-
ization (a–c) and by FISTA_sc and IMEX_sc for the L1 regularization (d)

Problem 3 [15]

f1(x) =
50∑
i=1

g(a�
i x − bi), g(x) =

{
1
2 x

2e−r/x , x > 0,

0, x ≤ 0.

where x, ai ∈ R
1000, bi ∈ R (i = 1, . . . , 50) and r = 0.001. Parameters ai , bi are

chosen randomly. This is a convex but not strongly convex function. With the chosen
parameters, L is approximately 1548. For this problem, we consider methods for
strongly convex functions in the case of the L2-regularization, and those for convex
functions in the case of the L1-regularization (as described before). This notice applies
to Problem 4 as well.

123

Numerical Algorithms

Fig. 7 Convergences of ‖∇ f ‖ for Problem 3 by FISTA_sc, IMEX_sc and AVFEX_sc for the L2 regular-
ization (a–c) and by FISTA_c and IMEX_c for the L1 regularization (d)

The results are shown in Fig. 7. In the L2 regularization setting, atλ = 1,AVFhas an
advantage, but there is no significant difference between the methods in performance
as in the previous two cases. For the L1 setting, no _c method achieved successful
optimization.

Problem 4

f1(x) =
200∑
i=1

log
(
1 + e−yi ξ�

i x
)
,

where ξi ∈ R
d and yi ∈ {1,−1} (i = 1, . . . , 200) are randomly chosen. This is a

convex but not strongly convex function appearing in the logistic regression. With the
chosen parameters, L is approximately 1549.

123

Numerical Algorithms

Fig. 8 Convergences of ‖∇ f ‖ for Problem 2 by FISTA_sc, IMEX_sc and AVFEX_sc for the L2 regular-
ization (a–c) and by FISTA_c and IMEX_c for the L1 regularization (d–f)

123

Numerical Algorithms

The results are shown in Fig. 8. The optimization algorithms exhibited different
behavior for this problem compared to previous ones. For λ = 100, IMEX_sc is the
fastest, followed by AVFEX_sc and FISTA_sc. However, for λ = 10, the order of
speed is as follows: FISTA_sc, IMEX_sc, and AVFEX_sc. For λ = 0.1, there are no
differences in speed.

5 Summary and discussions

In this section, we summarize the results of the numerical experiments to answer the
three issues raised in the Introduction.

5.1 Issue 1: differences between wDGs and other methods

In the preliminary numerical experiment in [7], the advantage of wDG methods was
not clear both for strongly convex and convex objective functions, as mentioned in
Introduction. Below are the novel contributions of the present study in the context of
strongly convex functions.

We first observed in Sect. 3.2 that the convergence profiles are roughly the same for
all the tested methods except for wDGagr_sc. This means that wDG methods for the
(strongly convex) NAG ODE perform well at the same level as NAG_sc. Hence, one
might think that constructing optimization methods via the wDG framework is not
really advantageous. However, one important observation is that wDGEX_sc, which
is a wDG scheme that is quite natural as a numerical method for the NAG ODE,
is competitive in comparison with other methods including NAG_sc (which is not a
natural discretization). This is more preferable from a numerical analysis perspective.

Another important observation there is that wDGagr_sc converges much faster
than other methods; however unfortunately a theoretical convergence estimate is yet
to be given. Nevertheless, this verifies the potential ability of the wDG framework; if
we succeed in finding better ODE and/or its Lyapunov function, we can immediately
construct a method that can outperform existing methods. Although wDGagr_sc tends
to be unstable for larger time steps, this does not mean it is inferior in this respect. By
comparing Cases (b) and (c) in Fig. 1, in (b), wDGagr_sc converges more than twice
faster than other methods. That is, it performs better than other methods in (c).

Additionally, we observe that even when convergence profiles are similar, the cor-
responding trajectories in the solution space can be different (recall Problem 1.) This
encourages us to further explore various wDGs. A negative example in this respect is
the wDGIA_sc, the implicit method based on the Itoh–Abe discrete gradient, which
performs very poorly. This warns us that even though the IA discrete gradient is now
drawing attention in the context of optimization (due to its possible high computational
efficiency compared to other implicit methods), its use is not always encouraged.

