Numerical Algorithms
https://doi.org/10.1007/511075-023-01686-8

ORIGINAL PAPER

®

Check for
updates

Incorporating history and deviations in forward-backward
splitting

Hamed Sadeghi' - Sebastian Banert' - Pontus Giselsson'

Received: 29 November 2022 / Accepted: 13 October 2023
© The Author(s) 2023

Abstract

We propose a variation of the forward-backward splitting method for solving struc-
tured monotone inclusions. Our method integrates past iterates and two deviation
vectors into the update equations. These deviation vectors bring flexibility to the algo-
rithm and can be chosen arbitrarily as long as they together satisfy a norm condition.
We present special cases where the deviation vectors, selected as predetermined lin-
ear combinations of previous iterates, always meet the norm condition. Notably, we

introduce an algorithm employing a scalar parameter to interpolate between the con-
ventional forward—backward splitting scheme and an accelerated O (n%)-convergent
forward-backward method that encompasses both the accelerated proximal point
method and the Halpern iteration as special cases. The existing methods correspond to
the two extremes of the allowed scalar parameter range. By choosing the interpolation
scalar near the midpoint of the permissible range, our algorithm significantly outper-
forms these previously known methods when addressing a basic monotone inclusion

problem stemming from minimax optimization.

Keywords Forward-backward splitting - Monotone inclusions - Inertial algorithms -
Convergence rate - Halpern iteration - Deviations

Mathematics Subject Classification (2010) 47HO5 - 47N10 - 65K05

B<) Hamed Sadeghi
hamed.sadeghi @control.lth.se

DX Sebastian Banert
sebastian.banert@control.lth.se

B Pontus Giselsson
pontus.giselsson @control.Ith.se

Lund University, Lund, Sweden

Published online: 04 December 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01686-8&domain=pdf

Numerical Algorithms

1 Introduction

We consider the problem of finding x € H such that
0 € Ax + Cx, (H

where A: H — 2™ is a maximally monotone operator, C: H — H is a cocoercive
operator, H is a real Hilbert space and 2* denotes its power set. This monotone
inclusion has optimization problems [18, 29], convex-concave saddle-point problems
[13], and variational inequalities [5, 14, 38] as special cases.

The forward-backward (FB) splitting method [11, 24, 27] has been widely used to
solve the monotone inclusion problem (1). The gradient method, the proximal point
algorithm [30], the proximal-gradient method [16], the Chambolle—Pock method [13],
the Douglas—Rachford method [18, 24], and the Krasnosel’skii-Mann iteration [9, Sec-
tion 5.2] can all be considered special instances of the FB method. Various attempts
have been made to improve the convergence of the FB splitting algorithm by incorpo-
rating information from previous iterations. Notable examples include the heavy-ball
method [28], the inertial proximal point algorithm [1, 2], and inertial FB algorithms [3,
4,6,7,10, 12, 15, 25, 26], which integrate prior information into the current iteration
through a momentum term.

In this paper, we propose an extension to the conventional FB algorithm thatincludes
momentum-like terms and two deviation vectors. These deviations have the same
dimension as the underlying space of the problem and serve as adjustable parameters
that provide the algorithm with great flexibility. This flexibility can be exploited to
control the trajectory of the iterations with the aim to enhance algorithm convergence.
To guarantee convergence, we require the deviations to satisfy a safeguarding condition
that restricts the norm, but not the direction, of the deviation vectors. Our safeguarding
approach is similar to those in [8, 32, 33]—which indeed are special instances of our
algorithm—while it distinctly contrasts with the safeguarding conditions presented in
[20, 34, 37, 40] that choose between a globally convergent and locally fast methods
depending on the fulfillment of their respective safeguarding conditions.

We also introduce two special cases where the deviation vectors are predetermined
linear combinations of prior iteration data. This construction ensures that the safe-
guarding condition is met in all iterations, implying that it does not require online
evaluation. The two special cases incorporate different scalar parameters control-
ling the behaviour of their respective algorithms. In one case, the scalar parameter
k € (—1, 1) regulates the momentum used in the algorithm, with x = 0 yielding the
standard FB method. This algorithm converges weakly towards a solution of the inclu-
sion problem for all k¥ within the permitted range. In the other case, the scalar parameter
e € [0, 1] acts as an interpolator between the standard FB method (e = 0) and an
accelerated FB method (e = 1) featuring the accelerated proximal point method from
[21] and the Halpern iteration analyzed in [23] as special cases. The scalar parame-
ter e regulates the convergence rate of the squared norm of the fixed-point residual,
converging as O (min (1 /n*. 1/ n)), with e = 1 offering the accelerated FB method
with an O (1 /nz) convergence rate, consistent with the rates in [21, 23].

@ Springer

Numerical Algorithms

We perform numerical evaluation of these two special cases on a simple skew-
symmetric monotone inclusion problem arising from optimality conditions for the
minimax problem maxycg minycg xy. Our findings suggest that with « € [0.8, 0.9],
our first special case performs an order of magnitude better than the FB method
(x = 0) on this problem. Furthermore, by allowing e € [0.4, 0.5], we observe that our
second special case outperforms the FB method (e = 0) by an order of magnitude and
performs several orders of magnitude better than the accelerated FB method (e = 1),
despite the latter’s stronger theoretical convergence guarantee.

The analysis of our base algorithm relies on a Lyapunov inequality. We derive this
inequality by applying the monotonicity inequality of operator A and the cocoercivity
inequality of operator C (that are referred to as interpolation conditions in the termi-
nology of performance estimation (PEP), see for instance [31, 35, 36]), both between
the last iterate and a solution of the problem, as well as the last two points generated
by the algorithm. This is in contrast to the analysis conducted in [33], which restricts
the use of these inequalities to only the last iteration and a solution. The inclusion
of additional inequalities allows for deriving special cases such as the one that inter-
polates between FB splitting and accelerated FB splitting along with the associated
convergence rate of O(1/n¢) where e € [0, 1]. This result is not achievable via the
algorithm proposed in [33].

The paper is organized as follows. In Section 2, we establish the basic definitions
and notations used throughout the paper. Section 3 contains the formal presentation
of the problem and introduces our proposed algorithm that is analyzed in Section 4.
In Section 5, we present several special instances of our algorithm, two of which we
examine numerically in Section 6. Proofs omitted for the sake of brevity are shared in
Sections 7 and 8 concludes the paper.

2 Preliminaries

The set of real numbers is denoted by R. H denotes a real Hilbert space that is
equipped with an inner product and an induced norm, respectively denoted by (-, -) and
-1l :== /(.). M(H) denotes the set of bounded linear, self-adjoint, strongly positive
operators on H. For M € M(H) and all x, y € H, the M-induced inner product and
norm are denoted and defined by (x,y),, = (x, My) and ||x|; = (x, Mx),
respectively.

The power set of 'H is denoted by 2H. A map A: 'H — 2™ is characterized by its
graphgra(A) = {(x,u) € H x H : u € Ax}. Anoperator A: H — 2M is monotone if
(u —v,x —y) > 0forall (x, u), (v, v) € gra(A). A monotone operator A: H — 2H
is maximally monotone if there exists no monotone operator B: H — 27t such that
gra(B) properly contains gra(A).

Let M € M(H). An operator T : H — 'H is said to be

(i) L-Lipschitz continuous (L > 0) w.r.t. |||, if

ITx = Tyllyt < Lllx =yl forallx,y e M

@ Springer

Numerical Algorithms

(i) %-cocoercive (B =0)wrt. ||-||p if

B(Tx —Ty,x —y) > |Tx — Tyll3,-, forallx,y e H;

(iii) nonexpansive if it is 1-Lipschitz continuous w.r.t. ||-||.

Note that a +-cocoercive operator is S-Lipschitz continuous. This holds trivially for
B = 0 and for B > 0 it follows from the Cauchy-Schwarz inequality.

3 Problem statement and proposed algorithm
We consider structured monotone inclusion problems of the form
0 e Ax + Cx, 2)

that satisfy the following assumption.

Assumption 1 Let 8 > 0 and M € M(H) and assume that

() A: H—2Mis maximally monotone,
(i) C: H—> His L _cocoercive with respect to |||y,
(iii) the solution set zer(A 4+ C) := {x € H : 0 € Ax + Cx} is nonempty.

Since operator C has a full domain and is maximally monotone as a cocoercive operator
[9, Corollary 20.28], the operator A + C is also maximally monotone [9, Corollary
25.5].

We propose the following variant of FB splitting which incorporates momentum
terms and deviations in order to solve the inclusion problem in (2). The algorithm has
many degrees of freedom that we will specify later in this section and in the special
cases found in Section 5.

At the core of the method is a forward-backward type step, found in Step 7 of
Algorithm 1, which reduces to a nominal forward-backward step when z, = y,.
The update equations for the algorithm sequences yj, z,, and x,, involve linear com-
binations of momentum-like terms and the so-called deviations, u, and v,. These
deviations are arbitrarily chosen provided they satisfy safeguarding condition in (3),
where ¢, is defined in (4). When selecting the deviations, all other quantities involved
in (3) are computable. These deviations offer a degree of flexibility that can be used to
control the algorithm trajectory with the aim of improving convergence. In Section 5,
we present examples of nontrivial deviations that a priori satisfy this condition, thus
removing the need for online evaluation.

For the algorithm to be implementable, let alone convergent, the algorithm param-
eters must be constrained. For the FB step in Step 7 to be implementable, and the
safeguarding step to be satisfied for some u,1 and v, 41, we require for all n € N
that y,,, Ay, Oy, én, and 67,1 are strictly positive and the parameters ¢,, u,, o, and
o, are non-negative. Fulfillment of these requirements allows for a trivial choice that
satisfies the safeguarding condition (3), namely u,,+1 = v,4+1 = 0, which results in a

@ Springer

Numerical Algorithms

Algorithm 1

1: Input: initial point xg € H; the strictly positive sequences (yn),eN and (An),eN; the non-negative
sequences ($n),eN and (Un)yen; B = B > 0; and the metric ||| 3y with M € M(H).
2: Given the input parameters, for all n € N, define:

@ an = 3
(i) ap = m;
(iii) O = (4 — yuB)Chn + pin) — 227
(V) 6 2= 20 + 24t — v BA%;
(v) ‘2}1 = An + Un —)L%_Q
(Vi) Oy := (A + n) v B-

3iset:y_ 1 =p_1=z_1=xpandug=vg=0and y_1 =y
4: forn=0,1,2,...do
5 Yn =Xn +dn(Yp—1 — Xn) +un o
6: 2n = Xp +an(Pp—1 — Xn) + @ (Zp—1 — pu—1) + 9n9}’nﬁun + vn
n
7 pn=(M+yaA)" (Mzy — yuCyn)
8: Xp41 = Xp + An(pn —zn) + anAin(Zp—1 — Pp—1)
9: choose u; 41 and v,4 such that
bt 2 bap 2
(A1 + tng1) (11+ ltnst 3y + 225 Nongi I3y) < a1 3)
On+1 Ont1
is satisfied, where
52 _
ly = 97 Pn — Xp +ay(xXp — pp—1) + Léi Ly — %Un
i P 4
+2Hnyn(%—%,Pn—Pn—l>M ()
B 2
+ %Hpn —¥n— (Pn—1— ynfl)”M
10: end for

novel momentum-type forward—backward scheme. Additional requirements on some
of these parameters, that are needed for the convergence analysis, are discussed in
Section 4.

Algorithm 1 can be viewed as an extension of the algorithm in [33]. The key differ-
ence arises from the inclusion of additional monotonicity and cocoercivity inequalities
(interpolation conditions) in our analysis compared to the analysis of [33]. In contrast
to the analysis in [33], we utilize inequalities not only between the last iteration points
and a solution but also between points generated during the last two iterations of
our algorithm. This approach provides our algorithm with an additional degree of
freedom, embodied by the parameter i, that stems from the degree to which these
extra interpolation conditions are incorporated into the analysis. This addition yields
momentum-like terms in the updates, a less restrictive safeguarding condition, and
the potential to derive convergence rate estimates for several involved quantities up to
0] (niz). Such rates are not achievable in [33] as setting 1, to zero reverts our algorithm
to that of [33].

@ Springer

Numerical Algorithms

When y,, = y > 0 for every n € N, the deviation vectors u, and v, can be chosen
so that y, = z,. In this case, Step 7 of Algorithm 1 simplifies to a FB step of the form

pu= (M +y)™ o (M =yO)) 3.

It is widely recognized that given appropriate selections of y > 0, M € M(H), A,
and C, this FB step can reduce to iterations of well-known algorithms. These include
the Chambolle-Pock algorithm [13], the Condat—Vi method [17, 39], the Douglas—
Rachford method [24], the Krasnosel’skii~-Mann iteration [9, Section 5.2], and the
proximal gradient method. Consequently, Algorithm 1 can be applied to all these
special cases.

3.1 Preview of special cases

This section previews some special cases of Algorithm 1, which we will explore in
depth in Sections 5 and 6. Specifically, we consider cases where the sequence (1,),,cn
is non-decreasing and, foralln € N, y,, =y > 0,

vy = (Z_Vﬁ)A()\n+ﬂn)u

n»
On

and u, is parallel to the expression in the first norm in the ¢, expression in (4) that
contributes to the upper bound in the safeguarding condition in (3). This yields z,, = y,
and as demonstrated in Section 5, with a particular choice of 1, Algorithm 1 becomes

Yn = Xp + An)jnko (Yn—1—Xp) +uy

Pn=(M+yA) " (My, — yCy)
Xn1 = Xp + A (Pn — Yu) + (A — 20) (Yn—1 — Pn—1)

4—yB—2r0o An—h
Up+1 = Kn%(pn —Xp + ")»n 2 (Xp = pn—1) —

2—yB—2%o
4=y f—2n Up),

that is initialized with y_; = p_; = x¢ and ug = 0. This algorithm, under the
condition K,f < {n+1, satisfies the safeguarding condition. As we will see later, ¢, 41 €
[0, 1] can be set arbitrarily (though stronger convergence conclusions can be drawn
if ¢, < 1 for all n € N), indicating that as long as k, € [—1, 1], this new algorithm
satisfies the safeguarding condition by design.

