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Abstract
In this paper, we study a variation of the HSS iteration method which was first for-
mulated by Bai et al. in 2003. This variation is similar to that of Kellogg’s variation
of the Peaceman-Radford method.
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1 Introduction

In [1], Bai et al. introduced theHSS iteration method with a resulting iteration matrix
which is a product of four terms. See also [3]. An investigation of a permutation of
those four terms results in a matrix that is similar to the original matrix and thus
has the same spectral radius as the original matrix. This permuted iteration matrix
is developed into a viable iteration scheme to solve a system of linear equations.
This new scheme is related to an iteration scheme of Bruce Kellogg [4] and appears
in Section3. Further properties are found in Section4 while Section5 contains three
examples which illustrate that in terms of iteration counts the new Kellogg-type HSS
iteration method is no better and no worse than the HSS iteration scheme. Of course,
this is to be expected since the new scheme has the same spectral radius as the original
HSS scheme.

2 HSS iterationmethod

We consider iteration schemes to solve the system of linear equations Ax = b where
A ∈ R

n×n and x, b ∈ R
n . Let A = H + S where H = A+A∗

2 and S = A−A∗
2 are the
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Hermitian and skew-Hermitian (HS) parts of the matrix A. The matrix A is said to be
positive definite when its Hermitian part H is a positive definite matrix. Throughout
this paper, A is assumed to be positive definite.

The HSS iteration method for solving Ax = b is the following two-step scheme
that appears in [1]. See also [2–4].

HSS iteration scheme Given an initial guess x0, for k = 0, 1, 2, . . . , until {xk}
converges, compute

(α I + H) xk+
1
2 = (α I − S)xk + b

(α I + S) xk+1 = (α I − H)xk+
1
2 + b,

(1)

where α is a given positive constant. It easily follows that α I + H and α I + S are
both invertible.

In [1], it was shown that the quasi-optimal choice for α is given by the following:
α = √

minσ(H) ∗ maxσ(H), where σ(.) denotes the spectrum of a matrix.

Eliminating xk+ 1
2 from the above iteration scheme yields the following:

xk+1 = �(α)xk + (α I + S)−1(α I − H)(α I + H)−1b + (α I + S)−1b, where we
define �(α) := (α I + S)−1(α I − H)(α I + H)−1(α I − S).

Now, we consider the four terms in �(α) and permute them in order to define the
new iteration matrices below.

�(α) := (α I + S)−1(α I − S)(α I − H)(α I + H)−1,

and

�(α) := (α I + H)−1(α I − H)(α I + S)−1(α I − S).

(2)

In the next lemma, we give the relationship between the spectral radii of the three
matrices �(α), �(α) and �(α). Let ρ(.) denote the spectral radius of a matrix.

Lemma 1 For α > 0, ρ(�(α)) = ρ(�(α)) = ρ(�(α)) < 1.

Proof �(α) is similar to �(α) since
(α I + S)�(α)(α I + S)−1 = (α I − H)(α I + H)−1(α I − S)(α I + S)−1 = �(α),
whereas �(α) and �(α) have the same spectral radius which follows from the well-
known product theorem that ρ(A1A2) = ρ(A2A1). Hence, the non-zero eigenvalues
of �(α), �(α), and �(α) are equal, and their respective spectral radii are less than
one follows from [1]. ��

The previous lemma suggests studying different orderings of the matrices from the
HSS iteration scheme.

3 Kellogg-type HSS iterationmethod

The following iteration scheme for solving Ax = b is amodifiedHSS iterationmethod
after Bruce Kellogg’s scheme [5] for ADI . We call this method the Kellogg-type HSS
iteration method.
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The Kellogg-type HSS iteration method Given an initial guess x0, for k =
0, 1, 2, . . . , until {xk} converges, compute

(α I + H) xk+
1
2 = (α I − H)xk + b1

(α I + S) xk+1 = (α I − S)xk+
1
2 + b2,

(3)

where α is a positive constant and b = b1 + b2.

Upon eliminating xk+ 1
2 , one has

xk+1 = �(α)xk + (α I + S)−1(α I − S)(α I + H)−1b1 + (α I + S)−1b2.
The following lemma will be used to show the convergence of this iteration scheme
to a unique solution to the system of equations Ax = b.

Lemma 2 For any c1, c2 ∈ R
n there exists unique y, z ∈ R

n satisfying

z = (α I + H)−1(α I − H)y + c1

y = (α I + S)−1(α I − S)z + c2
(4)

Furthemore,
y = �(α)y + (α I + S)−1(α I − S)c1 + c2

and

z = �(α)z + (α I + H)−1(α I − H)c2 + c1

(5)

Proof The above system of equations may be represented by Ã

[
z
y

]
=

[
c1
c2

]
where Ã

=

[
I −(α I + H)−1(α I − H)

−(α I + S)−1(α I − S) I

]

whose determinant may be found from the following product of matrices:[
I −(α I + H)−1(α I − H)

−(α I + S)−1(α I − S) I

] [
I 0

(α I + S)−1(α I − S) I

]