In Sect. 4.2, we observe that the implicit wDG methods are as highly efficient as
the standard proximal gradient methods (with L2- or L1-regularizations), and the
convergence profiles are similar, or even slightly better (within the experiments in the

123

Numerical Algorithms

present study). In this sense, we should consider such wDG methods in the situations
where FISTA is needed.

5.2 Issue 2: practicability of implicit wDGmethods

This is investigated in the following two ways, in the case of strongly convex objec-
tive functions: First, in Sect. 3.2, it is confirmed that for some highly stiff objective
functions, implicit optimization methods can actually be advantageous. Although this
finding is widely known in the numerical analysis (of ODEs) field, it has not been
established in the optimization field. Next, in Sect. 4.2, it is confirmed (as mentioned
above) that implicit wDG methods are of practical use when we consider proximal
gradient methods. Hence, implicit wDG methods are in fact practical under some
circumstances. This greatly widens the scope of new optimization methods; we have
various implicit ODE solvers in numerical analysis that have been proven to deserve
consideration.

5.3 Issue 3: efficiency of proximal gradient-like wDGmethods

The practicability of the proximal gradient-like methods in the case of strongly convex
objective functions is discussed above. The last two problems (Problems 3 and 4) con-
tained the case of (not strongly) convex functions. The results show that the behaviors
are roughly the same. This means that there is no strong evidence to recommend wDG
methods, but at the same time no reason to avoid using them. Further investigations
with other wDGs might reveal meaningful differences.

6 Concluding remarks

In this paper, we conducted numerical experiments on methods based on wDG frame-
work to validate their properties and utility. The results show that in most cases, wDG
methods show competitive performance as compared to typical optimization meth-
ods (e.g., NAG and FISTA) and can even slightly outperform them. Additionally,
the results show that implicit methods deserve further consideration. This verifies the
possibility of wDG framework, where in many cases the resulting method becomes
implicit. This is consistent with the fact that structure-preserving numerical meth-
ods are recommended to ODEs that are difficult to solve with generic methods. We
hope that this paper encourages researchers in the optimization and numerical analysis
communities to build on the framework and enrich optimization researches.

Appendix A Convergence analysis for pRK_sc and pRK2_sc method

Partitioned Runge–Kutta methods are numerical methods for ODEs in the partitioned
form

ẏ = g1(y, z), ż = g2(y, z). (A1)

123

Numerical Algorithms

Definition 2 (cf. [14]) Let bi , ai j and b̂i , âi j be the coefficients of two Runge–Kutta
methods. A partitioned Runge–Kutta method for (A1) is given by

φi = y(0) + h
s∑

j=1

ai j g1(φ j , ψ j), ψi = z(0) + h
s∑

j=1

âi j g2(φ j , ψ j),

y(1) = y(0) + h
s∑

i=1

bi g1(φi , ψi), z(1) = z(0) + h
s∑

i=1

b̂i g2(φi , ψi).

Their convergence issues as numerical methods can be found, for example, in [16].
Below we discuss their convergence as optimization methods (in terms of f (x) −
f (x�)).

A.1 Convergence analysis for pRKmethod

We discretize the following system with a partitioned Runge–Kutta method:

{
ẋ = v − x,

v̇ = x − v − ∇ f (x)/μ.

This is the time-scaled version of the ODE (2). The partitioned Runge–Kutta method
corresponding to the tableau

α α 0
α α 0
1 α 1 − α

0 0 0
1 β 1 − β

1 β 1 − β

(the parameters α, β ∈ [0, 1] will be determined later) reads

⎧⎪⎪⎨
⎪⎪⎩

z(k) − x (k) =αh(v(k) − z(k)),

v(k+1) − v(k) =h(z(k) − ṽ − ∇ f (z(k))/μ),

x (k+1) − z(k) =(1 − α)h(v(k+1) − z(k)),

(A2)

where ṽ = (1 − β)v(k+1) + βv(k). By setting α = β = 1/2 we have Stömer–Verlet
method, which is symplectic. For this method, the wDG theory cannot be directly
applied, but the convergence can be shown by a similar discussion. Let us consider
the Lyapunov function:

E (k) = f (x (k)) − f � + μ

2
‖v(k) − x�‖2. (A3)

