
Numerical Algorithms
https://doi.org/10.1007/s11075-024-01785-0

ORIG INAL PAPER

Computational aspects of simultaneous Gaussian
quadrature

T. Laudadio1 · N. Mastronardi1 · P. Van Dooren2

Received: 18 October 2023 / Accepted: 16 February 2024
© The Author(s) 2024

Abstract
In this paper, we derive a newmethod to compute the nodes and weights of simultane-
ousn-pointGaussian quadrature rules. Themethod is based on the eigendecomposition
of the banded lower Hessenberg matrix that contains the coefficients of the recurrence
relations for the corresponding multiple orthogonal polynomials. The novelty of the
approach is that it uses the property of total nonnegativity of this matrix associated
with the particular consideredmultiple orthogonal polynomials, in order to compute its
eigenvalues and eigenvectors in a numerically stable manner. The overall complexity
of the computation of all the nodes and weights is O(n2).

Keywords Gaussian quadrature · Multiple orthogonal polynomials · Total
nonnegativity · Numerical stability

Dedicated to Marc Van Barel on the occasion of his retirement.

T. Laudadio, N. Mastronardi, and P. Van Dooren contributed equally to this work.

B T. Laudadio
teresa.laudadio@cnr.it

N. Mastronardi
nicola.mastronardi@cnr.it

P. Van Dooren
paul.vandooren@uclouvain.be

1 Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, via
Amendola 122/D, Bari, Italy

2 Department of Mathematical Engineering, Catholic University of Louvain, Avenue Georges Lemaitre
4, Louvain-la-Neuve, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-024-01785-0&domain=pdf

Numerical Algorithms

1 Introduction

In this paper, we consider the computation of the nodes x j and weights ω
(k)
j of a

simultaneous Gaussian quadrature rule

n∑

j=1

f (x j)ω
(k)
j ≈

∫

R

f (x)w(k)(x)dx, 1 ≤ k ≤ r (1)

for r positive weight functions w(1)(x), . . . , w(r)(x). It was shown in [3] that one gets
an optimal set of Gaussian quadrature rules if the n quadrature nodes are the zeros of

a polynomial p→
n
(x) of degree n :=| →

n |= n1 + . . . + nr (where
→
n = (n1, . . . , nr) is

a multi–index), satisfying the orthogonality conditions

∫

R

p→
n
(x)xkw(1)(x)dx = 0, 0 ≤ k ≤ n1 − 1,

...∫

R

p→
n
(x)xkw(r)(x)dx = 0, 0 ≤ k ≤ nr − 1,

with respect to the weight functions w(1)(x), . . . , w(r)(x).
Simultaneous Gaussian quadrature rules were introduced in [3], in order to evaluate

computer graphics illumination models. In particular, the computation of a set of m
definite integrals with respect to different weight functions and common integrand
function was required. The aim was to minimize the evaluations of the integrand
function and maximize the order of the considered quadrature rules. To this end, the
author proposed a numerical scheme of m quadrature rules having the same set of
nodes.

Furthermore, multiple orthogonal polynomials occur in the theory of simultane-
ous rational approximation, e.g., in the Hermite–Padé approximation of a system of
functions [4–6, 18, 20].

The nodes and weights of such quadrature rules can be computed via the eigen-
decomposition of a banded lower Hessenberg matrix Hn , built on the coefficients of
recurrence relations leading to the multiple orthogonal polynomial p→

n
(x) of type II

[4], associated with the simultaneous Gaussian quadrature rule. The Golub–Welsch
algorithm [13] is the customaryway for constructingGaussian quadrature rules related
to classical orthogonal polynomials. It is based on the QR algorithm for computing the
eigenvalue decomposition of a symmetric tridiagonal matrix and it is backward stable
[9, 11]. The Golub–Welsh algorithm can be adapted to compute the eigendecomposi-
tion of Hn, but it suffers from tremendous instability due to the high non–normality
[12] characterizing the latter matrix. In order to overcome the aforementioned instabil-
ity, in [22] the eigenvalue decomposition is performed in variable precision arithmetic.

123

Numerical Algorithms

In this paper, we show that for the families of simultaneous Gaussian quadrature
rules given in [22], the matrix Hn is totally nonnegative (TN, for short), i.e., the deter-
minant of every square submatrix of Hn is a nonnegative number [8], and we discuss
how this property can be verified efficiently. We then exploit the TN property of Hn to
first scale it to a well–balanced matrix Ĥn , using a diagonal scaling Ĥn := S−1

n HnSn .
This scaling is shown to improve the sensitivity of the eigenvalues tremendously when
Hn is TN.

The straightforward test for a matrix Hn to be TN is to verify that all its minors are
nonnegative, which can be quite cumbersome, even though there are results indicat-
ing that testing a small subset of minors is often sufficient (see [8]). For instance, a
symmetric, invertible, and irreducible tridiagonal matrix Tn is TN if and only if it is
nonnegative and positive definite. Therefore, one has only to test the positivity of its
tridiagonal elements and of its leading principal minors. Moreover, there exists a bidi-
agonal Cholesky factorization with nonnegative elements, and this can be computed
in O(n) flops. We exploit this particular property since we show how to reduce our
banded TNmatrix Hn to a similar symmetric tridiagonal one T̂n , with transformations
preserving its TN property.

Using the results of Koev [15] for TN matrices, the eigenvalues of T̂n and, hence,
also of Ĥn and Hn , can be computed to high relative accuracy if the factorization of
Hn, as a product of nonnegative bidiagonal matrices, is known. Unfortunately, the
latter factorization is not known a priori and, then, it must be computed involving
subtractions, which do not preserve the high relative accuracy anymore. Therefore,
the eigenvalues of the computed T̂n could be far from the exact eigenvalues of Hn, but
they can be used as an initial guess of a variant of the Ehrlich–Aberth iteration [1, 2, 7]
applied to Ĥn . The considered implementation of the Ehrlich–Aberth iteration yields,
for a computed eigenvalue of Ĥn, also the corresponding left and right eigenvectors
needed for the construction of the simultaneous Gaussian quadrature rule, with O(n)

computational complexity.Then, the overall computational complexity of the proposed
algorithm is O(n2).

The left and right eigenvectors can be also computed by the QRmethodwithO(n3)
computational complexity [12]. We show, using a number of numerical experiments,
that this approach works amazingly well and does not require the use of variable arith-
metic anymore. We also provide an alternative method to compute the simultaneous
Gaussian rule in case the matrix Hn is not TN.

