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Abstract
Image restoration via alternating direction method of multipliers (ADMM) has gained
large interest within the last decade. Solving standard problems of Gaussian and Pois-
son noise, the set of “Total Variation” (TV)-based regularizers proved to be efficient
and versatile. In the last few years, the “Total Generalized Variation” (TGV) approach
combined TV regularizers of different orders adaptively to better suit local regions in
the image. This improved the technique significantly. The approach solved the staircase
problem inherent of the first-order TV while keeping the beneficial edge preservation.
The iterative minimization for the augmented Lagrangian of TGV problems requires
four important parameters: two penalty parameters ρ and η and two regularization
parameters λ0 and λ1. The choice of penalty parameters decides on the convergence
speed, and the regularization parameters decide on the impact of the respective regu-
larizer and are determined by the noise level in the image. For scientific applications of
such algorithms, an automated and thus objective method to determine these param-
eters is essential to receive unbiased results independent of the user. Obviously, both
sets of parameters are to be well chosen to achieve optimal results, too. In this paper,
a method is proposed to adaptively choose optimal ρ and η values for the iteration
to converge faster, based on the primal and dual residuals arising from the optimality
conditions of the augmented Lagrangian. Further, we show how to choose λ0 and λ1
based on the inherent noise in the image.
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1 Introduction

Every measurement contains noise, which most of the time is undesirable, as it dis-
guises the signal and thus the information to be extracted from it [1]. Often, iterative
denoising [2–6] is needed to recover part of the information hidden by the noise. For
recovering as much of information as possible, the algorithm has to address the right
noise statistics, obtain a suitable prior, and, of course, converge to a certain solution.
One category of algorithms for denoising relies on the principles of solving the “aug-
mented Lagrangian,” which is adaptable to a large variety of problems concerning
image optimization. One of these algorithms is the “alternating direction method of
multipliers” (ADMM) algorithm,whichwas first described byGlowinski andMarroco
[7] and Gabay and Mercier [8]. It has proven to be a good tool to solve these kinds of
ill-posed inverse problems successfully and thus has gained huge interest within the
last decade, during which huge efforts were made to optimize specialized priors or
regularizers for all types of structure occurring in images [9–15]. Many of these algo-
rithms interpret the principle of “total variation” (TV) by Rudin et al. [16] in slightly
different ways. The newest approach called “total generalized variation” (TGV) from
Bredis et al. [17] utilizes an adaptive mixture of different higher orders of TV and
applies them on suiting local regions on the image, solving the staircase problem of
first order TV, with the benefit of preserving sharp edges, that would otherwise be lost
in higher-order TV approaches [18].

As will be shown in this work, successful denoising and deconvolution in the
context of total variation break down to the choice of two sets of parameters: the
penalty parameters ρ and η, which have a great influence on the convergence speed
[19–22], and the regularization parameters λ0 and λ1, that depend on the amount
of noise and determine the quality of the outcome [23, 24]. To use these ADMM-
based algorithms to evaluate experimental data in a scientific context, the choice of
these parameters must necessarily be objective to avoid altering the results by the
user. Today, this hurdle restricts natural scientist to switch to better-suited algorithms.
Instead, it pushes them to use algorithms, such as the “Richardson-Lucy-Algorithm”
(RLA), Fourier-ratio deconvolution, or Wiener filtering [25–31], that cannot compete
with modern algorithms, such as the ADMM, in terms of adaptability and versatility.

By balancing primal and dual residuals, arising from optimality conditions for
the ADMM, the penalty parameters can be found adaptively in a stable scheme for
image denoising or deconvolution, speeding up convergence andmaking the algorithm
independent on the initial choice of these parameters. Further, we will show how reg-
ularization parameters λ0 and λ1 need to be chosen in order to improve the image
quality significantly, based on the standard deviation of the noise. With our work,
the ADMM-based TGV algorithm can be designed such that it operates purely on a
mathematical foundation and on noise parameters that can be determined experimen-
tally by analyzing the used detector itself. Thus, our algorithm enables experimental
scientist to use ADMM-based denoising and deconvolution techniques, adapt them to
their respective experiments, and improve their data evaluation significantly.

By testing sets of these four parameters ρ and η and λ0 and λ1 for noisy images,
we can further show that regions of optimal results can be found for different noise
types and different priors, allowing to compare results of the standard ADMM-TGV
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algorithm with the ones of the residual balanced. In this way, we can show that the
automated choice does not only objectify the parameters, but also increases the con-
vergence speed for most initial values. In the following subsections, the noise and the
fundamentals of the respective algorithms are explained in detail.

1.1 Gaussian noise fundamentals

Whenever images are captured, the acquisition process adds noise. Gaussian noise is
inflicted in terms of, e.g., camera read-out noise and can be described as an additive
process. The image formation process equates the following [16]:

ξ = �x + N
(
μ, σ 2

)
, (1)

with the measured image ξ , a point-spread-function (PSF) � convolved with the
noise-free image x and Gaussian noiseN with the mean value μ and the variance σ 2.
To clarify notations, in the following, we will use bold letters to indicate vectors or
matrices. Scalars and indices remain in normal font.
The mean value can be leveled by subtracting a background image. For removing
noise with the variance σ 2 from the data, denoising is required. In terms of Bayes’
theorem [32], the likelihood LN of having a good estimate of the “true” convolved
image �x can be expressed as the conditional probability P knowing ξ [33]:

LN(�x) = P(ξ | �x)

=
M,N∏
m,n

1√
2πσ 2

exp

{
− ([�x]m,n−ξm,n)

2

2σ 2

}
, (2)

with the individual pixels m, n of an M×N image. This equation can be reformulated
into the negative log-likelihood functional [33]:

FN(�x) ∝ −ln
{
LN(�x)

} ∝
M,N∑
m,n

([�x]m,n−ξm,n)
2

2σ 2

= 1
2σ 2 ‖�x − ξ ‖2F , (3)

with the Frobenius norm ‖ · ‖F as an extension of the Euclidean norm for matrices.

1.2 Poisson noise fundamentals

Due to the quantized nature of photons or electrons used for imaging, the Poisson noise
occurs as count fluctuations. It thus differs from theGaussian noise in the overall image
statistics, as it is deeply embedded in the signal [34]:

ξ = P (�x) , (4)
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with the Poisson noiseP. Similar to flipping a coin, a probability of counting a certain
number of incidents can be assigned to every pixel. Utilizing Bayes’ theorem again
to have the true convolved image �x, the likelihood can be expressed as follows
[34]:

LP(�x) = P (ξ | �x)

=
N ,M∏
n,m

[�x]
ξn,m
n,m exp

{
−[�x]n,m

}

ξn,m ! , (5)

with the negative log-likelihood functional [34]:

GP (�x) ∝ − ln
{
LP(�x)

}
(6)

=
N ,M∑
n,m

− ln
{
[�x}n,m

} (
ξn,m

) + [�x]n,m . (7)

In the formulation ofGP, the factorial in the denominator can be left out, as it vanishes
in the derivation and thus plays no further role in the minimization.

1.3 General scaled ADMM

The general scaled ADMM algorithm solves problems in the form of [22]:

argmin
x,z

f (x) + g(z)

subject to Ax + Bz = c, (8)

with two convex functions f and g applied to the variables x and z. A and B then are
operators applied to the variables, and c is a constant.
As an example in imaging, f and g can be functions that correspond to a given noise
statistic or allow to distinguish between a “true” image without blur and noise and
the noise itself. The variable x in this case corresponds to the “true” image and z to
the noise to be separated. Both variables are connected via one or several conditions,
including the operators A and B that for example could act as a convolution with a
blur kernel or difference operators. The application of ADMM for image treatments
is shown in Sect. 2.

Staying with more general expressions, the overall problem can be formulated into
the scaled augmented Lagrangian to be minimized, which is given by the following
[22]:

Lρ(x, z,u) = f (x) + g(z) + ρ

2
‖Ax + Bz − c + u‖22 − ρ

2
‖u‖22 , (9)

with the Euclidean norm ‖ · ‖2, the scaled dual variable (or Lagrange multiplier)
u = 1

ρ
y associated with the constraint Ax + Bz = c, and y being the unscaled dual

123



Numerical Algorithms

variable. The iterative minimization process then can be decomposed and carried out
in a three-step pattern [22]:

xk+1 = argmin
x

{
f (x) + ρ

2
‖Ax + Bzk − c + uk ‖22

}
, (10)

zk+1 = argmin
z

{
g(z) + ρ

2
‖Axk+1 + Bz − c + uk ‖22

}
, (11)

uk+1 = uk + Axk+1 + Bzk+1 − c , (12)

minimizing with respect to x first, z second and then updating the dual variable u. In
this context, ρ >0 appears as a penalty parameter. Its careful choice is crucial for the
convergence speed, as a good choice might result in an accurate solution within a few
tens of iterations, while a bad choice might delay convergence to a couple of thousand
iterations or even lead to divergence. Obviously, it is desirable to minimize time cost,
so somehow, an optimal ρ choice has to be found.