123

Numerical Algorithms

Its time difference reads

E (k+1) − E (k)

= f (x (k+1)) − f (x (k)) + μ

2
(‖v(k+1) − x�‖2 − ‖v(k) − x�‖2)

= f (x (k+1)) − f (z(k)) + f (z(k)) − f (x (k))

+ μ

2
(‖v(k+1) − x�‖2 − ‖v(k) − x�‖2)

≤ 〈∇ f (z(k)), x (k+1) − z(k)〉 + 〈∇ f (z(k)), z(k) − x (k)〉
+ μ((1 − α)〈v(k+1) − v(k), v(k+1) − x�〉 + α〈v(k+1) − v(k), v(k) − x�〉)
+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
(1 − 2α)‖v(k+1) − v(k)‖2

= (1 − α)h〈∇ f (z(k)), v(k+1) − z(k)〉 + αh〈∇ f (z(k)), v(k) − z(k)〉
+ μ((1 − α)h〈z(k) − ṽ − ∇ f (z(k))/μ, v(k+1) − x�〉

+ αh〈z(k) − ṽ − ∇ f (z(k))/μ, v(k) − x�〉)
+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
(1 − 2α)‖v(k+1) − v(k)‖2

= (1 − α)h(〈∇ f (z(k)), x� − z(k)〉 − μ〈ṽ − z(k), v(k+1) − x�〉)
+ αh(〈∇ f (z(k)), x� − z(k)〉 − μ〈ṽ − z(k), v(k) − x�〉)
+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
(1 − 2α)‖v(k+1) − v(k)‖2

= (1 − α)h
(
〈∇ f (z(k)), x� − z(k)〉

−μ

2
(‖v(k+1) − z(k)‖2 + ‖ṽ − x�‖2 − ‖z(k) − x�‖2 − ‖ṽ − v(k+1)‖2)

)

+ αh
(
〈∇ f (z(k)), x� − z(k)〉

−μ

2
(‖v(k) − z(k)‖2 + ‖ṽ − x�‖2 − ‖z(k) − x�‖2 − ‖ṽ − v(k)‖2)

)

+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
(1 − 2α)‖v(k+1) − v(k)‖2

≤ −(1 − α)h
(
f (z(k)) − f � + μ

2
‖ṽ − x�‖2

)
− αh

(
f (z(k)) − f � + μ

2
‖ṽ − x�‖2

)

− μ

2
(1 − α)h(‖v(k+1) − z(k)‖2 − ‖ṽ − v(k+1)‖2)

− μ

2
αh(‖v(k) − z(k)‖2 − ‖ṽ − v(k)‖2)

+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
(1 − 2α)‖v(k+1) − v(k)‖2

= −h
(
f (z(k)) − f � + μ

2
‖ṽ − x�‖2

)

− μ

2
h((1 − α)‖v(k+1) − z(k)‖2 + α‖v(k) − z(k)‖2)

+ μ

2
h((1 − α)‖ṽ − v(k+1)‖2 + α‖ṽ − v(k)‖2)

+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
(1 − 2α)‖v(k+1) − v(k)‖2.

The first inequality is from the smoothness of the objective function, and the second
is from the strong convexity.

123

Numerical Algorithms

If we further note

‖ṽ − x�‖2 = (1 − β)‖v(k+1) − x�‖2 + β‖v(k) − x�‖2 − β(1 − β)‖v(k+1) − v(k)‖2,

which is visible from the definition of ṽ, we obtain

(1 − α)‖ṽ − v(k+1)‖2 + α‖ṽ − v(k)‖2
= ((1 − α)β2 + α(1 − β)2)‖v(k+1) − v(k)‖2
= ((β − α)2 + α(1 − α))‖v(k+1) − v(k)‖2.

From this we see

E (k+1) − E (k)

≤ −(1 − β)h
(
f (x (k+1)) − f � + μ

2
‖v(k+1) − x�‖2

)

− βh
(
f (x (k)) − f � + μ

2
‖v(k) − x�‖2

)

+ (1 − β)h(f (x (k+1)) − f (z(k))) + βh(f (x (k)) − f (z(k)))

+ μ

2
β(1 − β)h‖v(k+1) − v(k)‖2

− μ

2
h((1 − α)‖v(k+1) − z(k)‖2 + α‖v(k) − z(k)‖2)

+ μ

2
h((β − α)2 + α(1 − α))‖v(k+1) − v(k)‖2

+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
(1 − 2α)‖v(k+1) − v(k)‖2.