In Section 5, we present two special cases of this iteration that we numerically
evaluate in Section 6. The first special case involves setting Ao = 1 and, for alln € N,
An = Xo and k,, = k € (—1, 1). As shown in Section 5, the resulting algorithm can
be written as

po=(M+y07" 0 (M =y0)) (pamit +tn = 1)

2—yp 4

(5)
Up+1 =K () (Pn — Pn—1 +up—1) + Tun)

@ Springer

Numerical Algorithms

that is initialized with u_; = uy = 0. This algorithm converges weakly to a solution of
the inclusion problem and setting x = 0 gives u, = 0 for all n € N and the algorithm
reduces to the standard FB method.

The second special case is obtained by letting k, =
shown in Section 5, in the algorithm:

)L)H»l —*0

o € [0, 1) resulting, as

pn=M+yA) " (My, —yCyp)

Modn | Ang1—Ao 4—yB—2A
Ynt1 = Yn + ()Li,)ﬁ + ##) (Pn — Yn)

n_ 4— B
mlo ((yn — ne) + T (a1 — pn—l)) :

(6)
+

that is initialized with y_; = p_;. We will pay particular attention to the choice
2\ €

An = (1 — %) (1 + n)¢ with e € [0, 1]. The choice e = 0 gives the standard FB

method and, as shown in Section 5.2.1, the choice ¢ = 1 has the Halpern iteration

analyzed in [23] and the accelerated proximal point method in [21] as special cases.

By choosing an e value between the allowed extremes, we can interpolate between

these methods. We show that || p, — v, ”/21/1 with this choice of (A,),cn converges as

@ (n%) (and, if B > B, as O (%) for all e € [0, 1]) implying that the convergence
rate can be tuned by selecting e. The requirements we will pose on the parameters
in Section 4 to guarantee convergence state that (A,),cy can grow at most linearly,

meaning values of e > 1 are not viable and the best possible rate is O (%) obtained

by letting e = 1. As shown in Section 5, this case recovers the exact O (;—2) rate

results of the Halpern iteration in [23] and the accelerated proximal point method in
[21].

In Section 6, we present numerical experiments on a simple skew-symmetric mono-
tone inclusion problem, originating from the problem max g min,cg xy. We find that
both Algorithms 5 and 6 can significantly outperform the standard FB method and the
Halpern iteration when « and e are appropriately chosen.

4 Convergence analysis

In this section, we conduct a Lyapunov-based convergence analysis for Algorithm 1.
In Theorem 1, we define a Lyapunov function, V,, based on the iterates generated by
Algorithm 1, and present an identity that establishes a relation between V1 and V,,.
In Theorem 2, we introduce additional assumptions and derive a Lyapunov inequality
that serves as the main tool for the convergence and convergence rate analysis in
Theorem 3.

The proof of our first theorem is lengthy and only based on algebraic manipulations
and is therefore deferred to Section 7. The equality in the proof is validated with
symbolic calculations in

https://github.com/sbanert/incorporating-history-and-deviations.

@ Springer

https://github.com/sbanert/incorporating-history-and-deviations

Numerical Algorithms

Theorem 1 Suppose that Assumption 1 holds. Let x* be an arbitrary point in zer (A +
C)and Vo = ||xg — x*ll%,,, and based on the iterates generated by Algorithm 1, for
alln € N, let

Vi1 1= Hxn+l - X*”?W + 2Xn4+1Vn+10n+1¢n + L, (7N

where

dn = (252 oo =)+ v =l ®)

and £, given by (4). Then,
Va1 + 2¥n(An — Ot An+1)@n + €n—1

6, 0,
=V + O+) [a3y + == llvall3,
6, On

holds for alln € N.

The identity relation presented in Theorem 1 can provides meaningful insights
on convergence (as we will see in Theorem 3) when all its constituent terms are
non-negative. The non-negativity of these terms is contingent on the selection of the
parameter sequences (£,),en> (Vn)nens (Mn)nens and (A,), <. Toreduce the degrees of
freedom and facilitate a clearer exposition, we constrain ourselves to a non-decreasing
()Ln)neN , and

1.
Mn = _)Ln — An ©)]
Ao
for all n € N. This implies u, > 0 and offers a slightly less general algorithm,
yet it encompasses all special cases in Section 5. We next state our restrictions on
the parameter sequences that will give rise to a meaningful Lyapunov inequality in
Theorems 2 and 3.

Assumption 2 Assume that ¢ > 0, €9, €1 > 0, Ag > 0, and that, for all n € N,

Un = %kﬁ — An and the following hold:

(i) 0<¢ <1—ep;

(ii) & < yuP <4 =200 — &
(iii) Angl = Ap and yphn — Yn—1An—1 < Ynho — €1;
(iv) B =B

Remark 1 Assumption 2 (i) gives an upper bound for &, to be less than or equal to 1.
The variable, ¢,, multiplies £, in the right-hand side of the safeguarding condition
(3), effectively contributing to limit the size of the ball from which the deviations u,, and
v, are selected. A consistent choice is &, = 1 —€g. Assumption 2 (ii) sets requirements
on the relation between the initial relaxation parameter A and the step size parameter
Vn- An alternative expression of the upper bound is given by

4—yuf =200 > ¢, (10)

@ Springer

Numerical Algorithms

implying that
YuBho < (4 —e)ho — 203 = —(v2h0 —V2)2 +2 —gho <2 —eho. (11)

This inequality will be used to bound certain algorithm parameters. Note that, similarly
to in [19, 22], we can allow for a y, > 2 with the trade-off of using a relaxation
parameter Ly < 1. Assumption 2 (iii) states that (A,),cy is non-decreasing, resulting
in u, > 0, and enforces a linear growth upper bound since vy, is both positive and
upper bounded. We will later see that our algorithm can converge as O(Alz), with

this upper bound resulting in a best possible convergence rate of (’)(ﬂ%). Finally,

Assumption 2 (iv) sets requirements on p. While the choice B = B always works,
selecting B > B guarantees convergence of certain parameter sequences. Note that
when Lo = 1 and B = B, it follows from Assumption 2 (ii) that y, < 25;8 aligning
with the conventional step size upper bound for forward—backward splitting.

Our convergence analysis requires that specific parameter sequences are non-
negative or, in certain cases, are lower bounded by a positive number. Before showing
that Assumption 2 ensures this, we provide expressions for the following sequences
defined in Algorithm 1 in terms of %,, y,, and B:

oy = Kn — An—Ao
n Antitn A

Y- Ynlin — Vn An—Xo
Yn—1(n~+pn) Yn—1 An

On = (4= ¥aB) Chn + pn) — 215, = FLL=22050,
N =2 2 royf a2 (12)
Gn = 2)\.,1 + Zun —)/nﬂ)\,n = —)\(Z)Vn)\,n’

>

n:)Ln"l‘,U«n_)\i:%)\%a

én = (An + Mn)VnB = %K%
Note that the final four quantities are quadratic in A,,.

Proposition 1 Consider the quantities defined in Algorithm [and suppose that

Assumption 2 holds. The parameter sequences (6,), N, (é,,) , (é,,) , (qi) ,
neN neN \0n/neN

(z—") , and (9—3) are lower bounded by a positive constant and (oty),en and
") neN M/ ne

(Yn (A — dpg1Xn41) — €1),en are non-negative.

Proof Let us first consider 9”; én, anc} én. Then Assumption 2, (12), (10), and (11)
immediately imply that 6,, 6,, and 6, are lower bounded by a positive constant.
Moreover, since 2 — Aoy B > €iog > 0 by (11), we have

YuB YnB

b b
On 2 -)‘OVnIB 2

>0

>

| ™

@ Springer

Numerical Algorithms

and since from (10), 4 — y,,B — 210 > & > 0, we have

O _ _2=0omB _2=domB ke
O 44—y B—2x0 4 4

and

0, 4—yB—2x ¢
—_——_— > >
A2 Xo ~ o

That o;, > 0 follows trivially from nonegativity of 1, and that A, > 0. Finally,

- Ant+l — Ao
Yn(Ap — A1 dns1) = Vahn — yn+ln—)\n+l
)LnJrl

= Ynhn — Ynt1hnt1 + Vag1ho = €1
by Assumption 2 (iii). O

In the following result, we introduce a so-called Lyapunov inequality that serves as
the foundation of our main convergence results.

Theorem 2 Suppose that Assumptions 1 and 2 hold. Let x* be an arbitrary point in
zer(A+C), and the sequences (£,),en, (Vi) nen, and (@) ,en be constructed in terms
of the iterates obtained from Algorithm 1, as per (4), (7), and (8) respectively. Then,
foralln € N,

(i) the safeguarding upper bound

Snt16,
Cn1ly = 25

Vn/é)‘%
Pn — Xn + 0y (Xy — pp—1) + T Un T g Un
n

(ii) the term safeguarded by &, 11€,

é +1 é +1
(Ant1 + Hnt1) (J‘—nunﬂ 12, 4+ = llvas1ll3, | = 0;
9n+1 9n+1

(iii) ¢n = 0, more specifically, if B > 0:

= B2y, — ") 4 Mpy — | B=B|Cy, — Cx*|?_, >0
&n = 7| 2(Cyn x*) + M(pn — yn) M*1+ﬂﬂ H Yn x”M—l—’

2
B

and if B = 0: i
On = Llipn — wall3y = 0;

(iv) the Lyapunov function V,, > 0;

@ Springer

Numerical Algorithms

(v) the following Lyapunov inequality holds

Vi1 + 2¥0(hn — @ 1An+)P0 + (1 = E)lu—1 < Vi.

Proof Theorem 2 (i). In view of (3) and since, by Assumption 2 and Proposition 1,
2unyn = 0,6, > 0, and ¢,+1 > 0, the statement reduces to showing that

G 1= (T — Bt pn_1>M + 41w = Yo = (Pa1 — yu-DlI3; = 0.

It follows from Step 7 of Algorithm 1 that

Mz, — M
=P Cyy € Apa. (13)
Vn
Combined with montonicity of A, this gives
0= <Mzn;nMp,, —Cyn — —MZIZ_)I,’;/:/IPH__I + Cyn—1, Pn — pn—1>- (14)

If B = 0, C is constant, implying that the right-hand side reduces to the first term
defining @,,. Therefore, @, > 0 since it is constructed by adding two non-negative
terms. It remains to show ¢, > 0 when 8 > 0. From %—cocoercivity of C w.rt. |||l >

we have

0 < {Cyn = Cyn—1, Yn = ¥u-1) = 5ICyn = Cyuilly - (15)

Adding (14) and (15) to form ¢, gives

1= (Mo Mn — y, — Mant oMot 4 Cy, i, py = pa) (16)
+(Cyn = Cyn—t, ya = Ya—1) = 51Cyn = Cyn-illyys (17)
= (e - ezt) = LICy, = Oyt B

FA{CYn = C¥n—1, Yn — Yn—1 — (Pn — Pn—=1))

= <Z”;f’" — Rl py — pn_1>M + 81Pn = a1 = yu + yu-1lly

B
q

2
(Cyn = Cynt) + M(pn = pu—t = yn + yn_l)HM1

z 2
=00 — 4| 3o = Con) + My = pt = yu+ 30| (18)
where we have used that
2
(s.1) — 2lsI3,o = §lel3y — &) 3s — M|, (19)

@ Springer

Numerical Algorithms

holds for all 7, s € H. Since ¢, > 0 by construction and 8 > B > 0, this implies that
@n > 0.
Theorem 2 (ii). This follows by Assumption 2 and Proposition 1 that imply strict

6, B,
positiveness of Ay+1 + Un+1, —i‘ and 0,.:;
Theorem 2 (iii). Recall that
_— [%n=Pn v * é _ 2 20
n = Ty o Pn—X M + 4||yn Pl (20)

as defined in (8). Since x* € zer(A + C), we have —Cx* € Ax*, which combined
with (13) and montonicity of A gives

0= (Macbn — ¢y, + Cx*, py = x°). e

If B = 0, C is constant and the right hand side reduces to ¢,, — g |l yn — pnll3,, which

is non-negative foralln € Nby (21). Let us now consider 8 > 0. From %—cocoercivity
of C w.r.t. -]/ 7, we have

0 < (Cyn — Cx* o — x*) = H[[Cyn — Cx* 1 22)

Construct 5,1 by adding (21) and (22) to get

o~

¢n = <Mzn;”Mpn —Cyn + Cx*, Pn — x*>
(Con = Cx*yn = x*) = 5[Cyn = Cx* |34

+
<Z n >M + (Cyn — Cx*, yn — Pn) - %Hcyn - Cx*”i/[,l,
= (e

— %)+ (Con = Cx*, o = pu) = 3] € — Cx* [}
12
+(F- 3) €3 = €[y

= (22, o =)+ Rl — pully

(Cy, — Cx*) + M(p, —))n)

Hﬂ P e

= H B Z(Cyn — Cx*) + M(py —)’n)

o (SR o

M1

where (19) is used in the next to last equality. The result therefore follows since
B >p>0and an > 0 by construction.

Theorem 2 (iv). Since £, > 0 by Theorem 2 (i), ¢, > 0 by Theorem 2 (iii), and the
coefficients in front of ¢, in the definition of V,, in (7) are non-negative by Assumption
2 and Proposition 1, we conclude that V,, > 0.

