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Abstract
In this work, a multiparametric family of iterative vectorial fourth-order methods free
of Jacobian matrices is proposed. A convergence analysis of this family is carried out
as well as a study of its efficiency. Several numerical experiments are made in order
to compare the behaviour of the proposed family with other competitive methods of
the literature.
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1 Introduction

Newton’s method, see [1], is one of the best known methods and has the following
structure for vectorial non-linear problems:

y(k) = x (k) − [
F ′(x (k))

]−1
F(x (k)), k = 0, 1, . . . , (1)

where F : D ⊆ R
n → R

n is a non-linear vectorial function describing the non-linear
system F(x) = 0.

This method has quadratic convergence, and it is computationally very efficient.
Many methods have been designed in an attempt to improve Newton’s convergence
and its computational efficiency, see for instance [2].

On the other hand, Newton’s method is the first optimal method for vectorial prob-
lems according to the following conjecture for vectorial methods proposed in [3].

Conjecture 1 The order of convergence of any iterative method, without memory,
for solving non-linear systems cannot exceed 2k1+k2−2, where k1 is the number of
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evaluations of the Jacobian matrix and k2 the number of evaluations of the non-linear
function per iteration, and k1 ≤ k2. When the scheme reaches this upper bound, we
say that it is optimal.

In the literature, up to our knowledge, only one other optimal method for vectorial
problems has been proposed according to the above conjecture and it is the family
proposed in [4]. In it, the authors proposed a parametric family of optimal methods of
order 4 which has the following structure:

y(k) = x (k) − [
F ′(x (k))

]−1
F(x (k)), k = 0, 1, . . . ,

x (k+1) = y(k) − [
F ′(x (k))

]−1 (
pk F(y(k)) + qk F(x (k))

)
,

(2)

where λ and ψ are free real parameters,

νk = ‖F(y(k))‖22
‖F(x (k))‖22

, Kk = 1

1 + λνk
, pk = Kk(1 + ψνk), qk = 2Kkνk .

The idea of using such a definition of the variable νk comes from the article [5].
The iterative class (2) has a Jacobian matrix in its iterative expression, so it is not

a Jacobian-free family. The aim of this work is to modify this family to obtain a new
class of Jacobian-free schemes,whichmaintains the convergence order. In addition,we
intend to make the modifications without considerably increasing the computational
cost in order to obtain an efficient and competitive family compared to methods with
the same characteristics.

In this article, a Jacobian-free multiparametric class of iterativemethods for solving
non-linear systems is presented. In Sect. 2, the parametric family is presented and an
analysis of the convergence order is performed. Section3 presents an analysis of the
efficiency of the proposed family and compares it with other known methods in the
literature with similar characteristics. In Sect. 4, several numerical experiments are
carried out to see the behaviour of the family and to compare it with other iterative
methods. The article concludes with some conclusions and references used in it.

2 Design of the parametric family

The only part we need to replace to obtain a derivative-free method is the Jacobian
matrix F ′(x (k)) of the family (2). For that reason, we are going to keep the previous
structure by replacing the Jacobian matrix with a divided difference operator. If we
replace the matrix by a forward or backward divided difference operator, the order
of convergence is not maintained, so we choose the following symmetrical divided
difference operator

[
x (k) + r F(x (k)), x (k) − r F(x (k)); F]

, which has a parameter r
that can be any real number different from 0.
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The parametric family obtained is denoted byCRT T and has the following iterative
structure

y(k) = x (k)−[
x (k) + r F(x (k)), x (k) − r F(x (k)); F]−1

F(x (k)),

x (k+1) = y(k)−[
x (k) + r F(x (k)), x (k) − r F(x (k)); F]−1 (

pk F(y(k)) + qk F(x (k))
)
,

(3)
where r ∈ R, r �= 0 and

νk = F(y(k))T F(y(k))

F(x (k))T F(x (k))
, Kk = 1

1 + λνk
,

pk = Kk(1 + ψνk), qk = 2Kkνk .

We prove that the parametric family CRT T has fourth order of convergence for any
value of real parameters r , λ and ψ .

