
Numerical Algorithms
https://doi.org/10.1007/s11075-023-01705-8

ORIG INAL PAPER

Numerical evaluation of singular integrals on non-disjoint
self-similar fractal sets

A. Gibbs1 · D. P. Hewett1 · B. Major1

Received: 23 March 2023 / Accepted: 10 November 2023
© The Author(s) 2023

Abstract
We consider the numerical evaluation of a class of double integrals with respect to a
pair of self-similar measures over a self-similar fractal set (the attractor of an iterated
function system), with a weakly singular integrand of logarithmic or algebraic type.
In a recent paper (Gibbs et al. Numer. Algorithms 92, 2071–2124 2023), it was shown
that when the fractal set is “disjoint” in a certain sense (an example being the Cantor
set), the self-similarity of the measures, combined with the homogeneity properties
of the integrand, can be exploited to express the singular integral exactly in terms
of regular integrals, which can be readily approximated numerically. In this paper,
we present a methodology for extending these results to cases where the fractal is
non-disjoint but non-overlapping (in the sense that the open set condition holds). Our
approach applies to many well-known examples including the Sierpinski triangle, the
Vicsek fractal, the Sierpinski carpet, and the Koch snowflake.

Keywords Numerical integration · Singular integrals · Hausdorff measure · Fractals ·
Iterated function systems
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1 Introduction

In this paper, we consider the numerical evaluation of integrals of the form

I�,� =
∫

�

∫
�

�t (x, y) dμ
′(y) dμ(x), (1)
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where (see Sect. 2 for details) � ⊂ R
n is the attractor of an iterated function system

(IFS) of contracting similarities satisfying the open set condition, μ and μ′ are self-
similar (also known as “invariant” or “balanced”) measures on �, and

�t (x, y) :=
{

|x − y|−t , t > 0,

log |x − y|, t = 0,
x, y ∈ R

n . (2)

In the case where t > 0 and μ′ = μ the integral (1) is known in the fractal analysis
literature as the “t-energy”, or “generalised electrostatic energy”, of the measure μ

(see, e.g. [9, §4.3], [20, §2.5] and [19, Defn 4]). Integrals of the form (1) also arise
as the diagonal entries in the system matrix in Galerkin integral equation methods for
the solution of PDE boundary value problems in domains with fractal boundaries, for
instance in the scattering of acoustic waves by fractal screens [6]. In such contexts,
the accurate numerical evaluation of these matrix entries is crucial for the practical
implementation of the methods in question.

Numerical quadrature rules for (1) were presented recently in [13] for the case
where � is disjoint (see Sect. 2 for our definition of disjointness), e.g. a Cantor set in
R or a Cantor dust in Rn , n ≥ 2. The approach of [13] is to decompose � into a finite
union of self-similar subsets �1, . . . , �M (each similar to �) using the IFS structure
and to write I�,� as a sum of integrals over all possible pairs �m × �n .

Using thehomogeneity properties of the integrand�t (x, y), namely that�t (x, y) =
�̃t (|x − y|), where �̃t (r) := r−t for t > 0 and �̃t (r) := log r for t = 0, which sat-
isfies, for ρ > 0,

�̃t (ρr) =
{

ρ−t �̃t (r), t > 0,

log ρ + �̃t (r), t = 0,
(3)

one can show that the “self-interaction” integrals over �m × �m , for m = 1, . . . , M ,
can be expressed in terms of the original integral I�,� , which allows I�,� to be written
in terms of the integrals over �m × �n , for m, n = 1, . . . , M , with m �= n. When � is
disjoint the latter integrals are regular (i.e. they have smooth integrands), so that one
can obtain a representation formula for the singular integral (1) (when it converges) as
a linear combination of regular integrals, which can be readily evaluated numerically
(see [13, Thm 4.6], which generalises previous results for Cantor sets, e.g. [3]). In
the non-disjoint case, however, distinct self-similar subsets of � may be non-disjoint,
intersecting at discrete points (such as for the Sierpinski triangle, see Sect. 5.1) or
at higher dimensional sets (such as for the Sierpinski carpet, see Sect. 5.3, or the
Koch snowflake, see Sect. 5.4). This means that some of the integrals over �m × �n ,
for m �= n, are singular, reducing the accuracy of quadrature rules based on the
representation formula of [13, Thm4.6] (which assumes they are regular). In this paper,
we remedy this, showing that in many non-disjoint cases (including those mentioned
above), by decomposing� further into smaller self-similar subsets it is possible to find
a finite number of “fundamental” singular integrals (including I�,� itself) that satisfy
a square system of linear equations that can be solved to express I�,� purely in terms
of regular integrals that are amenable to accurate numerical evaluation.
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We will describe our methodology in generality in Sect. 4, but for the benefit of the
reader seeking intuition, we illustrate here the basic idea for the simple case where
� = [0, 1]2 ⊂ R

2 is the unit square, μ = μ′ is the Lebesgue measure onR2 restricted
to �, and t = 1. Despite not generally being regarded as a “fractal”, the square � can
be viewed as the self-similar attractor of an iterated function system comprising four
contracting similarities and can accordingly be split into a “level one” decomposition
of 4 squares of side length 1/2 or a “level two” decomposition of 16 squares of side
length 1/4, as illustrated in Fig. 1. Let Im,n denote the integral

∫
�m

∫
�n

|x − y|−1 dydx
where �m and �n are any of the level one squares in Fig. 1. One can then express (1)
as the sum I�,� = ∑4

m=1
∑4

n=1 Im,n of 16 singular integrals over all the pairs of level
one squares, which can be categorised as follows: 4 self interactions (I1,1, I2,2 etc.),
8 edge interactions (I1,2, I2,1, I2,3 etc.) and 4 vertex interactions (I1,3, I3,1, I2,4, I4,2).
By symmetry, each of the integrals in each category is equal to all the others, so that

I�,� = 4I1,1 + 8I1,2 + 4I1,3. (4)

Furthermore, by (3) (with t = 1), combined with a change of variables, the self-
interaction integral I1,1 can be expressed in terms of the original integral, as

I1,1 = 2
∫

�1

∫
�1

|(2x) − (2y)|−1 dydx = 1

8
I�,�. (5)

Combining this with (4), we obtain the equation 1
2 I�,� = 8I1,2 + 4I1,3. To derive

two further equations connecting I�,� , I1,2 and I1,3, we move to the level two decom-
position, extending our notation in the obvious way, so that, e.g. I12,23 denotes the
integral

∫
�12

∫
�23

|x− y|−1 dydx , where�12 and �23 are the level two squares labelled
“12” and “23” in Fig. 1. Then, the edge interaction integral I1,2 can be written as a
sum of 16 integrals over pairs of level two squares, which, after applying symmetry
simplifications, gives

I1,2 = 2I12,21 + 2I12,24 + R1,2, (6)

Fig. 1 Level 1 (left) and level 2 (right) subsets of the unit square. Here, the labels “1” and “13” indicate the
subsets �1 and �13 etc. referred to in the text
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where R1,2 = 4I11,21 + 4I11,24 + 2I11,22 + 2I11,23 is a sum of regular integrals.
Similarly, the vertex interaction integral I1,3 can be written as

I1,3 = I13,31 + R1,3 = I12,24 + R1,3, (7)

where R1,3 = 4I13,32 + 4I13,33 + 4I12,33 + 2I12,34 + I11,33 = 4I11,24 + 4I13,33 +
4I12,33 + 2I11,23 + I11,33 is a sum of regular integrals. Furthermore, by (3), combined
with a change of variables, we have that

I12,21 = 1

8
I1,2 and I12,24 = 1

8
I1,3, (8)

and inserting these identities into (6) and (7) gives our two sought-after equations,
namely 3

4 I1,2 = 1
4 I1,3 + R1,2 and 7

8 I1,3 = R1,3.
To summarise, we have shown that the triple (I�,�, I1,2, I1,3)T satisfies the linear

system

⎛
⎝

1
2 −8 −4
0 3

4 − 1
4

0 0 7
8

⎞
⎠

⎛
⎝ I�,�

I1,2
I1,3

⎞
⎠ =

⎛
⎝ 0

R1,2
R1,3

⎞
⎠ , (9)

and solving the system gives

I�,� = 64

21

(
7R1,2 + 5R1,3

)
, (10)

which is an exact formula for I�,� in terms of the seven regular integrals I11,21, I11,24,
I11,22, I11,23, I13,33, I12,33 and I11,33, which are all amenable to accurate numerical
evaluation, for instance with a product Gauss rule.

Our goal in this paper is to derive formulas analogous to (9) and (10) for more
general �, t , μ and μ′. The structure of the paper is as follows. In Sect. 2, we review
some preliminaries concerning self-similar fractal sets and measures. In Sect. 3, we
introduce the notion of “similarity” for integrals over pairs of subsets of � and provide
sufficient conditions under which it holds. In Sect. 4, we describe a general algorithm
for generating linear systems of the form (9) using our notion of similarity. In Sect. 5,
we apply our algorithm to a number of examples including the Sierpinski triangle,
the Sierpinski carpet and the Koch snowflake. Finally, in Sect. 7, we show how our
results can be combined with numerical quadrature to compute accurate numerical
approximations to the integral (1) in these and other cases. As an application, we show
how our algorithm can be used in the context of the “Hausdorff boundary element
method” of [6] to compute acoustic scattering by non-disjoint fractal screens.