@ Springer

Numerical Algorithms

Theorem 2 (v). By Theorem 1, we have

Vi1 +€n-1 + 2Yn (A — Qnp1An+1)Pn
= Va o (o +) (Ll + S0l)

Using this equality and (3) gives
Vot + 2Vn (A — dpp1Ans)00 + o1t < Vi + Snly—1.

Moving ¢,¢,—1 to the other side gives the desired result. This concludes the proof. O

This result demonstrates the feasibility of selecting u,+; and v, that meet the
safeguarding condition. The obvious selection of u,+1 = v,4+1 = 0 is always viable,
but we will provide in Section 5 a nontrivial choice that consistently satisfies the
condition and can enhance convergence. Furthermore, Theorem 2 introduces a valuable
Lyapunov inequality that will underpin our conclusions on convergence. Before stating
these convergence results, we show boundedness of certain coefficient sequences.

Lemma 1 Consider the quantities defined in Algorithm I and suppose that Assumption

. 5 - -
2 holds. The sequences (q—”) , (k—”) , <zi) ,as well as (%M)
6n/neN \0n/neN "/ neN n neN

are bounded.

Proof We have % > 0 by Proposition 1 and

n

b mB_ _mb_4-Do-c _ 4
6, 2 — XoynB ro€ ro€ ro€
2
by (11). Further, g—” > 0 by Proposition 1 and
2
. R
o Q—lowmB) €

by (11). Further, by (10),

On
On

ekl -k
4—)/,13—2)\,0_ e

and, since y;, B € (0,4) by Assumption 2 (ii),

' 2 - Vn,g)()\n +) < 2(hp + n) _ 2 - g
O - On 4—yB—20 " €&
This completes the proof. O

@ Springer

Numerical Algorithms

Theorem 3 Suppose that Assumptions 1 and 2 hold. Let x* be an arbitrary point in
zer(A+C), and the sequences (£,),en, (Vi) nen, and (@) ,en be constructed in terms
of the iterates obtained from Algorithm 1, as per (4), (7), and (8) respectively. Then
the following hold:

(i) the sequence (Vy,),cn is convergent and £, < V, 11 < ||xo — |3,

(ii) if (Ay),en increasing and A, — 00 as n — oo, then

(iii) if eg > 0, then (€,),cn is summable;
(iv) ifeg > 0, then Ayu, — 0, Ayv, — 0, and x,41 — x, = Oasn — o0;
(v) ifer > 0, then (¢n), e is summable;
(vi) ifer > Oand B > B, then ||y, — pn||%,1 is summable;
(vii) if €9, €1 > 0, (Ay),en is bounded, and p, — x, — 0, y, — pn — 0, and
Zn — pn —> Qasn — oo, then p,—x*;
(viii) if €o, €1 > 0 and (M), is constant, then p,—x*.

2 20llx0 — x*||%
_ ollxo 15,

20, .
M ™ (4= yuB — 200)A]

vabAs
Pn — Xn + on(Xn — pn—1) + 6 Un— g, Un
n

Proof We base our convergence results on
Vg1 + 2V Ay — dpp1dny D@ + (1 = g1 < Vi, (23)

from Theorem 2.

Theorem 3 (i). Recall that the sequences (£,),en, (Vi)nen, and (¢n),en are
non-negative by Theorem 2. Additionally, by Assumption 2 (i) and Proposition 1
respectively, the quantities 1 — ¢, and y,, (A, — &;+1An+1) are non-negative for all
n € N; and thus, the quantity 2y, (A, — @1 n+1)Pn + (1 —)€~ is non-negative
for all n € N. Therefore, by [9, Lemma 5.31] the sequence (V},),c converges and
Vigr < V, for all n € N and since Ayy1yYnt10n+1 = 0 by Assumption 2 and
Proposition 1,

by < Vg1 <V <. < Vo = [lxo — x*|13,- (24)

Theorem 3 (ii). Theorem 2 (i) states that

2

VnB}"% < E
M —= *n»

n 26,
E’ DPn — Xn + 0ty (Xp — pp—1) + o Uy — g_nnvn

where £,, < ||xo—x*|| /2‘,1 by Theorem 3 (i). Inserting the definition of 6, and rearranging
gives the result.

Theorem 3 (iii). That g > 0 implies that 1 — ¢, > €p > 0 by Assumption 2 (i) and
a telescope summation of (23) gives summability of (€,,),,cn-

@ Springer

Numerical Algorithms

Theorem 3 (iv). To show that (A,u,), ey and (A, vy,), ey converge to 0, we note that
due to (3), the summability of (£,),cn implies summability of

Antit 0 2 b 2
Buet st (s, I3+ P2 Ao 1)) - @9)
n+1 n+1 n+ neN

Hence, as, for all n € N, by Proposition 1 and Assumption 2 the coefficients in the
expression above are strictly positive, the sequences (A,up),cn and (X, vy),cn must
be convergent to zero.
Next, we show convergence to zero of (x,41 — Xp),en- Since (£,), ¢y 1S summable,
Theorem 2 (i) implies that
2 >
M/ peN

On
2

is summable. Using Lemma 2 to replace the expression inside the norm above by
Lemma 2 (iii) and taking the factor Al out of the norm, we get

O
2

which is a summable sequence too. Since, by Proposition 1, 2% is lower bounded by

_ 20,
B, Un

wBla
DPn — Xp + 0y (X — pp—1) + %un

- = 2
0 2— Ant

Xn4l — Xn —+ é_”)"lu’z —+ Mxnvn H s
n n M neN

a positive constant and the coefficients multiplying A,u, and XA,v, are bounded by
Lemma 1, we conclude, since A,u, — Oand A v, — 0asn — oo, thatx,;—x, — 0
asn — oo.

Theorem 3 (v). Proposition 1 implies that 2y, (A, — &p41rn+1) = 2€; > Oand a
telescope summation of (23) gives summability of (¢,), .

Theorem 3 (vi). Let § = 0. Then Theorem 2 (iii) immediately gives the result due
to summability of (¢,),cn. Let B > 0. Then Theorem 2 (iii) and B > B imply that

2
H /%(Cyn - Cx*) + M(pn — yn) and ”Cy” - CX*H?W*I

M1

are summable. Since

1w = yallls = 13 (Cyn = Cx*) = 2(Cyn — Cx*) + M(pn = yw) 31

2
< 2|30y — Cx" + M(pu =), +2[Con = Cx* [,

we conclude that (|| py — yull3;), cy is summable.
Theorem 3 (vii). We first show that ||x, — x*||%,1 converges. From Theorem 3 (i),

we know that

Virt o= nset = %[5, + 2has 1 Vot 10100 + s

@ Springer

Numerical Algorithms

converges. Since (1), cy 1S bounded so is A, 41 +1%,+1 and by Theorem 3 (iii) and
Theorem 3 (v) we conclude that 24,1 V4 1¥n+10n + £, — 0asn — oo. This implies
that ||x,4+1 — x*ll%,, converges.

Now, since || p, — xn||%,1 — OQasn — oo and ||x, —x*|| < D forall n € N and
some D € (0, 0o), we conclude that

1w = 5" W3y = Wi = 21| = [0 = 20l + 200 = s 00 =)
< 1pn = xall3y + 2 [(Pn = X, X0 — x|
< 1pn = xall3s + 200 — Xl — x*|

< Ipn — xull3s + 21 pn — x4 ID — 0O

as n — oo. Therefore also | p, — x*||? converges and p, has weakly convergent
subsequences. Let (py,)ken be one such subsequence with weak limit point x and
construct corresponding subsequences (yp,)keN, (Zn;)keN, and (¥,)ken. Now, Step 7
in Algorithm 1 can equivalently be written as

Mpy; + Vi APy @ MZyy — Vi Cyny s

which is equivalent to that

1
Cpn, + Apny 3 — M2y — Puy) + (Cppy — Cyny).

ng

The right hand side converges to 0 as k — oo since z,, — p,, — Oand p,, —y,, — 0
as k — oo and due to Lipschitz continuity of C, the uniform positive lower bound on
¥, in Assumption 2 (ii), and boundedness of M € M (H). By weak-strong closedness
of the maximal monotone operator (A + C) (which is maximally monotone since C
has full domain) the limit point satisfies 0 € (A + C)x by [9, Proposition 20.38]. The
weak convergence result now follows from [9, Lemma 2.47].

Theorem 3 (viii). In view of Theorem 3 (vii), it is enough to show that p,, —x, — 0,
Yo —pn — 0,and z, — p, — 0asn — oo. Since (A,),cy 1S constant, u, =
%Aﬁ — Ay = 0 and o, = 0. Summability of ¢, therefore implies through Theorem 2

(i) that
;)
2 M neN

is summable. Since 6, is lower bounded by a positive constant due to Proposition 1
and the coefficients in front of u, and v,, are bounded due to Lemma 1, we conclude,
since u, — 0 and v, — 0 by Theorem 3 (iv) and Assumption 2, that p,, — x, — 0
as n — oo. From the x, update,

vaBiy 26
Pn — Xn + né_nnun - #vn

Xkl = Xk + An(Pn — Zu),

@ Springer

Numerical Algorithms

Theorem 3 (iv), and since (},), ¢y is constant, we conclude that p, — z, — 0 as
n — oo. Finally, from the y, update,

Yn = Xn + Unp,

and since u, — 0, we conclude that y, — x, — 0, which implies that y, — p, — 0
as n — oo. This concludes the proof. O

We could derive convergence properties for other quantities involved, yet we limit
our discussion to these results as they are sufficient for our needs for the special cases.
Notably, the conclusion in Theorem 3 (viii) aligns with a similar result presented in the
authors’ previous work [33]. This is due to u,, = 0, causing our algorithm to reduce
to the one presented in that work.

5 A special case

The safeguarding condition in (3) typically requires the evaluation of four norms and
a scalar product. However, if the vectors inside the norms are parallel, the number of
norm evaluations is reduced. This section introduces an algorithm wherein we choose
u, and v, to ensure y, = z, for all » € N and such that the safeguarding condition
reduces to a scalar condition that is readily verified offline. The algorithm we propose
is as follows:
Yn = Xn + An)L_n)LO n—1—Xp) +uy
pn= (M +yA)~ (My, — yCyn)
Xn+1 = Xu + An(Pn — Yn) + (dn — 20)(Yn—1 — Pn—1)

4—yB—2x Jn—A
Up+1 = Kn# (pn —Xp + n;w 0 (Xp = pn—1) —

(26)

2—yB—2x0 u
4—yB—2x0 ")

where y_1 = p_1 = xo, up = 0, and a constant step size y > 0 is used. With a
constant step size, Assumption 2 (iii) reduces to

€ €
n < Apl sxn+xo—7‘=(z+n)xo—(n+1>7l, 27)

which gives an increasing (1,),cy sequence that grows at most linearly in n.

Prior to presenting the convergence results for this algorithm, we specify a particular
form for the sequence (A,),cn. This form separates the growth in n from the selection
of Ag.

Assumption 3 Let Ag > 0. Assume that f : domf — R, withintdomf D {x € R :
x > 0}, is differentiable (on the interior of its domain), concave, and non-decreasing,
and satisfies f(0) = 1 and f'(0) € [0, 1]. Let, for alln € N,

An = f(n)ho.

@ Springer

Numerical Algorithms

Proposition 2 Suppose that Assumption 3 holds, then (27) and Assumption 2 (iii) hold
with €; = 0. Suppose in addition that f'(0) < 1, then there exists €| > 0 such that
(27) and Assumption 2 (iii) hold.

Proof That f is non-decreasing trivially implies A, < A,4;. Concavity implies
f'(x) < f/(0) for all x > 0. Therefore

f(n):l—}—/nf/(x)dxf 1+/nf/(0)dx§ 1+n
0 0
and A, 11 < (2+n)Ag. Leta := f/(0) € [0, 1), then
f(n)=1+/nf/(x)dx§ 1+/nf/(0)dx=1+an=l+n—(1—a)n
0 0

and withe; = (1 —a)yro > 0, we get A1 < 2+ n)Ao — (n + l)Ey—l, as desired. O

Example 1 Examples of functions f that satisfy Assumption 3 for which an €, > 0
exists include functions that, for all n € N, satisfy f(n) = (1 + n)® with e € [0, 1),

fn) = lof)(g"(;f), and f(n) = 1. The choice f(n) = (1 + n) requires that € = 0.

We will use this construction of (A,),cn throughout this section and specialize
Assumption 2 as follows.

Assumption 4 Assume that ¢ > 0, €9 > 0, Ao > 0, and that, for alln € N, u, =

%Aﬁ — An and the following hold:

(i) 0 <ip <1—ep;

(ii) e <yB <4—2% —&;
(iii) (Ap)pen Is given by Assumption 3;
(v) B=B.

The differences to Assumption 2 are that ¢, in Assumption 2 (i) has been replaced
with K,f in Assumption 4 (i) and that Assumption 2 (iii) has been replaced with
Assumption 4 (iii). If, e.g., K}% < &n+1, Proposition 2 implies that Assumption 2
holds if Assumption 4 does.

We are ready to state our convergence results for the algorithm in (26).

Proposition 3 Suppose that Assumptions 1 and 4 hold. Then the following hold for
(26):

(i) if f(n) > coasn — oo, then

(ii) if B > B and f'(0) < 1, then (||pn - y,,||2)nEN is summable;
(iii) if(K,%)neN is upper bounded by a constant less than 1 and f'(0) = 0(i.e., (An)yen
is constant), then p,—x* € zer(A + C).