Finally, the proposed algorithm can be adapted to compute simultaneous Gaussian
quadrature rules for other classes of multiple orthogonal polynomials [24], whenever
the recurrence relation coefficients are known. On the other hand, if such coefficients
are unknown, they can be computed by the discretized Stieltjes–Gautschi procedure
[19].

The paper is organized as follows.Notations used in the paper are listed in Section 2.
In Section 3, we argue that the banded lower Hessenberg matrix Hn of the recurrence
relations is TN, and we discuss how this can be verified. In Section 4, we give a scaling
technique that significantly reduces the sensitivity of its eigenvalue decomposition.
We then propose a similarity transformation that reduces the bandwidth of Hn to
tridiagonal form in Section 5, exploiting the TN property of Hn . In Section 6, we
show how to compute the eigenvalues and left and right eigenvectors of Hn in a fast

123

Numerical Algorithms

and reliablemanner.We provide the sketch of the proposed algorithm in Section 7. The
stability of the new proposed method using some numerical examples is illustrated in
Section 8, and Conclusions are reported in Section 9.

2 Notations

Matrices are denoted by upper–case letters A, B, . . . ; vectors with bold lower–case
letters x, y, . . . ,ω, . . . ; scalars with lower–case letters x, y, . . . , λ, θ,

Matrices of size (m, n) are denoted by Hm,n or simply by Hm ifm = n.The element
i, j of a matrix A is generally denoted by ai, j and the i th element of a vector x is
denoted by xi , if not explicitly defined.

Submatrices are denoted by the colon notation of Matlab: A(i : j, k : l) denotes
the submatrix of A formed by the intersection of rows i to j and columns k to l, and
A(i : j, :) and A(:, k : l) denote the rows of A from i to j and the columns of A and
from k to l, respectively.

The identity matrix of order n is denoted by In, and its i th column, i = 1, . . . , n,

i.e., the i th vector of the canonical basis of Rn, is denoted by ei .
The notation �y� stands for the largest integer not exceeding y ∈ R+. The machine

precision is denoted by ε.

3 Totally nonnegative bandmatrices

As explained in [22], the computation of the nodes and weights of the multiple orthog-
onal polynomials can be extremely sensitive, which is why the method proposed in
[22] needs to be computed in variable precision arithmetic to get acceptable accuracy,
even for matrices of order less than 20.

In this paper, we will restrict ourselves to the case of r = 2 simultaneous quadra-
tures, since the instabilities already appear in this simple case. The simultaneous
Gaussian quadrature problem derived in [3, 4, 22] then corresponds to a set of multi-
ple orthogonal polynomials satisfying the 4–term recurrence relations :

xpi (x) = ai pi+1(x) + bi pi (x) + ci pi−1(x) + di pi−2(x), i = 0, . . . , n − 1, (2)

and p−2(x) = p−1(x) = 0.
Equation (2) can be written in matrix form,

[
Hn − x In an−1en

]
pn(x) = 0n, (3)

i.e.,
Hn pn−1(x) = x pn−1(x) − an−1 pn(x)en, (4)

123

Numerical Algorithms

where Hn and pi (x), i = 0, 1, . . . , are, respectively, the n × n banded lower Hessen-
berg matrix with 2 sub–diagonals and one upper-diagonal :

Hn :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 a0 0 0 0 0 . . . 0
c1 b1 a1 0 0 0 . . . 0
d2 c2 b2 a2 0 0 . . . 0
0 d3 c3 b3 a3 0 . . . 0
0 0 d4 c4 b4 a4 . . . 0
...

. . .
. . .

. . .
. . .

0 . . . 0 0 dn−2 cn−2 bn−2 an−2
0 . . . 0 0 0 dn−1 cn−1 bn−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

and
pi (x) := [

p0(x), p1(x), · · · , pi−1(x), pi (x)
]T

.

Hence, by (4), x̄ is a zero of pn(x) if and only if x̄ is an eigenvalue of Hn with corre-
sponding eigenvector pn−1(x̄), or equivalently, by (3), pn(x̄) is the vector spanning
the null–space of

[
Hn − x̄ In an−1en

]
.

Let us consider the following two examples, taken from [22], as a guide for our
discussions in the rest of the paper.

Example 1 For the modified Bessel functions Kν(x) and Kν+1(x) of the second kind,
given by

Kν(x) := 1

2

(x
2

)ν
∫ ∞

0
exp

(
−t − x2

4t

)
t−ν−1dt,

and for the weight functions

(
w(1)(x), w(2)(x)

)
:=

(
2xα+ν/2Kν(2/

√
x), 2xα+(ν+1)/2Kν+1(2/

√
x)

)
,

positive and integrable in the interval [0,∞), it is shown in [22] that, for α > −1
and ν ≥ 0, the recurrence relations for the corresponding monic multiple orthogonal
polynomials are given by ai = 1 for i ≥ 0, and

bi = i(3i + α + 2ν) + (α + 1)(3i + α + ν + 1), i ≥ 0

ci = i(i + α)(i + α + ν)(3i + 2α + ν), i ≥ 1

di = i(i − 1)(i + α)(i + α − 1)(i + α + ν)(i + α + ν − 1), i ≥ 2.

Example 2 For the modified Bessel functions Iν(x) and Iν+1(x) of the first kind and
for the weight functions

(
w(1)(x), w(2)(x)

)
:=

(
xν/2 Iν(2/

√
x)e−cx , x (ν+1)/2 Iν+1(2/

√
x)e−cx

)
,

positive and integrable in the interval [0,∞), it is shown in [22] that, for c > 0 and
ν ≥ −1, the recurrence relations for the corresponding monic multiple orthogonal

123

Numerical Algorithms

polynomials are given by ai = 1 for i ≥ 0, and

bi = 1

c2
(1 + c(ν + 2i + 1)), i ≥ 0

ci = 1

c3
i(2 + c(ν + i)), i ≥ 1

di = 1

c4
i(i − 1), i ≥ 2.

The eigenvalues of Hn are the nodes x j of the simultaneous quadrature rule (1), and

the weights ω
(k)
j , j = 1, . . . , n, k = 1, 2, can be obtained from their corresponding

left and right eigenvectors [4, 22]. Moreover, the nodes are all nonnegative when the
integration interval is nonnegative [16, Th. 23.1.4].

Remark 1 We point out that for both examples, the lower Hessenberg matrix Hn is
irreducible and the sequences bi , ci , and di are positive and monotonically increasing
with i , a property that will be used in Section 4. It also follows from the interlacing
property of the eigenvalues of Hn and of Hn+1 [12] that Hn must be invertible, since
the spectrum of Hn+1 is nonnegative.