Theorem 2 Let us consider F : D ⊆ R
n −→ R

n a differentiable enough function
defined in a neighbourhood D of α, such that F(α) = 0. Let us also assume that F ′(α)

is non-singular. Therefore, being x (0) an initial guess close enough to α, sequence
{x (k)} defined by CRT T converges to α with order 4, for any non-zero value of
parameter r and for any values of λ and ψ .

Proof We first obtain the Taylor development of F(x (k)), F ′(x (k)), F ′′(x (k)) and
F ′′′(x (k)) around α, where ek = x (k) − α and Ci = 1

i ! [F ′(α)]−1F (i)(α), i = 2, 3, . . .

F(x (k)) = F ′(α)(ek + C2e
2
k + C3e

3
k ) + O

(
e4k

)
,

F ′(x (k)) = F ′(α)(I + 2C2ek + 3C3e
2
k ) + O

(
e3k

)
,

F ′′(x (k)) = F ′(α)(2C2 + 6C3ek) + O
(
e2k

)
,

F ′′′(x (k)) = F ′(α)6C3 + O(ek).

From [6], it is obtained the following expansion using the Genocchi-Hermite for-
mula:

[x (k)+ r F(x (k)), x (k)− r F(x (k)); F]=F ′(x (k)) + 1

6
F ′′′(x (k))(r F(x (k)))2 + O(r F(x (k))3)

=F ′(α)(I+2C2ek+3C3e
2
k ) + 1

6
F ′(α)(6C3)r

2F ′(α)2(e2k )+

+ O
(
e3k

)

=F ′(α)
(
I + 2C2ek + C3

(
3I + r2F ′(α)2

)
e2k

)
+ O

(
e3k

)
.
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It can be simply checked that the inverse operator of [x (k) + r F(x (k)), x (k) −
r F(x (k)); F] has the following expression

[x(k) + r F(x(k)), x(k) − r F(x(k)); F]−1 =
(
I − 2C2ek +

(
4C2

2 − C3

(
3I + r2F ′(α)2

))
e2k

)
F ′(α)−1

+ O
(
e3k

)
.

(4)

From expression (4) and the Taylor development of F(x (k)), we obtain that ey,k =
y(k) − α satisfies the following equality

ey,k = x (k) − α − [x (k) + r F(x (k)), x (k) − r F(x (k)); F]−1F(x (k))

= ek −
(
I − 2C2ek +

(
4C2

2 − C3

(
3I + r2F ′(α)2

))
e2k

) (
ek + C2e

2
k + C3e

3
k

)
+ O

(
e4k

)

= ek − ek − C2e
2
k − C3e

3
k + 2C2e

2
k + 2C2

2e
3
k −

(
4C2

2 − C3

(
3I + r2F ′(α)2

))
e3k + O

(
e4k

)

= C2e
2
k +

(
−2C2

2 + C3

(
2I + r2F ′(α)2

))
e3k + O

(
e4k

)
.

To simplify the notation, we define Y3 as follows

Y3 = −2C2
2 + C3

(
2I + r2F ′(α)2

)
.

For any x ∈ R
n , we have that F(x) = ( f1(x), f2(x), . . . , fn(x))T , where fi (x) :

R
n → R for i = 1, 2, . . . , n.
Also, it is verified that

F(y(k))T F(y(k))

F(x (k))T F(x (k))
=

n∑

i=1
f 2i (y(k))

n∑

i=1
f 2i (x (k))

, (5)

where the developments of fi (x (k)) and fi (y(k)) around α for i = 1, 2, . . . , n are

fi (x
(k)) = f ′

i (α)ek + 1

2
f ′′
i (α)e2k + O

(
e3k

)
,

fi (y
(k)) = f ′

i (α)ey,k + 1

2
f ′′
i (α)e2y,k + O

(
e3y,k

)
,

being f ′
i (x) =

(
∂ fi
∂x1

,
∂ fi
∂x2

, . . . ,
∂ fi
∂xn

)
and f ′′

i (x) is the Hessian matrix with components

∂2 fi
∂x j ∂xk

, for j, k ∈ {1, 2, . . . , n}.
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To simplify the notation, we can rewrite it in the following way

fi (x
(k)) = Riek + Hie

2
k + O

(
e3k

)
,

fi (y
(k)) = Riey,k + Hie

2
y,k + O

(
e3y,k

)
,

with Ri = f ′
i (α) and Hi = 1

2
f ′′
i (α).