_ —yf— 2 2llyo — x*|3

An—Ao 2—yB—2%o M .
— X, + Xn — Pn—1) — ————— =< =)

Pn n T (Xn — Pn—1) “— B 2)\0))»0f(l’l)2

4—yB—2x0 "

@ Springer

Numerical Algorithms

Proof We first show that the algorithm is a special case of Algorithm 1. First note that
yn = y implies that o, = @, for alln € N. Let

- 2—yup "
" 2 —)\‘O)/HB !
for all n € N, which implies that
OnynB 1 — 20)ynB 2— B
nz/nﬁun +u, = (O)Vn_,B ", + Vnﬂ_un =u, (28)
On 2 — hoynB 2 —oynPB

since 2 — Ag y,,B > 0 by (11). Let us show by induction that this implies y,, = z, for
all n € Nin Algorithm 1. Since y_1 = z_1 = p_1 = x¢ and ug = 0, we get yp = zo.
Now, assume that yy = zx for all k € {—1, ..., n}, then, since o, = &, and due to
(28),
In+l = Yn — Xn + an(Pnfl —Xx,) + &n()’nfl - Pnfl) + gnéﬂun + vy
= Yn — Xp + @ (Pu—1 — Xn) + Uy = Yny1.

Therefore, the z,,41 update of Algorithm 1 can be removed and all z,, instances replaced
by y, in (26). Moreover, the y, and x, updates of (26) are obtained from the corre-
sponding sequences in Algorithm 1 by inserting o;, = A"; A0

It remains to show that the u, 4| update satisfies the snafeguarding condition. We

use Theorem 2 (i), a;, = ’\”); 20 and the equality

<

s
|

B
Il

én On 2 _)\OVnB

< r¥VnB 2(1 = o) 2 — B) "

VnB)‘ﬁ 29—n <an§)‘% 29—11 2— Vn,B_ >

2—2ovaB 4 —yuB — 202 — hovaPB

_ uBroG — B — 240) =201 =)2 — yu) "
2= 20¥aP)E = yuB — 210)
_ YaBr0Q2 = yuB — 200) — 22 — v — 220)
B (2 = 20¥uB) (4 — yuB — 210)
_ mBro —2)Q — yuB — 200) "
(2= 2o¥aB)(E = yuB — 210)

__Qomb-29)
4 —yuB—2x0)

(29)

n

to conclude that

b 612 29,
by = F|[pn — Xn +an(xn_l’n—l)+y”§4”n_ 2 Un
n

n

@ Springer

Numerical Algorithms

An—Ao Q2—yuB—220)

4—=yn ﬂ 2%0)

=
=2

. A2 .
Now, since A1 + tUptr1 =)T'(;’ we conclude that if

Pn — Xn + (Xn — pn—1) —

b ((Onta Ons1
22 (2= hnr Iy + 22w I

Q=yB=20),
=yuf=200) "

Ap—A
—Xp + n)Ln 4 (xXp — pn—1) —

’

= §n+1 ‘

the safeguarding condition in Algorithm 1 is satisfied. The vectors u,| and v, 4|
are scalars times the quantity inside this norm. Therefore, the safeguarding condition
reduces to the scalar condition

by 2 (4= yB—200) <n+1 +én+1 (2—yn5>2> 0,
0,

= Cnrl—-
ro'" 4 et Ot @ —doyp)2) T2

Inserting the quantities in (12) and pu,, = tkﬁ — A, and multiplying by é > 0 gives

,(4—yB—2x) (YnB 2—2omB Q2= P’)
K, = + = = =< §n+1~
2 2—owB (4 —yuB —2%0) 2 — AoyuB)?

The left-hand side satisfies

2é- ¥B —2x0) (B L 2= hovaB (2 VnB)_z)
" 2 2= dovnB (4 —yuB —2h0) 2 — AoyuP)?
C@—yB-20) k2 (yaB@G—yuB —200) + 2 — uB)?)
B 2 2 — hovnP (4 — yuB — 220)

2
- _ "™ B(4 — v B — _ 3 3)2
= 50= 17 (WP =B =20+ 4= 4nf + 0uhY)
_ % 4 = 2y, Bn0)
=2 s
:Kr%’

leading to the safeguarding condition

2
Kn

= Cnt1
which is satisfied by letting &, 11 = K,f.
Using Proposition 2 and the choice ¢,+1 = K,%, we conclude that Assumption 2
holds since Assumption 4 does and we can use Theorem 3 to prove convergence.
That Proposition 3 (i) holds follows from Theorem 3 (ii) since yo = xo and by
updating the norm expression using (29).

@ Springer

Numerical Algorithms

Proposition 3 (ii) follows from Theorem 3 (vi) due to Proposition 2 that ensures
€1 > 0.
Proposition 3 (iii) follows from Theorem 3 (viii) due to Proposition 2 and that
2 _
Ky = Cn+1 1s upper bounded by a constant less than 1, which implies €p > 0. O

Remark 2 The algorithm produces points that satisfy
(A+C)pu 3 S M(n = p) = C(yn = pn)

and Proposition 3 (ii) implies, if f'(0) < 1 and ,3 > B, that M(y, — pn) — C(y, —
pn) — 0asn — oo due to boundedness of M and Lipschitz continuity of C. Although
(Pn)nen may not converge, it satisfies the monotone inclusion (2) in the limit. If in
addition || p,, — x*||m converges, we can conclude that p,—x* € zer(A + C).

A special case of (26) that we will evaluate numerically in Section 6 is found by
letting Lo = 1, and, foralln € N, A,, = X9, and x,, = k € (—1, 1). Then (26) reduces
to

Yn = Xp + Up

pn =M +yA) " (My, —yCy,)
Xn+1 = Xn + Pn — Yn
Upt] =K (2_27”3 (pn — xn) + %uo ,

which, since x,+1 = p, — u,, can be written as

po= M+ o (M =yO)) (pamit +tn = 1)
(30)

Uptl =K (2727//3 (Pn — pn—1 +up—1) + —Mn)

This algorithm is previewed in Section 3.1. Since x,, = k € (—1, 1) foralln € N and
since (A,),en 18 constant, Proposition 3 (iii) ensures that this algorithm produces a
pn-sequence that converges weakly to a solution.

5.1 Alternative formulation

We can eliminate the x,, sequence in (26) and express the algorithm solely in terms of
Yns Pn, and u,. The algorithm becomes

pn=M+yA) " (My, —yCy)

Ynt+1 = Yn +)LOM (Pn — yn) + tny1 —)»)» Tt Un

+ 22220 (3, — 1) + Ao (-1 — Pn—1))

Antl

4—yf—2 _
Un+1 = Kn (M (pn —Yn — knxnxo (pn-1—)’n—l)) + un)

€19

with y_; = p_1 = xpand up = 0.

@ Springer

Numerical Algorithms

Proposition 4 The algorithms in (26) and (31) produce the same (yn),cny ahd (Pn)pen
sequences, provided p_1 = y_1 = yo = Xo.

Proof We remove the x,, sequence from (26) by inserting

).

that comes from the y, update, into the x,4; update. This gives x,; update

A
Xn = ﬁ ()’n

Anl An

+)\n(pn - yn) + ()Vn - AO)(yn—l - pn—l)-

A A. — A —A
"H (yn . O.Vn - un+1) (.Vn - 2y,_1 — un)

Multiplying by glves

Ant+1—A0 An—M
Yn+1 = nJrnT (yn n Oyn 1= Mn)

2 (e (pn = ¥n) + Oon = 20) Y1 = Pu—1))

Yn + Un+1 + A +1

=Yn+Unt1+ % <_it_:y'1 + n — 2o Aoyn—l - Mn)

An

+ 72 On(Pn = ¥n) + O = 20) (=1 = Pu—1))

=+ B (= Y1) gt — it

+ % n(pn = yn) + Op = 20)(Yn—1 — Pn—1))
=t iﬁi’f (Pn = yn) + Uns1 — AAH n

+ *ﬂ;j“ (V0 = Yn—1) + 20n—1 — Pu—1)) -

The u,+1 update becomes

s = iy BG4 BB (g, —) — LB,)
= kp —(47}/%72%) (Pn - Lgxn - A"A;Aopnfl - 42—:%:;22 Mn)
=y SHE2) (pn -~ (yn— ntoy, | — un) b, 1——24’; e)
= Kn—(4_V€_ZAO) (Pn - Yn — ";n)m (Pn—1— yn-1) + —4 53 n)

4—yB-2 -
=Ky (WTAO) (pn — Y — 22 (pyy -)’nfl)) + un> .

This concludes the proof. O

5.2 Fixed-point residual convergence rate

The convergent quantity in Proposition 3 (i) may be hard to interpret. In this section,
we propose a special case of (26) and (31) such that this quantity is the fixed-point

@ Springer

Numerical Algorithms

residual, p, — y,, for the forward—backward mapping. This is achieved by letting

Anr1 =20
Kn = 5= which implies that

Ant1—ho (4— Vﬂ 2)0)
Ant1

Upt+1 = (Pn — yn)

and that the algorithm becomes

pn =M+ yA) My, —yCyy)
2hn | n+1 —Ao (4—yB— 2Ao)> (Pn — V)

Antl Antl

Yn+1 = Yn + ((32)

+ 2k ((yn e+ 42y, — Pn—l)) .

This algorithm converges as per the following result.

Proposition 5 Suppose that Assumptions 1 and 4 hold. Then the following hold for
(32):

(i) if f(n) > coasn — oo, then

2llyo — x*113,
Y24 —yp — 2?vo)kof(n)z

H %(pn — Yn) M

(ii) if B > B and f'(0) < 1, then (||pn - y"||2)n€N is summable;
(iii) if (An)nen is constant, the algorithm reduces to relaxed forward—backward split-
ting and p,—x* € zer(A + C).

Proof The claims follow from Propositions 3 and 4 by showing that, for all n € N:
the choice k, = % in (31) gives (32); by noting that «, = % satisfies
Assumption 4 (i) with €9 > 0 if f (and consequently (,),cn) is bounded and with
€0 = 0 if f (and consequently (A,),cn) is unbounded; and by showing that the
expression inside the norm in Proposition 3 (i) satisfies

2 2
(xn — pn—-1) — 4;;//;—2121/‘/1 =DPn— Yn- (33)

An—AQ
Pn — Xn + n}\n

We will first show that the u, update in (31) with k, = % ie.,

D1 — A 4—yB—2 u—
g = 2220 (G B0 (g = 220 (py g =y,))) (34)

implies that u, = %w(p

p—1=y—1 =ugp =0, we get

n—1 — Yn—1) forall n € N. For n = 0, since

4— 2\
up = M)\O(Vﬁ 0)(p — 0)

@ Springer

Numerical Algorithms

Forn > 1, we use induction. Assume that u, = ’\”)\;’\‘)w(pn,l — Yn—1), then

_ Myi—ho (4= Vﬁ 2)0)
Un+l = Ant1

(Pn = yn) (35)

since the last two terms in (34) cancel, which is what we wanted to show.
The y,41 update in (31) with u,,41 defined in (35) inserted satisfies

Ya+l = Yn + ﬁ"—i’;(pn —) et —
m] & ((n = Yn=1) + 20(¥n—1 = Pn—1))
= yn+ 322 (py —) + ”A“HAO Goyp2io) (p, —y,)
A;nff UrB20) (b, | — y,y)
2220 (g = yum1) + 20Gin—1 = Pa—1))
= yn + (io—il + dupiolo Goypo ”“)) (Pn = ¥n)

+ B2 (3, — y,g) 4 BR0 (k +M) (Yn—1 = Pn—1)

Antl

n 4—yp-2
zynJr(muer Mo (yﬂ AO))(pn_Yn)

)Ln+1)"Il+1

+)L"Hl ((yn — Yu—1) + G }/ﬂ) (Yn—1 — pn— 1))

which equals the y,+1 update in (32).
Finally, using the y, update equation in (26), i.e, i—gxn =y, —
the u,+1 definition in (35), we conclude that

An—Ao

An

Yn—1—u, and

2 2\
(Xp — pn—1) — A%Mn

An—A
pn_xn‘l' n}L 0

- 2—yB—2
=DPn—Yn+ AnAnAO (Vn—1 = Pn—1) + (1 - 4_)}:;;}—_218) Up

= po = ¥n + 2L (Va1 = Pac1) + g5 s
= Pn — Yn-

This completes the proof. O
One of the special cases previewed in Section 3.1 is obtained from (32) by letting

2\ €
An = (1 — %) (1 4+ n)¢ for all n € N. The resulting algorithm is numerically
evaluated in Section 6 and enjoys the following convergence properties.

Corollary 1 Suppose that Assumptions 1 and 4 hold with Ly = (l — }%)e and let
f(n) = (1 4+ n)¢ withe € [0, 1]. Then the following hold for (32):
(i) ife > 0, then
2llyo — x*II3,
V24— yf — 2ol +)2

1 2
H;(pn |,

@ Springer

Numerical Algorithms

(ii) if > Bande < 1, then (llp,, Yall) is summable;
(iii) if e = O, the algorithm reduces to forward backward splitting and p,—x* €
zer(A + C).

Corollary 1 (i) states that (|| px — yall%), .y converges as O (n%e) When 8 > B

and e < 1. Corollary 1 (ii) gives that (||p, — yxl|?) _ converges as O (1) due to its

neN
summability. This gives a combined O (min (%, an)) convergence rate and implies
tunability of the convergence rate by selecting e € [0, 1]. Letting e = 1 implies that
our algorithm, as we will see in Section 5.2.1, reduces to the accelerated proximal

point method and the Halpern iteration that converge as O (nlz)

5.2.1 Accelerated proximal point method and Halpern iteration

Letting f(n) = 1 +nand Ag = (— —) to get A, = (l — ’%) (14 n), we get that
the y, 41 update of (32) satisfies

Aohn | il —ho (G—y B—20
Yn+1 =yn+<ko+1 +)Tnlﬂ 6 J/ﬂ 0)) (pn = yn)

+ ta—to (()’n = Yn—1) + @()’n—l - pn—l))

Ant1
Z)’n+<1_y4_ﬂ)<%+%>(pn_)’n)

n+2 On = yn—1) + M()’nfl - pnﬁ))

= yu + L (py —)
i
+ih ((yn yuo1) + & (3, — Pn—l))
yﬁ(1+n) n@2—yp) (+n)4=yp) n-—yp)
aan Int Timm Y1t iy n = “ayon Pn-1

and algorithm (32) becomes

pn=M+yA) (M —yC)y,,

_ yBU+n) n@2—yp) (I+m)(@d—yp) n@—yp)
Yntl = "G Yn T T -1t oy Pn T Tagay Pr—l-

(36)

From Corollary 1, we conclude since ¢ = 1 and by letting 8 = f that this algorithm
converges as

2 16]ly0 — x*I13
H%(pn — Yn) =< 2 3 M 5
My (@4 —-yB) (+n)

By letting C = 0 and consequently 8 = 0, we arrive at the accelerated proximal point
method in [21] and the O(n—lz) convergence rate results found in [21] is recovered by
Corollary 1.