Let (err) denote the terms in the last five lines on the right side of the above
inequality. If (err) ≤ 0, then we have

(1 + (1 − β)h)E (k+1) ≤ (1 − βh)E (k),

which implies the desired linear convergence.
Let us show (err) ≤ 0, and reveal the constant of the linear convergence. Using

∇ f (z(k)) = − μ

(
v(k+1) − v(k)

h
+ ṽ − z(k)

)

= − μ

(
v(k+1) − v(k)

h
+ (1 − β)v(k+1) + βv(k) − z(k)

)

= − μ

(
1 − βh

h
(v(k+1) − v(k)) + v(k+1) − z(k)

)

= − μ

(
1 + (1 − β)h

h
(v(k+1) − v(k)) + v(k) − z(k)

)
, (A4)

123

Numerical Algorithms

we see that the first line of (err) can be bounded as

(1 − β)h(f (x (k+1)) − f (z(k))) + βh(f (x (k)) − f (z(k)))

≤ (1 − β)h〈∇ f (z(k)), x (k+1) − z(k)〉 − βh〈∇ f (z(k)), z(k) − x (k)〉
+ L

2
(1 − β)h‖x (k+1) − z(k)‖2 + L

2
βh‖x (k) − z(k)‖2

= −μ(1 − β)(1 − α)h2
〈
1 − βh

h
(v(k+1) − v(k)) + v(k+1) − z(k), v(k+1) − z(k)

〉

+ μβαh2
〈
1 + (1 − β)h

h
(v(k+1) − v(k)) + v(k) − z(k), v(k) − z(k)

〉

+ L

2
(1 − β)h‖x (k+1) − z(k)‖2 + L

2
βh‖x (k) − z(k)‖2

= −μ(1 − β)(1 − α)(1 − βh)h
1

2
(‖v(k+1) − v(k)‖2 + ‖v(k+1) − z(k)‖2 − ‖v(k) − z(k)‖2)

− μβα(1 + (1 − β)h)h
1

2
(‖v(k+1) − v(k)‖2 + ‖v(k) − z(k)‖2 − ‖v(k+1) − z(k)‖2)

− μ(1 − β)(1 − α)h2‖v(k+1) − z(k)‖2 + μβαh2‖v(k) − z(k)‖2

+ L

2
(1 − β)(1 − α)2h3‖v(k+1) − z(k)‖2 + L

2
βα2h3‖v(k) − z(k)‖2.

The inequality is from the discrete chain rule.
If we collect the coefficients of ‖v(k+1) − v(k)‖2 in (err), we find

− μ

2
h[(1 − β)(1 − α)(1 − βh) + βα(1 + (1 − β)h)]

+ μ

2
h[β(1 − β) + (β − α)2 + α(1 − α)] − μ

2
(1 − 2α)

= μ

2
(1 − 2α)(βh − 1)((1 − β)h + 1). (A5)

Similarly, the coefficient of ‖v(k+1) − z(k)‖2 is

− μ

2
h[(1 − β)(1 − α)(1 − βh) − βα(1 + (1 − β)h) + 2(1 − β)(1 − α)h]

+ L

2
(1 − β)(1 − α)2h3 − μ

2
h(1 − α) + L

2
(1 − α)2h2

= 1

2
(1 + (1 − β)h)h(−μ(2(1 − α) − β) + L(1 − α)2h), (A6)

and the coefficient of ‖v(k) − z(k)‖2 is

μ

2
h[(1 − β)(1 − α)(1 − βh) − βα(1 + (1 − β)h) + 2βαh] + L

2
βα2h3

− μ

2
hα − μ

2
α2h2. (A7)

123

Numerical Algorithms

The three quantities above should be nonpositive. From these restrictions and also
from (A5) and (A6), we have the conditions

α ≤ 1

2
, h ≤ 1

β
, h ≤ μ(2(1 − α) − β)

L(1 − α)2
. (A8)

If α > 1/2, no h can satisfy this condition. This means h cannot be larger than
O (μ/L). The restriction on h from (A8) becomes the mildest when β = 0. (This
is interesting because this might imply that symplectic methods are not necessarily
suitable for optimization.) In this case, the required condition for (A7) becomes

1 − 2α

α2 ≤ h.