It will be shown in Section 4 that the eigenvalue decomposition of the matrix Hn is
very sensitive. In this paper, we argue that the matrix Hn corresponding to a positive
integration interval is TN and, hence, this property should be exploited in order to
improve the numerical sensitivity of the eigenvalue decomposition. It is indeed shown
in [15] that the eigenvalues of a TN matrix can be computed reliably, even to full
relative accuracy. We thus need to verify that the n× n matrix Hn , built on the 4–term
recurrence relation (2), is indeed TN.

In order to make sure that Hn is a TN matrix, we first need to have all scalars
nonnegative. For Example 1, all the scalars ai , bi , ci , and di are positive for α > −1
and ν ≥ 0 and in Example 2, they are positive for c > 0 and ν ≥ −1. For the
2 × 2 submatrices, we only have to verify the nonnegativity of the following “dense”
matrices [

bi−1 ai−1
ci bi

]
,

[
bi−1 ai−1
di+1 ci+1

]
,

[
ci−1 ai−1
di bi

]
,

because all other 2 × 2 submatrices are zero or are triangular and hence nonnegative
because of the scalar conditions. If we want to verify the TN property of Hn , one
must also verify this for minors of dimensions 3, 4, and so on. This becomes rather
tedious and can best be checked with computer algebraic software. We will develop
an alternative test in Section 5, based on the existence of a Neville–type similarity
transformation [8], and which requires only O(n2) floating point operations. This
does not guarantee that Hn is TN for all possible values of α and ν, but it is a cheap
alternative for a given set of values.

123

Numerical Algorithms

4 Scaling

The matrix Hn in Example 1 has elements that grow quite quickly with n since bn =
O(n2), cn = O(n4), and dn = O(n6). We, therefore, recommend to first apply a
diagonal scaling

Ĥn := S−1
n HnSn, with Sn := diag(s1, . . . , sn),

to make sure the matrix is more “balanced” [21]. Then, since the sequences ai and
ci and positive (see Remark 1), the following algorithm yields the scaled matrix Ĥn

whose tridiagonal submatrix is irreducible and symmetric (i.e., ĉi = âi−1 > 0) :

Algorithm Scale

s1 = 1; b̂0 = b0;
s2 = √

c1/a0; â0 = a0 ∗ s2; b̂1 = b1; ĉ1 = c1/s2;
for i = 2 : n − 1,

si+1 = si ∗ √
ci/ai−1;

âi−1 = ai−1 ∗ si+1/si ; b̂i = bi ; ĉi = ci ∗ si/si+1; d̂i = di ∗ si−1/si+1;
end

Since all operations are multiplications, divisions, and square roots, they can be
performed in a forward stable manner. The relative (forward) error on each element
of Ĥi, j is therefore bounded by γk | Ĥi, j |, where γk := kε/(1 − kε), k is the number
of floating point operations involved in the computation of Ĥi, j , and ε is the machine
precision (see [14, Chaptar 3]). This leads to the following theorem, using the notation
and results of [14, Chapter 3].

Theorem 1 Let Ĥn := S−1
n HnSn be the matrix obtained by the Algorithm Scale,

applied to the banded matrix Hn, given in (5). Then, the forward error

	Ĥn
:= f l(S−1

n HnSn) − S−1
n HnSn

satisfies the elementwise relative bound | 	Ĥn
|≤ γ3n | Ĥn |.

Proof The element that requires the largest number of floating point operations is d̂n−1.
It involves 3 flops in every update of the si elements and, hence, a total of 3n + O(1)
flops. �
Remark 2 A more detailed error analysis may be used to reduce the factor γ3n by
exploiting the relations between the consecutive values of the si ’s. More importantly,
the scaling factors si may be replaced by their rounded version to their nearest power
of two, by, e.g., using the Matlab functions round and log2 :

s2 = 2round((log2(c1)−log2(a0))/2), and si+1 = si ∗ 2round((log2(ci)−log2(ai−1))/2).

123

Numerical Algorithms

The forward errors are then zero, since multiplication with, or division by a power of
2 can be executed without rounding error. The caveat is that the resulting matrix Ĥn

will not have an exact symmetric tridiagonal submatrix, but its off–diagonal elements
will be within a factor

√
2 of each other, i.e;

âi/
√
2 ≤ ĉi ≤ √

2 ∗ âi−1.

After the scaling procedure applied to Example 1, with α = ν = 0.5 and n = 20,
the maximum element of Ĥn is b̂n−1 = 1200, while the maximum element of Hn

is dn−1 = 46883070 (which is a factor of about 40,000). Moreover, the transformed
matrix Ĥn has a dominant diagonal. This is based on the following lemma, which will
also be useful for the further treatment of the matrix Ĥn in Section 5.

Lemma 1 Let the matrix Ĥn = S−1
n HnSn be the scaled version of Hn, given in (5). If

Hn is TN with monotonically increasing diagonal elements b̂i , then the off–diagonal
elements of the scaled matrix Ĥn satisfy for i ≥ 1

âi−1 = ĉi ≤
√
b̂i−1b̂i < b̂i ,

d̂i+1

ĉi+1
≤ ĉi

b̂i
≤

√
b̂i−1/b̂i < 1,

implying that d̂i < ĉi < b̂i for all i ≥ 2.

Proof If the matrix Hn is TN, then so is the scaled matrix Ĥn . Then, the inequalities
follow from the nonnegativity of the submatrices

[
b̂i−1 âi−1

ĉi b̂i

]
,

[
ĉi b̂i

d̂i+1 ĉi+1

]
,

and the monotonicity of the elements b̂i = bi . �

The positive effect of this transformation is best visualized by the sensitivity of
the eigenvalues of Hn , which are measured by the angle between the left and right
eigenvectors u(j) and v(j),

κ(x j) = 1/ | u(j)T v(j) |, where Hnv
(j) = x jv

(j), u(j)T Hn = x ju(j)T ,

and the corresponding sensitivities of the scaled matrix. After scaling, these sensitiv-
ities are reduced in Example 1, for α = 0.5 and ν = 0.5, by a factor between 1025

and 1035 as it is shown in Fig. 1. It is interesting to point out here that the Matlab
routine for balancing a standard eigenvalue problem, did not help here at all. The bal-
anced matrix was only modified in the last few elements and still yielded very badly
conditioned eigenvalues.