@ Springer

Numerical Algorithms

Algorithm trajectories

CRC)
] o....oooo...°o %o
.. [] [}
27 °
[}
11
® o
i
S . ®
e —_— =
—9 ..
° —e=0.1
N —e=0.2
—e=0.3
—4 4
S ¢=04
T 6205
Distance to solution e=0.6
e=0.7
e=0.8
—e=0.9
— O —

“M Il i I

™

IO 0 I

[l — 2|l

0 1000 2000 3000 4000 5000
Iteration

Fig. 1 We evaluate the algorithm in (32) with A, in (37) with the different choices of e specified in the
legend to the right. The upper figure shows the 100 first p,,-iterates for the different e and the lower figure
shows the distance to the unique solution. The algorithm with e = 0 is standard forward—backward splitting
(here, only the backward part is used) and the algorithm with e = 1 is the accelerated proximal point in [21].
For small e, we get a strictly decreasing distance to solution, while large e gives an oscillatory behavior. Our
new algorithms with e chosen around the middle of the allowed range strike a good balance and achieves
superior performance compared to the previously known methods

@ Springer

Numerical Algorithms

If welet A =0, = B, and yB = 2, the forward—backward mapping in (36)
satisfies

Pn = (M — %C)yn

where (M — 2C) := N is nonexpansive in the || - |5 norm. This implies that the
algorithm aims at solving the nonexpansive fixed-point equation y = Ny by iterating

Pn = Nyn
_ 1+ 1+
Yn+1 = ﬁYn + ﬁﬁpn - ﬁpn—l,

which is the Halpern iteration studied in [23]. This is seen by recursively inserting y,,
into the y, 4| update to get

_ 1 n+l1
Ynt1 = 75250 + 555 Nyns

which is the formulation used in [23]. From Corollary 1, we conclude that this iteration
converges as

4llyo — x* 113,

_ 2
| pn anIM = (1~|—n)2

El

which recovers the convergence result in [23]. Interestingly, although the convergence
rate is optimized by this choice of 1,, it does not perform very well in practice. Other
choices of (1,), <y With slower rate guarantees can give significantly better practical
performance as demonstrated in Section 6.

6 Numerical examples

In this section, we apply our proposed algorithms on the problem 0 € Az, where
z=(x,y) and

Az = |:(1) _01:| z=(=y,x)

Table 1 We report the number of iterations to reach accuracy ||p, — x*|| < 107° for the algorithm in (32)
with A, in (37) and different choices of e

e # iter. e # iter. e # iter. e # iter.
0.0 3068 0.1 1131 0.2 580 0.3 314
0.4 170 0.5 212 0.6 471 0.7 771
0.8 1961 0.9 10625 1.0 21213167

The theory predictsa O (1 / nze> convergence rate for the squared fixed point residual norm. Althoughe = 1

(which gives the accelerated proximal point method in [21]) gives the best theoretical rate, it performs the
worst. Standard forward—backward splitting is obtained with e = 0. We find that values of e in between
can perform considerably better than these previously known algorithms

@ Springer

Numerical Algorithms

Algorithm trajectories

N
*] —k=-0.9
-k = —0.8
= 0- —_— k=07
— = —0.6
—_k=—0.5
] —k=—04
—k =—0.3
4 k=-0.2
7 %) ; | rp=-01
' e ' k=20
- Distance to solution o= 01
k=02
o k=03
10-11 k=04
k=05
D07 — k=0.6
% — 5 =0.7
B — k=08
10-4] — k=09
107" 4
o 0 10’00 20’00 30’00 40’00 5000
Iteration

Fig.2 We evaluate the algorithm in (30) with ¥ € {—0.9, —0.8, ..., 0.9} as specified in the legend to the
right. The upper figure shows the 100 first pj,-iterates for the different « and the lower figure shows the
distance to the unique solution. The performance is best for ¥ € {0.8, 0.9} and many choices of ¥ € (0, 1)
outperform the standard forward-backward splitting method that is obtained by letting k = 0

@ Springer

Numerical Algorithms

for all z € R%. The operator A : R> — R? is skew-symmetric and the monotone
inclusion problem 0 € Az canbe interpreted as an optimality condition for the minimax
problem

max min xy
yeR xeR

with unique solution x = y = 0. We will in particular evaluate the algorithm in (30)
with different choices of k¥ € (—1, 1) and the algorithm in (32) with

a= (1= 2) Ay (37)

foralln € Nand e € [0, 1]. According to Propositions 3 and 5, (30) withk € (—1, 1)
and (32) with A,, in (37) and e = 0 (corresponding to the standard FB method) converge
weakly to a solution of the inclusion problem. As per Corollary 1, (32) with X, in (37)

and e € (0, 1] converges in squared norm of the fixed point residual as O (#) and

when e < 1 and B > B, it does so with a rate of O (%)

For all our experiments, parameters y = 0.1 and 8 = 0.001 (which is feasible since
C = 0 and therefore § = 0) are used, and starting points y_; = p_1 = yo = (3, 3)
and x_1 = p_1 = x9 = (3, 3) for (32) and (30) respectively.

In Fig. 1 and Table 1 we report numerical results for the algorithm in (32) with
Ay in (37) and e € {0,0.1,...,1} and M = Id. The choice e = 0 gives standard
forward—backward splitting and e = 1 gives the accelerated proximal point method
in [21]. The other choices of e gives rise to new algorithms. The figure shows that
the distance to the unique solution behaves over-damped for small values of e and
under-damped for large values of e. There is a sweet spot in the middle that has the
right level of damping and performs significantly better than the previously known
special cases with e = 0 and e = 1, at least for this problem.

In Fig. 2 and Table 2, we report numerical results for the algorithm in (30) with
k € {—=0.9,-0.8,...,0.9} and M = Id. The theory predicts sequence convergence
towards a solution of the problem for all ¥ € (—1, 1). The choice ¥ = 0 gives rise to
standard forward—backward splitting and all other values of k define new algorithms.

Table 2 We report the number of iterations to reach accuracy || p, — x*| < 1070 for the algorithm in (30)
with ¥ € {—0.9, -0.8, ...,0.9}

K # iter. K # iter. K # iter. K # iter.
-0.9 58350 -0.8 27653 -0.7 17414 -0.6 12292
-0.5 9219 -0.4 7170 -0.3 5706 -0.2 4607
-0.1 3752 0.0 3068 0.1 2507 0.2 2040
0.3 1643 0.4 1302 0.5 1005 0.6 741
0.7 501 0.8 258 0.9 288

The theory predicts sequence for all these values of «. The choices k = 0.8 and k = 0.9 significantly
outperform standard forward—backward splitting that is obtained by letting k = 0

@ Springer

Numerical Algorithms

Algorithm trajectories

iy
— rk=08
-2 L — k= 0.82
1 0 1 2 3 1 = 0.84
. Distance to solution K =0.86
k= 0.88
10° 5 — rk=0.9

1071 4 \

%
|
£
= 10-3 4
10-4 4
107° 4
10-° T T T T T
0 50 100 150 200 250 300
Iteration

Fig. 3 We evaluate the algorithm in (30) with x € {0.8,0.82,...,0.9} as specified in the legend to the
right. The upper figure shows the 100 first p,-iterates for the different x and the lower figure shows the
distance to the unique solution. All these choices perform well and we go from a non-oscillatory behavior
to an oscillatory behaviour within this range of «

@ Springer

Numerical Algorithms

Table 3 We report the number of iterations to reach accuracy || p, — x*| < 107 for the algorithm in (30)
with x € {0.8,0.82, . .., 0.9}

K # iter. K # iter. K # iter.
0.80 258 0.82 179 0.84 180
0.86 213 0.88 238 0.90 288

The theory predicts sequence convergence with all these «. All choices of « perform well

The figure reveals that the performance is best for k € [0.8, 0.9], significantly better
than standard FB splitting with k = 0.

In Fig. 3 and Table 3, we provide numerical results over a finer grid of the best
performing x. We set the range to « € [0.8, 0.9] and use a spacing of 0.02. We see
that for k = 0.8 and « = 0.82, the distance to solution is non-oscillatory, while it
oscillates for greater values of x. All these choices of x perform very well.

7 Deferred results and proofs

In what follows, we present some results that have been used in the previous sections
along with the proof of Theorem 1 that was deferred to this section. Prior to that, we
define the auxiliary parameter

6, = (2 — vuB)itn + 20n0n (38)

which frequently appears throughout this section.
We begin by establishing some identities between the parameters defined in
Algorithm 1. These identities are used several times in the proof of Theorem 1.

Proposition 6 Consider the auxiliary parameters defined in Step 2 of Algorithm 1.
Then, for all n € N, the following identities hold

(i) 6 = (2= vaB)0n + 6u;
(1) On =200 + (2= yuP) Gun + ttn);
(iii) A20, = 0, (Ap +) — 262

Proof For Proposition 6 (i), from definition of 6, and é,,, we have

Oon + tn) — 202 + 200 +)

nB) (P
= (2- B)(xnwn)—zxzwnm o+ (20 + 2000 = 70B32)
)
YuB) Con + ptn) = 20

@ Springer

Numerical Algorithms

which holds by definition of 6, in Algorithm 1. For Proposition 6 (ii) we have

20, + (2= YB) Gon + 1) = 2 (o + 0 = 32) + (2= 7aB) o + 1)
= —2)»% + (4 - Vn,B_)()\n + tn)
= Oy.

For Proposition 6 (iii), after moving all terms to the left-hand side of the equality we
get
33260+ 207 = 00 n + 1) = 23 ((2 = vaB)Ba + 00) + 207 = 0 + 1)
=0y ()\%(2 - VnB) + 29—11) - én()\n + pn —)\ﬁ)
= 00 (200 + 200 = vaBAL) = a0 = 0,00 — 010,

where in the first equality 6, is substituted using Proposition 6 (i) and in the second
and the third equalities, definitions of 6, and 6, are used, respectively. O

We note from Proposition 6 (iii) that the assumption 6, > 0 in Algorithm 1 implies
6, > 0.

The next lemma provides alternative expressions for the term inside the first norm
in (4).

Lemma 2 Suppose that Assumption 1 holds and consider the sequences generated by
Algorithm 1. Then, for alln € N, the following

ynﬁk 20,

(i) pn— (I —an)xy — otnpp—1 + Un = 3 Un;
29 9 21 / 20 ”’
(ii) pn — ton + 9"y" - B, = —Pn 1+ ”“" n—1— ”a" Yn—1;

ees 6, 2—¥n An n
(iii) i(xn+l —Xxu) + é_un + (yﬁg% Un
Proof We, first, show that Lemma 2 (ii) represents the same vector as Lemma 2 (i):

20, 0, 2,\n

29 6,
Pn — Q_Zn + On Yn — % ,101,,

in—1 —

__pn1+ Yn—1

2xn

= Pn — g_nn(zn — UpZp—1) + é(yn - Olnynfl) - - 9—"Pn—1

= Pn — %((] — o)Xy + (g — 0y) pp—1 + 9;;)/11 “==Up + vn)

9 2)
n ((1 —)Xy +Up) — _nxn - _Pn 1
= pn — 2(1_an)9n_(91_an)9n+2)\n Xy — 9;,+29n0(':¥n_an) D1
00,—202y, B 20,
+ —0 F; Uy — an
A2 20,
= Pn — (1 — an)Xn Oy Pn—1 +)/n,B —u, H_:U"

@ Springer

Numerical Algorithms

where the coefficients of the last equality are found as follows. The numerator of the
coefficient of x,, reads

2(1 — ap)fy, — (1 — ap)f + 2,
= (1 =) (00 — (2 = YuB) n + 1tn))
— (L= an)yaBhn + 1tn) + 20y (39)
= (1 —)by —2(1 —) +) + 2,
= (1= @)y = 275 Con +) + 2n = (1 =)6y

where in the first equality, 6, is substituted from Proposition 6 (ii), and 6, and a,, are
substituted by their definitions in Algorithm 1. The numerator of the coefficient of

Pn—118

0;; + 2én(“n —ap) = (2 - Vng)ﬂn + Z&nén + 2én(“n —ap)
= (2 = vuB) 1n + 26,0ty (40)
= (2 - J/ng)an()‘«n + un) + Zénan = onby

where in the first equality (38) is used, the third equality is obtained using the definition
of «,, and Proposition 6 (ii) is utilized in the last equality. For the numerator of u,, we
get
000 — 20,y B = 0ynBOun + 1) — 20, vu B
_ /A - - (41)
= YuB(Ba Gon + 1) = 207) = v B33

where the first equality is obtained by substitution of the definition of 6, from
Algorithm 1, and in the last equality Proposition 6 (iii) is used.