Regarding related literature, we note that a three-dimensional version of the
approach described above for integration over the unit square was used to compute the
gravitational force between two cubes sharing a common face in [28]. More generally,
this sort of approach forms the basis of the “hierarchical quadrature” developed for
singular integrals over cubical and simplicial domains by Börm and Hackbusch [5]

123



Numerical Algorithms

andMeszmer [21, 22]. In the context of integration over fractals, we mention the work
of Mantica [17] and Strichartz [25], where self-similarity techniques were used to
derive exact formulas for integrals of polynomials over fractals. Our previous paper
[13] and the current paper can be viewed as extensions of the results of [17] and [25]
to singular integrands.

2 Preliminaries

Throughout the paper, we assume that � is the attractor of an iterated function system
(IFS) of contracting similarities satisfying the open set condition (OSC), meaning that
(see, e.g. [15])

(i) there exists M ∈ N, M ≥ 2, and a collection of maps {s1, s2, . . . , sM }, such that,
for each m = 1, . . . , M , sm : Rn → R

n satisfies

|sm(x) − sm(y)| = ρm |x − y|, for x, y ∈ R
n,

for some ρm ∈ (0, 1). Explicitly, for each m = 1, . . . , M , we can write

sm(x) = ρm Amx + δm, (11)

for some orthogonal matrix Am ∈ R
n×n and some translation δm ∈ R

n ;
(ii) � is the unique non-empty compact set such that

� = s(�),

where

s(E) :=
M⋃

m=1

sm(E), E ⊂ R
n; (12)

(iii) there exists a non-empty bounded open set O ⊂ R
n such that

s(O) ⊂ O and sm(O) ∩ sm′(O) = ∅, m �= m′ ∈ {1, . . . , M}. (13)

Then, � has Hausdorff dimension dimH(�) = d, where d ∈ (0, n] is the solution
of the equation

M∑
m=1

ρd
m = 1. (14)

We say that the IFS is disjoint (cf. [1, Defn 7.1]) if

min
m �=m′

{
dist

(
sm(�), sm′(�)

)}
> 0, (15)
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which holds if and only if the open set O in (13) can be taken such that � ⊂ O [6].
We say that the IFS is homogeneous if ρm = ρ,m = 1, . . . , M , for some ρ ∈ (0, 1).

In this case, the solution of (14) is d = logM/ log (1/ρ).
To describe the decomposition of � into self-similar subsets via the IFS structure,

we adopt the standard index notation of [15]. For � ∈ N, let �� := {1, . . . , M}�, and,
form = (m1, . . . ,m�) ∈ ��, let

�m := sm(�), where sm := sm1 ◦ . . . ◦ sm�
.

When working with examples, we shall typically write �(m1,m2,...,m�) as simply
�m1m2...m�

to make the notation more compact (as we did in Sect. 1).
For each m = (m1, . . . ,m�) ∈ ��, sm is a contracting similarity of the form

sm(x) = ρmAmx + δm, (16)

where (with the convention that an empty product equals 1)

ρm :=
�∏

i=1

ρmi , Am =
�∏

i=1

Ami , δm =
�∑

i=1

⎛
⎝i−1∏

j=1

ρm j Am j

⎞
⎠ δmi .

The inverse of sm then has the representation

s−1
m (x) = ρ−1

m A−1
m (x − δm). (17)

Setting �∅ := {∅}, �∅ := � and s∅(x) := x , we define � := �∅ ∪ (∪∞
�=1��).

Given such a �, and a collection (p1, . . . , pM ) of positive weights (or “probabili-
ties”) satisfying

0 < pm < 1, m = 1, . . . , M, and
M∑

m=1

pm = 1, (18)

there exists [15, Sections 4 & 5] a positive Borel-regular finite measure μ supported
on �, unique up to normalisation, called a self-similar [23] (also known as invariant
[15] or balanced [2]) measure, such that μ(E) = ∑M

m=1 pmμ(s−1
m (E)) for every

measurable set E ⊂ R
n . For such a measure, by [23, Thm. 2.1], the OSC (13) implies

that μ(sm(�) ∩ sm′(�)) = 0 for each m �= m′, and as a consequence, we find that for
m = (m1, . . . ,m�) ∈ �, and any μ-measurable function f ,1

∫
�m

f (x) dμ(x) = pm

∫
�

f
(
sm(x)

)
dμ(x), (19)

1 A key step in the proof of this result is showing thatμ(�m′ ) = pm′μ(�) form′ = 1, . . . , M . To prove the
latter, we first note that, by (18) and the positivity and self-similarity ofμ, if E is measurable andμ(E) = 0,
then μ(s−1

m (E)) = 0 for m = 1, . . . , M . In particular, since μ(sm (�) ∩ sm′ (�)) = 0 for m �= m′, we
have that μ(s−1

m (�m ∩ �m′ )) = 0 for m �= m′. Then, using the fact that μ is supported in �, we have

μ(�m′ ) = ∑
m pmμ(s−1

m (�m′ )) = ∑
m pmμ(�∩s−1

m (�m′ )) = ∑
m pmμ(s−1

m (�m ∩�m′ )) = pm′μ(�),
as claimed.
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where (again with the convention that an empty product equals 1)

pm :=
�∏

i=1

pmi .

In particular,
μ(�m) = pm μ(�). (20)

Example 2.1 By choosing pm = ρd
m form = 1, . . . , M and normalising appropriately,

we can obtain μ = Hd |� , where Hd is the d-dimensional Hausdorff measure on R
n

(note that in this case, (18) holds by (14)). We recall that Hn is proportional to n-
dimensional Lebesgue measure [9, §3.1].

Given an IFS attractor � and two self-similar measures μ and μ′, with associated
weights (p1, . . . , pM ) and (p′

1, . . . , p
′
M ), we define t∗ > 0, if it exists, to be the

largest positive real number such that the integral I�,� converges for 0 ≤ t < t∗. In
[13, Lem. A.4], we showed that if � is disjoint, then t∗ exists and is the unique positive
real solution of the equation

M∑
m=1

pm p′
mρ−t∗

m = 1. (21)

Our conjecture is that the same holds for non-disjoint �, under the assumption of the
OSC (13). As yet, we have not been able to prove this conjecture in its full generality.
However, we shall proceed under the assumption that it holds, noting that it is well
known to hold, with t∗ = d, in the special case where μ = μ′ = Hd |� for d =
dimH(�) (see, e.g. [13, Corollary A.2]), which is the case of relevance for the integral
equation application from [6] that we study in Sect. 7. We comment that whenμ = μ′
the quantity t∗ is sometimes referred to as the “electrostatic correlation dimension”
of μ [19, Defn 6]. This and related notions of the “dimension” of a measure μ give,
amongst other things, lower bounds on the Hausdorff dimension of the support of μ

(which may be strictly smaller than that of �), and important information about the
asymptotic behaviour of the Fourier transform of μ (see, e.g.[24]).

We note that if the IFS is homogeneous, then (21) can be solved analytically to give

t∗ = log

(
M∑

m=1

pm p′
m

)
/ log ρ, (22)

which reduces to t∗ = d in the case μ = μ′ = Hd |� (where pm = p′
m = ρd ).

Self-similar measures sometimes possess useful symmetry properties. Let T :
R
n → R

n be an isometry, with T (x) = AT x+δT for some orthogonal matrix AT and
some translation vector δT . We say that μ is invariant under T if μ(T (E)) = μ(E)

for all measurable E ⊂ R
n . If μ is invariant under T , then μ is also invariant under
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T−1, the push-forward measure μ ◦ T−1 : E �→ μ(T−1(E)) coincides with μ, and
T (�) = �, so that by [4, Thm. 3.6.1], we have that, for all measurable f ,

∫
�

f (T (x))dμ(x) =
∫

�

f (x)dμ(x). (23)

Remark 2.2 Determining a complete list of isometries T under which a given self-
similar measure μ is invariant, directly from the IFS {s1, . . . , sM } and weights
p1, . . . , pM , appears to be an open problem. However, for specific examples, it is
often straightforward to determine the admissible T , as we demonstrate in Sect. 5 and
Sect. 7. In the case μ = Hd |� (see Sect. 5.1-Sect. 5.4), a necessary and sufficient con-
dition for μ to be invariant under T is that T (�) = �, because Hd is invariant under
isometries of Rn . For μ �= Hd |� , it is still necessary that T (�) = �, but no longer
sufficient (see Sect. 5.5). Generically, a self-similar measure μ may not be invariant
under any non-trivial isometries T (see Sect. 7.1).

3 Similarity

We assume henceforth that � is the attractor of an IFS {s1, . . . , sM } of contracting
similarities satisfying the OSC and that μ and μ′ are self-similar measures on �, with
associated weights (p1, . . . , pM ) and (p′

1, . . . , p
′
M ).

As mentioned in Sect. 1, our approach to deriving representation formulas for (1)
will be based on decomposing the integral I�,� into sums of integrals over pairs of
subsets of �. For any two vector indices m,m′ ∈ � (possibly of different lengths),
we define the sub-integral

Im,m′ :=
∫

�m

(∫
�m′

�t (x, y)dμ
′(y)

)
dμ(x).