123

Numerical Algorithms

0 2 4 6 8 10 12 14 16 18 20
10 0

10 10

10 20

10 30

10 40

unscaled data
scaled data

Fig. 1 Eigenvalue sensitivities for the scaled matrix Ĥn (“◦”) and unscaled matrix Hn (“∗”) of Example 1,
with α = 0.5 and ν = 0.5

5 Reducing the bandwidth

In this section, we reduce a banded TN matrix Hn to a symmetric tridiagonal TN
matrix, where we aim at guaranteeing the backward stability of the resulting similarity
transformation. The matrix Hn has 2 diagonals below the main diagonal and one
diagonal above the main diagonal. Moreover, it is assumed to be nonnegative and
irreducible (i.e., all ai are nonzero). Then, the total nonnegativity implies that bi and
ci are also nonzero whenever di is nonzero. It follows fromTheorem 2 (see below) that
the TN property of a matrix is preserved when applying certain bidiagonal similarity
transformations, and we will show that this applies to the matrix Hn and its reduction
to tridiagonal form. We explain the reduction of the bandwidth of Hn by just showing
the elimination procedure for the leftmost element in the bottom row of Hn , using an
8 × 8 example. In the first three “snapshots” of the reduction process, we show the
effect of a 2 × 2 elementary similarity transformation

E−1 :=
[
1 0
m 1

]
, E :=

[
1 0

−m 1

]
,

where m is chosen to annihilate the element indicated by 0 in the matrix, but it also
creates a “bulge” indicated by x. The dashed lines indicate on what rows and columns

123

Numerical Algorithms

this similarity transformation is operating. The “eliminator”m is positive and requires
one division, while the transformations for that 2×2 similarity transformation require
14 flops, giving a total of 15 flops per elementary similarity transformation. Moreover,
it is shown in the Appendix that all elements marked as× remain positive if the matrix
Hn is TN.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0 0
× × × 0 0 0 0 0
× × × × 0 0 0 0
0 × × × × 0 0 0
0 0 × × × × 0 0
0 0 0 × × × × 0
0 0 0 x × × × ×
0 0 0 0 0 0 × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0 0
× × × 0 0 0 0 0
× × × × 0 0 0 0
0 × × × × 0 0 0
0 x × × × × 0 0
0 0 0 × × × × 0
0 0 0 0 × × × ×
0 0 0 0 0 0 × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0 0
× × × 0 0 0 0 0
× × × × 0 0 0 0
0 × × × × 0 0 0
0 0 × × × × 0 0
0 0 0 × × × × 0
0 0 0 0 × × × ×
0 0 0 0 0 0 × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0 0
× × × 0 0 0 0 0
× × × × 0 0 0 0
0 × × × × 0 0 0
0 0 × × × × 0 0
0 0 0 × × × × 0
0 0 0 0 × × × ×
0 0 0 0 0 0 × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since this requires �(n−1)/2� elementary similarity transformations, we need less
than 15n/2 flops to eliminate the leftmost element in the bottom row of Hn . The rest
of the procedure just repeats the above scheme on the deflated (n−1)× (n−1)matrix
shown in the last snapshot. The total complexity is therefore

n∑

i=1

15(n − i)/2 ≤ 15n2/4 ≤ 4n2 flops.

In order to verify the TN property, we use a result due to Whitney [25].

Theorem 2 Suppose A is an n × n matrix with ai, j > 0, and ai,k = 0 for k < j − 1.
Then, let B be the n×n matrix obtained from A by using column j to eliminate ai, j−1

using E :=
[

1 0
−m 1

]
with m = ai, j−1/ai, j , operating on columns j − 1 and j . Then,

A is TN if and only if B is TN.

Proof The proof for the transposed matrix can be found in [8, Th. 2.2.1, pp. 48–49],
but the statement also holds for the transposed matrices A and B. �

It then follows that every right transformation E in the above reduction preserves
the TN property because of Theorem 2. Moreover, every left transformation E−1 is a
TN matrix and, hence, the TN property is preserved (see [8]).

123

Numerical Algorithms

If this reduction procedure is applied to Ĥn , rather than Hn , one can hope to have
eliminators mi that are bounded by 1, because its largest elements seem to be on
the main diagonal and are monotonically increasing. This is not guaranteed for the
whole process of the reduction, but we show that it holds in the first “sweep” of � n−1

2 �
elementary transformations. Again, we use the 8 × 8 matrix to illustrate this.

The first one requires the eliminator m1 = d̂7/ĉ7, which is bounded by 1, because
of Lemma 1. The next two eliminators are respectively computed as

m2 = m1d̂5/(m1ĉ5 + d̂6) ≤ d̂5/ĉ5, m3 = m2d̂3/(m2ĉ3 + d̂4) ≤ d̂3/ĉ3,

which are again smaller than 1 because of Lemma 1. After one such sweep, the
assumptions b̂i−1 ≤ b̂i and âi−1 = ĉi of Lemma 1 are not guaranteed anymore, which
means that the eliminators could grow. But in Example 1, all the eliminators were
smaller than 0.57, and their average was 0.21, which implies that the condition number
of the similarity transformation to triangular form has a very reasonable condition
number.

Note that we have now obtained an irreducible nonnegative tridiagonal matrix Tn .
It is therefore easy to verify if it is TN. We can first perform a second scaling to
make T̂n = Ŝ−1

n Tn Ŝn symmetric. Finally, it is shown in [8] that an irreducible and
invertible tridiagonal matrix T̂n is TN if and only if its Cholesky factorization LLT

has a bidiagonal factor L with positive elements. Since this is anO(n) computational
process, we can verify if Hn is TN by going through the transformation steps

Hn
O(n)�⇒ Ĥn

O(n2)�⇒ Tn
O(n)�⇒ T̂n

O(n)�⇒ L

in a total of O(n2) flops. In each of these transformations, the TN property is pre-
served, and hence Hn is TN if the different steps can be performed successfully. An
unsuccessful reduction would therefore be detected by an eliminatorm that is negative
in the construction of Tn , or a failure of the Cholesky decomposition yielding L .

6 Computing eigenvalues and eigenvectors

The nodes x j , j = 1, . . . , n, of a simultaneous Gaussian quadrature rule are
the eigenvalues of the banded Hessenberg matrix Hn . If we denote by u(j) =
[u(j)

1 , u(j)
2 , . . . , u(j)

n]T , and v(j) = [v(j)
1 , v

(j)
2 , . . . , v

(j)
n]T the left and right eigenvector

of Hn associated with x j , then the vectors of weights ω(k) = [ω(k)
1 , ω

(k)
2 , . . . , ω

(k)
n]T ,

k = 1, 2, of the rules (1) are given by (see [22]) :

ω
(1)
j = d1,1u

(j)
1

u(j)T v(j)
,

ω
(2)
j = d2,1u

(j)
1 + d2,2u

(j)
2

u(j)T v(j)
,

123

Numerical Algorithms

where the constants di,k, i, k = 1, 2, are

d1,1 =
∫ ∞

0
p0(x)w(1)(x)dx,

d2,1 =
∫ ∞

0
p0(x)w(2)(x)dx, d2,2 =

∫ ∞

0
p1(x)w(2)(x)dx .