=

[
I − �(α) −(α I + H)−1(α I − H)

0 I

]

Now, since ρ(�(α)) < 1, it follows that the determinant of the last matrix is non-zero,
and hence, the determinant of Ã is non-zero. This completes the proof of the first part,
while the second part follows by substituting for y into the first equation and then
substituting for z in the second equation.
It is worth noting that (5) uncouples (4). In view of our definitions for�(α) and�(α),
the Kellogg-type HSS iteration may be rewritten in a recursive manner as follows:

xk+1 = �(α)xk + (α I + S)−1(α I − S)(α I + H)−1b1 + (α I + S)−1b2

xk+
1
2 = �(α)xk−

1
2 + (α I + H)−1(α I − H)(α I + S)−1b2 + (α I + H)−1b1.

(6)

��
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Wewish to show that the sequences {xk} and {xk+ 1
2 } approach y and z respectively,

and also that y + z is the solution to the system of equations Ax = b where

[
z
y

]
is the

solution of (4). Formally, we state this in the following theorem.

Theorem 1 Let xk and xk+ 1
2 be defined by (6) then lim

k→∞ xk = y and lim
k→∞ xk+

1
2 = z

and y + z = x = A−1b.

Proof Let z and y be the unique solutions of (4) where c1 = (α I + H)−1b1 and

c2 = (α I + S)−1b2 and set en+ 1
2 = z − xn+ 1

2 . Then, by Lemma 2 and the definition

of xn+ 1
2 in the Kellogg-type HSS iteration

z − xn+ 1
2 = {(α I + H)−1(α I − H)y + c1} − xn+ 1

2

= (α I + H)−1(α I − H)y + c1 − (α I + H)−1(α I − H)xn − c1.
(7)

Canceling the c1 terms one has en+ 1
2 = (α I + H)−1(α I − H)(y − xn).

Applying Lemma 2 and the definition of xn from the Kellogg-type HSS iteration en+ 1
2

becomes (α I+H)−1(α I−H)[(α I+S)−1(α I−S)z+c2−(α I+S)−1(α I−S)xn− 1
2 −

c2]. Canceling the c2 terms, one has en+ 1
2 = �(α)(z − xn− 1

2 ) = �(α)en− 1
2 from

which convergence follows since ρ(�(α)) < 1. ��
In a similar fashion, set en+1 = y − xn+1. Then, using the definition of xn+1 and

xn+ 1
2 , one obtains

en+1 = y − (α I + S)−1(α I − S)xn+ 1
2 − c2

= (y − c2) − (α I + S)−1(α I − S)((α I + H)−1(α I − H)xn + c1).
(8)

By Lemma 2, (α I + S)−1(α I − S)c1 = (α I + S)−1(α I − S)z − �(α)y and
y − c2 = (α I + S)−1(α I − S)z. This results in en+1 = y − c2 − �(α)xn − (α I +
S)−1(α I−S)z+�(α)y = �(α)(y−xn) = �(α)en fromwhich convergence follows
since ρ(�(α)) < 1.

It remains to show that y + z is the solution of the system of equations Ax = b.
To this end, set c1 = (α I + H)−1b1 and c2 = (α I + S)−1b2. By Lemma 2, the vector[
z
y

]
satisfies

z = (α I + H)−1(α I − H)y + (α I + H)−1b1

y = (α I + S)−1(α I − S)z + (α I + S)−1b2
(9)

Multiplying the first equation by (α I + H) and the second by (α I + S) and adding
them together yield

(α I + H)z + (α I + S)y = (α I − H)y + (α I − S)z + b1 + b2 (10)
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This simplifies to H(y + z) + S(y + z) = b1 + b2 = A(y + z) = b as promised.

Also, we note that in the HSS Scheme, lim
n→∞ xn = y and lim

n→∞ xn+ 1
2 = z.

4 Cyclic reduction

Wedevelop a cyclic reduction scheme similar to [6, 170].With Ã as previously defined,

one sets J = I − Ã =
[

0 (α I + H)−1(α I − H)

(α I + S)−1(α I − S) 0

]
and then

J 2 =
[
�(α) 0
0 �(α)

]

Lemma 3 For the matrix J defined above ρ(J 2) < 1 and ρ(J ) < 1.

Proof Since ρ(�(α)) < 1 and ρ(�(α)) < 1 and J 2 is a block diagonal matrix
with �(α) and �(α) along the diagonal, it follows that ρ(J 2) < 1. Also, since the
eigenvalues of the square of a matrix are the squares of the eigenvalues of the original
matrix, it follows that ρ(J ) < 1. ��

Moreover, J 2 defines the following uncoupled iteration scheme:

zm+1 = �(α)zm + k1

ym+1 = �(α)ym + k2
(11)

where k1 = (α I + H)−1(α I − H)(α I + S)−1b2 + (α I + H)−1b1 and k2 = (α I +
S)−1(α I − S)(α I + H)−1b1 + (α I + S)−1b2.