Now, we show that Lemma 2 (ii) and (iii) represent the same vector. Starting from
Lemma 2 (ii), we have

20, 0, 2hn

29 6,
Pn — _Zn + O Yn — _nxn - _pn 1+ %y ,Loz,,

Zin—1—

Yn—1

= Pn — 20” (Zn — Anzn—1) + i(yn - anynfl)) - épnfl

— 20, —
= E(xn—i-l —Xp) +2Zn + 0 (Pn—1 — Zn—1) — g_nn(zn — ®pZn—1)

6, 2), o,
+ Q_Z(yn UpYn—1) — nxn - g_:;pnfl
1 On 29 = 6, 24
= E(le»l Xn) + 257 (20 — Mnzn—1) + g_:(yn — 0y Yn—1) — o
&0, —0)
+ = Sn ~Pn—1

= i(xn-i-l Xn) + 29” ((1 —ap)xpy + (@y —) pp_1 + "y" Uy + U”>

0 21 @0, 6,
+ Q_Z((l on)Xp + Up) — _nxn + n@n * Pn—1

@ Springer

Numerical Algorithms

p— L — (0 20)en]/nﬂ-'r n)l
=% (Xnt+1 — Xn) + b, Up + g, Un
+ (9/1*Zén)afang)jén(1*0‘/1)*2}‘«11 Xn 4 (On— 29,,)((1,,;0(,1)-{—0(,19” pn I

9!1

2— n B)\n n
ﬁ(xn+l Xn) + u + Gy ﬁé’(l i)Un

In the second equality, the definition of x,,4 in Step 8 of Algorithm 1 is used. In the
fourth equality, the definition of y, in Step 5 and the definition of z, in Step 6 of
Algorithm 1 are used. In the last equality, the coefficient of x, is found to be —— by
(39), the coefficient of p,_ is zero by (40), the coefficient of v, is found by Proposmon
6 (ii), and for the coefficient of u, we have

(9” - Zé”)énynﬁ_ + énén = Qnén)/nﬁ_ - 29—27/71,3 + énén
= enénynﬁ_ + Vn/g)‘ﬁen
= 9nVnB<9_n + A%) = enVnB()\n + Un)

where the second equality is obtained by (41), and in the last equality the definition
of 6, is used. This concludes the proof. O

7.1 Proof of Theorem 1

Proof The only (non-trivial) divisors that will appear the proof (as well as Algorithm
1) are 6,, and én In Algorithm 1, we assume 6, > 0 foralln € N, which by Proposition
6 (iii) (and since A, > 0 and pu,, > 0) implies that 9, > 0. Therefore, there are no
divisions by zero.

Let us define the following quantity

Ap = Vo1 = Vi + 270 (n — Qnt1hn+1)@n + Ln—1
= Gon +) (a3 + 1001) “2)

and prove the result by showing that, forall n € N, itisidentical to zero. By substituting
V41 and V;, in (42), we get

An = ||xng1 — X*szvz +Ln + 2hn41 Vo104 1Pn
— Jxn — x*||i,, —lp—1 = 2hnYnOnPn—1
+ 2 G = S Db+ bt = Con +) (& Nty + 5 ol)
= Jotnr =23 = [xn = x*[3; + €0 = 220 Vn@au1 + 2nhntn
= G+ 1) (Ll + 2 10nr)

@ Springer

Numerical Algorithms

where in the last equality we used y,0,4+1 = Vu+10n+1. Next, substituting £, from
(4), and ¢,,—1 and ¢, from (8) on the right-hand side of the last equality above, yields

A = o =2 = o =21

ynBig 26
DPn — Xp + 0y (X — pp—1) + #un - T:Un Iy

+ 2Mn)/n<zn n[’n - Zn_;,;_l:n_l » Pn — pn—l>M
+ 5L oy — 3 — (Pt = YDy
— 2XnVnty (<%’ Pn—1— x*>M + %”ynfl - panH%u)
+ 2% ¥n (< BB P — x*)M + &llyn — pnll?w)
n 2 9’1
= G+) (Ll 3y + 2 only)
2 _
= Jwer =23y = [= 23, + 20 2222, 0 = x7)

= 2knynan<z"“y;%, Pn—1 = Pn+ Pn — x*)M

4 2“11)/n<zn npn _ Zn—}l/;[:n—l . Pn — pn71>M

z 2

YuPiy 26
Pn — Xn + oy (Xn — pn—1) + né Uy — gnvn v
n

+ 56n

AnYn
%"ﬂ”yn—l —

4 BB by — (et — DIy — patl?

A‘)l n ~n An
+ 2222y, — pally = Gon+ i) (L llanly + 10 ly)

= st = x5 = 0 = x*[1
+ 2<)"n(zn - pn) — php(Zp—1 — Pn—l)’ Pn _x*)M

+ 2<Mn(zn = Pn) + (@nAn — Vr)l/il Mn)(Zn—1 — Pn—1)> Pn — pn—l)M

Vnﬁ)‘% 2
Pn — Xn + oy (Xn — pn—1) + Tun - g_nvn Iy

n n_)\n n n_
+ B py =y = (Put = 3Dy = 2B et = pu-illy
A on Oy
+ 2228 3y = pallly = Gon - st) (2l + G l10nly)

We define

Wy = Ophy — y,l_““" (43)
and substitute it in the last equality above; and also from Step 8 of Algorithm 1, we
replace An(2n — pn) — @nAn(Zn—1 — pu—1) by Xy — Xn41. Then, we get

A = |xns1 —x*szw = |xn - x*”i,l +2(xn — Xpg1. pn — X7),,

+ 2(un(zn — Pn) + wp(Zn—1 — Pnfl)y DPn — Pnfl)M

@ Springer

Numerical Algorithms

2
V,ﬁk _ 2,
Pn — Xn + 0y (Xn — pp—1) + 5 up gnvn Iy

+ 8B by — 3y = (Pa1 — yn_ouM By g1
)\n n én én
B8y, — pallly = G+ 1) (ENanly + 2 onliy)

2 2
= lxnt1 = Pallyy = X0 = pallyy

+ 2{wn(zn — pn) + ©0n(Zn—1 — Pn—1)s Pn — Pn—l)M

z 2
vuPiy 26,
Pn — Xn + 0n(Xn — pn—1) + né Up — 6, Vn
n

+ 560

M

An¥Yn
Badgenll |y,

BB b — vy — (Dot — Ya-D I3 — Pl

)\'ﬂ n ~I‘l A’l
+ 2228 3y — pallly = Gon 1) (2 ltnly + 2 0nly)

where in the last equality we used the identity 2(a — b,c —d)y + ||1b — dllﬁ,[—
la —dl3, = Ib—cl3 — lla—cl3, for all a,b,c,d € H. Now, inserting x,+1
from Step 8 of Algorithm 1, yields

Ay = lxn — pn + An(Pn — 20) + X0ty (Zp—1 — Pnfl)”%/[— lxn — pn”%/[
+ 2(un(zn — pn) + ©p(Zn—1 — Pu=1)» Pn — Pn—1)ym

2 2
vabAs 2,
Pn — Xn + on(Xn — pn—1) + nén “Up — enn Un I

+ 360

n)17 A‘Vl n n7
+ ann = Y = (Pnt = YDy = 28528y, 1 — puilly
2y = paly = G+) (2 a1y + 2110013
= ”)\n(pn — Zn) + A0y (Zp—1 — pn—l)”%vl
+ 2(xn = pus n(Pn — 20) + An@y(2Zp—1 — pn—1)>M
+ 2(un(zZn — pn) + 0n(Zn—1 — Pu—1), Pn — Pnfl)

> 2
YaBA; 26,
—Xp + (X — pp_1) + né Uy — B Un
n M

+ %en Pn

A 2
A I

+ Mnyn/g ||pn D (pn,] — ynfl)”%ll -

A’" n ~Il An
2Ly — pullly = G+ 1) (Eunly + 2 onlly)

Next, using Lemma 2 and Steps 56 of Algorithm 1, we replace the terms including
u, and v, in terms of the iterates

A = 12 (pn = 20) + Ann @n—1 — pu—D 1%y
+ 2(x, — Pn,)Ln(pn — 2Zn) + Ay (zp—1 — pn71)>M

+ 2(un(Zn — pn) + ©p(Zn—1 — Pu=1)s Pn — Pn—1)ym

/ ~ 2
20, g, 2) 20,0 Oh
Pn — B, n + gn Yn — gnxn - _pn 1+ " Zn—1 — rfgnnyn—l H

0
+%

M

@ Springer

Numerical Algorithms

JnYnOn B
S LU

+ BB by — (pat = YD — Pt}

T 2 Jn)b 2
BB |y, — pallfy — Sy, — (1=)3 — a1 Iy
n
_ ()‘n‘H/Ln)en _ énl’n/§ _ (27}/"5))“"
0, Zn 0, Yn o, Xn
= = anen)/n/g 2
+ (0 — o) Pr—1 — AuZp—1 + =Y
where we used
_ - 20,
Vp =2n — (1 —ap)xy + (0t — 0p) pu—1 — ApZp—1 — ,Bg_ynun
Onynp 2=y)1
=Zn — gﬁ)’n_ (}glﬁ) - n+ (@n — W) Pn—1 — ApZp— l+wyn—l
n)l

which is obtained by substituting u,, from Step 5 into Step 6 of Algorithm 1. Next, we
expand the terms on the right-hand side of the last equality above which include p,,.
This yields

Bn = 221pall}y + 2P 2=z + &zt = Gupa-1))
4+ A2llzn — @nzn—1 + @npu_il’y
— 20l Palldy + 2(Pns An(Zn + Xn + @n Pt — @nZn—1))y
+ 2{Xp, Ay (=2Zn — A Pr—1 + AnZpn—1))
— 2l pull3g + 2(Pns tnzn + (Hn — ©n) Pu1 + @nZn—1)

+ 2{unzn + @n(Zn—1 — pu—1), —Pn—1)y + %On”Pn”%u
+ 2<pn’ 0_,1(_2&&1 + %yn - 29)L xn)>M

2 (s + By~ By,)

- - 2
2(-) 6, 21 20,4, Oha,
9"Zn+#yn_ gnxn_g Pn—1-+ n “Zn—1 — "gnnyn—lHM

+ Wllpnll,ﬁ +2{ pn. %(—yn — (Pn—1 = Yn-1))
M

+ BBy (puoy = yae DIy — 2Ly, — pai 1,
nysn nyn)\n n
+ 228 pu 3y = 2 2y, + 28R, 1

6, (Mt 2
- %”)’n — (1 —ap)x, — anyn—illy
n
_ én()tn‘f‘ﬂn) _ én}’nB _ (z_y’lB))‘"
N ‘Zn 9, Yn 7, Xn

dn nynﬁ

2
+ (@ — o) Pp—1 — ApZp—1 + F= Yo 1”

@ Springer

Numerical Algorithms

- ()wzz _ (4*yn/§)2(kn+un) " %Gn) Ipall,
+2<p,,, (k + pn —)» — 0,)zn (%” - M))&»M
2 pas Gon = A + (1= Dt + st = 00 = 36, = 2322) p i)
+4m«ﬁ%—M%+@ﬁﬁm0m4+(%@%+&%gmqu

+)";%”Zn — QpZn—1 + An Pu—1 ”%W + 2(xp, An(=2p — Oy pu—1 + &nzn—l»M
+ 2(unzn + ©n(Zn—1 — pn—1)s —Pn-1)y

5 2
O 2\ 26,
+ 9n 0Zn+9)’n__n"xn_.9pnl+ oty 71_"%)’111HM
r A

4 BBy (pyy =y I3, — 2By, g,

x O o+ 2
+ 28 |y, |3, — Bttty — (1 —)y — vl

n
_ en()\n"l‘,un) _ énVnB _ (2_)/"3)}‘”
O, ‘Zn 0, Yn %, X

anb n)/nﬁ

2
+ (@ — o) Pt — AnZp—1 + F= Yo l” .

All terms involving p,, in this expression are identically zero since their coefficients
become zero. This is for most terms straightforward to show by substituting 6,,, 6, 6,,,
0,, oy, and &, defined in Algorithm 1 into the corresponding coefficients. We show
this for two coefficients for which it is less obvious. For the coefficient of (p,, pn—1) i
we have

_)\ﬁ&n + Ay + iy — Wy — %9,; - %

= _}\%&n + Anotn + pn — ()\n&n

yn 1

=~ 2— n B n
= —Xian + V:l/fl Mn + (Vzﬂ_)M — %0’;
y ey 2— n B n
= _}\%an + (A + mn)on + % - %9,;
n = 2— n_ n
= Gy + CPin _dpr Lgr Lgr — o,

where in the first equality w, is substituted from (43) and in the third equality the
definition of @, is used. For the coefficient of {p,, z,—1)

A28y — Al + wp + 0,y
+ 6,a,
= A,%&n — (An + o, + én&n = (én - én)&n = 0.