1.4 Optimality conditions and residual balancing

Three feasibility conditions have to be fulfilled for the ADMM to optimally converge.
These arise from the Karush-Kuhn-Tucker conditions [35], which utilize first-order
derivatives to find a saddle point in the Lagrangian. Deriving Lρ(x, z,u) with respect
to the unscaled Lagrange parameter y yields the primal feasibility condition [9, 22]:

0 = Ax� + Bz� − c , (13)

with the star marking the optimum choice of the respective variable. As the Lagrangian
is minimized by the updates xk+1 and zk+1, the difference from zero of the above
equation gives the primal residual [9, 22]:

Rk+1 = Axk+1 + Bzk+1 − c . (14)

Second, both the x- and z-updates must satisfy the dual feasibility conditions with
respect to the unscaled dual variable y = ρu, yielding the following [9, 22]:

0 ∈ ∂x f (x�) + ρATu�, (15)

0 ∈ ∂z g(z �) + ρBTu�, (16)

with AT , BT denoting the adjoint operator of A and B. The subdifferential operator ∂

can be replaced by a gradient and the ∈ by an equal sign, in the case of g and f being
differentiable [22]. Further, assuming ρk to be variable between iterations, where τ k

optimizes ρk+1:

ρk+1 = τ k · ρk , (17)

uk+1 = yk

ρk+1 = uk + Rk+1

τ k
. (18)
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Then, the scaled dual variable has to be rescaled inversely [22], to adjust for the right
yk+1. To make it easier to follow the general idea, we switch the order of both dual
feasibility conditions for a moment. The approach for the residual balancing is hidden
in (15), eventually. However, (16) is needed for completeness:
As the z-update happens after the x-update, xk+1 ← xk is already updated. Per defi-
nition, the z-update Lρ(xk+1, z,uk) is minimized by zk+1, and deriving with respect
to z and substituting it into the equation (16) yield the following [22]:

0 ∈ ∂zLρ(xk+1, zk+1,uk)

= ∂zg(zk+1) + ρkBTuk + ρkBT
(
Axk+1 + Bzk+1 − c

)

= ∂zg(zk+1) + ρk+1BTuk+1, (19)

showing that optimality is always assured by zk+1 and uk+1, even when ρ is changing.
Thus, it is left to show how the x-update satisfies (15). Since the x-update comes
before the z-update, zk has not been updated yet. As per definition, the x-update
Lρ(x, zk,uk) is minimized by xk+1, and deriving with respect to x and substituting it
into the equation (15) yield the following [22]:

0 ∈ ∂xLρ(xk+1, z,uk)

= ∂x f (xk+1) + ρkATuk + ρkAT
(
Axk+1 + Bzk − c

)

= ∂x f (xk+1) + ρk+1ATuk+1 + ρkATB
(
zk − zk+1

)

⇔ ρkATB
(
zk+1 − zk

)
∈ ∂x f (xk+1) + ρk+1ATuk+1. (20)

In order to assure optimality, the first term, which can be seen as the dual residual [9,
22]

Sk+1 = ρkATB
(
zk+1 − zk

)
, (21)

has to vanish. Further, Wohlberg suggested the usage of relative residuals [36] making
them invariant to problem scaling. In contrast to his approach, we propose to alter the
normalization of the relative primal residualRk+1

rel slightly, such that c is grouped with
the Bzk+1 norm, making the norm more resilient against high constants c:

Sk+1
rel = ρkATB

(
zk+1 − zk

)

max
{‖∂x f (xk+1)‖2, ‖ρkAT

(
uk + Rk+1

) ‖2
} , (22)

Rk+1
rel = Axk+1 + Bzk+1 − c

max
{‖Axk+1‖2, ‖Bzk+1 − c‖2

} . (23)

He et al. [37] define the distance from convergence for ADMM based on these
residuals as Dk+1 = ‖Rk+1 ‖22 + ‖Sk+1 ‖22 allowing to increase the performance
of the algorithm. Equations (10) and (11) suggest a decreasing norm of the primal
residual for an increasing ρ, but (21) suggests an increase of dual residual norm
simultaneously—for decreasing ρ vice versa. So, somehow, balancing ρ, such that
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both residuals approach zero, seems to be a reasonable heuristic for minimizing the
overall distance [36]. As both norms for the relative residuals converge, a similar
relative distance measure Dk+1

rel = ‖Rk+1
rel ‖22 + ‖Sk+1

rel ‖22 must also vanish, showing
that the normalization of the residuals is also a valid strategy.
For the purpose of utilizing both residuals, Boyd proposes an update scheme for ρ,
which keeps both residuals in the same magnitude, called “residual balancing” [22]:

ρk+1 =

⎧
⎪⎨
⎪⎩

ρk · τ if ‖Rk+1‖2 > μ ‖Sk+1 ‖2
ρk / τ if ‖Sk+1 ‖2 > μ ‖Rk+1‖2
ρk otherwise

, (24)

with a balancing parameter μ=10 and τ =2. This approach was found successful by
various authors [38–41]. In the proof by He et al. [37], convergence for this adaptive
scheme comes down to bounds on the sequence ρk [37]:

infk
{
ρk
}

> 0 and supk
{
ρk
}

< +∞, (25)

with
∑∞

k=0 τk − 1 < +∞ . (26)

The latter is a slight variation of the original proof, as He et al. define their factor
(here τ̂ ) slightly different than the authors do τ = (τ̂ + 1). The main consequence
of this proof is that τ → 1 must converge eventually. Since the definition τ > 1 is
necessary for τ to be useful, it increases the sum (26) every iteration indefinitely until
it converges to 1. In Boyd’s approach, the infinite sum is mainly prevented by a high
value of μ, hoping that at some point, R and S diverge so slowly from one another,
that this threshold basically stops any further updates from happening. A low value
of μ in contrast would be desirable, as it would adjust ρ much faster. However, a
low μ leads to balancing ρk regularly, making it oscillate around an optimal ρ and
never attaining it. This necessarily violates (26) for any value τ 
= 1, which, despite
converging, would be pointless. This scheme is thus compelled to updating ρ quite
slowly, as it takes time for R and S to diverge from one another.

Both residuals can be utilized in a more direct way, as Wohlberg showed by using
relative residuals, extending the scheme to choosing τ = τ k at each iteration and
utilizing a ratio of the relative residuals υk+1 to make the ρ update much faster [36]:

τ k+1 =

⎧
⎪⎨
⎪⎩

υk+1 if τmax ≥ υk+1 ≥ 1(
υk+1

)−1
if τ−1

max ≤ υk+1 < 1

τmax otherwise

with (27)

υk+1 =
√

‖Rk+1
rel ‖2/‖Sk+1

rel ‖2.

Since τmax provides a bound on τ , convergence still holds for the extension, as the
sequence ρk would be bounded away from zero and infinity [36]. But again, τ must
eventually settle to 1 or updates must unnecessarily be delayed by a high value of μ.
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However, the general idea of delaying the updates is not wrong, but the method of
thresholding the residuals by a factor μ proves to be unpredictable. Since the initial
choice of ρ determines the development of both primal and dual residual, respectively,
it depends on that very choice whether the first balancing of ρ appears sooner or later
during the iterations. But since the progress in the early iterations is much larger than
in the later ones, it is important to place ρ on the right track, as early as possible.

Here, we propose a similar method with neither the strict requirement τ→1 nor the
unpredictability. By choosing μ = 1, the above extended scheme (24) with (27) can
be simplified to the following:

τ k+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

υk+1 if 0 < υk+1 < ∞
min

{
ρ−1, τext

}
elseif ρ < 1

max
{
ρ−1, τ−1

ext

}
elseif ρ > 1

1 otherwise

. (28)

ρk+1 =

⎧⎪⎨
⎪⎩

ρk · τ k+1 if ρ−1
max ≤ ρk · τ k+1 ≤ ρmax

ρ−1
max/ρk if ρ−1

max < ρk · τ k+1

ρmax/ρk if ρk · τ k+1 > ρmax

(29)

Wepropose to balanceρ by the above equations, but to increase the length of the update
interval exponentially. This could be done by, e.g., updating ten times per magnitude
of iterations, such that the updates are exponentially spaced:

τ k+1 =
{

τ k+1 if k ∈ Val

1 otherwise
, (30)

whereVal is a series of exponentially growing values. Thus, the update occurs regularly
in the early iterations, where it is necessary to find a good ρ, and fades out at a later
stage, when convergence is more important. With the exponential increase of the
update interval, the interval length eventually approaches infinity, which is equal to
the standard ADMM, assuring convergence. Since τ k = 1 for every step without
balancing, the mean value of all τ k between two balancing events approaches one,
which satisfies (26).
In the above equations, ρ is bounded away from zero and infinity by forbidding a direct
scaling with these and by limiting the number of update steps. However, υk+1 being
either zero or infinity indicates an over-extension of the balancing parameter ρ. A
useful strategy is to relief an overextended ρ by pushing the parameter back towards
1 by introducing a factor τext > 1, with which ρ is either increased or decreased
monotonically until υk+1∈(0,∞) again is within boundaries and is well defined. For
both, increasing or decreasing ρ monotonically He et al. proved convergence [37].
Further, the authors suggest to set a limit ρmax to assure the numerical stability of the
algorithm.
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2 ADMMwith total generalized variation