Note that the original integral I�,� = I∅,∅ is included in this definition.
Central to our approach will be identifying when two sub-integrals Im,m′ and In,n′

are similar, in the sense that

Im,m′ = aIn,n′ + b, (24)

for some a > 0 and b ∈ R that we can determine explicitly in terms of the parameters
of the IFS and the measures μ and μ′.

The simplest instance of similarity occurswhenμ = μ′, inwhich case the symmetry
of the integrand (i.e. the fact that �t (x, y) = �t (y, x)), combined with Fubini’s
theorem, provides the following elementary result (which was used in the example in
Sect. 1, for which I1,2 = I2,1 etc.).

Proposition 3.1 If μ = μ′, then Im,n = In,m for each m,n ∈ �.
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Other instances of similarity may be associated with the IFS structure (as for the
derivation of (5) and (8), in the example in Sect. 1) and/or with other geometrical
symmetries (as for the observation that I1,2 = I2,3 etc., in the example in Sect. 1).
The following result provides sufficient conditions under which a given pair of sub-
integrals Im,m′ and In,n′ are similar in this manner. We recall that the notion of a
self-similar measure being invariant under an isometry T was defined in Sect. 2 and
that the question of determining for which isometries this holds was discussed in
Remark 2.2. If no non-trivial isometries can be determined forμ orμ′, one can always
take T and T ′ to be the identity in the following.

Proposition 3.2 Let m,m′,n,n′ ∈ �. Let T and T ′ be isometries of Rn such that μ

and μ′ are invariant under T and T ′ respectively. Suppose there exists � > 0 such
that

|sm(T (s−1
n (x))) − sm′(T ′(s−1

n′ (y)))| = �|x − y|, x, y ∈ R
n . (25)

Then,

Im,m′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pm p′
m′

pn p′
n′

�−t In,n′ , t ∈ (0, t∗),

pm p′
m′

(
μ(�)μ′(�) log � + 1

pn p′
n′
In,n′

)
, t = 0.

(26)

Proof By (19), and the invariance of μ and μ′ with respect to T and T ′, we have that

Im,m′ = pm p′
m′

∫
�

∫
�

�t (sm(x), sm′(y))dμ′(y)dμ(x)

= pm p′
m′

∫
�

∫
�

�t (sm(T (x)), sm′(T ′(y)))dμ′(y)dμ(x), (27)

In,n′ = pn p
′
n′

∫
�

∫
�

�t (sn(x), sn′(y))dμ′(y)dμ(x). (28)

Condition (25) implies that

|sm(T (x)) − sm′(T ′(y))| = �|sn(x) − sn′(y)|, x, y ∈ R
n,

which in turn, by (3), implies that

�t (sm(T (x)), sm′ (T ′(y))) =
{

�−t�t (sn(x), sn′ (y)), t ∈ (0, t∗),
log � + �t (sn(x), sn′ (y)), t = 0,

x, y ∈ R
n,

and combining this with (27)–(28) gives the result. ��
The following result provides an equivalent characterisation of the sufficient condi-

tion (25) in terms of the scaling factors, orthogonalmatrices and translations associated
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with the maps sm, sm′ , sn, sn′ , T and T ′ (see (16) for the definition of the notation ρm,
Am, δm etc.). We remark that a necessary and sufficient condition for (30) to hold is that

ρm

ρm′
= ρn

ρn′
. (29)

Proposition 3.3 Let T x = AT x + δT and T ′x = AT ′x + δT ′ . Then, condition (25)
holds if and only if the following three conditions are satisfied:

ρmρ−1
n = ρm′ρ−1

n′ = �, (30)

AmAT A
−1
n = Am′ AT ′ A−1

n′ , (31)

δm − δm′ − ρmAm(AT ρ−1
n A−1

n δn − δT ) + ρm′ Am′ (AT ′ρ−1
n′ A−1

n′ δn′ − δT ′ ) = 0. (32)

Proof We first note that (25) is equivalent to

|ρmAm(AT ρ−1
n A−1

n (x − δn) + δT ) + δm

− ρm′ Am′ (AT ′ρ−1
n′ A−1

n′ (y − δn′ ) + δT ′ ) − δm′ | = �|x − y|, x, y ∈ R
n . (33)

It is easy to check that (30)–(32) are sufficient for (33) (and hence for (25)). To see
that they are also necessary, suppose that (33) holds. Then, taking x = y = 0 in (33)
gives (32). Combining this with (33) gives

|ρmρ−1
n AmAT A

−1
n x − ρm′ρ−1

n′ Am′ AT ′ A−1
n′ y| = �|x − y|, x, y ∈ R

n, (34)

and taking first x = 0 and y �= 0, then x �= 0 and y = 0 in this equation gives

|ρm′ρ−1
n′ Am′ AT ′ A−1

n′ y| = ρm′ρ−1
n′ |y| = �|y|, y ∈ R

n,

|ρmρ−1
n AmAT A

−1
n x | = ρmρ−1

n |x | = �|x |, x ∈ R
n,

from which we deduce (30). Finally, combining (30) with (34) gives

|AmAT A
−1
n x − Am′ AT ′ A−1

n′ y| = |x − y|, x, y ∈ R
n,

or, equivalently,

|x − (AmAT A
−1
n )−1Am′ AT ′ A−1

n′ y| = |x − y|, x, y ∈ R
n . (35)

Now, we note that if B is an n × n matrix and |x − By| = |x − y| for all x, y ∈ R
n ,

then B is the identity matrix. To prove this, suppose that B is not the identity matrix.
Then, there exists y �= 0 such that By �= y, and setting x = By gives |x − By| = 0
and |x − y| �= 0, so that |x − By| �= |x − y|. Hence, (35) implies that

(AmAT A
−1
n )−1Am′ AT ′ A−1

n′ (36)

is the identity matrix, which is equivalent to (31). ��
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Remark 3.4 If Am, Am′ , An and An′ are all equal to the identitymatrix, and AT = AT ′ ,
then condition (31) is automatically satisfied. If, further, δT and δT ′ are both zero, and
condition (30) holds, then condition (32) reduces to

δm − δm′ = �AT (δn − δn′). (37)

4 Algorithm for deriving representation formulas

We present our algorithm for deriving representation formulas for the integral I�,� in
Algorithm 1 below. The output of the algorithm, when it terminates, is a linear system
of the form

Ax = Br + b, (38)

where x = [Ims,1,m
′
s,1

, . . . , Ims,ns ,m
′
s,ns

]T ∈ R
ns is a vector of “fundamental” singu-

lar sub-integrals (the subscript s standing for “singular”), with the original integral
Ims,1,m

′
s,1

= I�,� as its first entry, r = [Imr ,1,m
′
r ,1

, . . . , Imr ,nr ,m′
r ,nr

]T ∈ R
nr is a vec-

tor of “fundamental” regular sub-integrals (the subscript r standing for “regular”),
A ∈ R

ns×ns and B ∈ R
ns×nr are matrices, and b ∈ R

ns is a vector of logarithmic
terms present only in the case t = 0. The algorithm is based on repeated subdivision
of the integration domain and the identification of similarities between the resulting
sub-integrals (in the sense of (24)), and theword “fundamental” refers to a sub-integral
which, when encountered in the subdivision algorithm, is not found to be similar to
any other sub-integral previously encountered. Whether the algorithm terminates, and
the resulting lengths ns and nr of the vectors x and r, depends on the measures μ and
μ′, as we shall demonstrate in Sect. 5.

If the algorithm terminates, one can obtain numerical approximations to the val-
ues of the integrals in x, including the original integral I�,� , by applying a suitable
quadrature rule to the regular integrals in r, solving the system (38) and extracting the
relevant entry from the solution vector x. We discuss this in more detail in Sect. 6.

Remark 4.1 If � is disjoint, then the algorithm terminates with ns = 1 and recovers
the result of [13, Thm 4.6].

Remark 4.2 Our algorithm (in line 9) requires us to specify a subdivision strategy.With
reference to the notation in Algorithm 1, we have considered two such strategies:

• Strategy 1: Always subdivide both �ms,n and �m′
s,n
, i.e. take (with (∅,m) inter-

preted as (m))

In = {(ms,n,m)}Mm=1, I ′
n = {(m′

s,n,m)}Mm=1. (39)

• Strategy 2: Subdivide only the larger of �ms,n and �m′
s,n
, i.e. take

⎧⎪⎨
⎪⎩
In = {(ms,n,m)}Mm=1 and I ′

n = {m′
s,n}, if diam(�ms,n ) > diam(�m′

s,n
),

In = {ms,n} and I ′
n = {(m′

s,n,m)}Mm=1, if diam(�ms,n ) < diam(�m′
s,n

),

In = {(ms,n,m)}Mm=1 and I ′
n = {(m′

s,n,m)}Mm=1, if diam(�ms,n ) = diam(�m′
s,n

).

(40)
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If the IFS is homogeneous, then the two subdivision strategies coincide, since using
Strategy 2, we never encounter pairs of subsets with different diameters.