= 22& — M@y + An@y

@ Springer

Numerical Algorithms

Next, for the terms containing z,,, we do a similar procedure of expanding, reordering,
and recollecting the terms as we did for p,,. This gives

Ay =)\ﬁnzn — UpZp—1 + ApPn—1 ”12\/[+ 2{xp, An(—2n — Ay pn—1 + &nzn—l)>M
+ 2{nzn + 0n(2n—1 — pn—-1), _prhl)M

= 2
1 26, [2hn 26,
+ §9n gnzn + i)’n %, T Xn — 9 Pnfl + nOln in—1— nOtn . Jn— HM
2 A 2
+ BalB Yy (pacy — DIy — —"V";‘"ﬁ In-1 = Pn-1lly

)\n n én)\n n
+ 2By, |3, — ety (1 — o), — i Iy

_ én()hn‘Hln) ‘Z _ e_n}’nB _ (2_Vr1/3))‘nx
On " 0 7" O
2
+ (0 — o) pu—1 — AnZn—1 + = "y”ﬂyn IHM

= 32020l + 2z M (—Gnzamt + @apu1)) |+ el —Enznt + @ pa-tly
+ 2(zn, _)\nxn>M + 2(xp, Ap(—0y pp—1 + &nzn—l))
+ 2(zn, ,U«npnfl)M + 2(pn—1, —wn(zp—1 — pn71)>M + ”Zn”M

0/
+2(Zn9 _0 (0 Yn — 20)L Xn — lpnf + 29 ananl - Qrél;n Yn71)>M

é 2% 6,
75 Vn — gnxn__pn 1+

26)
nan Zn—1 — nan

2
Yn— lH

+ Hnynﬁ ”_)\nVréan,B ”yn

Yo = (Pn1 — Ya—DII%y — —1 = pu—tlly

)\nn éﬂ)")‘l n
208 |y 3, — ety — (1 —)y — iy Iy

én)vn n én)-n n én n B 2— n)‘Vl
¢ gjli)”Zn”%v[+2(Zn» _(e;LM)(_ éynﬂy” (};nﬁ)))M

+ Z(Zny _W((&n —p)Pn—1 — UpZp—1 + Otng_l/nﬁy —l>>

M
_ én()vn“‘lin) ‘ _ énAVnEy _ (2_7/:15))‘41)6
n 0 7" O "
on n)’nﬂ 2
+ (0 — o) pu—1 — AnZn—1 + 5= Yn—1
)
220, 42026, O +1tn) ’ On (Yn B+ 1) =00
— tnn ngnn n n ||Zn||M+2 Zn,¥}%
M
20020 —hnbn+ (2= yuB) On+itn) s
+2(Zn, n’n nn (9 }’nﬁ)(n+in) 1xn>
" M
n 2<Zn’ xg&nen—;Lnen+én9,;9:én(Anw,,)(&n—an)pn1>
M
&rz<én()\n+ﬂn)_2‘§3_)%9n) Ol,,@,,()/,,,B()Ln—}-;,cn))
+ 2(zn, o -1+ o Yn—1
M

+)\;% |l—cnzn—1 + Qp Pn—1 ”%4 + 2(xp, An(=0ypp—1 + &nzn—l»M

@ Springer

Numerical Algorithms

+ 2(pn—1, —0n(zn-1 — pn—l)>

2hn 29!1 Un

2
gxiz_gpn1+ in—1 — 9’1 “ Yn— IH

+ 5 16,

(.)yn "

+ l‘«nl/nﬂ [)\nynanﬂ Yn_1

2
-1 = Pn—1 ”M

nn 6}1)\n n
+ ”nynnM Muy — (1 =)% — anyn1ll’y

— Pn—1+ Yn— 1||M_

_ (')n (An+pn)

n

_ enl’nlgyn _ (2_71"/3))‘" Xn
0’1 97!

O‘néf Vnﬂ_
On

2
+ (@ —) prn—1 — ApZp—1 + Yn—1 HM

Now, we show that all the coefficients of the terms containing z,, are identical to zero.
The coefficients of ||zn||%,1 and (zn, Zn—1))y are zero by Proposition 6 (iii). For the
coefficient of (z,, x,), we have

2én)\n — Anbn + (2 - ané)()tn + Un)An = An (29_}1 + (2 - Vn,é)()\n + pn) — 911)

which is identical to zero by Proposition 6 (ii). For the coefficient of (z,, pp—1) 3 wWe
have

hix@n = O+ 000y, = O o =+ 00) @ —)
= 128000 — pnOn + On (2 = YB)ttn + 28nBn) — By Gon +) (Gon —)
= &, (3260 + 207 = G + 11000) — Habh
+ (2 = YuB)inbn + G + 1) By
= (=00 + 2= vuB) + 6,) =0
where in the first equality, 6, is substituted and in the third equality Proposition 6 (iii)

is used and in the last equality Proposition 6 (i) is used. Therefore, all terms containing
Z, can be eliminated from A,, and we are left with

A, =
)\ﬁ |—Cnzn—1 4 &ty pn—1 ”%W + 2(xp, An (=@ ppn—1 + &nzn—l))M
+ 2(pn—1, —0n(zn-1 — Pn71)>

< 2
1, |6 21 A 26, 0
+ 30| foon — B — oot + oz — By |
P o Yl 2
+ 8By p gyl — 2B g — 13,
A O, Ot 2
+ 2y, |3 — Bt |y, — (1 — o), — oty Iy
n
— Gn()»n“‘llvn) _ g_nz/n/éy _ (Z_W’ﬁ)k"x
n On " On
o n}’nﬂ 2
+(an_an)pn 1 — 0nZp—1 + - Yn—1 M

@ Springer

Numerical Algorithms

=)‘ﬁ”_&nzn—l + 0ppn—t1 ”%\4 + 2(x,, An (=0 pp_1 + &nzn—l))M

0”2
+ 2P, =00 @ut = Pa-D)pr + 3 Iyl

On(_ 20y _ _’ 29nan _ dhan

+ 2(ynv (gn pn 1+ in—1 O yn—l)>M
1 9 2hn 9}'/! 29—n an enan 2

+ 30| =3 % — g, Pn—1 T =1 = g, Yn-1

+ 2y, 13y + 2{ v, 43 (g — yn_o}M + B g — 1y
nn 9’1 n n
o+ 2238y, — el y, 3,

- 2<yna W—_FM((OM — Dx, — an)’n—]))M

97‘1 A‘ n)\n n“n B
— Bt (ar, — 1)y — any 13y — 225528 |y, g — pyil
9_” Vnﬁ (An+Hn) 2 én}/ng()tn‘i‘ll«n) (2*%1,5))%

- énen ||yn ||M + 2<yn’ 0” (_ én xl’l M

+2<yn, W%((d —) Pt — GpZn—1 + "y”ﬂyn 1)>

_ én (An+tn)

6}1

ér% n n_ An n_ én An n 9_7%)12 5 Antitn
Z(m_i_uyﬁ_‘_ Vﬂ_ (;‘F/‘t)_ Yo B(M))”yn”M
+

o 6/1 Unn¥YnP ,B

2
Xp + (@ — 0y) Pp—1 — UpZp—1 + 2525y H

‘ _ (Z_VnB))Ln
[

n

O, 06

<)»nen + Qn()un-HLn)(l o) en}\n)/nﬂ()»n“‘ﬂn)(2 Vnﬂ)) >
n
Qn enen M

2<yn,
+ 2<yn, (—W T /"n%’nﬂ + nynﬂ(xn+9;:n><&n—an))pn_l>M
+ 2<yn, (engn&n _ grl&nynﬂ()\n+#n))zn_l>
n M
+ 2<yn,

éy%an _ Mn Vnﬂ 9 oy ()L + 1) ang Vi /3 (An+n)) >
(20, Tt T O In=t

+)‘3 |l—anzn—1 + Oy Pn—1 ”M + 2(xy, An (=0 pp_1 + &nzn—l»M

B 2
+ W”pn—l = Yn—1llar + 2{Pn—1, —@n(Zn—1 — Pr—1))
= 2
2 26, 6,
gnxn - 9 pn 1+ nDln in—1 — :lgjnyn—IH

M

O On+ 2 A B 2
— Sl tia) | (@, — 1)y — anyu-illyy — 222y = pacily
n

_ én (Ant+itn) n 911 AnnyYnp l3

n

2
Xp + (O —) pr—1 — ApZp—1 + 2F"E Y- IH

[o

n

Now, we show that all the coefficients of the terms containing y, are identically zero.
For the coefficient of ||y, ||%W we have

(Gnényn B — 20,6, — 29‘,3;/,,252)(/\,, + 1) + 026,

= (007 B @+ 24t = 3372 B) = 200 vuB o + 10) = 202728 n +)

@ Springer

Numerical Algorithms

+670,
= — (6022 +202) Cur +) V2B + Gun + 1) V2576,

= (()Ln + l/«n)én - anrzl - 29—3)()% + Mn)ynz,éz,

which, by Proposition 6 (iii), is identical to zero. Now, for the coefficient of (y,, xn) s
we have

énen()hn +) (1 — o) —)\nénén - én)‘nyn,g()”n + Mn)(z - Vn,g)
= (911()¥n +)1 — o) —)\nén - én)\n (2 - VnB))én
= (Gn - én - 9_71(2 - ané)))hnén

which is identically zero by Proposition 6 (i). For the coefficient of (y,, pn—1), We
have

1nVnBOn + 20,V Bn + 1n) (@ — atn) — 6,6,
= UnVnPOn + 20,00 @n — o) — 0, ((2 — yuB)itn + 280,)
= UnVnPOn + 20,0nan — 200,000 — (2 — Yu) 1nbn — 26,0,0,
= UnVYnBOn — 20,000y — (2 = YuB) nbn
= Wn¥YnBOn — 2600100 ¥ B — (2 — YuB) i +) in ¥ B
= 1n¥nBOn — 200 — (2 — YuB) Oon + itn))
= 1avaB (60 = 2(hn + 10 = 32) = (2= yaB) o + 1))

= ,U«nynﬁ(en + 2)»3 G Vn,é)()\n + Hn))

which is equal to zero by the definition of 6,. The equivalence of the coefficient of
(V> Zn—1) py to zero follows from the definition of 6,,. For the coefficient of (y,, y,—1)
we have

2an9—37/y1252()”n + n) — é,%énan + 2enén()ln()\n + tn) — Mnynlgenén
20[,,9_3%1,3&" - é,%énan + 2ené‘no[n (An + pn) — Olnénenén
= anén <26_;$Vn,g - érzén + 29n()\n + /'Ln) - enén>

= a0 (202708 — 0aB + 02 (2000 + 12) = 2000 +) + 227)
= anén (29_3%1,3_ - énén + 9#»%7@3)
= O5nén <26_;$Vn,g - énVnB()‘n + pn) + Gn)\;%)/n:é)

= Otnén)/n,é(ﬂ;f - én()tn +) + Qn)\%)

@ Springer

Numerical Algorithms

which by Proposition 6 (iii) is identical to zero. Therefore, all the coefficients of the
terms containing y, are zero and we can eliminate those terms. The remaining terms
are

A, =
)\ﬁn_&nzn—l + 0ppn—1 ”%VI + 2(xp, An (=@ ppn—1 + &nzn—l»M

+ M”pn—l — Yn—1 ”]21/1 + 2<pn—19 —wp(zZp—1 — pn—l))M

= 2
2 20,@, O
gnxn - 9 pn 1+ n “Zn—1 — Vénnyn—IH

M

O On+ 2 A B 2
— Sl ti) | (@, — 1)y — anyu-illyy — 2228 1 = pacily
n

_ én (Ant+itn) n 911 AnnyYnp ,‘3

n

2
Xp + 0y —) Pr—1 — ApZp—1 + 2F"E Y- IH

‘_(Z_Vn/é))hn
O

=)\2”_0_%2}171 + 0y pu—1 ”%W + 2(xp, Ap(—Qp pu—1 + &nznfl))M
+ 8B by = yu1 Wy 4 20Pa1s —On(Zu1 = a1y

222 2 6, 20 & Oner
gnn Il + 2<xn, An (#pn—l - nzn—l + rénn Yn—1 I

~ 2 -
29 [An¥n@, 2
g, 4 Gy, || - tatB

9 pn—

n\/n n - n ~n n\’n n n_]

C el e %)(0, 13 + 2, a0y,)
o ()\n‘l’l/-n)(zfyn/g)z)‘% ”
0,00

)\n 2— n_)\n+ n - nen n
+ 2()6,1, W((an —) Pn—1 — OpZp—1 + e ﬂy 71>>M

2

n M
2 0uaOntitn) 2
Xy — —5— é" Y13
n

_ én (An+itn) anb n Vn,B
On

-2 Yn— IH

‘(&n —Qp)Pn—1 — UpZp—1 + I

_ (22 GOutmpU—y)? _ CGatr) 2=vB)’A I 12
n b, 6u6n nim

')")1 2_ n_ A‘n n _Vl_ n -
+2<xn, (kT0+ (yﬁ)(ew)@ —at) —Ancxn)pn_1>M

n

0, & A’n 7" 27 n_ A’n n -
_’_2<xn’ (_2)\n69nan _ [l (Vgﬂ)(+/dn) 4 kn“n)Zn—l>
_ 0,, mAnVn B(2—Vn An n
+ 2(xn, ()\nenan + enan()hn‘i’elln)(an D + <, Vi ﬁ(e 9}/ 'B)(tu))yn—l>
by by 9}1 n An+ iy
A2 —nn—t + G Iy — G 2,

Bl | — Vet 13 2{Paets —On(Znet — Py

0, 26,a Jaa 2 dvaenB 2
PPn—1— =z, + 2 Sl atatal |y, g — i3
)

_ én (Ant+in) a7 6_11 Yn ,B_
o -1

‘(&n — Op)Pn—1 — OpZy é—.Ynfl
n

@ Springer

Numerical Algorithms

We want to show that all the coefficients of the terms containing x,, are zero. For the
coefficient of ||x,, II%,, we have

A - 2 ~
235200 — e+ 1) (2 = ¥aB) hr = 60 O + 1) (1 — @)’
A - 2 -
= 2)»29;1 — (A + Mn)(z - Vn,B))‘% - Gn)\;%)/nﬁ
- 2 -
=)\2< — (A + l/«n)(z - Vnﬁ) - 9nVnﬂ>

(<2A +2un — Vnﬁ)\,z,) = + Mn)(4 —4y.8 + Vnsz) - 9,11/"5)
=1 (20 = Gon +) (— 4728 + 72B?)