Therefore, to compute the n–point simultaneous Gaussian rule for multiple orthogonal
polynomials, all the eigenvalues of Hn and the corresponding left and right eigenvec-
tors need to be computed.

Given an initial approximation x(0)T =
[
x (0)
1 , x (0)

2 , · · · x (0)
n−1, x

(0)
n

]T
for all the

eigenvalues of Hn , they can be simultaneously computed by the Ehrlich–Aberth iter-
ation [1, 2, 7],

x (i+1)
j = x (i)

j −
pn(x

(i)
j)

p′
n(x

(i)
j)

1 − pn(x
(i)
j)

p′
n(x

(i)
j)

n∑

k=1
k �= j

1

x (i)
j − x (i)

k

.

The generated sequence of approximations converges cubically, or even faster if the
implementation is in the Gauss–Seidel style, to the eigenvalues of Hn , because they
are simple. In practice, as noticed in [2], the Ehrlich–Aberth iteration exhibits good
global convergence properties, though no theoretical results seem to be known about
global convergence.

The main requirements for the success of the Ehrlich–Aberth method are a fast,
robust, and stable computation of the Newton correction pn(x)/p′

n(x), and the avail-
ability of a good set of initial approximations for the zeros, x(0), so that the number
of iterations needed for convergence is not too large. The initial approximation x(0)

can be obtained by computing the eigenvalues of the symmetric tridiagonal matrix
T̂n . As an alternative, the initial approximation x(0) can be obtained by computing
the eigenvalues of the symmetric tridiagonal submatrix triu(Ĥn,−1), i.e., the matrix
obtained from Ĥn by setting d̂i = 0, i = 2, 3, . . . , n − 1.

We now show how to compute pn(x̄) and p′
n(x̄), for a given point x̄ . Let

Ĥn+1, Sn+1 ∈ R
(n+1)×(n+1) be the matrices obtained by using Algorithm Scale of

Section 4 for n + 1. Let Ĥn,n+1 be the rectangular matrix obtained from Ĥn+1 by

123

Numerical Algorithms

deleting its last row,

Ĥn,n+1 :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̂0 â0 0 0 0 0 . . . 0 0
ĉ1 b̂1 â1 0 0 0 . . . 0 0
d̂2 ĉ2 b̂2 â2 0 0 . . . 0 0
0 d̂3 ĉ3 b̂3 â3 0 . . . 0 0
0 0 d̂4 ĉ4 b̂4 â4 . . . 0 0
...

. . .
. . .

. . .
. . .

...
...

0 . . . 0 0 d̂n−2 ĉn−2 b̂n−2 ân−2 0
0 . . . 0 0 0 d̂n−1 ĉn−1 b̂n−1 ân−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let us consider the following subdivisions of Ĥn,

Ĥn,n+1 = [
Ĥn Ĥ(:, n + 1)

] = [
Ĥn ân−1en

]

and
Ĥn,n+1 = [

Ĥ(:, 1) Ĥ(:, 2 : n + 1)
] =: [

f n Ĉn
]
. (6)

Since Ĥn,n+1 = S−1
n Hn,n+1Sn+1, and, by (2) and (5), the vector

pn(x̄) :=

⎡

⎢⎢⎢⎢⎢⎣

p0(x̄)
p1(x̄)

...

pn−1(x̄)
pn(x̄)

⎤

⎥⎥⎥⎥⎥⎦

spans the null–space of Hn,n+1 − x̄
[
In 0n

]
, with In the identity matrix of order n

and 0n the zero vector of length n. Then, the transformed vector

p̂n(x̄) = S−1
n+1 pn(x̄) =

⎡

⎢⎢⎢⎢⎢⎣

p̂0(x̄)
p̂1(x̄)

...

p̂n−1(x̄)
p̂n(x̄)

⎤

⎥⎥⎥⎥⎥⎦
=:

[
p̂n−1(x̄)
p̂n(x̄)

]
,

spans the null–space of Ĥn,n+1 − x̄
[
In 0n

]
, i.e., the polynomials p̂ j (x̄), j =

0, 1, . . . , n are the multiple orthogonal polynomials satisfying the recurrence rela-
tions generating the matrix Ĥn,n+1,

Ĥn,n+1 p̂n(x̄) − x̄
[
In 0n

]
p̂n(x̄) = 0n . (7)

123

Numerical Algorithms

If L̂ Q̂ = Ĥn,n+1 − x̄
[
In 0n

]
is the LQ factorization of Ĥn,n+1 − x̄

[
In 0n

]
, with

L̂ ∈ R
n×(n+1) lower triangular and Q̂ ∈ R

(n+1)×(n+1) orthogonal, then the last row
of Q̂ spans the null–space of Ĥn,n+1 − x̄

[
In 0n

]
[12, pp. 640–641].

Defining L̂(0) := Ĥn,n+1− x̄
[
In 0n

]
, thematrix Q̂ can be computed as the product

of n Givens rotations Gi ∈ R
(n+1)×(n+1),

Gi =

⎡

⎢⎢⎣

Ii−1
γi σi

−σi γi
In−i

⎤

⎥⎥⎦ ,

such that for i = 1, 2, . . . , n, the updated matrix

L̂(i) = L̂(i−1)GT
i ,

has entry (i, i + 1) annihilated and �̂
(i)
i,i =

√
�̂
(i−1)2
i,i + �̂

(i−1)2
i,i+1 . It turns out that the

vector spanning the null–space of Ĥn,n+1 is

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(−1)n+1σ1σ2 · · · σn−1σn
(−1)nγ1σ2 · · · σn−1σn

...

γn−2σn−1σn
−γn−1σn

γn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(n+1)×(n+1).

Therefore, L̂ := L̂(n) and p̂n(x̄) = γn .

Let now

p̂′
n(x̄) :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

p̂′
0(x̄)
p̂′
1(x̄)

p̂′
2(x̄)
...

p̂′
n−1(x̄)
p̂′
n(x̄)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n+1.

p̂′
n(x̄) :=

[
p̂′
0(x̄)

q ′
n(x̄)

]
, with q ′

n(x̄) :=

⎡

⎢⎢⎢⎢⎢⎣

p̂′
1(x̄)

p̂′
2(x̄)
...

p̂′
n−1(x̄)
p̂′
n(x̄)

⎤

⎥⎥⎥⎥⎥⎦
.

In order to compute p̂′
n(x̄), we differentiate (7) obtaining

Ĥn,n+1 p̂
′
n(x̄) − x̄

[
In 0n

]
p̂′
n(x̄) − [

In 0n
]
p̂′

(x̄) = 0n .