In order to distinguish “true” image x and noise, some additional information about
the image needs to be taken into consideration. The total variation approach relies on
the assumption that images are smooth to a certain degree and noise is highly volatile.
Consequently, derivatives can be utilized to find the noise, as the derivative of the noise
is expected a lot higher than the derivative of the smooth and slowly changing image.
However, if the image has a gradient itself, this assumption in inconvenient as part
of the image slope is forced to be piece-wise constant in the reconstruction, leading
to staircase artifacts [18]. Here, a higher-order derivative can help to smoothen the
gradient of the image, instead of the image itself, leading to a better approximation of
the image, but at the cost of preserving sharp edges.
Total generalized variation of second order as a method for image smoothing was
first described by Bredis et al. [17] aiming to combine both orders of derivatives in a
beneficial way, such that regions of the image are denoised in the most optimal manner
with the help of self-adapting filter masks.
In terms of an isotropic TGV penalizer, an ADMM algorithm can be formulated
following Shirai and Okuda [42]:

‖x‖λ0,λ1
TGV := min

Dx=s+t
(λ0‖s‖F + λ1‖Gt‖F ) . (31)

The auxiliary matrices s and t are linked to the flat and sloped region of the image,
where t contains the latter. The matrices D and G contain derivatives in all possible
directions. For images, they are given as follows [42]:

D =
(
Dh

Dv

)
, GT =

(
Dh Dv 0
0 Dh Dv

)
, (32)

where the individual entries Dh and Dv are forward difference operators for the hori-
zontal and vertical direction. Both and the matrix of zeros 0 follow a “block circulant
with circulant blocks” (BCCB) structure [42]. So for an image with N × M pixels,
all entries Dh,v and the matrix of zeros 0 have the same size and dimension as said
image {Dh,Dv,0} ∈ RN×M . According to (31), the minimization separates the image
in flat and sloped regions, which later serve as filter masks for first- and second-order
smoothing. Thus, t contains the first-order derivatives of the sloped regions of the
image, at which a further derivationG is applied. These sloped regions get subtracted
from Dx leaving over the first-order filter mask s, which then only contains the flat
regions of the image.

2.1 Gaussian noise ADMMwith TGV

Depending on the noise type, the structure of the ADMM must be adapted. For the
Gaussian-type noise, following (3), it can be formulated as follows [42]:

argmin
x,z1,z2

1/
(
2σ 2

) ‖�x − ξ‖2F + λ0‖z1‖F + λ1‖z2‖F
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subject to z1 = Dx − t, z2 = Gt , (33)

with the acquired image ξ , a point-spread-function �, and the regularization parame-
ters λ0 and λ1. The augmented Lagrangian to be solved is given as follows [42]:

Lρ,η (x, t, z1, z2,u1,u2)= 1/
(
2σ 2

)‖�x − ξ‖2F (34)

+λ0 ‖z1‖F + ρ/2 ‖Dx − t − z1+u1‖2F−ρ/2 ‖u1 ‖2F
+λ1 ‖z2‖F + η/2 ‖Gt − z2+u2‖2F −η/2 ‖u2 ‖2F .

with the penalty parameters ρ and η. Note that for pure denoising problems, the
“deconvolution kernel”� simplifies to a matrix of ones� = 1. Further, it is important
to mention that often in literature, σ 2 is found to be absorbed into ρ̂ =ρσ 2 and η̂=ησ 2

and thus excluded from the equation. But to show the dependency of the optimal
λ∝1/σ , it is more convenient to stay with the definition chosen here.
Starting with x0 = 0, t0i = 0, z01,i = 0, z02, j = 0, u01,i = 0 and u02, j = 0, with i and
j denoting the respective directions of the derivatives and 0 being matrices of zeros,
the iteration steps are given as follows [42]:

{
xk+1, tk+1

}
= argmin

x,t
Lρ,η

(
x, t, zk1, z

k
2,u

k
1,u

k
2

)
,

zk+1
1,i = argmin

z1,i
Lρ

(
xk+1, tk+1

i , z1,i ,uk1,i
)
,

zk+1
2, j = argmin

z2, j
Lη

(
xk+1, tk+1, z2, j ,uk2, j

)
, (35)

uk+1
1,i = uk1,i +

([
Dxk+1]

i − tk+1
i − zk+1

1,i

)
,

uk+1
2, j = uk2, j +

([
Gtk+1]

j − zk+1
2, j

)
.

For images i ∈ {h, v} and j ∈ {h, d, v}, with d denoting the diagonal direction
connected to both horizontal and vertical derivatives. Further, t, z1,2, and u1,2 are
given as follows [42]:

t =
(
th
tv

)
,

z1 =
(
z1,h
z1,v

)
, u1 =

(
u1,h
u1,v

)
, (36)

z2 =
⎛
⎝
z2,h
z2,d
z2,v

⎞
⎠ , u2 =

⎛
⎝
u2,h
u2,d
u2,v

⎞
⎠ ,

with, according to the BCCB structure, all entries having the size of the image. The
solution for the x- and t- update is shown in detail by Shirai and Okuda [42]. Note,
however, that both x- and t-updates minimize the same Lagrangian, but with respect
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to different variables. The minimization of z1,i and z2, j can be done via the “block
soft threshold operator” Sγ [42], which is given as follows [42]:

Sγ (v) = max

{(
1 − γ

‖ v ‖2
)
vi , 0

}
, (37)

such that:

zk+1
1,i = Sλ0/ρ

(
Dxk+1 − tk+1 + uk1

)
, (38)

zk+1
2, j = Sλ1/η

(
Gtk+1 + uk2

)
, (39)

with i and j denoting the respective direction of the derivative,which in 2D is i ∈ {h, v}
for (38) and j ∈ {h, d, v} for (39). This operator is applied pixel-wise to the image.

2.2 Poisson noise ADMMwith TGV

Incorporating the log-likelihood functional (7) directly into ADMM leads to problems
of finding a straightforward solution for the x- and t-update. Thus, it is usually used
as a penalizer functional g(z), as these problems do not occur then. For data corrupted
with Poisson noise, the minimization states as follows:

argmin
x,z0,z1,z2

GP(z0) + λ0‖z1‖F + λ1‖z2‖F
subject to z0 = �x, z1 = Dx − t, z2 = Gt, (40)

with the corresponding augmented Lagrangian:

Lϕ,ρ,η (x, t, z0, z1, z2,u0, u1, u2) = GP(z0) + ϕ/2‖�x − z0 + u0‖2F − ϕ/2 ‖ u0 ‖2F
+λ0‖z1‖F + ρ/2‖Dx − t − z1 + u1‖2F − ρ/2 ‖ u1 ‖2F
+λ1‖z2‖F + η/2‖Gt − z2 + u2‖2F − η/2 ‖ u2 ‖2F . (41)

As initial values for the algorithm, the following are chosen: x0 = 0, t0i = 0, z00 = ξ ,
z01,i = 0, z02, j = 0, u00 = 0, u01,i = 0 and u02, j = 0. With this, the iteration steps then
are given as:

{
xk+1, tk+1

}
= argmin

x,t
Lϕ,ρ,η

(
x, t, zk0, z

k
1, z

k
2,u

k
0,u

k
1,u

k
2

)
,

zk+1
0 = argmin

z0
Lϕ

(
xk+1, tk+1, z0,uk0

)
,

zk+1
1,i = argmin

z1,i
Lρ

(
xk+1, tk+1, z1,uk1

)
,

zk+1
2, j = argmin

z2, j
Lη

(
xk+1, tk+1, z2,uk2

)
, (42)

uk+1
0 = uk0 +

(
�xk+1 − zk+1

0

)
,
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uk+1
1,i = uk1,i +

([
Dxk+1]

i − tk+1
i − zk+1

1,i

)
,

uk+1
2, j = uk2, j +

([
Gtk+1]

j − zk+1
2, j

)
,

The resulting Lagrangian can be solved in the same manner as the Gaussian noise
ADMM as shown by Shirai and Okuda [42]. However, despite the slight changes in
the x- and t-update, the only difference in the iteration pattern is the additional z0
and u0-update step, together with the introduction of a new penalty parameter ϕ. The
minimization with respect to z0 is given by the Poisson noise operator, which equates
to the following [34]:

zk+1
0 = prox

Pϕ

(
�xk+1 + uk0

)
, (43)

with the operator being defined as follows [34]:

prox
Pϕ

(v) = −1 − ϕv
2ϕ

+
√(

1 − ϕv
2ϕ

)2

+ ξ

ϕ
. (44)

Again, this operator is applied pixel-wise. All other z-updates are carried out as in the
Gaussian ADMM.

3 ADMM-TGVwith residual balancing

When utilizing the residual balancing for ADMM-TGV algorithms, as described in
Sect. 1.4, ρ, η, and ϕ are to be balanced here. So, the overall structure can be divided
into two parts for the Gaussian algorithm—one for the ρ-balancing and one for the η-
balancing. Further, a third part for the Poisson algorithm is needed—the ϕ-balancing.