1 Initialise A = [ ], B = [ ], r = [ ], b = [ ], nr = 0, x = [I�,�], ns = 1, and n = 0.
2 while n < ns do
3 Increment n = n + 1.
4 Append a 1 × ns row of zeros to A.
5 Set An,n = 1.
6 if B is non-empty then
7 Append a 1 × nr row of zeros to B.

end
8 Append a single zero entry to b.
9 Subdivide �ms,n = ⋃

n∈In �n and �m′
s,n

= ⋃
n′∈I′

n
�n′ according to some subdivision

strategy producing index sets In ,I′
n ⊂ �.

10 for each pair (n, n′) ∈ In × I′
n do

11 if In,n′ is singular then
12 if In,n′ is similar to an existing entry of x then
13 Let i(n, n′), a(n,n′) and b(n, n′) be such that

In,n′ = a(n,n′)Ims,i(n,n′),m′
s,i(n,n′)

+ b(n,n′).
14 Update An,i(n,n′) = An,i(n,n′) − a(n,n′).
15 Update bn = bn + b(n,n′).

else
16 Add In,n′ as a new entry in x.
17 Increment ns = ns + 1.
18 Augment A by an n × 1 column of zeros.
19 Set An,ns = −1.

end
else

20 if In,n′ is similar to an existing entry of r then
21 Let i(n, n′) and a(n, n′) and b(n, n′) be such that

In,n′ = a(n,n′)Imr ,i(n,n′),m′
r ,i(n,n′)

+ b(n, n′).
22 Update Bn,i(n,n′) = Bn,i(n,n′) + a(n, n′).
23 Update bn = bn + b(n,n′).

else
24 Add In,n′ as a new entry in r.
25 Increment nr = nr + 1.
26 Augment B by an n × 1 column of zeros.
27 Set Bn,nr = 1.

end
end

end
end

Algorithm 1 Algorithm for deriving representation formulas for the integral (1).

Remark 4.3 Our algorithm (in line 11) requires the user to be able to determinewhether
an integral In,n′ is singular or regular, i.e. whether �n intersects �n′ non-trivially or
not. Deriving a criterion for this based solely on the indices n and n′ and the IFS
parameters appears to be an open problem. However, for the examples considered in
Sect. 5, we were able to determine this by inspection on a case-by-case basis. We
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emphasize that one does not need to specify the type of singularity, i.e. the dimension
of �n ∩ �n′ , merely whether �n ∩ �n′ is empty or not.

Remark 4.4 Our algorithm (in lines 12 and 20) requires a way of checking for “simi-
larity” of pairs of subintegrals. For this, we use Propositions 3.1–3.3, combined with
a user-provided list of isometries T and T ′ under which μ and μ′ are respectively
invariant. Then, to verify (25) in Proposition 3.2, we use Proposition 3.3: we first
check (30), then (31), then (32). As noted in Remark 3.4, in the special case where
Am, Am′ , An and An′ are all equal to the identity matrix, AT = AT ′ , and δT and δT ′
are both zero, it is sufficient to check (30) and then (37).

The question of how to determine the permitted isometries T and T ′ was discussed
in Remark 2.2. If the user is not able to provide the full list of isometries for μ and μ′,
it may be that the algorithm still terminates, but does so with a larger number ns of
fundamental singular integrals than would be obtained with the full list of isometries.
However, in Sect. 5.5, we provide an example where failing to specify a non-trivial
isometry would lead to non-termination of the algorithm.

Remark 4.5 The matrix A (when the algorithm terminates) depends not only on the
IFS {s1, . . . , sM } and the weights p1, . . . , pM , but also on the subdivision strategy
used in line 9 of the algorithm. For both subdivision strategies described in Remark
4.2, the first column of A is guaranteed to be of the form (α, 0 . . . , 0)T for some
α > 0, because of the fact that μ(�m ∩ �m′) = 0 for m �= m′. For all the examples
in Sect. 5.1–Sect. 5.4, the matrix A is upper triangular, with diagonal entries that are
all non-zero when t < t∗, so that A is invertible when t < t∗. However, the upper-
triangularity of A is not guaranteed in general, as Sect. 5.5 illustrates (see in particular
(47)), and proving that A is invertible whenever the algorithm terminates remains an
open problem.

5 Examples

We now report the results of applying Algorithm 1 to some standard examples.

5.1 Sierpinski triangle and Hausdorff measure

We first consider the case where � ⊂ R
2 is the Sierpinski triangle, the attractor of the

homogeneous IFS with M = 3 and

s1(x) = 1

2
x, s2(x) = 1

2
x +

(
1

2
, 0

)
, s3(x) = 1

2
x +

(
1

4
,

√
3

4

)
,

for which d = dimH(�) = log 3/ log 2 ≈ 1.59. The first two levels of subdivision of
� are illustrated in Fig. 2. We shall assume for simplicity that μ = μ′ = Hd |� , so that
t∗ = d. Since we are working with Hausdorff measure, as discussed in Remark 2.2,
the isometries T under which μ is invariant are precisely those for which T (�) = �,
which in this case are the elements of the dihedral group D3 corresponding to the
symmetries of the equilateral triangle. The two subdivision strategies (39) and (40)
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Fig. 2 Level 1 and 2 subsets of the Sierpinski triangle

coincide, since the IFS is homogeneous, and Algorithm 1 terminates after finding two
fundamental singular sub-integrals, with x = (I�,�, I1,2)T . The integral I1,2 captures
the interaction between neighbouring subsets of � of the same size, intersecting at a
point. The linear system (38) satisfied by these unknowns is as follows:

(
σ1 −6
0 σ2

)(
I�,�

I1,2

)
=

(
0

R1,2

)
+

(
b1
b2

)
, (41)

where

σ1 = 1 − 2t

3
∈
(
0,

2

3

]
, σ2 = 1 − 2t

9
∈
(2
3
,
8

9

]
, t ∈ [0, d),

(
b1
b2

)
=

⎧⎪⎪⎨
⎪⎪⎩

(0, 0)T , t ∈ (0, d),

− log 2Hd(�)2

3

(
1,

1

27

)T

, t = 0,
(42)

and
R1,2 = 3I11,21 + I11,22 + 2I11,23 + 2I12,23

is the sum of the regular integrals arising from the decomposition of I1,2 into level 2
subsets. In the notation of Sect. 4, we have

A =
(

σ1 −6
0 σ2

)
, B =

(
0 0 0 0
3 1 2 2

)
,

and r = (I11,21, I11,22, I11,23, I12,23)T . Then

A−1 =
⎛
⎜⎝

1

σ1

6

σ1σ2

0
1

σ2

⎞
⎟⎠ ,
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and, solving the system, we obtain the representation formulas

I1,2 = 1

σ2
(R1,2 + b2), I�,� = 1

σ1

(
6

σ2
(R1,2 + b2) + b1

)
. (43)

5.2 Vicsek fractal and Hausdorff measure

Next, we consider the case where � ⊂ R
2 is the Vicsek fractal (shown in Fig. 3), the

attractor of the homogeneous IFS with M = 5 and

s1(x) =1

3
x, s2(x) = 1

3
x +

(
2

3
, 0

)
, s3(x) = 1

3
x +

(
2

3
,
2

3

)
,

s4(x) = 1

3
x +

(
0,

2

3

)
, s5(x) = 1

3
x +

(
1

3
,
1

3

)
,

with d = dimH(�) = log 5/ log 3 ≈ 1.47. Again, we assume thatμ = μ′ = Hd |� , so
that t∗ = d. In this case, the isometries T under which μ is invariant are the elements
of the dihedral group D4 corresponding to the symmetries of the square. The first
two levels of subdivision of � are illustrated in Fig. 3, from which it is clear that
the situation is similar to that for the Sierpinski triangle of Sect. 5.1, as the only new
singularities at level one are point singularities, which are similar (in the sense of (25))
to those arising at level two. Again, our two subdivision strategies coincide because
the IFS is homogeneous, and Algorithm 1 terminates after finding two fundamental
singular sub-integrals, with x = (

I�,�, I1,5
)T . For brevity, we do not present the full

linear system satisfied by these unknowns, but rather just report the matrix A of (38),
which is

A =
(

σ1 −8
0 σ2

)
, so that A−1 =

⎛
⎜⎝

1

σ1

8

σ1σ2

0
1

σ2

⎞
⎟⎠ ,

Fig. 3 Level 1 and 2 subsets of the Vicsek fractal
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where

σ1 = 1 − 3t

5
∈
(
0,

4

5

]
, σ2 = 1 − 3t

25
∈
(4
5
,
24

25

]
, t ∈ [0, d).