123

Numerical Algorithms

Then, taking into account that p̂′
0(x̄) = 0, it follows that the vector p̂′

(x̄) is the
solution of the linear system

[Ĉn − x̄ Zn]q ′
n(x̄) = p̂n−1(x̄), (8)

where

Zn =

⎡

⎢⎢⎢⎢⎣

0 0

1
. . .

. . .
. . . 0
1 0

⎤

⎥⎥⎥⎥⎦
∈ R

×n .

Therefore, the evaluation of p̂n(x̄) and p̂′
n(x̄) requires 19n + O(1) and 5n + O(1)

floating point operations.
If x̂ is a zero of p̂n(x), i.e., p̂n(x̂) = 0, then p̂n−1(x̂) is the right eigenvector of

Ĥn corresponding to the eigenvalue x̂ . Moreover, let L̃ Q̃ = Ĥn − x̂ In, with L̃ lower
triangular and Q̃ orthogonal. Then, �̃1,1 = 0 and Q̃(:, 1) is the left eigenvector of
Ĥn associated with x̂ . The number of floating point operations needed to compute
the left eigenvector, given the corresponding eigenvalue, is 19n + O(1) floating point
operations. As shown in [23] the computation of the left and right eigenvectors is
stable by using Givens rotations, since the eigenvalues of Ĥn are well separated for
the measures considered in Examples 1 and 2. Observe that, if û(j) and v̂

(j) are
respectively left and right eigenvectors of Ĥn corresponding to the eigenvalue x j , then
σn û

(j) and σ−1
n v̂

(j) are respectively left and right eigenvectors of Hn corresponding
to the eigenvalue x j .

Remark 3 Observe that also the condition number of the matrix Ĉn, defined in (6) and
involved in the linear system (8), significantly improves with respect to that of Cn :=
Hn+1(1 : n, 2 : n + 1). For the sake of completeness, the condition numbers of Cn

and Ĉn,with n = 10, 20, . . . , 90, 100, for Example 1, with parameters α = 1, ν = 0
and Example 2, with parameters c = 1, ν = 0, are displayed in Table 1

A similar behavior is observed when choosing different parameter values for both
Examples.

7 Outline of the algorithm

For the sake of clearness, here we shortly report the different steps of the proposed
algorithm, along with the Sections where they are described.

Step 1. Choice of the multiple orthogonal polynomials (Section 3);
Step 2. Construction of the matrix Hn (Section 3);
Step 3. Similarity transformation of Hn into Ĥn, Ĥn = S−1

n HnSn,with Sn a diagonal
matrix (Section 4);

Step 4. Similarity transformation of Ĥn into the unsymmetric tridiagonal matrix Tn :
Tn = Mn ĤnM−1

n (Section 5);

123

Numerical Algorithms

Table 1 Condition numbers of the matrices Cn and Ĉn , for n = 10, 20, . . . , 90, 100, of Example 1 with
α = 1, ν = 0, (columns 2 and 3, respectively) and of Example 2 with c = 1, ν = 0, (columns 4 and 5,
respectively)

n Example 1 Example 2
α = 1, ν = 0 c = 1, ν = 0

10 6.30 × 1020 2.58 × 102 2.62 × 1009 1.09 × 102

20 4.70 × 1024 1.11 × 103 2.38 × 1019 3.62 × 102

30 1.18 × 1025 2.60 × 103 2.13 × 1020 7.46 × 102

40 5.38 × 1025 4.75 × 103 1.40 × 1020 1.26 × 103

50 1.83 × 1026 7.56 × 103 1.77 × 1020 1.91 × 103

60 1.41 × 1027 1.10 × 104 1.12 × 1021 2.70 × 103

70 1.75 × 1027 1.51 × 104 1.17 × 1021 3.63 × 103

80 4.57 × 1027 2.00 × 104 1.01 × 1021 4.70 × 103

90 3.57 × 1029 2.54 × 104 4.94 × 1020 5.90 × 103

100 6.88 × 1028 3.16 × 104 3.87 × 1021 7.24 × 103

Step 5. Transformation of Tn into the similar matrix T̂n = Ŝ−1
n Tn Ŝn, with Ŝn a diag-

onal matrix (Section 5);
Step 6. Computation of the eigenvalues of T̂n : x0 = eig(T̂n) (Section 6);
Step 7. Refinement of the eigenvalues by theEhrlich–Aberthmethodwith initial guess

x0 (Section 6);
Step 8. Computation of the left and right eigenvectors of Ĥn associated with the

computed eigenvalues (Section 6);
Step 9. Computation of the simultaneous Gaussian quadrature rule (Section 6).

8 Numerical results

In this section, the simultaneous Gaussian quadrature rules of the couple of weights
w(1)(x) and w(2)(x) of Examples 1 and 2, are computed for different values of n. All
the computations are performed with Matlab R2022a in floating point arithmetic
with machine precision ε ≈ 2.2 × 10−16. The computed nodes and weights, denoted
respectively by x j , ω

(1)
j and ω

(2)
j j = 1, . . . , n, are compared to those computed

in extended precision (with 500 digits), denoted respectively by x̂ j , ω̂
(1)
j and ω̂

(2)
j

j = 1, . . . , n, which will therefore be considered as exact. In Fig. 2, the absolute
errors | x j − x̂ j | and ε x j , for the weights w(1)(x) and w(2)(x) of Example 1, with
α = 1, ν = 0, and n = 40, are displayed on a logarithmic scale. The quantities ε x j
were added to verify that | x j − x̂ j |≈ ε x j holds. Observe that if | x j − x̂ j |= 0 in
floating point arithmetic, for some j, the corresponding symbol “∗” is not dispalyed
in Fig. 2.

It can be noticed that each node is computed with high relative accuracy. In Fig. 3,
the absolute errors | ω

(k)
j − ω̂

(k)
j | and εn‖ω(k)‖2, for k = 1, 2, are shown on a

123

Numerical Algorithms

0 5 10 15 20 25 30 35 40
10 -17

10 -16

10 -15

10 -14

10 -13

10 -12

10 -11

Fig. 2 Absolute errors | x j − x̂ j | (“∗”) and εx j (“◦”) j = 1, . . . , n (Example 1, α = 1, ν = 0, and
n = 40)

logarithmic scale, for the weights w(1)(x) and w(2)(x) of Example 1, with α = 1,
ν = 0 and n = 40.