3.1 Primal feasibility conditions of ADMM-TGV

Since ρ, η, and ϕ are scalars, acting on all pixels equally, we need to find global
residuals, depending on all pixels. Following the pattern of Sect. 1.4 by deriving the
augmented Lagrangian for Gaussian (see (34)) or Poisson noise (41) with respect to
the unscaled dual variables y1,i = ρu1,i and y2, j = ρu2, j (and additionally y0 = ρu0
for Poisson) for all respective directions leads to the primal feasibility conditions with
their respective relative residuals:

Rk+1
rel,ρ = ‖Rk+1

ρ ‖F
N
(
Rk+1

ρ

) = ‖Dxk+1 − tk+1 − zk+1
1 ‖F

max
{
‖Dxk+1 − tk+1‖F , ‖zk+1

1 ‖F
} , (45)

Rk+1
rel,η = ‖Rk+1

η ‖F
N
(
Rk+1

η

) = ‖Gtk+1 − zk+1
2 ‖F

max
{
‖Gtk+1 ‖F , ‖zk+1

2 ‖F
} , (46)

with the standard primal residual ‖Rk+1
ρ ‖F in the numerator and the normalization for

the scaled residual N
(
Rk+1

ρ

)
in the denominator. Here, Dxk+1 − tk+1 = sk+1 form
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a single norm in the normalization (45) instead of appearing as separated norms like
(23) suggests, because both are coupled via (31).
For the Poisson TGV, a primal residual for the new penalty parameter ϕ can be found
as follows:

Rk+1
rel,ϕ = ‖Rk+1

ϕ ‖F
N
(
Rk+1

ϕ

) = ‖�xk+1 − zk+1
0 ‖F

max
{
‖�xk+1‖2F , ‖zk+1

0 ‖2F
} . (47)

3.2 Dual feasibility conditions of ADMM-TGV

Since the updates happen jointly in (35) and (42), xk and all tki are not updated yet,
regardless which variable we consider. To find the whole set of dual residuals, the
augmented Lagrangian has to be derived with respect to x and to all ti . This leads to
the equations:

xk+1 = argmin
x

Lρ,η

(
x, tk, zk1, z

k
2,u

k
1,u

k
2

)
, (48)

tk+1
i = argmin

ti
Lρ,η

(
xk, ti , tkl , z

k
1, z

k
2,u

k
1,u

k
2

)
, (49)

with tl denoting all other vector elements of t excluding the i-th element (for images
l ∈ {h, v | l 
= i}) as both x and ti rely on the former iterates of the respective other
variables.
Deriving the augmented Lagrangian with respect to x leads to the first dual feasibility
condition:

0 = ∂x f (x) + ρkDT
(
Dxk+1 − tk − zk1 + uk1

)

= ∂x f (x) + ρkDT
(
uk+1
1 + tk+1 + zk+1

1 − tk − zk1
)

⇔−ρkDT
(
tk+1+zk+1

1 −tk−zk1
)
= 1/σ 2 �T (�x − ξ) + ρk+1DTuk+1

1 , (50)

which can be seen as the dual residual, with f (x) = 1/2σ 2‖�x − ξ‖2F (see (34)) for
the Gaussian algorithm. The corresponding relative dual residual is given as follows:

Sk+1
rel,ρ,x = ‖Sk+1

ρ,x ‖F
N
(
Sk+1

ρ,x

) =
‖ − ρk

[
DT

(
tk+1 − tk + zk+1

1 − zk1
)]

‖F
max

{
‖1/σ 2 �T (�x − ξ) ‖F , ‖ρkDT

(
uk1 + Rk+1

1

)
‖F

} ,

(51)
with the standard dual residual ‖Sk+1

ρ,x ‖ in the numerator and the normalization for the
scaled residual N

(
Sk+1

ρ,x

)
in the denominator.
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For the Poisson algorithm, however, the dual feasibility condition equates to the fol-
lowing:

− ϕk�T
(
zk+1
0 − zk0

)
− ρkDT

(
tk+1+zk+1

1 −tk−zk1
)
= ϕk+1�Tuk+1

0 + ρk+1DTuk+1
1 ,

(52)
with f (x) = 0 (see (41)). Since all residuals must vanish eventually, we can rearrange
the dual residual into a residual for the balancing of ρ and for ϕ:

Sk+1
rel,ρ,x = ‖Sk+1

ρ,x ‖F
N
(
Sk+1

ρ,x

) = ‖Sk+1
ρ,x ‖F

max
{
‖N∗

(
Sk+1

ρ,x

)
‖F , ‖N∗

(
Sk+1

ϕ,x

)
− Sk+1

ϕ,x ‖F
} , (53)

Sk+1
rel,ϕ,x = ‖Sk+1

ϕ,x ‖F
N
(
Sk+1

ϕ,x

) = ‖Sk+1
ϕ,x ‖F

max
{
‖N∗

(
Sk+1

ϕ,x

)
‖F , ‖N∗

(
Sk+1

ρ,x

)
− Sk+1

ρ,x ‖F
} , (54)

with:

Sk+1
ρ,x = − ρk

[
DT

(
tk+1 − tk + zk+1

1 − zk1
)]

,

N∗ (Sk+1
ρ,x

) = ρkDT
(
uk1 + Rk+1

1

)
,

Sk+1
ϕ,x = −ϕk�T

(
zk+1
0 − zk0

)
,

N∗ (Sk+1
ϕ,x

) = ϕk�T
(
uk0 + Rk+1

0

)
.

For both Poisson and Gaussian, (51) and (53) show that a change between iterations
in z1,i can be induced by a change in t, but then does not change the residual for the
x-update.
Deriving the augmented Lagrangian ((34) or (41)) with respect to the dual variables
ti with n-dimensions leads to the following:

0 = −ρk
(
Dixk − tk+1

i − zk1,i + uk1,i
)

+ηk
([

GT
]
i[

GT
]
l

)[( [
GT

]T
i

[
GT

]T
l

)( tk+1
i
tkl

)]
+ ηkDi

(
uk2,i − zk2,i

)

+ηk
∑
l

Dl

(
uk2,il − zk2,il

)
, (55)

with i being the direction of the derivative (or vector row) and (il) denoting all the
diagonal vector elements for i , here for images (il) ∈ {hv, vh} = {d}. Solving for the
relative dual residuals connected to both ρ and η leads to the following:

Sk+1
rel,ρ,ti

= ‖Sk+1
ρ,ti ‖F

N
(
Sk+1

ρ,ti

) = ‖Sk+1
ρ,ti ‖F

max
{
‖N∗

(
Sk+1

ρ,ti

)
‖F , ‖N∗

(
Sk+1

η,ti

)
− Sk+1

η,ti ‖F
} , (56)
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Sk+1
rel,η,ti

= ‖Sk+1
η,ti ‖F

N
(
Sk+1

η,ti

) = ‖Sk+1
η,ti ‖F

max
{
‖N∗

(
Sk+1

η,ti

)
‖F , ‖N∗

(
Sk+1

ρ,ti

)
− Sk+1

ρ,ti ‖F
} , (57)

with:

Sk+1
ρ,ti = ρk

[
Di

(
xk − xk+1

)
+ zk+1

1,i − zk1,i
]

,

N∗
(
Sk+1

ρ,ti

)
= ρk

[
uk1,i + Rk+1

1,i

]
,

Sk+1
η,ti = −ηk

[
Di

(
zk+1
2,i − zk2,i

)
+
∑
l

Dl

(
DT
i

(
tkl − tk+1

l

)
+ zk+1

2,il − zk2,il
)]

,

N∗
(
Sk+1

η,ti

)
= ηk

[
Di

(
uk2,i + Rk+1

2,i

)
+
∑
l

Dl

(
uk2,il + Rk+1

2,il

)]
.

These equations show that a change in z1,i in between iterations might be induced by
a change in x, which then also does not appear in the residual for the ti filter mask
update. The same holds for a change in the diagonal zil elements, which can occur
due to a change in the other tl filter masks.

Since x and ti can be represented as a vector
(
x
t

)
, the same holds for the dual residuals.

Thus, applying the Frobenius norm to form a global relative residual for the ρ, η, and
ϕ balancing seems logical:

Sk+1
rel,ρ =

√√√√√
‖Sk+1

ρ,x ‖2F + ∑
i ‖Sk+1

ρ,ti ‖2F
N
(
Sk+1

ρ,x

)2 + ∑
i N

(
Sk+1

ρ,ti

)2 , (58)

Sk+1
rel,η =

√√√√√
∑

i ‖Sk+1
η,ti ‖2F

∑
i N

(
Sk+1

η,ti

)2 , (59)

Sk+1
rel,ϕ = ‖Sk+1

ϕ,x ‖F
N
(
Sk+1

ϕ,x

) . (60)

The dual residuals arising from the derivation with respect to t stay identical to the
Poisson ADMM-TGV.
These primal and dual residuals are used for balancing ρ and η in the following
according to (28). The residual balanced algorithms are hereafter called ADMM-
RBTGV for Gauss or Poisson noise.