In order to obtain νk , we compute now f 2i (x (k)) and f 2i (y(k)), for i = 1, 2, . . . , n:

f 2i (x (k)) = fi (x
(k))T fi (x

(k))

= RT
i Ri e

2
k + (RT

i Hi + HT
i Ri )e

3
k + O

(
e4k

)
,

f 2i (y(k)) = fi (y
(k))T fi (y

(k))

= RT
i Ri e

2
y,k + (RT

i Hi + HT
i Ri )e

3
y,k + O

(
e4y,k

)
.

(6)

By denoting Pi = RT
i Ri and Qi = RT

i Hi+HT
i Ri , the relations (6) can be rewritten

as

f 2i (x (k)) = Pie
2
k + Qie

3
k + O

(
e4k

)
,

f 2i (y(k)) = Pie
2
y,k + Qie

3
y,k + O

(
e4y,k

)
.

(7)

Since ey,k = C2e2k + Y3e3k + O
(
e4k

)
, therefore e2y,k = C2

2e
4
k + (C2Y3 + Y3C2)e5k +

O
(
e6k

)
. Substituting this relation in (7), we obtain

f 2i (y(k)) = Pie
2
y,k + Qie

3
y,k + O

(
e4y,k

)

= Pi
(
C2
2e

4
k + (C2Y3 + Y3C2)e

5
k

)
+ O(e6k ).

(8)

If we denote P =
n∑

i=1
Pi and Q =

n∑

i=1
Qi , and substituting the results of (7) and

(8) in (5), we obtain

νk =
Pe2y,k + Qe3y,k + O

(
e4y,k

)

Pe2k + Qe3k + O
(
e4k

)

= P(C2
2e

4
k + (C2Y3 + Y3C2)e5k ) + O

(
e6k

)

Pe2k + Qe3k + O
(
e4k

) (9)

= P(C2
2e

2
k + (C2Y3 + Y3C2)e3k ) + O

(
e4k

)

P + Qek + O
(
e2k

) .
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Since
[P + Qek + O

(
e2k

)
]−1 = P−1 − P−1Qek + O

(
e2k

)
,

we obtain that

νk = (P−1 − P−1Qek)P(C2
2e

2
k + (C2Y3 + Y3C2)e

3
k ) + O

(
e4k

)

= C2
2e

2
k + (C2Y3 + Y3C2)e

3
k − P−1QPC2

2e
3
k + O

(
e4k

)

= C2
2e

2
k + (C2Y3 + Y3C2 − P−1QPC2

2 )e
3
k + O

(
e4k

)
.

(10)

In order to simplify the notation, we denote V3 as follows

V3 = (C2Y3 + Y3C2 − P−1QPC2
2 ),

obtaining then that νk = C2
2e

2
k + V3e3k + O

(
e4k

)
.

Therefore, the expression of Kk is as follows

Kk = I

(
1

1 + λνk

)
= I − λC2

2e
2
k + λ(C4

2 − V3)e
3
k + O

(
e4k

)
. (11)

From (10) and (11), we obtain that the expressions of pk and qk are

pk = Kk(1 + ψνk) = (I − λC2
2e

2
k + λ(C4

2 − V3)e
3
k )(1 + ψνk) + O

(
e4k

)

= I + (ψ − λ)C2
2e

2
k + ((−λ + ψ)V3 + λC4

2)e
3
k + O

(
e4k

)
,

qk = 2Kkνk = 2(I − λC2
2e

2
k + λ(C4

2 − V3)e
3
k )νk + O

(
e4k

)

= 2C2
2e

2
k + 2V3e

3
k + O

(
e4k

)
.