5.3 Sierpinski carpet and Hausdorff measure

Next, we consider the case where � ⊂ R
2 is the Sierpinski carpet, the attractor of the

homogeneous IFS with M = 8 and

s1(x) = 1

3
x, s2(x) = 1

3
x +

(
0,

1

3

)
, s3(x) = 1

3
x +

(
0,

2

3

)
, s4(x) = 1

3
x +

(
1

3
,
2

3

)
,

s5(x) = 1

3
x+

(
2

3
,
2

3

)
, s6(x) = 1

3
x+

(
2

3
,
1

3

)
, s7(x) = 1

3
x+

(
2

3
, 0

)
, s8(x) = 1

3
x+

(
1

3
, 0

)
,

for which d = dimH(�) = log 8/ log 3 ≈ 1.89. The first two levels of subdivision
of � are illustrated in Fig. 2. We again assume that μ = μ′ = Hd |� , so that t∗ = d.
As for the previous example, the isometries T under which μ is invariant are the
elements of the dihedral group D4. Again, the two subdivision strategies (39) and (40)
coincide, since the IFS is homogeneous, and now Algorithm 1 terminates after finding
three fundamental singular sub-integrals, with x = (I�,�, I1,2, I2,4)T . The integrals
I1,2 and I2,4 capture the interaction between neighbouring subsets of the same size,
intersecting along a line segment and at a point, respectively (Fig. 4). In this case, the
matrix of (38) is as follows:

A =
⎛
⎝σ1 −16 −8

0 σ2 −σ4
0 0 σ3

⎞
⎠ , so that A−1 =

⎛
⎜⎜⎜⎜⎜⎝

1

σ1

16

σ1σ2

8σ2 + 16σ4
σ1σ2σ3

0
1

σ2

σ4

σ2σ3

0 0
1

σ3

⎞
⎟⎟⎟⎟⎟⎠

,

where, for t ∈ [0, d),

σ1 = 1− 3t

8
∈
(
0,

7

8

]
, σ2 = 1− 3.3t

64
∈
(5
8
,
61

64

]
, σ3 = 1− 3t

64
∈
(7
8
,
63

64

]
, σ4 = 3t

16
∈
( 1

16
,
1

2

]
.

5.4 Koch snowflake and Lebesguemeasure

Next, we consider the case where � ⊂ R
2 is the Koch snowflake, the attractor of the

non-homogeneous IFS with M = 7 and

s1(x) = 1√
3
A1x, A1 =

( √
3
2 − 1

2
1
2

√
3
2

)
(anticlockwise rotation by π/6),

sm(x) = 1

3
x + 2

3
(cosαm, sin αm), αm = (2m − 1)π

6
, m = 2, . . . , 7,
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Fig. 4 Level 1 and 2 subsets of the Sierpinski carpet

for which d = dimH(�) = 2. The first three levels of subdivision of � are illustrated
in Fig. 5. We assume that μ and μ′ are both equal to the Lebesgue measure on R

2,
restricted to �, so, again, t∗ = d. (As mentioned in Example 2.1, μ is proportional
to H2|� .) The isometries T under which μ is invariant are the elements of the dihe-
dral group D6 corresponding to the symmetries of the hexagon. In this case, both
subdivision strategies produce a terminating algorithm, but with different results.

With Strategy 1 (subdividing both subsets), Algorithm 1 terminates after finding
four fundamental singular sub-integrals, with x = (I�,�, I1,2, I2,3, I11,25)T . The inte-
gral I1,2 captures the interaction between neighbouring subsets of�, intersecting along
a Koch curve. The integrals I2,3 and I11,25 both capture point interactions, but of dif-
ferent types: in I2,3, the two interacting subsets are the same size, while in I11,25, one
is three times the diameter of the other. I11,25 arises as a new fundamental sub-integral
in the subdivision of I1,2, but in the subdivision of I11,25, one obtains just one singular
sub-integral, I117,255, which is similar to I11,25, so the algorithm terminates.

For brevity, we do not report the resulting linear system satisfied by (I�,�, I1,2, I2,3,
I11,25)T , but instead present the simpler result obtained with Strategy 2 (subdividing
the subset with the largest diameter), for which Algorithm 1 terminates after finding
only three fundamental singular sub-integrals, with x = (I�,�, I1,2, I2,3)T . With this
strategy, in the subdivision of I1,2, we subdivide only �1, leaving �2 intact, obtaining
the edge interaction sub-integrals I12,2 and I17,2, both of which are similar to I1,2, and

Fig. 5 The level one, two and three subdivisions of the Koch snowflake

123



Numerical Algorithms

the point interaction sub-integral I11,2, which is similar to I2,3. The resulting linear
system is

⎛
⎝σ1 −12 −12

0 σ2 −1
0 0 σ3

⎞
⎠

⎛
⎝ I�,�

I1,2
I2,3

⎞
⎠ =

⎛
⎝ R�,�

R1,2
R2,3

⎞
⎠ +

⎛
⎝ b1
b2
b3

⎞
⎠ , (44)

where

σ1 = 1− 3t/2

9
− 2.3t

27
∈
(
0,

22

27

]
, σ2 = 1− 2.3t/2

9
∈
( 1
3
,
7

9

]
, σ3 = 1− 3t

81
∈
( 26
27

,
80

81

]
, t ∈ [0, d),

⎛
⎝ b1
b2
b3

⎞
⎠ =

⎧⎪⎨
⎪⎩

(0, 0, 0)T , t ∈ (0, d),

− log 3|�|2
27

(
7

2
,
1

9
,

41

13122

)T

, t = 0,
(45)

and
R�,� = 12I2,4 + 6I2,5, R1,2 = 2I13,2 + 2I14,2,

R2,3 =
(
3t/2

9
+ 4.3t

81

)
I2,4 + 2.3t

81
I2,5 + 2.3t/2

9
I13,2 + 4.3t/2

9
I14,2 + 4I21,33 + 2I21,34 + 6I22,32

+ 2I22,33 + 4I22,34 + 2I22,35 + 4I22,36 + 6I22,37 + 4I23,34 + I27,34

are linear combinations of regular integrals.
Hence,

A =
⎛
⎝σ1 −12 −12

0 σ2 −1
0 0 σ3

⎞
⎠ , so that A−1 =

⎛
⎜⎜⎜⎜⎜⎝

1

σ1

12

σ1σ2

12(1 + σ2)

σ1σ2σ3

0
1

σ2

1

σ2σ3

0 0
1

σ3

⎞
⎟⎟⎟⎟⎟⎠

,

and solving the system gives

I2,3 = 1

σ3

(
R2,3 + b3

)
, I1,2 = 1

σ2

(
R1,2 + b2 + 1

σ3

(
R2,3 + b3

))
,

and

I�,� = 1

σ1

(
R�,� + b1 + 12

σ2

(
R1,2 + b2

)
+ 12

σ3

(
1 + 1

σ2

)(
R2,3 + b3

))
. (46)

5.5 0 = [0, 1], including non-terminating examples

We now consider a class of simple one-dimensional examples that illustrates the
dependence of the output of Algorithm 1 on the choice of measures μ and μ′, and the
fact that it does not always terminate.
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Fig. 6 The level one, two, three and four subdivisions of the interval [0, 1], viewed as the attractor of the
IFS {s1, s2} with s1(x) = ρx and s2(x) = (1 − ρ)x + ρ for some ρ ∈ (0, 1/2)

Given ρ ∈ (0, 1/2], consider the IFS {s1, s2} in R with s1(x) = ρx and s2(x) =
(1 − ρ)x + ρ, for which � = [0, 1]. The first four levels of subdivision of � are
illustrated in Fig. 6 in the case ρ ∈ (0, 1/2). Let μ be the invariant measure on � for
some weights p1, p2 ∈ (0, 1)with p1+ p2 = 1, and letμ′ = μ, so that Im,m′ = Im′,m
for all m,m′ ∈ � by Proposition 3.1. For definiteness, we assume the normalisation
μ(�) = 1. If p1 = ρ, then p2 = 1 − ρ and μ is Lebesgue measure restricted to
[0, 1] (recall Example 2.1), which is invariant under the operation Tref of reflection
with respect to the point x = 1/2. If p1 �= ρ, then μ is not Lebesgue measure, and
the only isometry T under which μ is invariant is the identity.

If ρ = 1/2, then the IFS is homogeneous, so Strategy 1 and Strategy 2 coincide,
and Algorithm 1 always terminates, for any μ, finding just 2 fundamental singular
sub-integrals, I�,� and I1,2.

If ρ ∈ (0, 1/2), then the IFS is inhomogeneous, so Strategy 1 and Strategy 2 differ,
and the outcome of Algorithm 1 depends on the choice of strategy, and on the measure
μ. We consider four cases:

• Case 1: Lebesgue measure, Strategy 1
Algorithm 1 terminates, finding 3 fundamental singular sub-integrals, I�,� , I1,2
and I12,21.2 (I122,211 is similar to I2,1 = I1,2 in this case, taking T = T ′ = Tref .
This is an example where, if the non-trivial isometry Tref had not been identified,
the algorithm would not have terminated (cf. Case 3 below).)

• Case 2: Lebesgue measure, Strategy 2

2 The matrix A arising in (38) in this case, with x = (I�,�, I1,2, I12,21)
T , is given by

A =
⎛
⎝ 1 − ω1 − ω2 −2 0

0 1 −1
0 −ω1ω2 1

⎞
⎠ , (47)

where ω1 = ρ2−t and ω2 = (1 − ρ)2−t . Noting that det(A) = (1 − ω1 − ω2)(1 − ω1ω2), one can check
that A is invertible for all (ρ, t) ∈ (0, 1/2] × [0, 2).
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If ρ = ρ∗ := 3−√
5

2 ≈ 0.38, the unique positive solution of ρ = (1 − ρ)2,
Algorithm 1 terminates with two fundamental singular sub-integrals I�,� and I1,2.
(In this case, I1,21 is similar to I2,1 = I1,2, again taking T = T ′ = Tref .)
If ρ ∈ (0, ρ∗) ∪ (ρ∗, 1/2), then Algorithm 1 terminates with four fundamental
singular sub-integrals I�,� , I1,2, I1,21 and I12,21. (The subdivision of I12,21 leads
to I122,211, which is similar to I2,1 = I1,2, as in Case 1.)