This condition vanishes by setting α = 1/2.
In summary, whenα = 1/2, andβ = 0, the step size condition becomes h ≤ 4μ/L ,

and the convergence rate is

E (k) ≤
(

1 − hβ

1 + h(1 − β)

)k

E (0) =
(

1

1 + h

)k

E (0).

By further replacing h with
√

μh, we obtain the scheme corresponding to (7).

A.2 Convergence analysis for the pRK2method

To obtain a better convergence rate, we modify (A2) by adding an extra term of order h2:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z(k) − x (k) =αh(v(k) − z(k)),

v(k+1) − v(k) =h(z(k) − ṽ − ∇ f (z(k))/μ),

x (k+1) − z(k) =(1 − α)h(v(k+1) − z(k)) + αh2
v(k+1) − v(k)

h
,

where ṽ = (1 − β)v(k+1) + βv(k).
For this, we consider the Lyapunov function (A3) again and perform the same

discussion.

E (k+1) − E (k)

= f (x (k+1)) − f (z(k)) + f (z(k)) − f (x (k))

+ μ

2
(‖v(k+1) − x�‖2 − ‖v(k) − x�‖2)

≤
chain

〈∇ f (z(k)), x (k+1) − z(k)〉 + 〈∇ f (z(k)), z(k) − x (k)〉

+ μ〈v(k+1) − v(k), v(k+1) − x�〉
+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
‖v(k+1) − v(k)‖2

= (1 − α)h〈∇ f (z(k)), v(k+1) − z(k)〉 + αh〈∇ f (z(k)), v(k) − z(k)〉

123

Numerical Algorithms

+ α〈∇ f (z(k)), h(v(k+1) − v(k))〉
+ μh〈z(k) − ṽ − ∇ f (z(k))/μ, v(k+1) − x�〉
+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
‖v(k+1) − v(k)‖2

= h〈∇ f (z(k)), v(k+1) − z(k)〉 + μh〈z(k) − ṽ − ∇ f (z(k))/μ, v(k+1) − x�〉
+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
‖v(k+1) − v(k)‖2

≤
sc

−h
(
f (z(k)) − f � + μ

2
‖ṽ − x�‖2

)

− μ

2
h‖v(k+1) − z(k)‖2 + μ

2
h‖ṽ − v(k+1)‖2

+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
‖v(k+1) − v(k)‖2

= −(1 − β)h
(
f (x (k+1)) − f � + μ

2
‖v(k+1) − x�‖2

)

− βh
(
f (x (k)) − f � + μ

2
‖v(k) − x�‖2

)

+ (1 − β)h(f (x (k+1)) − f (z(k))) + βh(f (x (k)) − f (z(k))) + μ

2
β(1 − β)h‖v(k+1) − v(k)‖2

− μ

2
h‖v(k+1) − z(k)‖2 + μ

2
hβ2‖v(k+1) − v(k)‖2

+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
‖v(k+1) − v(k)‖2.

Let (err) denote the terms in the last three lines on the right side. Using (A4), we have

(1 − β)h(f (x (k+1)) − f (z(k))) + βh(f (x (k)) − f (z(k)))

≤ (1 − β)h〈∇ f (z(k)), x (k+1) − z(k)〉 − βh〈∇ f (z(k)), z(k) − x (k)〉
+ L

2
(1 − β)h‖x (k+1) − z(k)‖2 + L

2
βh‖x (k) − z(k)‖2

= −μ(1 − β)h2
〈
1 − βh

h
(v(k+1) − v(k)) + v(k+1) − z(k),

(1 − α)(v(k+1) − z(k)) + α(v(k+1) − v(k))
〉

+ μβαh2
〈
1 + (1 − β)h

h
(v(k+1) − v(k)) + v(k) − z(k), v(k) − z(k)

〉

+ L

2
(1 − β)h‖x (k+1) − z(k)‖2 + L

2
βh‖x (k) − z(k)‖2

= −μ(1 − β)(1 − α)(1 − βh)h
1

2
(‖v(k+1) − v(k)‖2 + ‖v(k+1) − z(k)‖2 − ‖v(k) − z(k)‖2)