(12)

Therefore,

pk F(y(k)) + qk F(x (k)) = C2e
2
k + C3(2I + r2F ′(α)2)e3k+

(−C4 + 2V3 + 2C2C3 + 3C3C2 + (−1 − λ + ψ)C3
2 + r2C3F

′(α)2C2)e
4
k

+ O
(
e5k

)
.

(13)

Therefore, from (4) and (13), the error equation is

ek+1 = y(k) − α −
[
x (k) + r F(x (k)), x (k) − r F(x (k)); F

]−1 (
pk F(y(k)) + qk F(x (k))

)

=
(
−2V3 + 4C2C3 + 3C3C2 + (−7 + λ − ψ)C3

2 + 2r2C2C3F
′(α)2 + r2C3F

′(α)2C2

)
e4k

+O
(
e5k

)
.
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Since

V3 = (C2Y3 + Y3C2 − P−1QPC2
2 )

= C2(−2C2
2 + C3

(
2I + r2F ′(α)2

)
) + (−2C2

2 + C3

(
2I + r2F ′(α)2

)
)C2 − P−1QPC2

2

= −2C3
2 + C2C3

(
2I + r2F ′(α)2

)
) − 2C3

2 + C3

(
2I + r2F ′(α)2

)
C2 − P−1QPC2

2

= −4C3
2 + C2C3

(
2I + r2F ′(α)2

)
) + C3

(
2I + r2F ′(α)2

)
C2 − P−1QPC2

2 ,

the error equation can be rewritten as

ek+1 = y(k) − α −
[
x (k) + r F(x (k)), x (k) − r F(x (k)); F

]−1 (
pk F(y(k)) + qk F(x (k))

)

=
(
8C3

2 − 2C2C3

(
2I + r2F ′(α)2

)
− 2C3

(
2I + r2F ′(α)2

)
C2 + 2P−1QPC2

2+
+ 4C2C3 + 3C3C2 + (−7 + λ − ψ)C3

2 + 2r2C2C3F
′(α)2 + r2C3F

′(α)2C2

)
e4k

+ O
(
e5k

)

=
(
2P−1QPC2

2 + (1 + λ − ψ)C3
2 − C3(I + r2F ′(α)2)C2

)
e4k + O

(
e5k

)
.

Therefore, it is proven that the members of the parametric family (3) have order of
convergence 4. 	


3 Efficiency index

To compare different iterative methods, the efficiency index suggested by Ostrowski
is widely used. The formula of this index is the following

IE = p1/d ,

where p is the order of convergence of the method and d represents the number of
functional evaluations needed to perform the method per iteration.

Another classical measure of the efficiency of iterative methods is the operational
efficiency index proposed by Traub, with the expression:

IO = p1/op,

where op is the number of operations, expressed in units of product, needed to calcu-
late each iteration.
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In several occasions, a combination of both is also used, called the computational
efficiency index, whose expression is

IEC = p1/(d+op).

In this section, we will study these different indices for our parametric family, as
well as compare the results obtained with the efficiency indices of other methods
known in the literature, which are S2S from [7], C JT S5 from [8], WF6S from [9]
and WZ7S from [10].

When working on systems of size n×n, the number of functional evaluations used
in calculating F(z) is n while the number used in calculating a divided difference
operator as used in the iterative method is n2 − n.

In the case of theCRT T parametric family, we compute F(x (k)), F(y(k)), F(x (k)+
r F(x (k))) and F(x (k) − r F(x (k))) and just one divided difference operator, so the
number of functional evaluations is:

4n + n2 − n = n2 + 3n.

Below is a list of the number of products and quotients needed to perform the
operations involved:

• Each scalar/vector product costs n.
• Each transpose vector/vector product costs n.
• Each matrix/vector product costs n2.
• Each matrix/matrix product costs n3.
• The number of quotients of a divided difference operator is n2.
• Each LU decomposition costs 1

3 (n
3 − n).

• Each system resolution costs n2.