• Case 3: Non-Lebesgue measure, Strategy 1:
In this case, Algorithm 1 does not terminate, since we encounter an infinite
sequence of fundamental singular sub-integrals

I�,�, I1,2, I12,21, I122,211, I1222,2111, I12222,21111 . . . , (48)

none of which is found to be similar to any other. To see this, note that for a
sub-integral �m,m′ in this sequence, with m = (1, 2, . . . , 2) (k 2’s) and m′ =
(2, 1, . . . , 1) (k 1’s), we have

ρm

ρm′
= ρ(1 − ρ)k

ρk(1 − ρ)
=

(
1 − ρ

ρ

)k−1

=: Rk . (49)

Then, since 0 < ρ < 1−ρ < 1, the sequence (Rk)
∞
k=0 ismonotonically increasing,

with Rk ≥ 1 for k ≥ 1. This implies that (29) (and hence (30)) is not satisfied by
any pair of elements of the sequence (48), except for I1,2 and I122,211. However,
since μ is not Lebesgue measure, I1,2 and I122,211 are not found to be similar,
because μ is not invariant under Tref (so one cannot use it in Proposition 3.2), and
(32) fails with T = T ′ the identity.

• Case 4: Non-Lebesgue measure, Strategy 2:
In this case, Algorithm 1 can only terminate if ρ is a solution of a polynomial
equation

(1 − ρ) jρk = 1, or (1 − ρ) j = ρk, (50)

for some j, k ∈ N0 with either j > 0 or k > 0. In particular, Algorithm 1 does not
terminate if ρ is transcendental. To see that (50) is necessary for termination of the
algorithm, we note that, in the subdivision of I1,2, Strategy 2 will produce pairs
of subsets of � (intervals) that intersect at the point x = ρ, and the lengths of the
intervals in each pair will be in the ratio ρ(1−ρ) j : ρk(1−ρ) for some j, k ∈ N0.
For the sub-integrals associated with any two distinct pairs of such intervals to be
found to be similar, the ratio of their lengths must coincide (by (29)), implying
that

ρ(1 − ρ) j1

ρk1(1 − ρ)
= ρ(1 − ρ) j2

ρk2(1 − ρ)
, or, equivalently, (1 − ρ) j1− j2ρk2−k1 = 1,

for some j1, k1, j2, k2 ∈ N0 with either j1 �= j2 or k1 �= k2, giving (50).
If ρ is the solution of a polynomial (50), then Algorithm 1 may terminate, but the
number of fundamental singular sub-integrals encountered will depend on ρ. For
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instance, if ρ = ρ∗, the algorithm terminates with four fundamental singular sub-
integrals I�,� , I1,2, I1,21 and I12,21 (since in this case I122,211 is similar to I1,21).
If ρ = ρ∗∗ ≈ 0.43, defined to be the unique positive solution of ρ2 = (1 − ρ)3,
or ρ = ρ∗∗∗ ≈ 0.32, defined to be the unique positive solution of ρ = (1 − ρ)3,
the algorithm terminates with five fundamental singular sub-integrals I�,� , I1,2,
I1,21, I12,21 and I122,211 (since in these cases I1222,211 is similar to I1,2 and I1,21
respectively). For ρ ∈ (0, 1/2) \ {ρ∗, ρ∗∗, ρ∗∗∗}, if the algorithm does terminate,
it will find at least six fundamental singular sub-integrals, since then none of I�,� ,
I1,2, I1,21, I12,21, I122,211 and I1222,211 are found to be similar to each other.

6 Numerical quadrature and error estimates

Once Algorithm 1 has been applied, and the system (38) has been solved, producing a
representation formula for the singular integral I�,� in terms of regular sub-integrals,
a numerical approximation of I�,� can be obtained by applying a suitable quadrature
rule to the regular sub-integrals. Let us call the resulting approximation Q�,� . We
discuss some possible choices of quadrature rule below. But first, we make a general
comment on the error analysis of such approximations. Suppose that the quadrature
rule chosen can compute each of the regular sub-integrals in the vector r with absolute
error ≤ E for some E ≥ 0. Then, the absolute quadrature error in computing I�,�

using the representation formula (38) can be bounded by

|I�,� − Q�,�| ≤ ‖A−1‖∞‖B‖∞E . (51)

The constant ‖A−1‖∞‖B‖∞ depends on the problem at hand and is expected to blow
up as t → t∗. Indeed, for the examples in Sect. 5.1-Sect. 5.4 (for which t∗ = d =
dimH(�)) one can check that

‖A−1‖∞‖B‖∞ ≤ C

d − t
, t ∈ [0, d),

for some constant C > 0, independent of t . This follows from the fact that in all these
examples, the constant σ1 = O(d − t) as t → d, while σ2, σ3 etc. remain bounded
away from zero in this limit.

We now return to the choice of quadrature rule for the approximation of the regular
sub-integrals in r, which are double integrals of smooth functions over pairs of self-
similar subsets of � with respect to a pair of invariant measures μ and μ′. We shall
restrict our attention to tensor product quadrature rules, so that it suffices to consider
methods for evaluating a single integral of a smooth function over a single self-similar
subset �m of � with respect to a single invariant measure μ. In fact, it is enough to
consider the case �m = �, since the more general case can then be treated using (19).
Hence, we consider quadrature rules for the evaluation of the integral

I [ f ;μ] :=
∫

�

f dμ, (52)
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for an integrand f that is smooth in a neighbourhood of �. We consider three types
of quadrature:

• Gauss rules: Highly accurate, but currently only practically applicable for the
case n = 1, i.e. � ⊂ R.3

• Composite barycentre rules: Less accurate than Gauss rules, but can be applied
to � ⊂ R

n for n > 1.
• Chaos game rules: Monte-Carlo type rules which converge (in expectation) at a
relatively slow but dimension-independent rate, which makes them well-suited to
high-dimensional problems (large d = dimH(�)).

In the following three sections, we provide further details of these methods and any
theory supporting them, before comparing their performance numerically in Sect. 7.

6.1 Gauss rules in the case 0 ⊂ R

In general, N -point Gauss rules require the existence of a set of polynomials {p j }Nj=0,
orthogonal with respect to the measure μ. A sufficient condition for the existence
of such polynomials is the positivity of the Hankel determinant, which, in the case
of self-similar invariant measures, is implied by suppμ = � having infinitely many
points [11, §1.1]. We then define the N -point Gauss rule on � as

QG
N [ f ;μ] :=

N∑
j=1

w j f (x j ), (53)

where x j , j = 1, . . . , N , are the zeros of pN . Gauss rules are interpolatory, so the
weights (also known asChristoffel numbers)may be defined byw j := ∫

�
� j (x)dμ(x),

where � j is the j th corresponding Lagrange polynomial (see, e.g [29, (5.3)]). The
weights are positive (see, for example [12, Theorem 1.46]), which generalises to any
positive measure μ.

For classical μ, a range of algorithms (see, e.g. [14, 26]) exist for efficient O(N )

computation of theweights and nodes in (53). However, standard approaches involving
polynomial sampling break down for singular measures [17, 18]. This presents an
obstacle for the evaluation of (52) in our context of self-similar invariant measures,
which are in general singular when dimH(�) �= n. However, in the special case n = 1,
where � ⊂ R, this issue can be overcome by applying the stable Stieltjes technique
proposed in [17, §5]4. It seems that a stable and efficient algorithm for the evaluation

3 Clenshaw-Curtis rules have also been studied in this context (see, e.g. [8]), but since Gauss and Clenshaw-
Curtis rules typically converge at a similar rate (see, e.g. [27] for the classical case), we shall for brevity
restrict our attention to the discussion of Gauss rules here.
4 There is an error in [17, Equation (32)]:

n−1∑
m=0

�n
i,m�n

i,m+1δi (rm + rm+1) should be replaced by 2
n−1∑
m=0

δi�
n
i,m�n

i,m+1rm+1. (54)
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of Gauss rules for the case where � ⊂ R
n , n > 1, has not yet been developed. Hence,

in this paper, we only consider Gauss rules for the case where � ⊂ R.
The error analysis for the Gauss rule follows the standard approach, giving the usual

exponential convergence as N → ∞. In the following, Hull(�) denotes the convex
hull of �.

Theorem 6.1 Let � ⊂ R be an IFS attractor, and let μ be a self-similar measure
supported on �. If f is analytic in a neighbourhood of Hull(�) ⊂ R, then

∣∣∣I [ f ;μ] − QG
N [ f ;μ]

∣∣∣ ≤ Ce−cN , N ∈ N,

for some constants C > 0 and c > 0, independent of N .