We can observe that the weights are computed with almost full absolute accuracy.
The proposed method is used to simultaneously compute the integrals [22]

I1 =
∫ ∞

0
e−x xw(1)(x)dx = 0.1926947246 . . . ,

I2 =
∫ ∞

0
e−x xw(2)(x)dx = 0.2109579130 . . . ,

(9)

where w(1)(x) and w(2)(x) are defined in Example 1, and α = 1, ν = 0, for n =
10, 20, . . . , 80, 90. The results are given in Table 2.

It can be noticed that the obtained approximations of the integrals are the same as
those computed with Maple (with 100 digits precision) in [22].

In Fig. 4, the absolute errors | x j − x̂ j | for the weights w(1)(x) and w(2)(x) of
Example 2, with c = 1 ν = 0, and n = 40, are shown on a logarithmic scale. The
quantities ε x j were added to verify that | x j − x̂ j |≈ ε x j holds. Observe that if
| x j − x̂ j |= 0 in floating point arithmetic, for some j, the corresponding symbol “∗”
is not dispalyed in Fig. 4.

123

Numerical Algorithms

0 5 10 15 20 25 30 35 40

10 -17

10 -16

10 -15

10 -14

10 -13

Fig. 3 Absolute errors | ω
(1)
j − ω̂

(1)
j | and | ω

(2)
j − ω̂

(2)
j |, j = 1, . . . , n (denoted by “∗” and “∇,”

respectively), and lines representing εn‖ω(1)‖2 and εn‖ω(2)‖2 (denoted by “−” and “−·,” respectively),
obtained for Example 1 (α = 1, ν = 0, and n = 40)

Table 2 Results obtained by computing simultaneously an approximation of the integrals (9), denoted
respectively by Î1 and Î2, computed by the proposed method for n = 10, 20, . . . , 90

n Î1 Î2

10 1.940521520735462 × e−1 2.114457811397134 × e−1

20 1.926653563006893 × e−1 2.109395236242852 × e−1

30 1.926958911273384 × e−1 2.109610461484230 × e−1

40 1.926947184091160 × e−1 2.109576142569785 × e−1

50 1.926947165794407 × e−1 2.109579157751141 × e−1

60 1.926947252743236 × e−1 2.109579167076922 × e−1

70 1.926947247511068 × e−1 2.109579128207904 × e−1

80 1.926947246318227 × e−1 2.109579129473234 × e−1

90 1.926947246433939 × e−1 2.109579130350207 × e−1

The exact digits are displayed in bold

123

Numerical Algorithms

0 5 10 15 20 25 30 35 40

10 -17

10 -16

10 -15

10 -14

10 -13

Fig. 4 Absolute errors | x j − x̂ j | (“∗”) and εx j (“◦”), j = 1, . . . , n (Example 2, c=1, ν =0, and n=40)

In Fig. 5, the absolute errors | ω
(k)
j − ω̂

(k)
j | and εn‖ω(k)‖2, for k = 1, 2, are shown

on a logarithmic scale, for the weights w(1)(x) and w(2)(x) of Example 2, with c = 1,
ν = 0, and n = 40.

It can be observed that the eigenvalues are computed with high relative accuracy
and the weights are computed with almost full absolute accuracy.

The proposed method is used to simultaneously compute the integrals [22]

J1 =
∫ ∞

0
cos(x)xw(1)(x)dx = 0.32822497668527712310 . . . ,

J2 =
∫ ∞

0
cos(x)xw(2)(x)dx = −0.39521954160680745592 . . . ,

(10)

wherew(1)(x) andw(2)(x) are the weight functions defined in Example 2, with c = 1,
and ν = 0, for n = 10, 20, . . . , 50. The results are reported in Table 3.

It can be noticed that the obtained approximations of the integrals are the same of
those computed with Maple (precision: 100 digits) in [22].

9 Concluding remarks

In this paper, we propose a new method to compute the nodes and weights of a simul-
taneous Gaussian quadrature rule with r = 2 integration rules. It uses a banded lower

123

Numerical Algorithms

0 5 10 15 20 25 30 35 40
10 -17

10 -16

10 -15

10 -14

Fig. 5 Absolute errors | ω
(1)
j − ω̂

(1)
j | and | ω

(2)
j − ω̂

(2)
j |, j = 1, . . . , n (denoted by “∗” and “∇,”

respectively), and lines representing εn‖ω(1)‖2 and εn‖ω(2)‖2 (denoted by “−” and “−·,” respectively),
obtained for Example 2 (c = 1, ν = 0, and n = 40)

Hessenberg matrix with r = 2 subdiagonals derived from the multiple orthogonal
polynomial linked to the simultaneous quadrature rule. An important contribution of
this paper is a special balancing technique that significantly improves the sensitivity
of the calculation of nodes and quadrature weights. We then use the Aberth–Ehrlich
method for computing the nodes and an efficient null–space calculation to compute all
left and right eigenvectors. The new method was shown to compute nodes to almost
full relative accuracy and the vector of weights to almost full absolute accuracy. The
method heavily relies on the property that the banded Hessenberg matrix is TN. The

Table 3 Results obtained by computing simultaneously an approximation of the integrals (9), denoted
respectively by Ĵ1 and Ĵ2, computed by the proposed method, for n = 10, 20, . . . , 50

n Ĵ1 Ĵ2

10 3.283400824113568 × e−1 −3.951325674627465 × e−1

20 3.282249772165698 × e−1 −3.952195386531469 × e−1

30 3.282249766852792 × e−1 −3.952195416068042 × e−1

40 3.282249766852648 × e−1 −3.952195416068164 × e−1

50 3.282249766852786 × e−1 −3.952195416068080 × e−1

The exact digits are displayed in bold

123

Numerical Algorithms

complexity of themethod isO(n2) for all calculations, which compares very favorably
with earlier methods that have a cubic complexity. We conjecture that this technique
can be applied to all such quadrature rules with a nonnegative integration interval and
that it also holds for r larger than 2, although we only coded and tested the method
for r = 2 in this paper.

Appendix

Let us start with a matrix H8 that is TN and let all its elements marked as × be

positive. Then, the first right transformation with E :=
[

1 0
−m 1

]
in columns 6 and 7,

only modifies the boldface elements in column 6 :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0 0
× × × 0 0 0 0 0
× × × × 0 0 0 0
0 × × × × 0 0 0
0 0 × × × × 0 0
0 0 0 × × × × 0
0 0 0 0 × × × ×
0 0 0 0 0 × × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0 0
× × × 0 0 0 0 0
× × × × 0 0 0 0
0 × × × × 0 0 0
0 0 × × × × 0 0
0 0 0 × × x × 0
0 0 0 0 × x × ×
0 0 0 0 0 0 × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly, the boldface x′s can not be zero since it would violate the TN property
in the minors of columns 5 and 6. The next step is then a left transformation with

E :=
[
1 0
m 1

]
in rows 6 and 7, only modifying the boldface elements in row 6 :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0 0
× × × 0 0 0 0 0
× × × × 0 0 0 0
0 × × × × 0 0 0
0 0 × × × × 0 0
0 0 0 × × × × 0
0 0 0 0 × × × ×
0 0 0 0 0 0 × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0 0
× × × 0 0 0 0 0
× × × × 0 0 0 0
0 × × × × 0 0 0
0 0 × × × × 0 0
0 0 0 × × × × 0
0 0 0 x x x x ×
0 0 0 0 0 0 × ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly, the boldface x′s are again nonzero because a positive quantity was added
to them.