3.3 ADMM for Gaussian and Poisson noise with RBTGV

Implementing the residual balanced algorithm for Gaussian noise gives the following
algorithm, with starting conditions x0 = 0, t0i = 0, z01,i = 0, z02, j = 0, u01,i = 0,

123



Numerical Algorithms

u02, j = 0 and finally ρ0 = 1, η0 = 1, leading to the following:

{
xk+1, tk+1

}
= argmin

x,t
Lρk ,ηk

(
x, t, zk1, z

k
2,u

k
1,u

k
2

)
, (after [42])

zk+1
1,i = argmin

z1,i
Lρk

(
xk+1, tk+1

i , z1,i ,uk1,i
)
, (after (38))

zk+1
2, j = argmin

z2, j
Lηk

(
xk+1, tk+1, z2, j ,uk2, j

)
, (after (39))

if k ∈ Val

τ k+1
ρ ← τ kρ , τ k+1

η ← τ kη , (after (28)) (61)

ρk+1 ← ρk , ηk+1 ← ηk , (after (29))

else

τ k+1
ρ = 1, τ k+1

η = 1 ,

end

uk+1
1,i = uk1,i+

([
Dxk+1]

i−tk+1
i −zk+1

1,i

)

τ k+1
ρ

,

uk+1
2, j = uk2, j+

([
Gtk+1]

j−zk+1
2, j

)

τ k+1
η

,

withVal being a series of exponentially growingvalues, such that the residual balancing
occurs less and less often. The initial values are the same as in the algorithm for the
standard Gaussian ADMM with TGV (35).
The residual balanced algorithm for Poisson noise, with the starting conditions of the
Gaussian algorithm plus z01,i = ξ and u00 = 0, is given as follows:

{
xk+1, tk+1

}
= argmin

x,t
Lϕk ,ρk ,ηk

(
x, t, zk0, z

k
1, z

k
2,u

k
0,u

k
1,u

k
2

)
, (after [42])

zk+1
0 = argmin

z0
Lϕk

(
xk+1, tk+1, z0,uk0

)
, (after (47))

zk+1
1,i = argmin

z1,i
Lρk

(
xk+1, tk+1, z1,uk1

)
, (after (38))

zk+1
2, j = argmin

z2, j
Lηk

(
xk+1, tk+1, z2,uk2

)
, (after (39))

if k ∈ Val

τ k+1
ρ ← τ kρ , τ k+1

η ← τ kη , τ k+1
ϕ ← τ kϕ , (after (28)) (62)

ρk+1 ← ρk , ηk+1 ← ηk , ϕk+1 ← ϕk , (after (29))

else

τ k+1
ρ = 1, τ k+1

η = 1, τ k+1
ϕ = 1 ,

end

uk+1
0 = uk0 +

(
�xk+1−zk+1

0

)

τ k+1
ϕ

,
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uk+1
1,i = uk1,i +

([
Dxk+1]

i−tk+1
i −zk+1

1,i

)

τ k+1
ρ

,

uk+1
2, j = uk2, j +

([
Gtk+1]

j−zk+1
2, j

)

τ k+1
η

.

4 Evaluation of the algorithms

In this section, the algorithms are tested on images for denoising and deconvolution
problems to demonstrate the success of residual balancing and to show its impact on
the convergence of the respective algorithm.
An image is superimposed with noise, such that it is easy to compare the restoration
with the original image and show which parameter sets work best. For TGV, four
parameters have to be well chosen to achieve optimality, ρ and η, λ0 and λ1; for
Poisson, this list extends by an additional penalty parameter ϕ.
For evaluating the algorithm, a quality measure is defined. For the quality of the
restoration, the mean squared error (MSE) after iteration k

MSEk = 1

M · N
M,N∑
m,n

(
xki, j − ξ

Orig.
i, j

)2
, (63)

is a commonly used criterion, with the original image ξOrig. known and the current
iterate image xk . In order to make optimal regions for the parameter choices visible,
initially, ρ = η(= ϕ for Poisson) and λ0 = λ1 are chosen over orders of magnitude
from 10−5 ≤ ρ ≤ 105 and 10−5/ωσ ≤ λ0 ≤ 105/ωσ , where σ is the standard deviation
of the inherent noise in the image and ω is an attenuation coefficient depending on the
deconvolution kernel.
Looking at the total generalized variation ADMM approach for Gaussian noise (33)
and setting a · λ = λ0, b · λ = λ1, with � = 1,

argmin
x,z1,z2

1/2σ 2 ‖x − ξ‖2F + λ (a · ‖z1‖F + b · ‖z2‖F )

subject to z1 = Dx − t, z2 = Gt , (64)

the following can be seen: If the true, noise-free image x∗ could be found, the first
term of the minimization would equal:

1

2σ 2 ‖x∗ − ξ‖2F =
N ,M∑
n,m

1

2
⇐⇒ ‖x∗ − ξ‖2F =

N ,M∑
n,m

σ 2 , (65)

by definition of the standard deviation σ , as σ characterizes the mean noise level of all
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contributing pixels. In a perfect setting with perfect noise detection, the TGV prior
would be that exact difference:

λ · (a · ‖z1‖F + b · ‖z2‖F ) = λ · ‖x∗ − ξ‖F =
(
N ,M∑
n,m

λ2 · σ 2

)1/2

. (66)

Since we have perfect noise estimation in this example, the noise level would be
irrelevant for the noise detection and for the image. Putting (65) and (66) into the
minimization (64) shows that the minimum only depends on the total amount of
pixels, if λ = 1/σ is chosen as an optimal regularization parameter:

argmin
x,z1,z2

N ,M∑
n,m

1

2
+
(
N ,M∑
n,m

λ2 · σ 2

)1/2

. (67)

But as the image can only be separated into piece-wise flat or sloped regions either
connected to ‖z1‖F or ‖z2‖F , a and b must add to 1 to comprise the whole image.
However, as noise cannot be predicted perfectly, the optimal λ deviates according to
the quality and applicability of the prior. In case of a bad prior, distortions are induced
andmay at some point outweigh the benefits to the restoration process. Conversely, this
would reduce the optimal regularization parameter compared towhatwould be the case
with a good prior. However, asmost images comprise piece-wise flat or sloped regions,
it is reasonable to assume that TGV is close to approaching the optimal regularization
parameter of λ = 1/σ . If the standard deviation of the noise σ is sufficiently known,
optimality mainly depends on the choice of a and b weighting ‖z1‖F and ‖z2‖F ,
respectively.
The same argumentation also holds for Poisson noise, as it approaches Gaussian noise
for the increasing number of counts. However, for deconvolution, the z1 and z2 are
applied to the deconvolved estimate of the image x and not to the convolved estimate
�x (see (35) and (42)). The noise is thus attenuated by a factor ω which depends
on the convolution kernel the image is convolved with. The wider the kernel � for
deconvolution, the more of the noise gets drawn into a single pixel. By normalizing
the kernel to its maximum peak, we can find the contributions of the other pixel noises
to the attenuated noise. Since adding noises corresponds to adding their variances, this
leads to the following:

ω2 =
N ,M∑
i, j

�i, j

max
{

�i, j
} . (68)

So, the overall scaling needs to be 1/ωσ . For denoising, the attenuation isω2 = 1, since
� corresponds to a delta peak function.
To make regions visible where the overall quality improves the MSE of a given itera-
tion, k can divided by the initial MSE0:

NormMSEk = MSEk

MSE0 , (69)
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showing how much the image improves relatively.

4.1 Denoising of images with Gaussian noise

The first original image can be found in Fig. 1a. In Fig. 1b, Gaussian noise of σ = 50
was added to the image to achieve a signal-to-noise ratio of SNR ≈ 20. To visualize
the effect of residual balancing, a suboptimal choice of the penalty parameters ρ and
η was done, while the regularization parameters λ0 and λ1 were kept close to the
optimum. In Fig. 1 c and d, the denoised images for the ADMM-TGV and ADMM-
RBTGV algorithms after 1000 iterations are compared.
The difference between both denoised images Fig. 1 c and d is rather easy to spot, as c
looks blurry compared to d. The suboptimal choice of ρ and η diminishes the progress
of the denoising. However, as residual balancing equalizes the denoising result over all
penalty parameters, making the result independent of the initial choice, the progress
of the algorithm is further advanced, and thus, the quality of the reconstruction is
significantly improved.
To show that penalty parameters ρ and η for residual balancing can in fact be arbi-
trarily chosen, Fig. 2 displays the course of thousand iterations for a wide range of
regularization parameters. The NormMSE (see (69)) is displayed such that it shows
parameter sets improving the image quality in blue and the rest in yellow. This depic-
tion allows to quickly get an insight into the relevant range of the parameters, that an
operator would preferably choose from.
It can be seen that the original ADMM-TGV algorithm in the upper row of Fig. 2
strongly depends on the initial choice of ρ and η as the blue-colored optimal region
slowly shifts to higher ρ and η in the course of iterations.With a higher number of iter-
ations, the NormMSE-map of the original ADMM-TGV forms an inverted L-shaped
optimal region that grows in ρ-direction with increasing the number of iterations.
Thus, the optimality map can be divided into three regions: the first region at low
values of λ bordered by the first red line, in which the algorithm does not improve the
image quality significantly, because the noise is estimated too low, leading to under-
smoothing; the second, inside the red boundaries, where the algorithm converges to
a better-than-before solution around the optimum; and a third region in which the
algorithm decreases image quality due to over-smoothing, eventually. In the left outer
regions at some point in the iterations, an optimum is reached for some ρ at a given