Proof Denote by p∗
2N−1 the L

∞(Hull(�))-best approximation to f , over the space of
polynomials of degree 2N − 1. By linearity and the exactness property [11, (1.17)],
we can write

∣∣∣I [ f ;μ] − QG
N [ f ;μ]

∣∣∣ =
∣∣∣I [ f − p∗

2N−1;μ] − QG
N [ f − p∗

2N−1;μ]
∣∣∣

≤ ∣∣I [ f − p∗
2N−1;μ]∣∣ +

∣∣∣QG
N [ f − p∗

2N−1;μ]
∣∣∣

≤ ‖ f − p∗
2N−1‖L∞(Hull(�))

(
μ(�) +

N∑
j=1

|w j |
)
.

Since the weights are positive,
∑N

j=1 |w j | = ∑N
j=1 w j = μ(�). The result then fol-

lows by applying classical approximation theory estimates to ‖ f − p∗
2N−1‖L∞(Hull(�)),

for example [29, Theorem 8.2]. ��

6.2 The composite barycentre rule

The basic idea of the composite barycentre rule (for more detail, see [13]) is to par-
tition � into a union of self-similar subsets of approximately equal diameter, then to
approximate f on each subset by its (constant) value at the barycentre of each subset.
Given a maximum mesh width h > 0, we define a partition of � using the following
set of indices:

Lh(�) := {
m = (m1, . . . ,m�) ∈ � : diam(�m) ≤ h and diam(�(m1,...,m�−1)) > h

}
.

(55)

The composite barycentre rule is then defined as

QB
h [ f ;μ] :=

∑
m∈Lh(�)

wm f (xm), (56)

where the weights and nodes are defined by wm := μ(�m) and xm :=∫
�m

x dμ(x)/μ(�m), respectively. The weights and nodes can be computed using
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simple formulas involving the IFS parameters of (11), as (see [13, (28)-(30)], and
recall (20))

wm = pmμ(�), xm = sm(x�), (57)

with

x� :=
∫
�
x dμ(x)∫

�
dμ(x)

=
(
I −

M∑
m=1

pmρm Am

)−1( M∑
m=1

pmδm

)
, (58)

where I is the n×n identity matrix and ρm , Am and δm ,m = 1, . . . , M , are as in (11).
The error analysis of the composite barycentre rule follows a standard Taylor series

approximation argument. The following is a simplified version of results in [13].

Theorem 6.2 [[13, Theorem 3.6 and Remark 3.9]] Let � ⊂ R
n be an IFS attractor,

and let μ be a self-similar measure supported on �.

(i) If f is Lipschitz continuous on Hull(�), then

∣∣∣I [ f ;μ] − QB
h [ f ;μ]

∣∣∣ ≤ Ch, h > 0,

for some C > 0 independent of h.
(ii) If f is differentiable in a neighbourhood ofHull(�), and its gradient is Lipschitz

continuous on Hull(�), then

∣∣∣I [ f ;μ] − QB
h [ f ;μ]

∣∣∣ ≤ Ch2, h > 0,

for some C > 0 independent of h.

If the IFS defining � is homogeneous, then h and h2 on the right-hand sides of
the above estimates can be replaced by N−1/d and N−2/d respectively, where N :=
|Lh(�)|.

6.3 Chaos game quadrature

Chaos game quadrature, described, e.g. in [10, (3.22)–(3.23)] and [16, § 6.3.1], is a
Monte-Carlo type approach, defined by the following procedure:

(i) Choose some x0 ∈ R
n , e.g. x0 = x� , the barycentre of �.

(ii) Select a realisation of the sequence {m j } j∈N of i.i.d. random variables taking
values in {1, . . . , M} with probabilities {p1, . . . , pM }.

(iii) Construct the stochastic sequence x j = sm j (x j−1) for j ∈ N.
(iv) For a given N ∈ N, define the chaos game quadrature approximation by

QC
N [ f ;μ] := 1

N

N∑
j=1

f (x j ). (59)
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For continuous f , the chaos game rule (59) will converge to (52) with probability one
(see the arguments in the appendix of [10]). While no error estimates were provided in
[10] or [16], in the numerical experiments of [13, §6] and Sect. 7 below, convergence
in expectation was observed at a rate consistent with an estimate of the form

E

[∣∣∣I [ f ;μ] − QC
N [ f ;μ]

∣∣∣
]

≤ CN−1/2, N ∈ N.

7 Numerical results and applications

Algorithm 1 and the quadrature approximations described in Sect. 6 have been imple-
mented in the open-source Julia codeIFSIntegrals, available atwww.github.com/
AndrewGibbs/IFSintegrals. In this section, we present numerical results illustrating
the accuracy of our approximations, comparing different quadrature approaches and
applying our method in the context of a boundary element method for acoustic scat-
tering by fractal screens.

7.1 Sierpinski triangle, Vicsek fractal, Sierpinski carpet and Koch snowflake

We first consider the application of our approach to the attractors considered in Sect.
5.1-Sect. 5.4, namely the Sierpinski triangle,Vicsek fractal, Sierpinski carpet andKoch
snowflake. However, in contrast to Sect. 5.1–Sect. 5.4, where representation formulas
were presented for the standard case where μ = μ′ = Hd |� (Lebesgue measure in
the case of the Koch snowflake), to demonstrate the generality of our approach, we
present numerical results for completely generic self-similar measures μ �= μ′, with
randomly chosen probability weights pm and p′

m , as detailed in Table 1. Table 1 also
documents the resulting values of t∗, as computed by solving (21), as well as the
numbers ns , nr , of fundamental singular and regular sub-integrals discovered by our
algorithm. In all cases, our algorithm terminated, using the same subdivision strategies
as in Sect. 5.1–Sect. 5.4, producing an invertible matrix A. However, for these non-
standard examples, there are no nontrivial isometries under which the measures are
invariant, so our algorithm took T = T ′ to be the identity throughout. As a result (cf.
the related discussion in Remark 4.4), the linear systems (38) are larger than those
obtained in the standard case documented in Sect. 5.1–Sect. 5.4, where additional
symmetries of the measures could be exploited.

In Fig. 7 (solid curves), we plot the relative error in our quadrature approximation
for I�,� , for three values of t = 0, 0.5, 1, obtained by solving the linear system
(38) obtained by Algorithm 1 (using subdivision strategy 2 for the Koch snowflake),
combined with composite barycentre rule quadrature for the evaluation of the regular
sub-integrals, for different values of the maximum mesh width h. In more detail, we
plot errors for h = diam(�)ρ�, for � = 0, . . . , �ref − 1, where �ref is the value of �

used for the reference solution (which is computed using the same method). For the
three homogeneous attractors, we take ρ = ρ1 = . . . = ρM (the common contraction
factor), while for the Koch snowflake, we take ρ = 1/

√
3 (the largest contraction

factor). For the Sierpinski triangle, �ref = 10; for the Vicsek fractal, �ref = 7; and
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Fig. 7 Convergence of composite barycentre rule quadrature approximations for the four examples of Sect.
7.1, using the full linear system (38) (labelled “new method”) and using only the first row of (38) (labelled
“old method”)

for the Sierpinski Carpet and Koch snowflake, �ref = 6. According to our theory, we
expect our method to give O(h2) error, by Theorem 6.2(ii) and (51), and this is exactly
the rate we observe in our numerical results in Fig. 7.

In Fig. 7 (dashed curves), we also show results obtained using themethod of our pre-
vious paper [13, (48)], which we refer to as the “old method”. This method is accurate
for disjoint IFS attractors, but is expected to perform less well for non-disjoint attrac-
tors, because it only applies self-similarity to deal with the self-interaction integrals
and treats all other sub-integrals as being regular. Precisely, the old method corre-
sponds to taking the equation corresponding to the first row in the linear system (38)
obtained by Algorithm 1, solving this equation for I�,� , then applying the composite
barycentre rule not just to the regular sub-integrals coming from the right-hand side of
(38), but also to the fundamental singular sub-integrals Ims,i ,m

′
s,i
, i = 2, . . . , ns . We

expect that the resulting quadrature approximation should converge to I�,� as h → 0,
but at a slower rate than our new method, because of the inaccurate treatment of the
singular sub-integrals. This is borne out in our numerical results in Fig. 7, with the
errors for the old method being significantly larger than those for the new method.
To quantify these observations, we present in Table 2 the empirical convergence rates
(computed from the errors for the two smallest h values) observed for the old method
for each of the three t values considered. The deviation from O(h2) convergence is
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Table 2 Empirical convergence
rates for the old method

t = 0 t = 1/2 t = 1

Sierpinski triangle 1.6513 1.1475 0.6413

Vicsek fractal 2.0282 2.0232 1.8435

Sierpinski carpet 1.8384 1.7530 1.3067

Koch snowflake 1.9033 1.7340 1.2428

different for each example, but clearly increases as t , the strength of the singularity,
increases, as one would expect.

For all the experiments in Fig. 7, the total number of quadrature points Ntot grows
like Ntot ≈ Ch−2d as h → 0, with the value of C depending on the number of
fundamental regular sub-integrals that need to be evaluated. (Recall from Sect. 6.2
that for each regular sub-integral, we use a tensor product rule with N 2 points, where
N ≈ C ′h−d for some C ′.) For each choice of attractor, the value of C for the new
method is slightly smaller than that for the old method, because the new method takes
greater advantage of similarities between regular sub-integrals. The value of Ntot used
for the reference solutions is 1,291,401,630 for the Sierpinski triangle, 2,382,812,500
for the Vicsek fractal, 18,790,481,920 for the Sierpinski carpet and 379,046,894,100
for the Koch snowflake.