− μ(1 − β)αh
(‖v(k+1) − v(k)‖2

+ 1

2
h((1 − 2β)‖v(k+1) − v(k)‖2 + ‖v(k+1) − z(k)‖2 − ‖v(k) − z(k)‖2))

− μβα(1 + (1 − β)h)h
1

2
(‖v(k+1) − v(k)‖2 + ‖v(k) − z(k)‖2 − ‖v(k+1) − z(k)‖2)

− μ(1 − β)(1 − α)h2‖v(k+1) − z(k)‖2 + μβαh2‖v(k) − z(k)‖2

+ L

2
(1 − β)h‖x (k+1) − z(k)‖2 + L

2
βα2h3‖v(k) − z(k)‖2.

123

Numerical Algorithms

Thus, we have

(err)

≤ −μ

2
(1 − β)(1 − α)(1 − βh)h(‖v(k+1) − v(k)‖2 + ‖v(k+1) − z(k)‖2 − ‖v(k) − z(k)‖2)

− μ(1 − β)αh
(‖v(k+1) − v(k)‖2

+ 1

2
h((1 − 2β)‖v(k+1) − v(k)‖2 + ‖v(k+1) − z(k)‖2 − ‖v(k) − z(k)‖2))

− μ

2
βα(1 + (1 − β)h)h(‖v(k+1) − v(k)‖2 + ‖v(k) − z(k)‖2 − ‖v(k+1) − z(k)‖2)

− μ(1 − β)(1 − α)h2‖v(k+1) − z(k)‖2 + μβαh2‖v(k) − z(k)‖2

+ L

2
(1 − β)h‖x (k+1) − z(k)‖2 + L

2
βα2h3‖v(k) − z(k)‖2

+ μ

2
β(1 − β)h‖v(k+1) − v(k)‖2 − μ

2
h‖v(k+1) − z(k)‖2 + μ

2
hβ2‖v(k+1) − v(k)‖2

+ L

2
‖x (k+1) − z(k)‖2 − μ

2
‖z(k) − x (k)‖2 − μ

2
‖v(k+1) − v(k)‖2.

By considering

‖x (k+1) − z(k)‖2
= h2‖(1 − α)(v(k+1) − z(k)) + α(v(k+1) − v(k))‖2
= h2((1 − α)‖v(k+1) − z(k)‖2 + α‖v(k+1) − v(k)‖2 − α(1 − α)‖v(k) − z(k)‖2),

we see that the coefficient of ‖v(k+1) − v(k)‖2 is

− μ

2
(1 − β)(1 − α)(1 − βh)h − μ

2
(1 − β)αh(2 + h(1 − 2β)) − μ

2
βα(1 + (1 − β)h)h

+ μ

2
β(1 − β)h + μ

2
hβ2 − μ

2
+ L

2
((1 − β)h + 1)h2α

= −μ

2
((1 − β)h + 1)((α − β)h + 1) + L

2
h2((1 − β)h + 1)α.

Thus, we have a condition on h:

L

μ
αh2 − (α − β)h − 1 ≤ 0. (A9)

The coefficient of ‖v(k+1) − z(k)‖2 is

− μ

2
(1 − β)(1 − α)(1 − βh)h − μ

2
(1 − β)αh2 + μ

2
βα(1 + (1 − β)h)h

− μ(1 − β)(1 − α)h2 − μ

2
h + L

2
((1 − β)h + 1)h2(1 − α)

= −μ

2
h(2 − α − β)(1 + (1 − β)h) + L

2
((1 − β)h + 1)h2(1 − α),

123

Numerical Algorithms

from which we have the condition

L

μ
(1 − α)h − (2 − α − β) ≤ 0. (A10)

The coefficient of ‖v(k) − z(k)‖2 is

μ

2
(1 − β)(1 − α)(1 − βh)h + μ

2
(1 − β)αh2 − μ

2
βα(1 + (1 − β)h)h

+ μβαh2 − μ

2
α2h2 − L

2
((1 − β)h + 1)h2α(1 − α) + L

2
βα2h3

= μ

2
h((β2 − (1 − α)(β − α))h + 1 − α − β) − L

2
h2((1 − α − β)h + 1 − α)α,

from which we have the condition

− L

μ
h((1− α − β)h + 1− α)α + (β2 + (1− α)(β − α))h + 1− α − β ≤ 0. (A11)

Let κ = L/μ. When 1−α = 1/(2
√

κ) and β = 1/2, the condition (A10) becomes

h ≤ 2 − α − β

(1 − α)κ
= 1 + 1/

√
κ√

κ
.