In this case, we calculate three scalar/vector products, two transpose vector/vector
products, a divided difference operator, and a single LU decomposition and we solve
two systems, so the number of operations is:

3n + 2n + n2 + 1

3
(n3 − n) + 2n2 = 1

3
(n3 − n) + 3n2 + 5n.

Then, the addition of evaluations and operations is:

1

3
(n3 − n) + 3n2 + 5n + n2 + 3n = 1

3
(n3 − n) + 4n2 + 8n.

In the following, we present and compute the efficiency of the methods with which
we compare the indices.

The S2S method has the following iterative expression:

y(k) = x (k) −
[
[x (k) + F(x (k)), x (k) − F(x (k)); F]

]−1
F(x (k)),
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There are 3 evaluations and a divided difference, so the number of functional evalua-
tions is:

3n + n2 − n = n2 + 2n.

On the other hand, a divided difference operator is calculated and a single system
is solved, so the number of operations is:

n2 + 1

3
(n3 − n) + n2 = 1

3
(n3 − n) + 2n2.

Thus, the total number of functional evaluations and operations is:

n2 + 2n + 1

3
(n3 − n) + 2n2 = 1

3
(n3 − n) + 3n2 + 2n.

The iterative expression of C JT S5 is:

y(k) = x (k) − [a(k), b(k); F]−1F(x (k)),

z(k) = y(k) − α[a(k), b(k); F]−1F(y(k)),

t (k) = z(k) − β[a(k), b(k); F]−1F(z(k)),

x (k+1) = z(k) − γ [a(k), b(k); F]−1F(t (k)),

where a(k) = x (k) + F(x (k)) and b(k) = x (k) − F(x (k)).

This method calculates 6 functional evaluations and a divided difference, then the
number of evaluations is:

6n + n2 − n = n2 + 5n.

On the other hand, it performs 3 scalar/vector products, a divided difference operator,
and a single LU decomposition and solves 4 systems with the same matrix; therefore,
the number of operations is:

3n + n2 + 1

3
(n3 − n) + 4n2 = 1

3
(n3 − n) + 5n2 + 3n.

The total number of evaluations and operations is:

n2 + 5n + 1

3
(n3 − n) + 5n2 + 3n = 1

3
(n3 − n) + 6n2 + 8n.

The iterative expression of the WF6S method is as follows:

y(k) = x (k) − [w(k), s(k); F]−1F(x (k)),

μ1 = (3I − 2[w(k), s(k); F]−1[y(k), x (k); F])[w(k), s(k); F]−1

z(k) = y(k) − μ1F(y(k)),

x (k+1) = z(k) − μ1F(z(k)),
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where w(k) = x (k) + F(x (k)) and s(k) = x (k) − F(x (k)).

This method calculates 5 functional evaluations and 2 divided difference operators.
Then, the number of functional evaluations is:

5n + 2n2 − 2n = 2n2 + 3n.

The number of operations performed is as follows: two divided difference operators
are calculated, 3 systems are solved with the same coefficient matrix, a multiplication
between 2 matrices is done, a scalar matrix multiplication is done and a vector matrix
multiplication is done, so the number of operations is:

2n2 + 1

3
(n3 − n) + 3n2 + n2 + n2 + n3 = 1

3
(n3 − n) + n3 + 7n2.

The total of evaluations and operations is:

2n2 + 3n + 1

3
(n3 − n) + n3 + 7n2 = 1

3
(n3 − n) + n3 + 9n2 + 3n.

Finally, the iterative expression of the method WZ7S is:

y(k) = x (k) − [w(k), x (k); F]−1F(x (k)),

z(k) = y(k) −
(
[y(k), x (k); F] + [y(k), w(k); F] − [w(k), x (k); F]

)−1
F(y(k)),

x (k+1) = z(k) −
(
[z(k), x (k); F] + [z(k), y(k); F] − [y(k), x (k); F]

)−1
F(z(k)),

being w(k) = x (k) + F(x (k)).
In this case, 4 evaluations of F and 5 divided difference operators are calculated,

so the number of functional evaluations is:

4n + 5(n2 − n) = 5n2 − n.