We now focus our attention on the solution of reduced equation zm+1 = �(α)zm +
k1. Now, since ρ(�(α)) < 1, we have the following iteration scheme:

Cyclic reduction scheme Solving the reduced equation above, we obtain a
sequence zm converging to z. Now, having found the vector z, we use Lemma 2
and form the vector y = (α I + S)−1(α I − S)z + (α I + S)−1b2, and as previously
shown, we have x = y + z as a solution to the system of equations Ax = b.

5 Examples

In the following examples, a solution vector to the system of equations Ax = b
is constructed as x(i) = ( i

N ) sin( i∗π
6 ) where i = 1, 2, ..., N , with an initial

guess x0 = (1, 1, ..., 1)T , and the reported error in each of our schemes is mea-
sured by ‖Ay − b‖2 where y is the resulting approximate answer. Furthermore, in
the HSS iteration, Kellogg-type HSS iteration and the Cyclic Reduction iteration,
α = √

minσ(H) ∗ maxσ(H), and in the Kellogg-type HSS iteration, b1 and b2 are set
to b and (0, 0, ..., 0)T , respectively. The criteria for stopping the HSS iteration and
the Kellogg-type HSS iteration is

∥∥x − y
∥∥
2 < 10−5, and the criteria for stopping the
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cyclic reduction iteration occur when the 2-norm of two consecutive iterates is less
than 10−5. Finally, the runtime of the main iteration loop which includes all necessary
matrix operations is included in the loop.

Example 1 Consider the system of linear equations with nxn coefficient matrix A =
I ⊗ T + T ⊗ I , where T = tridiag(−1 − r , 2,−1 + r), is an mxm matrix with
r = 1

m+1 resulting in n = m2. For m = 8, the nxn matrix is 64x64 and the following
are obtained.

The HSS iteration scheme required 38 iterations to obtain an error of 2.3x10−6,
and the Kellogg-type HSS iteration scheme required 40 iterations to obtain an error
of 2.2x10−6. Since both schemes ran in negligible time, 100 iterations were executed
of the main iteration loop for both schemes and they both required 0.126 time.
The cyclic reduction scheme was more expensive requiring 53 iterations to obtain an
error of 4.7x10−6 and 0.006 runtime.

Example 2 Consider the system of linear equations with nxn coefficient matrix A=[
B E

−E ′ .5I

]
where B=

[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]
, E=

[
I ⊗ F
F ⊗ I

]
where T =

tridiag(−1, 2,−1), F = h ∗ tridiag(−1, 1 − 0) are mxm matrices with h = 1
m+1

resulting in n = 3m2.

For m = 5, the nxn matrix is 75x75, and the following is obtained.
The HSS iteration scheme required 26 iterations to obtain an error of 3.1x10−6,

and the Kellogg-type iteration scheme required 27 iterations to obtain an error of
4.5x10−6. Both schemes ran in a negligible amount of time. As in the previous exam-
ple, 100 iterations were executed of the main iteration loop with resulting identical
cpu time of 0.251.
The cyclic reduction scheme required 29 iterations to obtain an error of 4.5x10−5 and
a 0.063 runtime.

Example 3 Consider the system of linear equations with 256x256 coefficient matrix
in [7].

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 1 0 0 0 0 0 0
−1 3 2 0 0 0 0 0
0 −1 5 3 0 0 ... 0
0 0 −1 7 4 0 0 ...

. . . . . .

0 0 0 .. −1 2N − 5 N − 2
0 0 0 .. −1 2N − 3 N − 1
0 0 0 0 .. 0 −1 2N − 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The HSS iteration scheme required 11 iterations to obtain an error of 7.5x10−6and
0.047 runtime.
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Kellogg-type HSS iteration scheme required 12 iterations to obtain an error of
6.0x10−6 and 0.048 runtime.
Finally, the cyclic reduction scheme required 12 iterations to obtain an error of
6.0x10−6 and 0.062 runtime.

6 A closer look at the Kellogg-type HSS iteration scheme

In the examples using the Kellogg-type HSS iteration scheme, when finding b1 and b2,
one set them to b and (0, 0, ..., 0)T respectively. Code was written for seven different
choices of b1 and b2 in each of the above examples. b1 was written as β ∗ b and b2
as (1 − β) ∗ b for β ∈ {0, 1/4, 1/2, 3/4, 1}. One can also select for b1 the positive
or negative elements of b and b2 = b − b1. The only real change in our data is in
Example 1, where selecting b1 to be the positive elements of b increased the number
of iterations to meet our convergence criteria to 41 from 40. In Example 3, selecting b1
to be the positive elements of b produced an error of 6.8x10−6 with a runtime of 0.048
while selecting b1 to be the negative elements of b produced an error of 5.2x10−6 with
a runtime of 0.047. Otherwise, there was no significant changes in all seven selections
of b1 and b2 in our accuracy other than in the sixth digit.

In conclusion, since the spectral radius of all iteration matrices is the same in all
the iteration schemes, the convergence to a solution of the system of linear equations
has about the same number of iterations for all the iteration convergence schemes
considered in this paper, although cyclic reduction is clearly more expensive.
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