This is satisfied by h ≤ 1/
√

κ . By the same choice of α and β, the condition (A9)
becomes

κ

(
1 − 1

2
√

κ

)
h2 −

(
1

2
− 1

2
√

κ

)
h − 1 ≤ 0.

When h = 1/
√

κ , the left-hand side becomes −1/
√

κ + 1/(2κ), and the inequality
holds. From the convexity, (A9) is satisfied for any h ≤ 1/

√
κ . The third condi-

tion (A11) becomes

− κ

(
1

2
√

κ
− 1

2

)(
1 − 1

2
√

κ

)
h2

+
(

−κ
1

2
√

κ

(
1 − 1

2
√

κ

)
+ 1

4
+ 1

2
√

κ

(
1

2
√

κ
− 1

2

))
h +

(
1

2
√

κ
− 1

2

)

=
(

1

2
√

κ
− 1

2

)(
−
(
1 − 1

2
√

κ

)
κh2 +

(
1

2κ
+ 1

)√
κh + 1

)
.

When h = 1/
√

κ , the second factor is nonnegative. By the concavity, the second factor
is nonnegative for all h ≤ 1/

√
κ . Since the first factor is nonpositive, (A11) is also

satisfied by the above choices of parameters.

123

Numerical Algorithms

In summary, when α = 1 − 1/(2
√

κ) and β = 1/2, we obtain the following
convergence rate under the condition h ≤ 1/

√
κ:

E (k) ≤
(

1 − hβ

1 + h(1 − β)

)k

E (0) =
(
1 − h/2

1 + h/2

)k

E (0). (A12)

This is better than that in the previous section.
However, the resulting scheme explicitly contains κ in the scheme (recall α =

1 − 1/(2
√

κ)), which is not desirable (we need to know the condition number of the
objective function before we run the scheme.) Let us eliminate this below.

Letting α = 1−h/2 and β = 1/2, the left-hand side of the condition (A9) becomes

L

μ

(
1 − h

2

)
h2 −

(
1

2
− h

2

)
h − 1 =

(
1 − h

2

)
(κh2 − h − 1).

This is nonpositive for h ≤ 1/
√

κ . The left-hand side of the condition (A10) becomes

κ
h2

2
− h

2
− 1

2
,

which is also nonpositive for h ≤ 1/
√

κ . Finally, the left-hand side of the condi-
tion (A11) becomes

− κ

(
h

2
− 1

2

)(
1 − h

2

)
h2 +

(
−κ

h

2

(
1 − h

2

)
+ 1

4
− h

2

(
h

2
− 1

2

))
h +

(
h

2
− 1

2

)

= −κ
h3

2

(
1 − h

2

)
− h3

4
+ h2

4
+ 3h

4
− 1

2

= 1

4
(2 − h)

(
κh3 − h2 − h + 1

)
,

which is nonpositive for all h ≤ 2. This can be seen by κh3 − h2 − h + 1 ≥ h3 −
h2 − h + 1 ≥ (h − 1)2(h + 1) ≥ 0 which holds for all h ≥ 0.

Therefore, by setting α = 1 − h/2, and β = 1/2, we have the rate (A12) for
h ≤ 1/

√
κ . By replacing h with

√
μh, we obtain the scheme corresponding to (8).

Acknowledgements The authors are thankful for the anonymous reviewers who gave the authors many
insightful comments, which were so helpful to improve the paper.

Author contribution K.U. drafted the manuscript, conducted numerical experiments, and prepared figures.
S.S. and T.M. reviewed themanuscript and revised it. All authors contributed to the conception and approved
the final version for submission.