The number of operations performed is as follows: 5 different divided difference
operators are calculated and 2 different LUdecompositions are performed and a system
is solved with each of the decompositions. Thus, the total number of operations is:

5n2 + 2

3
(n3 − n) + 2n2 = 2

3
(n3 − n) + 7n2.

123



Numerical Algorithms

Thus, the number of total evaluations and operations is:

5n2 − n + 2

3
(n3 − n) + 7n2 = 2

3
(n3 − n) + 12n2 − n.

Below are some images showing the efficiency index, the operational index and
the computational efficiency index of the previously mentioned methods for different
sizes of the system to be solved, in order to compare the different methods.

Figure1 illustrates the efficiency rate of the different methods for different system
sizes. In these figures, we can see that the methods with the highest efficiency rates
are C JT S5 and CRT T .

Figure2 illustrates the operational efficiency index of the different methods for
different system sizes. In these figures, we can see that for small sizes the methods
C JT S5 and CRT T are not as competitive, but when the size is greater than or equal
to 10, these are the two methods with the highest operational efficiency index.

Figure3 illustrates the computational efficiency index for different system sizes.
As with the other indices, the methods C JT S5 and CRT T stand out for system sizes
greater than 1.

4 Numerical performance of CRTT

We compare some methods of CRTT class, namely CJF4S, TJF4S and CRTT4, with
values of the parameters ψ = 0, r = 1 in all cases and λ = {−4, −5, 0}, respec-
tively, with others, of high efficiency or order, S2S, CJTS5, WF6S and WZ7S, of
orders 2, 5, 6 and 7, respectively, in the same problems, which have been define in the
previous section. Note that CRTT4 is the version with the least computational effort
of all of the family.

The maximum number of iterations considered is 50 and the stopping criterion is∥∥x (k+1) − x (k)
∥∥ < 10−100 or

∥∥F(x (k+1))
∥∥ < 10−100. Each calculationwas performed

using Matlab R2022b with variable-precision arithmetic with a 500-digit mantissa to
minimize round-off errors.

Wemust take into account that the approximate computational order of convergence
(ACOC), see [11]:

p ≈ ACOC = ln
(∥∥x (k+1) − x (k)

∥∥ /
∥∥x (k) − x (k−1)

∥∥)

ln
(∥∥x (k) − x (k−1)

∥∥ /
∥∥x (k−1) − x (k−2)

∥∥) ,

will be calculated that gives the numerical approximation of the theoretical order of
an iterative method.
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Fig. 1 Efficiency index (a) For n = 1 to n = 10, (b) For n = 10 to n = 50, (c) For n = 50 to n = 100
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Fig. 2 Operational efficiency index (a) For n = 1 to n = 10, (b) For n = 10 to n = 50, (c) For n = 50 to
n = 100
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Fig. 3 Computational efficiency index (a) For n = 1 to n = 10, (b) For n = 50 to n = 100, (c) For
n = 2000 to n = 2500
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4.1 Academical problems

Consider the system of equations:

−xi − 3 +
m∑

j=1

x j − exi + 4 cos (2 ln (|xi + 1|)) = 0, i = 1, 2, . . . ,m.

By taking m = 200, the initial estimate that we chose is x (0) = ( 1
100 , . . . ,

1
100

)T
to

obtain the solution
α = (0, 0, . . . , 0)T .

In Table 1, the results obtained by the different methods for the academic problem
are shown. The table shows that the elements of the CRTT family take the least
computational time to reach the required tolerance, being considerably less than other
methods that double their ACOC. Moreover, excluding the S2S method, they require
the same iterations as the other methods with the highest order of convergence.

4.2 Application to boundary value problem

We consider a particular case of the partial derivative equation, called the transport
equation (see [12]). This case is non-linear and non-homogeneous. This equation
models physical phenomena, referring to the movement of different entities, such as
inertial moment, mass or energy, through a medium, solid or fluid, with particular
conditions that exist within the medium and it is expressed by the non-differentiable
partial differential equation:

ut + ux = −2 u |u|,
for x ∈ [0, 1], t ≥ 0. The boundary conditions on u(x, t) are imposed as u(0, t) =
1

1+t , u(1, t) = 1
2+t for all t ≥ 0, along with the initial condition as u(x, 0) = 1

1+x ,
for 0 ≤ x ≤ 1.