7.2 Unit interval experiments

We now consider an attractor� ⊂ R, so that we can investigate the performance of the
Gauss quadrature discussed in Sect. 6.1. The classic example of an IFS attractor� ⊂ R

is the Cantor set, but since this is disjoint (in the sense of (15)), it can already be treated
by our oldmethod (of [13]). To demonstrate the efficacy of our newmethod for dealing
with non-disjoint attractors, we consider the case where � = [0, 1] ⊂ R, which, as
discussed in Sect. 5.5 (taking ρ = 1/2), is the attractor of the homogeneous IFS with
M = 2, s1(x) = x/2 and s2(x) = x/2+1/2.We consider the casewhereμ = μ′, with
p1 = p′

1 = 1/3 and p2 = p′
2 = 2/3, so that, by (22), t∗ = log(9/5)/ log 2 ≈ 0.848.

As discussed in Sect. 5.5, for this problem, Algorithm 1 finds just two fundamental
singular sub-integrals, I�,� and I1,2, and two fundamental regular sub-integrals, I11,21
and I11,22.

In Fig. 8, we report relative errors for the computation of I�,� with t = 0 and t =
1/2, using Algorithm 1 combined with Gauss, composite barycentre, and chaos game
quadrature for the evaluation of the regular sub-integrals. For each method, the total
number of quadrature points satisfies Ntot = 2N 2, where N is the number of points
used for each of the two iterated integrals in each of the two fundamental regular sub-
integrals (recall that we are using tensor product rules). For the composite barycentre
rule, we have N ≈ 1

4h in this case. As the reference solution, we use the result
obtained using the Gauss rule with N = 100, which corresponds to Ntot = 20, 000.
For the Gauss rule, we see the expected root-exponential O(e−c

√
Ntot ) convergence

predicted by Theorem 6.1 and (51), with c ≈ 1.77 and c ≈ 2.31 (for t = 0 and
t = 1/2 respectively) in this case. As a result, the singular double integral I�,� can
be computed to machine precision using N ≈ 10, which corresponds to Ntot ≈ 200
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Fig. 8 Comparison of the performance of the three quadrature rules presented in Sect. 6.1-Sect. 6.3, applied
in the context of Algorithm 1, for the example considered in Sect. 7.2, which concerns the evaluation of
singular double integrals on the unit interval � = [0, 1] with respect to a self-similar measure

quadrature points. The barycentre rule is significantly less accurate, converging like
O(h2) = O(N−2) = O(N−1

tot ), as predicted by Theorem 6.2 and (51). For the chaos
game quadrature, we computed 1000 realisations, plotting both the errors for each
realisation and the average error over all the realisations, which is a proxy for the
expected error. The latter is observed to converge like O(N−1/2) = O(N−1/4

tot ), in
accordance with the remarks at the end of Sect. 6.3.

7.3 Application to Hausdorff BEM for acoustic scattering by fractal screens

We conclude by demonstrating how our new representation formulas and resulting
quadrature rules can be used to compute the scattering of acoustic waves by fractal
screens using the “Hausdorff boundary element method” (BEM) of [6]. For full details
of the scattering problem and the Hausdorff BEM, we refer the reader to [6] and the
references therein; here, we merely provide a brief overview.

The underlying scattering problem under consideration is the three-dimensional
time-harmonic acoustic scattering of an incident plane wave eikx ·ϑ (for x =
(x1, x2, x3)T ∈ R

3, wavenumber k > 0 and unit direction vector ϑ ∈ R
3) by a

fractal planar screen � ×{0} ⊂ R
3, where � ⊂ R

2 is the attractor of an IFS satisfying
the open set condition. Assuming that the total wave field u (which is a solution of
the Helmholtz equation �u + k2u = 0 in R

3 \ (� × {0})) satisfies homogeneous
Dirichlet (“sound soft”) boundary conditions on the screen, it was shown in [6] that
the scattering problem can be reduced to the solution of the integral equation

Sφ = f . (60)

Here, S is the single layer boundary integral operator defined by Sφ(x) =∫
�

�(x, y)φ(y) dy (with the integral interpreted in a suitable distributional sense),
where �(x, y) := eik|x−y|/(4π |x − y|) is the fundamental solution of the Helmholtz
equation in three dimensions, φ is the unknown jump in the x3-derivative of u across
the screen and f is a known function depending on the incident wave.

TheHausdorffBEMin [6] discretises (60) using aGalerkinmethodwith a numerical
approximation space of piecewise constant functions multiplied by the Hausdorff
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measureHd |� . Themesh used for the piecewise constant functions is of the same form
as that used in the composite barycentre rule in Sect. 6.2—having chosen a maximum
BEMmeshwidth hBEM, we partition� using the index set LhBEM(�) defined in (55). If
we choose the natural basis for the approximation space, then assembling the Galerkin
matrix involves the numerical evaluation of the integral

∫
�m

∫
�n

�(x, y) dHd(y)dHd(x), (61)

for all pairs of indices m,n ∈ LhBEM(�).
When �m and �n are disjoint, the integral (61) has a smooth integrand and can

be evaluated using the composite barycentre rule with some maximum mesh width
h ≤ hBEM, with error O(h2) (by Theorem 6.2(ii)). When �m ∩ �n is non-empty, the
integral (61) is singular, and to evaluate it, we adopt a singularity subtraction approach,
writing

∫
�m

∫
�n

�(x, y) dHd(y)dHd(x) = 1

4π

∫
�m

∫
�n

1

|x − y| dH
d(y)dHd(x)

+
∫

�m

∫
�n

�∗(x, y) dHd(y)dHd(x), (62)

Fig. 9 Convergence of composite barycentre rule approximations to the second integral on the right-hand
side of (62) in the case �m = �n = �, as considered in Sect. 7.3
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where �∗(x, y) := �(x, y) − (4π |x − y|)−1 = (eik|x−y| − 1)/(4π |x − y|). The
first integral on the right-hand side of (62) can be evaluated using the methods of this
paper with t = 1. In more detail, if �m = �n, this first integral will be similar to
I�,� , and if �m �= �n, it will be similar to one of the other fundamental singular sub-
integrals encountered in Algorithm 1. In both cases, it can be evaluated by combining
Algorithm 1 with the composite barycentre rule, again with mesh width h ≤ hBEM
and error O(h2). The second integral on the right-hand side of (62) has a Lipschitz
continuous integrand and hence can be evaluated using the composite barycentre rule
directly. According to Theorem 6.2(i), the error in this approximation is guaranteed
to be O(h). In fact, for disjoint homogeneous attractors, the error in evaluating this
second term was proved in [13, Proposition 5.5] to be O(h2), and experiments in [13,
Figure 8(a)] suggest that the same may be true for certain non-homogeneous disjoint
attractors. In Fig. 9, we present numerical results suggesting, furthermore, that the
same may also be true for certain non-disjoint attractors. The plots in Fig. 9 show the
relative error (against a high-order reference solution) in computing the second term
in (62) using the composite barycentre rule, for the four attractors from Sect. 5.1–Sect.

Fig. 10 Field scattered by Sierpinski triangle (top left), Vicsek fractal (top right), Sierpinski carpet (bottom
left) and Koch snowflake (bottom right), for the Dirichlet screen scattering problem described in Sect. 7.3
with wavenumber k = 50 and incident angle ϑ = (0, 1,−1)/

√
2. In each case, the screen (sketched in

black) lies in the plane x3 = 0
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5.4 and a range of wavenumbers, in the case where �m = �n = �. This case is chosen
since it represents the most difficult case, in which �m and �n have full overlap. For
all four examples, we clearly observe O(h2) error in the numerical results. However,
we leave the theoretical justification of this observation to future work.

We end the paper by presenting in Fig. 10 plots of the scatteredfield computed by our
Hausdorff BEM solver (available at www.github.com/AndrewGibbs/IFSintegrals) for
scattering by the four attractors fromSect. 5.1–Sect. 5.4. In each case, the wavenumber
k = 50 and incident angle ϑ = (0, 1,−1)/

√
2. Here, hBEM = diam(�)ρ�BEM, where

ρ is as defined in Sect. 7.1 and �BEM = 5 for the Sierpinski triangle, �BEM = 4 for
the Vicsek fractal, �BEM = 4 for the Sierpinski Carpet, and �BEM = 8 for the Koch
snowflake, so that in each case, we are discretising with at least 5 elements per wave-
length. TheGalerkinBEMmatrix is constructed as described above,with h = hBEMρ4

in each case, taking advantage also of the reduced quadrature approach described in
[6, Remark 5.19] (which exploits the far-field decay in �(x, y) to reduce the number
of quadrature points for pairs of elements �m and �n that are well separated).

We note that for disjoint attractors, the Hausdorff BEM is supported by a fully
discrete convergence analysis (presented in [6]). A similar analysis for the case d = 2
(applying for instance to theKoch snowflake)will be presented in a forthcoming article
[7].
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