Funding Open Access funding provided by The University of Tokyo. The first author is supported by
Japan Science and Technology Agency Support for Pioneering Research Initiated by the Next Generation
(JST SPRING) (No. JPMJSP2108). The second author is supported by a Japan Society for the Promotion
of Science (JSPS) Grant-in-Aid for Scientific Research (B) (No. 20H01822) and a JSPS Grant-in-Aid
for Early-Career Scientists (No. 22K13955). The third author is supported by a JSPS Grant-in-Aid for

123

Numerical Algorithms

Scientific Research (B) (No. 20H01822 and No. 21H03452) and a JSPS Grant-in-Aid for Challenging
Research (Exploratory) (No. 20K21786).

Availability of supporting data Not applicable

Declarations

Ethical approval Not applicable

Conflict of interest The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Su, W., Boyd, S., Candès, E.J.: A differential equation for modeling Nesterov’s accelerated gradient
method: theory and insights. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

2. Wilson, A.C., Recht, B., Jordan, M.I.: A Lyapunov analysis of accelerated methods in optimization. J.
Mach. Learn. Res. 22(113), 1–34 (2021)

3. Suh, J.J., Roh, G., Ryu, E.K.: Continuous-time analysis of accelerated gradient methods via conser-
vation laws in dilated coordinate systems. In: Proceedings of the 39th International Conference on
Machine Learning (2022)

4. Krichene, W., Bayen, A., Bartlett, P.L.: Accelerated mirror descent in continuous and discrete time.
In: Advances in Neural Information Processing Systems, vol. 28 (2015)

5. Attouch, H., Chbani, Z., Fadili, J., Riahi, H.: First-order optimization algorithms via inertial systems
with Hessian driven damping. Math. Program. 193(1, Ser. A), 113–155 (2022)

6. Kim, J., Yang, I.: Unifying Nesterov’s accelerated gradient methods for convex and strongly convex
objective functions. In: Proceedings of the 40th International Conference on Machine Learning (2023)

7. Ushiyama, K., Sato, S., Matsuo, T.: A unified discretization framework for differential equation
approach with Lyapunov arguments for convex optimization. In: Advances in Neural Information
Processing Systems (2023)

8. Nesterov,Y.E.:Amethod for solving the convex programmingproblemwith convergence rateO(1/k2).
Dokl. Akad. Nauk SSSR. 269(3), 543–547 (1983)

9. Nesterov, Y.: Lectures on convex optimization. Springer, Cham (2018)
10. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6(5), 449–467

(1996)
11. Itoh, T., Abe, K.: Hamiltonian-conserving discrete canonical equations based on variational difference

quotients. J. Comput. Phys. 76(1), 85–102 (1988)
12. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J.

Phys. A. 41(4), 045206–7 (2008)
13. Moucer, C., Taylor, A., Bach, F.: A systematic approach to Lyapunov analyses of continuous-time

models in convex optimization. SIAM J. Optim. 33(3), 1558–1586 (2023)
14. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration, 2nd edn. Springer, Berlin (2006)
15. Van Scoy, B., Freeman, R.A., Lynch, K.M.: The fastest known globally convergent first-order method

for minimizing strongly convex functions. IEEE Control Syst. Lett. 2(1), 49–54 (2018)

123

http://creativecommons.org/licenses/by/4.0/

Numerical Algorithms

16. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations. I, 2nd edn. Springer,
Berlin (1993). Nonstiff problems

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Properties and practicability of convergence-guaranteed optimization methods derived from weak discrete gradients
	Abstract
	1 Introduction
	2 Preliminary: weak discrete gradient USM23
	3 Features of wDG schemes
	3.1 Target methods
	3.2 Numerical experiments

	4 Variants of proximal gradient method
	4.1 Our interests
	4.2 Numerical experiments
	Problem 1
	Problem 2
	Problem 3 VFL18
	Problem 4

	5 Summary and discussions
	5.1 Issue 1: differences between wDGs and other methods
	5.2 Issue 2: practicability of implicit wDG methods
	5.3 Issue 3: efficiency of proximal gradient-like wDG methods

	6 Concluding remarks
	Appendix A Convergence analysis for pRK_sc and pRK2_sc method
	A.1 Convergence analysis for pRK method
	A.2 Convergence analysis for the pRK2 method

	Acknowledgements
	References