Table 1 Academic problem

Method CPUTime Iter
∥
∥∥x(k+1) − x(k)

∥
∥∥

∥
∥∥F(x(k+1))

∥
∥∥ ACOC

S2S 2.66 6 4.35 ×10−91 1.14 ×10−181 2.00

CJTS5 2.39 3 4.10 ×10−50 1.93 ×10−253 5.57

WF6S 4.14 3 1.08 ×10−53 7.90 ×10−320 6.07

WZ7S 5.00 3 5.38 ×10−97 9.45 ×10−507 8.81

CJF4S 1.91 3 7.99 ×10−27 6.97 ×10−106 4.14

TJF4S 1.94 3 7.85 ×10−27 6.51 ×10−106 4.14

CRTT4 1.66 3 8.55 ×10−27 9.13 ×10−106 4.14

System size = 200
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Applying the method of characteristics, we have the system of ordinary differential
equations: ⎧

⎨

⎩

dt
ds = 1,
dx
ds = 1,
du
ds = −2 u |u|

We solve the system numerically applying in each case the trapezium method
(or second-order implicit Runge-Kutta). With the first two equations, we have that
	x + 	t = 2	s.

From the third equation, we form a system of n = 500 equations, taking as step
size 	s = (b − a)/(n − 1), we obtain our initial approximation, applying the initial
condition.

Now, we must solve the system of size 500 × 500, numerically:

u1 − 1 = 0,

ui − u1−1 + 	s (ui |ui | + ui−1 |ui−1|) = 0, i = 2, 3 . . . , 500.
(14)

We take the same stopping criteria as in the academic problem. Next, we form the
corresponding mesh, considering the domain

D = {(x, t), (x, t) ∈ [0, 1] × [0, 1]},

Fig. 4 Numerical approximation of the solution of the non-linear and non-homogeneous transport equation
ut + ux = −2 u |u|
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Table 2 Boundary value problem

Method CPUTime Iter
∥∥∥x(k+1) − x(k)

∥∥∥
∥∥∥F(x(k+1))

∥∥∥ ACOC

S2S 0.31 5 8.16 ×10−141 8.17 ×10−141 2.00

CJTS5 0.36 3 2.96 ×10−214 2.96 ×10−214 5.00

WF6S – – – – –

WZ7S 0.10 1 0 5.32 ×10−505 –

CJF4S 0.28 3 8.16 ×10−141 8.17 ×10−141 4.00

TJF4S 0.24 3 1.62 ×10−217 1.61 ×10−217 5.00

CRTT4 0.26 3 2.55 ×10−137 2.55 ×10−137 4.00

System size = 500

with the partition of spatial step 	x = 1/(n − 1) and time step 	t = 1/(n − 1),
respectively, for the domains, from the solution of the first two equations, and we
obtain the solution shown in Fig. 4.

In Table 2, the results obtained for the boundary value problem by the different
methods are shown, where ‘-’ denotes lack of convergence or unstable value of the
ACOC. In this table, we can see that theWZ7Smethod only requires a single iteration,
while the rest require 3 iterations or more. We can also see that the T J F4S element
of the CRT T family increases the ACOC by one unit for this problem.

The methods of the CRT T family maintain the theoretical order in very large
systems, considering sizes 200 and 500. They can also compete with methods of equal
or higher order, as can be seen in Tables 1 and 2.

About computational effort, note that the methods of CRT T family make much
better use of the computational effort compared to the others.

5 Conclusion

In this work, a parametric family of Jacobian-free fourth-order convergence iterative
methods has been presented. This class has been designed from the family defined in
[4] in order to maintain the properties by modifying the Jacobian matrix by a divided
difference operator, to make it suitable for non-differentiable problems. An efficiency
study and several numerical experiments have been carried out, showing that it is a
family of competitive methods compared to other known methods in the literature
with similar characteristics.
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