Fig. 1 a Test image “onion” from MATLAB. The pixel intensities were multiplied by a factor of 10. b
Image with additional Gaussian white noise with a standard deviation of σ = 50 and the attenuation ω = 1.
c The result of the original ADMM-TGV (see (35)) and d the result of our ADMM-RBTGV algorithm (see
(61)), after 1000 iterations and with unfavorable starting values for the penalty parameters ρ = η = 1 and
optimal regularization parameters λ0 = λ1 ≈ 0.63/ωσ as values, respectively
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Fig. 2 NormMSE maps generated from applying both ADMM-TGV and ADMM-RBTGV algorithms on
Fig. 1, with the individual pixels showing the denoising results under Gaussian noise of the respective
(ρ = η | λ0 = λ1)- pair. In the upper row, the results of the original ADMM-TGV are shown after a 10, b
100, and c 1000 iterations. In the lower row (d–f), the results of the residual balanced ADMM-RBTGV
approach are displayed at the same iteration stages. The two red lines in every map indicate the region, in
which the algorithm eventually improves the image quality compared to the initial noisy image, and the
dashed line indicates the λ0=λ1- value in units of 1/ωσ at which results are optimal (λopt ≈ 0.63/ωσ )

iterate, but lost due to convergence to another result. It is, however, not predictable for
a given image, when this incident occurs and thus recommended to stay in the sec-
ond, optimal region. For every ρ in this optimal region, the TGV algorithm converges
eventually to the same result for a given λ, but might need many iterations due to a
poor choice of ρ.
In order to investigate convergence for all initial choices of ρ =η, the residual balanc-
ing is applied in the second row of Fig. 2. Here, the results at a given λ0 = λ1 column
are constant for all starting values ρ = η as early as after ten iterations, indicating that
the residual balanced approach does not depend heavily on the initial choice of ρ and
η.
To elaborate further, if a faster convergence of the algorithm compared to the original,
the drop rate of the R and S residuals connected to ρ and η are evaluated in Figs. 3 a
and b, respectively.

The developments of the R and S residuals are shown for the optimal choice of
λ0 = λ1 ≈ 0.63 1/ωσ and an unfavorable ρ = η = 1 value as found in Fig. 2. By
comparing the residuals for the ADMM-TGV algorithm in Fig. 3a and the ADMM-
RBTGV algorithm in b, it can be seen that the regular rebalancing of the R and S pairs
leads to an increased drop rate of all residuals. Combining all residuals to a distance
measure Dk+1=‖Rk+1

ρ ‖2F +‖Sk+1
ρ ‖2F +‖Rk+1

η ‖2F +‖Sk+1
η ‖2F following the scheme

of He et al. [37] leads to a clearer picture. In Fig. 3c, the distance D of the residual
balanced ADMM-RBTGV (RB) can be seen to drop faster than the distance for the
original ADMM-TGV. These trends stand out even more, when analyzing relative
residuals (rel.) in Fig. 3 a and b as defined in (45) and (46) as well as in (58) and
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Fig. 3 a Trend of the R and S residuals connected to both ρ and η belonging to the standard ADMM-TGV
algorithm for Gaussian noise (Fig. 2d) and the relative residuals Rrel and Srel described in Sect. 3.1 and
Sect. 3.2. Unfavorable starting values of ρ = η = 1 and optimal values for λ0 = λ1 = λopt ≈ 0.63 1/ωσ

were chosen to compare with b the residuals of the residual balanced ADMM-RBTGV denoted as RB.
The optimal values for λ0 = λ1 were found as the column with minimal NormMSE values in Fig. 2d. It
can be seen that for the residual balancing, the respective R and S residuals for ρ and η are bound to each
other and drop faster than for the original algorithm. c Combining all four residuals to a distance measure D
confirms increased drop rates for the residual balancing. d TheNormMSE shows that the RBTGV algorithm
(red) converges faster than the original algorithm (black), as it approaches the optimum zone (green) of the
converged result (green dotted line) from early on. The NormMSE values for an optimal choice (denoted
as opt) of ρ = η ≈ 6.3 · 10−5, however, are faster for both algorithms with the residual balancing (orange
dotted line) being equally fast as the original algorithm (gray). e Development of ρ and η in the course of
the iterations

(60). Here, the relative Srel,η residual increases for the original algorithm whereas it
decreases in the residual balanced.
The residual balancing thus results in a faster convergence, as can be seen in Fig. 3d,
where the NormMSE value of the residual balanced ADMM-RBTGV settles close
to a value of 0.3 after around ten iterations, whereas the non-balanced ADMM-TGV
requires several thousand. To set this into perspective, the NormMSE value for the
optimal choice of ρ = η = 6.3 · 10−5, as found as the column with minimum values
in Fig. 2, settles after four iterations, with no difference between residual balancing
and the original algorithm. Thus, ADMM-RBTGV is beneficial when the optimal ρ

and η values are unknown, which in general is true without excessive testing of both
values.
In Fig. 3e, the trends of ρ and η for the residual balanced algorithm are shown, which
indicate that the initial (unfavorable) choice was indeed set too high, as the residual
balancing corrects these values significantly to lower values.

4.2 Deconvolution of images with Poisson noise

To further demonstrate the versatile applicability to other types of data reconstruction,
in a next example, residual balancing is applied to an image affected by blur and pure
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Poisson noise. The original image can be found in Fig. 4a. After convolution with a
Gaussian kernel (FWHM = 1 Pixel), Poisson noise (σmean ≈31.7) is added in Fig. 4b.
Further, in Fig. 4 c and d, the deconvolved image for the ADMM-TGV and ADMM-
RBTGV algorithms after 1000 iterations, respectively, is displayed.
At a glance, the image reconstructed by the ADMM-RBTGV looks sharper compared
to the ADMM-TGV-treated image, and further analysis can confirm this: Similar to
the Gaussian noise results, regions of optimality for ρ = η = ϕ and λ0 = λ1 can
be found via the NormMSE maps as shown in Fig. 5. Again, the convergence of the
original algorithm (Fig. 5 a–c) lags behind the ADMM-RBTGV (Fig. 5 d–f) conver-
gence for most ρ = η = ϕ values. Our algorithm shows nearly the same result for all
ρ of a given λ after approximately ten iterations (Fig. 5e), indicating that the residual
balancing is applicable here, too. But the convergence is slightly slower than in the
Gaussian example, as an additional penalizer for the Poisson noise must be balanced
in.
Figure6a indicates that the residual for ρ, η, and ϕ are bound to each other and
drop faster in the residual balanced case (Fig. 6b) altogether for an unfavorable
choice of ρ = η = ϕ = 1. Despite all three Rrel -residuals being significantly lower
from the start for the ADMM-TGV, the Srel -residuals do not decrease at all. As all
residuals must vanish, convergence is slowed down significantly for the original algo-
rithm. In Fig. 6 a and b, we only display the relative residuals, as they give a better
impression on the development of the algorithm. For completeness, in Fig. 6c, again,
both original and relative distances from convergence are shown. Here, the distance
Dk+1=‖Rk+1

ρ ‖2F + ‖Sk+1
ρ ‖2F + ‖Rk+1

η ‖2F + ‖Sk+1
η ‖2F + ‖Rk+1

ϕ ‖2F + ‖Sk+1
ϕ ‖2F

is extended by the residuals of ϕ. It can be seen that the distance from convergence
vanishes faster with residual balancing overall. The same behavior is shown in Fig. 6d
for the NormMSE. Interestingly, both the distance from convergence D and the Nor-
mMSE increase significantly within the first five iterations of the ADMM-RBTGV, as
the Rrel -residuals rise. As the log-likelihood functional for Poisson noise (3), which
is tied to the original image, is influenced by the residual balancing, the difference
between the new iteration of xk and the original image is significantly increased. But
the increase is only transient as with increasing iterations, the average τ converges to
1 due to increased intervals between balancing steps. After approximately 16 itera-
tions, convergence is close for the ADMM-RBTGV (indicated as the green dotted line
within the green optimum zone in Fig. 6d), while the original ADMM-TGV has not

Fig. 4 a Gray scaled test image “onion” from Matlab. The pixel intensities were multiplied by a factor of
10. b Image with pure Poisson noise (σmean ≈ 31.7) added after convolution with a 2D Gaussian kernel
(FWHM = 1 Pixel). c The result of the ADMM-TGV and d the ADMM-RBTGV algorithm after 1000
iterations, with unfavorable penalty parameters ρ = η = ϕ = 1 and optimal regularization parameters
λ0 = λ1 ≈ 0.4/ωσ as starting values, respectively. According to (68), the attenuation ω amounts to ω ≈ 2.5
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Fig. 5 NormMSE maps, with the individual pixels showing the deconvolution results under Poisson noise
with a Gaussian kernel (FWHM = 1 Pixel) of the respective (ρ = η = ϕ | λ0 = λ1)- pairs. In the upper
row, the results of the original ADMM-TGV are shown after a 10, b 100, and c 1000 iterations. In the lower
row d–f, the results of the residual balanced ADMM-RBTGV are displayed at the same iteration stages.
The two red lines in every map indicate the region, in which the algorithm eventually improves the image
quality compared to the initial noisy image, and the dashed line indicates the λ0 = λ1- value in units of
1/ωσ , with the standard deviation σ = 31.7 of the noise and the attenuation ω ≈ 2.5, at which results are
optimal (λopt ≈ 0.4/ωσ )

made significant progress. Even for the choice of a close to optimal (denoted as opt)
ρ = η = ϕ = 6.3 · 10−3, the original ADMM-TGV (gray) is slower than the residual
balanced ADMM-RBTGV (orange), since all three penalty parameters are identically
chosen and thus suboptimal. Finding the optimal penalty parameters often is time-
consuming, whereas residual balancing is fully automated and allows to quickly adapt
all penalty parameters to optimal values. Figure6e shows the development of ρ, η,
and ϕ due to the residual balancing, indicating that the initial values were chosen too
high.