The same reasoning can be applied to the later steps to show that only the elements
that are meant to be eliminated, indeed become zero, while all other elements remain
positive during the process.

Acknowledgements This paper is dedicated to Marc Van Barel on the occasion of his retirement. The
authors would like to thank the anonymous reviewers, whose valuable comments helped to improve the
manuscript.

123

Numerical Algorithms

Author contribution The authors contributed equally to this work.

Funding Open access funding provided by Consiglio Nazionale Delle Ricerche (CNR) within the CRUI-
CAREAgreement. Teresa Laudadio and NicolaMastronardi are members of the Gruppo Nazionale Calcolo
Scientifico – Istituto Nazionale di Alta Matematica (GNCS–INdAM).
The work of Nicola Mastronardi was partly supported by MIUR, PROGETTO DI RICERCA DI RILE-
VANTE INTERESSENAZIONALE (PRIN) 20227PCCKZ “Low–rank Structures and Numerical Methods
in Matrix and Tensor Computations and their Application”, Università degli Studi di BOLOGNA CUP
J53D23003620006.
Paul Van Dooren is partly Suported by Short Term Mobility of Consiglio Nazionale delle Ricerche.

Code availability The codes described in the manuscript are available from the authors, upon request.

Declarations

Ethics approval Not applicable

Conflict of interest The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aberth, O.: Iteration methods for finding all zeros of a polynomial simultaneously. Math. Comp. 27,
339–344 (1973)

2. Bini, D.A., Gemignani, L., Tisseur, F.: The Ehrlich-Aberth method for the nonsymmetric tridiagonal
eigenvalue problem. SIAM J. Matrix Anal. Appl. 27, 153–175 (2005)

3. Borges, C.F.: On a class of gauss-like quadrature rules. Numer. Math. 67, 271–288 (1994)
4. Coussement, J., Van Assche,W.: Gaussian quadrature for multiple orthogonal polynomials. J. Comput.

Appl. Math 178, 131–145 (2005)
5. de Bruin, M.G.: Simultaneous Padé approximation and orthogonality, In: Brezinski, C. et al. (Eds.)

Polynomes Orthogonaux et Applications, Lecture Notes in Mathematics, vol. 1171:74–83. Springer,
Berlin(1985)

6. de Bruin, M.G.: Some aspects of simultaneous rational approximation. In: Numer Anal Math Model,
Banach Cent Publ, PWN-Pol Sci Publishers, Wars 24, 51–84 (1990)

7. Ehrlich, L.W.: A modified Newton method for polynomials. Comm. ACM 10, 107–108 (1967)
8. Fallat, S.M., Johnson, C.R.: Totally nonnegative matrices, Princeton University Press (2011)
9. Francis, J.G.F.: The QR transformation a unitary analogue to the LR transformation-part 1. Comput.

J. 4(3), 265–271 (1961)
10. Gantmacher, F.,Krein,M.:Oscillationmatrices andkernels and small vibrations ofmechanical systems.

AMS Chelsea, Providence, RI (2002)
11. Gautschi, W.: Construction of Gauss-Christoffel quadrature formulas. Math. Comput. 22(102), 251–

270 (1968)
12. Golub, G.H., Van Loan, C.F.:Matrix computations, 4th edn. JohnsHopkinsUniversity Press, Baltimore

(2013)
13. Golub, G.H., Welsch, J.H.: Calculation of gauss quadrature rules. Math. Comput. 23(106), 221–

230+s1–s10 (1969)

123

http://creativecommons.org/licenses/by/4.0/

Numerical Algorithms

14. Higham, N.: Accuracy and stability of numerical algorithms. SIAM Publ, Philadelphia (1996)
15. Koev, P.: Accurate eigenvalues and SVDs of totally nonnegative matrices. SIAM J. Mat. Anal. Appl.

27(1), 1–23 (2005)
16. Ismail, M.E.H., Van Assche, W.: Classical and quantum orthogonal polynomials in one variable,

Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press (2005)
17. Laudadio, T.,Mastronardi,N.,VanDooren, P.:On computingmodifiedmoments for half-rangeHermite

weights. Numer. Algoritm. 92, 767–793 (2022)
18. Mahler, K.: Perfect systems. Compos. Math. 19, 95–166 (1968)
19. Milovanovíc,G.V., Stanć,M.:Construction ofmultiple orthogonal polynomials by discretized Stieltjes-

Gautschi procedure and corresponding Gaussian quadratures. Facta Univ. Ser. Math. Inform. 18, 9–29
(2003)

20. Nikishin, E.M., Sorokin, V.N.: Rational approximations and orthogonality, Translations of Mathemat-
ical Monographs, American Mathematical Society, vol. 92, Providence, RI (1991)

21. Parlett, B.N., Reinsch, C.: Balancing a matrix for calculation of eigenvalues and eigenvectors. Numer.
Math. 13(4), 293–304 (1969)

22. Van Assche, W.: A Golub-Welsch version for simultaneous gaussian quadrature. Internal Report Dept.
Mathematics, KULeuven (2023)

23. Van Dooren, P., Laudadio, T., Mastronardi, N.: Computing the eigenvectors of nonsymmetric tridiag-
onal matrices. Comput. Math. Math. Phys. 61, 733–749 (2001)

24. Van Assche, W., Coussement, E.: Some classical multiple orthogonal polynomials. J. Comput. Appl.
Math. 127, 317–347 (2001)

25. Whitney, A.: A reduction theorem for totally positive matrices. J. Analyse Math. 2, 88–92 (1952)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Computational aspects of simultaneous Gaussian quadrature
	Abstract
	1 Introduction
	2 Notations
	3 Totally nonnegative band matrices
	4 Scaling
	5 Reducing the bandwidth
	6 Computing eigenvalues and eigenvectors
	7 Outline of the algorithm
	8 Numerical results
	9 Concluding remarks
	Appendix
	Acknowledgements
	References