4.3 Optimality for �0 and �1

Having established the residual balancing for Gaussian and Poisson problems, ρ, η,
andϕ are no longer necessary to be chosen by the user, but instead are automatically set
by the algorithm. The parameter choice thus reduces to λ0 and λ1 to achieve optimality.
Therefore, the NormMSEmaps for Gaussian denoising and Poisson deconvolution are
displayed in Fig. 7 a and c for pairs of λ1 and λ0, with the starting values fixed to ρ = 1,
η = 1 and ϕ = 1 for the Poisson case.

Both maps exhibit two branches of optimality forming an L-shape. The first is con-
nected to the value for λ0, which controls the impact of the derivatives D acting on
the flat parts of the image, and the second is connected to the λ1 value controlling the
derivativesG acting like a second-order derivative applied to the sloped regions of the
image. Depending on the features of the image, both parameters have to be chosen
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Fig. 6 a Trend of the relative Rrel and Srel residuals (described in Sect. 3.1 and Sect. 3.2) connected to ρ, η,
and ϕ belonging to the standard ADMM-TGV algorithm for deconvolution under Poisson noise (Fig. 5d).
Unfavorable starting values of ρ =η= ϕ = 1 and optimal values for λ0= λ1=λopt ≈ 0.4/ωσ were chosen
to compare with b the residuals of the residual balanced ADMM-RBTGV denoted as RB. The optimal
values for λ0 = λ1 were found as the column with minimal NormMSE values in Fig. 5d. It can be seen
that for the residual balancing, the respective relative Rrel and Srel residuals for ρ, η, and ϕ stay bound
together and drop faster, whereas the relative residuals of the original algorithm stagnate. Initially, this leads
to a rise in all three Rrel- residuals. c Combining all six residuals to a distance measure D confirms the
impression of a faster drop rate for the residual balancing. However, DRB and DRB,rel show a transient
increase in iteration three, where the increase in DRB is more pronounced. d The NormMSE shows that the
residual balancing (red) leads to a faster convergence than the original algorithm (black), as it approaches
the optimal zone (green) of the converged result (green dotted line) from iteration 16 on. The NormMSE
values for the “optimal” choice of ρ = η = ϕ = 1 · 10(-3) converges a lot slower in the original algorithm
(gray) than for residual balancing (orange). Like the initial rise of the distance measure D suggests, the
NormMSE initially increases before seeing a fast convergence. e The development of ρ, η, and ϕ in the
course of the iteration

carefully and therefore typically require experience.
Since the chosen image comprises of flat and sloped features, optimality is influenced
by the choice of both, the λ0 and λ1-parameter. As long as λ0 is above a certain
threshold of 2/ωσ , the result dominantly depends on the λ1- parameter. The same is
true as long as λ1 is above 2/ωσ , vice versa. Raising either λ0 or λ1 to unreasonably
high numbers leads to large distances to the image. To reduce the distance, the filter
masks adapt and minimize the parts of the image it is applied to. Thus, only the other
derivative takes part in the minimization.
The optima of both branches differ significantly from 1 in Fig. 7 a and c, which is
an indication that neither first- nor second-order TV alone is optimal. But λ1 being
slightly closer to 1 than λ0 in a and by much in c shows that it is better suited and
comes with lower cost. While in a, both branches are equal, the difference between
both in c is large which shows as the much darker color of the λ1 branch.
As the biggest advantage of TGV is the mixture between both orders of total variation,
it appears that when both types of structure, piece-wise flat and sloped, are combined
in one image, the optimal λ0, λ1 pair is found in the overlap region of both branches.
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Fig. 7 NormMSEas a functionofλ0 andλ1 after applying1000 iterations ofRBTGVforGaussiandenoising
a of Fig. 1b, with the zoomed extract marked with a blue box in b. The same for Poisson deconvolution
c of Fig. 4b, with the zoomed extract marked with a blue box in d. The red lines in a and c indicate
the region, in which the algorithm eventually improves the image quality compared to the initial noisy
image. For both, a Gaussian denoising with the noise standard deviation σ = 50 and the attenuation of
ω = 1 as well as c Poisson deconvolution with σ ≈ 31.7 and the attenuation of ω ≈ 2.5, two branches
occur forming an L-shape at which results are better than before. The first branch is connected to the λ0
balancing parameter for the first order total variation, and the second branch is connected to λ1; the dotted
red line indicates the position of the optimal λ0,opt and λ1,opt value connected to either branch. For a
Gaussian denoising, these values are

(
λ0,opt | λ1,opt

) ≈ (0.25 | 0.63) 1/ωσ and for c Poisson deconvolution(
λ0,opt | λ1,opt

) ≈ (0.1 | 0.63) 1/ωσ .b and d show the overlap region of the branches forGaussian denoising
and Poisson deconvolution, respectively. Here, the red cross indicates the optimal point, at which the overall
minimum is found. For bGaussian denoising, the optimal value is found at (λ0 | λ1)opt≈(0.36 | 0.59) 1/ωσ .
For d Poisson deconvolution, the optimal value is found at (λ0 | λ1)opt≈(0.57 | 0.46) 1/ωσ

Since this overlap is only possible with the TGV approach, it shows the advantage
over using only simple first- or second-order TV approaches.
Figures7 b and d display the respective overlap regions, where the optimum values
can be found, as indicated by the red cross.
It appears that for both denoising and deconvolution, the optimum values for λ0
and λ1 add up to one, approximately. This indicates both are dependent on 1/ωσ

introduced in (67) and (68). The clear difference between both sets for Gaus-
sia denoising (λ0 | λ1)opt ≈ (0.36 | 0.59) 1/ωσ in b and for Poisson deconvolution
(λ0 | λ1)opt ≈ (0.57 | 0.46) 1/ωσ in d is an indication that the balancing between ‖z1‖F
and ‖z2‖F does not solely depend on the original image, as it is identical for both
restorations, but rather on the significant features, which can be distinguished from
the noise. This produces a dilemma in scientific applications that cannot be resolved,
as features are not only unknown, but also the main subject of the debate, to which
the restoration should add to. For an unbiased choice, we propose to weight both λ0
and λ1 equally with 1/2ωσ , since this choice will always increase the outcome quality
significantly, while preserving an unbiased and thus scientific approach to the data.

4.4 Comparison of residual balancing strategies

To further show the benefit of using our approach, it is tested against the former
approaches of Boyd [22] and Wohlberg [36] (see (24) and (27)) in Fig. 8 for both
denoising with Gaussian noise (a–f) and deconvolution with Poisson (g–l) noise under
different parameters μ and τ . Boyd suggested values of μ = 10 and τ = 2 for his
algorithms (see (24)) as used in Fig. 8a for Gaussian and g for Poisson noise. Fur-
ther, we tested the same values for Wohlberg d and j again for both types of noise.
Both approaches show unstable and inconsistent results. As residual balancing is only
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Fig. 8 NormMSE maps with the individual pixels showing the denoising results under Gaussian noise
a–f with standard deviation σ = 50 (same problem as Fig. 2). The approaches of Boyd [22] a and b and
Wohlberg [36] d–f are tested with different μ and τ parameters (see Sect. 1.4) against c ours after 1000
iterations, respectively. It can be seen that onlyμ = 1 produces the same result for all given ρ = η for every
λ0 = λ1. The black regions in the Wohlberg approach show the algorithm diverging to infinity and thus
failing for the respective pairs. The colored boxes mark all results that are further analyzed in Fig. 9a, since
they at least converge for optimal choices of λ. Images g–l show the deconvolution results under Poisson
noise with standard deviation σ ≈ 31.7 and a 2D Gaussian Kernel with FWHM =1 pixel (same problem
as Fig. 5) under the same conditions as for the Gaussian noise aforementioned

applied when R and S residuals differ by one order of magnitude, it leads to the respec-
tive algorithms balancing the penalty parameters at different iterations depending on
their initial value, which leads to different results at a given iteration. However, for this
problem, we found μ = 1 as proposed by Wohlberg [36] in Fig. 8 b and h as well as
e and k more convincing. Since the residual balancing is now applied every iteration,
differences between the initial penalty parameters are reduced more effectively. In a
test for several μ, stability increased both for Boyds and Wohlbergs algorithms as
μ → 1.
Increasing τ leads to a faster adaption of all penalty parameters as the residuals can
be balanced in larger steps. However, as Boyd’s algorithm does not further adapt the
step size in the course of iterations, the optimal ρ and η can only be reached within
a factor of τ , which is why we stayed with the proposed value of τ = 2 by Boyd.
Wohlberg’s algorithm, in contrast, allows to approach the optimal ρ, η and ϕ since τ

is variable between 0 and its maximum value τmax .
However, choosing τ too high leads to divergences for Wohlberg’s algorithm, marked
as black areas in d–f and j–l. For both Gaussian denoising and Poisson deconvolution,
this happens if the λ- values are estimated too high leading to over-smoothing.
Compared to Wohlberg’s algorithm, ours showed stability in both cases (Fig. 8 c and
i). The main difference between Wohlbergs and our proposed algorithm here is the
upper limit on ρ, η, and ϕ instead of the limit on τmax , that prevents our algorithm
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from divergence, and the increasing number of iterations between two consecutive
balancing steps, which enforces convergence instead.
As Fig. 8 does not show the speed or progress of the respective algorithms, all con-
verging strategies marked with colored boxes are tested against each other in Fig. 9
at an unfavorable ρ = η = ϕ = 1 and λopt pair (similar to Fig. 3d and Fig. 6d). The
graphs indicate that the approach of Boyd for Gaussian denoising (Fig. 9a) and Poisson
deconvolution (Fig. 9b) is the slowest, since the optimal penalty parameters can never
be reached due to the limitation of τ , which is overcome by Wohlberg’s approach
with τmax = 2. For the first six iterations, both Boyd and Wohlberg’s approach show
the same NormMSE values, indicating that afterwards, the variable τ is beneficial.
Further increasing τmax leads to a faster convergence, as the maximum balancing step
is increased. Our approach is superior to the others in terms of convergence speed,
since we do not limit the step size at all, but only set an upper limit to ρ, η, and ϕ.

5 Application examples

In Fig. 10, we give two examples of applications in physics. Figure10a shows gold
nanoparticles on a silicon oxide substrate as acquired with a scanning transmission
electron microscope (STEM) in annular dark field mode (ADF) with inherent blur by
the point-spread-function of the electron beam and someminor defocus. Deconvolving
with a more specialized and adaptable mixed Poisson-Gaussian noise model (MPG)
[43] with our ADMM-RBTGV (b) improves the overall quality of the reconstruction
compared to the original as can especially be seen in the zoomed extract of c, where
the crystalline structures appear much clearer.
The second example in Fig. 10d demonstrates the application of the ADMM-RBTGV
algorithm to 1D data (spectra), here an electron-energy loss spectrum (EELS) recorded
in a STEM. EEL spectra suffer from both the finite energy width of the impinging

Fig. 9 The graphs display the progress of the NormMSE within 1000 iterations. To show differences in
the speed of convergence from the respective stable ADMM-RBTGV algorithms for a Gaussian and b
Poisson noise (see Fig. 8) marked with the same line color as the boxes before. It can be seen that Boyd’s
(black) approach [22] is the slowest of all for both problems. It is observed that an increase of the τmax
translates into a faster convergence for Wohlberg’s approach [36] (blue and green). The fastest convergence
is achieved with our algorithm (red) by only limiting ρ and η instead of τ

123



Numerical Algorithms

Fig. 10 a Noisy image of a metallic nanoparticle acquired in a transmission electron microscope. b The
deconvolved image with the ADMM-RBTGV after 1500 iterations. c Comparison of zoomed extracts
of both, original and deconvolved images at the positions marked with the respective colors. d Electron
energy loss signal from the oxygen K -edge of a Hematite (Fe2O3) nanoparticle with only the background
subtracted (black), deconvolved with the zero-loss-peak by the commonly used RLA after 15 iterations
(blue), 150 iterations (cyan) iterations (red), and the ADMM-RBTGV after 1500 iterations, with a mixed
Poisson-Gauss noise model [43]. It can be seen that our approach produces a much smoother outcome, due
to the better-adjusted noise model. Additionally, our result leaves much less room for interpretations of
additional peaks, that occur around 540 eV in both RLA results

electron beam, leading to a convolution of characteristic spectral features, and noise,
owing to the limited electron dose used in a measurement. The black spectrum was
recorded from a catalytic metal oxide nanoparticle near the oxygen K -edge, where
a background was subtracted using a common power-law mode. The blue and cyan
curves show the spectrum after applying the commonly used Richardson-Lucy algo-
rithm (RLA) 15 and 150 times, respectively. Deconvolving the image with the RLA
sharpens the edges, but due to amisfit in the noisemodel by completely ignoringGaus-
sian read-out noise and not regarding the change in statistics by the subtraction of the
background, the RLA diverges with increasing iterations. This is why the RLA is often
limited to 15 iterations in EELS applications [44]. Oscillations occurring after 150 iter-
ations of RLA near the spectral maximum at 542 eV might be easily misinterpreted
as characteristic features. At energy losses above 550 eV, RLA-treated spectra show
additional oscillations with the same amplitude as the peaks around 542 eV are pro-
duced by the RLA. These artifacts are commonly known as ringing artifacts [45–47].
In comparison, the spectrum obtained by applying the ADMM-RBTGV (1500 times)
nicely corresponds to the spectra expected for metal oxide particles [48–51]. Thus,
by utilizing MPG with our ADMM-RBTGV, the overall quality of the reconstruction
improves significantly compared to the other as the signal appears much smoother and
less noisy. All in all, the examples show that ADMM-RBTGV can reliably improve
image and signal quality, unbiased by the choice of input parameters by the user.

6 Conclusions

In this paper, a novel residual balancing approach for ADMM image denoising and
deconvolution with total generalized variation is described. It is applied to standard
images as well as scientific 2D and 1D data superimposed with both Gaussian- and
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Poisson-type noises. The usefulness, objectivity, and fast convergence of the algo-
rithm are demonstrated. By automatically choosing penalty parameters ρ, η, and ϕ

for the Poisson case and equalizing their initial choice after a few iterations, residual
balancing makes the algorithm user-friendly and unbiased. Moreover, it increases the
convergence speed for almost all initial choices of the penalty parameters significantly.
If the optimum is already known, residual balancing is indeed slower than the original
algorithm, but does not delay convergence by much. However, as the optimum is hard
to guess, residual balancing provides an easy and successful way of choosing ρ and
η in the case of the Gaussian noise ADMM and an additional ϕ for the Poisson case.
It is shown that the original algorithm and the residual balanced one converge to the
same result for different initial choices of the penalty parameters over several orders of
magnitude for the same values for the regularization parameters λ0 and λ1. Further, we
could show that our approach of residual balancing is superior to others, as it provides
the fastest convergence and is stable at all tested pairs.
As the applicability is clearly shown, this work allows to adapt the principles of resid-
ual balancing to other penalizers for image restoration in general and for different
dimensionality of the data.
By reducing the set of four parameters (or five in the Poisson case) to be chosen by the
user to two, optimal regions can be found by only testing (λ0 | λ1)-pairs. This makes
visualization easier and reduces computational time for finding the optimal set.
It is shown that the regularization parameters λ0 connected to the first derivative and
λ1 connected to the second derivative depend on the inverse standard deviation of the
noise 1/ωσ , that gets attenuated by a factor of ω in the case of a deconvolution. This
factor depends on the deconvolution kernel, as it drags more noise into a single pixel.
Selecting either λ0 or λ1 too high while keeping the other close to the optimum leads to
the filter masks adapting and minimizing the influence of the respective first or second
matrix of derivatives D or G. The conclusion drawn from this is that TGV can either
converge to results of the standard first-order TV or the second-order TV. However, as
most images consist of both flat and sloped parts, optimality is found in the overlap of
both λ0 and λ1 regions. Here, we could show that both regularization parameters λ0
and λ1 must add up to a total value of 1/ωσ to achieve optimality. The ratio between
both depends on the significant features in the image, which can be distinguished from
the noise. Thus, for the same image under different noise conditions, the optimality
of these parameters is not identical, but changes significantly.
Finally, with our work, the algorithm can be set up such that it operates on objective
criteria and not on the arbitrary choice of user inputs: The penalty parameters are cho-
sen automatically on a mathematical foundation, and the regularization parameters λ0
and λ1 can be chosen equal to 1/2ωσ , such that they only depend on the noise standard
deviation σ . Since the features in an image are not known in a scientific context, the
true optimality of the ratio of both parameters cannot be achieved without introducing
a certain bias. But fixing the ratio of both regularization parameters still improves
images significantly, since both parameters continue to be located within the optimal-
ity region. This allows for an unbiased approach on the restoration of experimental
data as there is no room for altering the results. With sufficient knowledge of the noise
in an experiment, which can be found by carefully investigating the detector, our work
enables the use of the ADMM-based image restoration algorithms for scientific tasks.
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