— (4= 1B G+ 1) 2A,%)yn5>

=)‘% (_2Vn,8_)‘5 + 2)‘3%13) =0
(44)
where in the first equality 6, and e, and in the third equality 6,, are substituted by their
definition from Algorithm 1. For the coefficient of (x,, p,—1) we have

My 4 2n (2 = VaB) Cn + 1) @ — @) = An@nby
=2 ((2 = ¥uB)tn + 2030n) + 2n(2 — YuB) hn + 1n) @1 — &tn) — An@n6p
= 2000 + (2 = YuB) Gon + 1n) nGn — hn@ 6y
= (2= 7B) O +) Antn + (2 = YuB) ntin
= 2@ (260 + (2 = YaB) Ohn + 11n) — 6,)
= (2= uB)hnttn + (2 = YuB) Mnttn
which by Proposition 6 (ii) is zero. For the coefficient of (x,, z,—1) we have
Mn@n O — 2200 — 2@ (2 = YuB) Gon + 1n)
= 2@ (00 — 200 — (2 = vaB) i + 1))

which is identically zero by Proposition 6 (ii). For the coefficient of (x,, y,—1) we
have

knénanéiz + Ol Ay Vi ,3(2 - Vn,g)()‘n + n) — enénan()‘n +) (1 —ay)

100000y + Opctndn 5 (2— y,,B) —Gnénankn

et (9 +0,(2— ynﬂ)—0n>

which by Proposition 6 (i) is identically zero. Now, expanding all the remaining terms,
reordering and recollecting them give

Ap =

én 0[,% (An

2 = = 2 +1n) 2
)‘n”_anzn—l +anpn—l”M - F; . ”)’n—l”M
n

@ Springer

Numerical Algorithms

B b — 113 4 2Pty —0n(Zaet — Pae))y

29,, ay

nVnn B 2
Y |

/ 2
1 [i
+ 26n épnfl - Zn—1+ L nynf ‘ -

_ én()-nﬁLl/vn) on nVnﬂ
On

2
-) 1”
S BV

‘(&n —Qp)Pu—1 — ApZpy—1 +

= 3220 put Iy + 2{pact, —22&321) + 22220 Iy

+ 2238 | p 11y + 2t — 3By)+ 22y

G2 Gn+110) 2 2
— = Iyn=1llyy + 20l P13y +2(Pn—1, =@nzn-1)y
n

9/2
+ St + 2{pa-r, 305 (~ Bz + By, 1))

20242 On@nf)
25 2y 1+ 2, Dy,) By,

—"ynzanﬁ Ipn—1l3, + 2<Pn—1, %‘x"ﬁynq)M - "V"a"ﬁ yn—11%

a202y2 B2 ntitn)

G Oun+it) (@ —tn)? 2
— Dl O ||,y ||y — Sl
nvn

6,@2 it & 0 On Y B O
_n n(9: Hn) ”Zn*l”[z[/[+ 2<Zn71’ 00O v B(n+Mn)yn71

O

+2<pn_1’ _en()‘n+ﬂg)(&n_an)(a nZn—1 + an@z}/nﬁyn 1))

n

/2 = _
nryn)"n n“n 0”)\)l n n_%n
(Az 24 el | g, 4 B gl Gautiig)laon))”Pnl”%\/[

_ 0,0 & 6l Gy —
+ 2<pn—l’ (_)\’ﬁa;’ —wp, — neyr,lan + Qnan(kn+lél':1)(a;z Oln))zn_l>M

90 n nnn_ n_nn_ n n _nfn
+2<pn7]’(unynﬂJr O o dnvuonB _ culnynBOntiin) @ ‘”)ym)

2 O
2-2 | 26,0, énaﬂ(xnmn) 2
+ (Anan + gn t = : O ”Zn—lnM
+ 2<Zn71, (_ ena’gfnan + ananenynglj()hn+ﬂn))ynil>
+ l‘annB _ énap%()“n‘i’/‘n) éi%aI% _)Lnyn‘xn,g _ agér%ynzﬁz()‘n‘i'ﬂn) ” ”2
2 én 26n 2 é\ngn Yn=1lm

We show that all the coefficients in the expression above are identically zero. Starting
by the coefficient of || p,_1 ”12\/1’ we have

20,1262 + Oppin ¥ + 46500 + 6,7 — OhnVnn B — 26, On + 1) @n — a)?
= 20,0262 + Ot VB — 40p@ntin + (2 = YuB) 1tn + 28,0,)°
— Ondn V0B — 200 (An + 14n) (@ — 0tn)*
= 2&3(9,,)\3 +26% — 0,00 + un)) + 4y (—en +6,(2 — wuB) + é,,)

- - 2 - A
+ OnflnvnB + (2 - Vnﬂ) /JL%, = OndnYn@n B — 20, (Ay + Mn)arzl

@ Springer

Numerical Algorithms

= OuttnynB + (2 = vuB) 12 = OudnYun B — 20, 1incty
= 0¥ B(ttn — M) + (2 = vuB) 12 — 26,10

= 0u¥nBrnn + (2= YuB)’ Cn + 1) thn — 20 tncty
= [nOlp (GnVnB + (2= 72B) Cn +) — 2én)

where in the first equality @, = —&,u, is used and 6), is substituted from 38, the
third equality is attained from Proposition 6 (i) and (iii), and the expression to the
right-hand side of the last equality is identically zero by (44). For the coefficient of
(Pn—1, Zn—1)y We have
-)\5&5611 — Wby — 9_,,9},:5{” + é\néln (An + pn) @y — o)
= _)\%&%en — wpby — én&n((z - VnIB_)Mn + 2(Slnén)
+ én‘s{n()\n + pn) (0 — o)
= &3(=3200 = 207 + Ou o + 1)) = @060 — Opatin (2 = v2)
- én&n (An + mn)ay
= Opnbn — én&nlin (2 - ynﬁ_) - é\n&nﬂn
= Quln <0n - én (2 - Vnﬂ_) - én)

which by Proposition 6 (i) is equal to zero. The third equality above is attained by
using Proposition 6 (iii). For the coefficient of (p,,—1, y,—1),, we have
On0nctn — i YnBOw + dnVntn By — 20nOn VB hn + 14n) (@0 — tn)
= ((2 = yuB) tn + 26060)0utn — 1 VnBOn + hon Vil B
— 20,60 (@ — tn)
= (2= YuB) inOnotn — tinVnBOn + AV BONCtn + 20000ty
= (2 = YuB) ttn Cn + tn) YuBetn — On + 1n)etn ¥V BOn
+ Jon Y BOnttn + 205 O v B
= (2 = YuB) ttn On + n) VnBotn — 140ty Y BOn + 2000 pin v B
= tn¥nBon((2 = YaB) Cn + 12n) — 6 + 26,)

which by Proposition 6 (ii) is identical to zero. For the coefficient of ||z, ||%,[, it
is straightforward to see its equivalence to zero by Proposition 6 (iii). Likewise, the
coefficient of (z,—1, y,—1) is identically zero by definition of 6,. The coefficient of

2 .
lyn—1ll5, is

/‘LnVn.B_énen - zenénayzl()\n + n) + énéy%a,% -)\nynanBénen
- 204,%9_,%)/,!252()\;1 + n)

@ Springer

Numerical Algorithms

= On + 10 Y0 B0n6n — 26,6,02 Chn + 1) + 6,620
— nYnnBOnOn — 20307, B s + 1tn)
= 1n@n Y BOnOn — 26,0002 Oun + 11n) + 6,020 — 20202y B2 (h + 1)
= 1n@n Y BOnOn — 26,V Biintn Oon + 11n) + OpOntin Y Botn — 20 10,02y, B>
= 1070 B (060 = 26, G + 112) + 6,0, — 2027,B)

= /Lnanyn,é(erz <én —2An — 2/1«n> + é\nVn,B_()"n + p) — 29—,%%:3)
= ,u«nanyn,é(_en)‘iyn,é + én)/nlé()hn + n) — 29—3%1:5)

= Mnany,z,Bz(_en)\i + én (An + tn) — 26_3)

which by Proposition 6 (iii) is equivalent to zero. This concludes the proof. O

8 Conclusions

We have presented a variant of the well-known forward—backward algorithm. Our
method incorporates momentum-like terms in the algorithm updates as well as devia-
tion vectors. These deviation vectors can be chosen arbitrarily as long as a safeguarding
condition that limits their size is satisfied. We propose special instances of our method
that fulfill the safeguarding condition by design. Numerical evaluations reveal that
these novel methods can significantly outperform the traditional forward—backward
method as well as the accelerated proximal point method and the Halpern iteration,
all of which are encompassed within our framework. This demonstrates the potential
of our proposed methods for efficiently solving structured monotone inclusions.

Acknowledgements This research was partially supported by Wallenberg Al, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. S. Banert was partially
supported by ELLIIT.

Funding Open access funding provided by Lund University.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM
J. Control Optim. 38.4, 1102-1119 (2000). https://doi.org/10.1137/30363012998335802

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/s0363012998335802

Numerical Algorithms

10.

11.

12.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

. Alvarez, F.,, Attouch, H.: An inertial proximal method for maximal monotone operators via discretiza-

tion of a nonlinear oscillator with damping. Set-Valued Anal. 9(1/2), 3—11 (2001). https://doi.org/10.
1023/a:1011253113155

. Apidopoulos, V., Aujol, J.-F.,, Dossal, C.: Convergence rate of inertial forward-backward algorithm

beyond Nesterov’s rule. Math. Program. 180(1), 137-156 (2020). https://doi.org/10.1007/s10107-
018-1350-9

. Attouch, H., Cabot, A.: Convergence of a relaxed inertial proximal algorithm for maximally monotone

operators. Math. Program. 184(1), 243-287 (2020). https://doi.org/10.1007/s10107-019-01412-0

. Attouch, H., Czarnecki, M.-O., Peypouquet, J.: Coupling forward-backward with penalty schemes and

parallel splitting for constrained variational inequalities. SIAM J. Optim. 21(4), 1251-1274 (2011).
https://doi.org/10.1137/110820300

. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward-backward

method is actually faster than 1 /kz. SIAM J. Optim. 26(3), 1824—-1834 (2016). https://doi.org/10.
1137/15M1046095

. Attouch, H., et al.: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing

viscosity. Math. Program. 168(1), 123—175 (2018). https://doi.org/10.1007/s10107-016-0992-8

. Banert, S., et al.: Accelerated forward-backward optimization using deep learning (2021).

arXiv:2105.05210v1 [math.OC]

. Bauschke, H.H., Combettes, P. L.: Convex analysis and monotone operator theory in Hilbert spaces.

2nd edn. CMS Books in Mathematics. Springer, 2017. https://doi.org/10.1007/978-3-319-48311-5
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1), 183-202 (2009). https://doi.org/10.1137/080716542

Bruck, R.E.: An iterative solution of a variational inequality for certain monotone operators in Hilbert
space. Bull. Am. Math. Soc. 81, 890-892 (1975). https://doi.org/10.1090/S0002-9904-1975-13874-2
Chambolle, A., Dossal, C.: On the convergence of the iterates of the fast iterative shrinkage/thresholding
algorithm. J. Optim. Theory Appl. 166(3), 968-982 (2015). https://doi.org/10.1007/s10957-015-0746-
4

. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to

imaging. J. Math. Imaging Vis. 40(1), 120-145 (2011). https://doi.org/10.1007/s10851-010-0251-1
Chen, G.H.-G., Rockafellar, R.T.: Convergence rates in forward—-backward Splitting. SIAM J. Optim.
7.2, 421-444 (1997). https://doi.org/10.1137/S1052623495290179

Cholamjiak, W., Cholamjiak, P., Suantai, S.: Aninertial forward—backward splitting method for solving
inclusion problems in Hilbert spaces. J. Fixed Point Theory Appl. 20.1 (2018). https://doi.org/10.1007/
s11784-018-0526-5

. Combettes, P. L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: by Bauschke,

H.H., et al. (eds.) Fixed-point algorithms for inverse problems in science and engineering. Springer
New York, pp. 185-212 (2011). https://doi.org/10.1007/978-1-4419-9569-8_10

Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable
and linear composite terms. J. Optim. Theory Appl 158(2), 460-479 (2013). https://doi.org/10.1007/
s10957-012-0245-9

Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimization. PhD
thesis. Mass. Insitute Technol. (1989). http://hdl.handle.net/1721.1/14356

Giselsson, P.: Nonlinear forward-backward splitting with projection correction. SIAM J. Optim. 31(3),
2199-2226 (2021). https://doi.org/10.1137/20M 1345062

Giselsson, P., Filt, M., Boyd, S.: Line search for averaged operator iteration. In: 2016 IEEE 55th
Conference on decision and control (CDC). IEEE, pp. 1015-1022 (2016). https://doi.org/10.1109/
CDC.2016.7798401

Kim, D.: Accelerated proximal point method for maximally monotone operators. Math. Program.
190(1), 57-87 (2021). https://doi.org/10.1007/s10107-021-01643-0

Latafat, P., Patrinos, P.: Asymmetric forward-backward-adjoint splitting for solving monotone inclu-
sions involving three operators. Comput. Optim. Appl. 68(1), 57-93 (2017). https://doi.org/10.1007/
$10589-017-9909-6

Lieder, F.: On the convergence rate of the Halpern-iteration. Optim. Lett. 15(2), 405418 (2021).
https://doi.org/10.1007/s11590-020-01617-9

Lions, PL., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer.
Anal. 16(6), 964-979 (1979). https://doi.org/10.1137/0716071

@ Springer

https://doi.org/10.1023/a:1011253113155
https://doi.org/10.1023/a:1011253113155
https://doi.org/10.1007/s10107-018-1350-9
https://doi.org/10.1007/s10107-018-1350-9
https://doi.org/10.1007/s10107-019-01412-0
https://doi.org/10.1137/110820300
https://doi.org/10.1137/15M1046095
https://doi.org/10.1137/15M1046095
https://doi.org/10.1007/s10107-016-0992-8
http://arxiv.org/abs/2105.05210v1
https://doi.org/10.1007/978-3-319-48311-5
https://doi.org/10.1137/080716542
https://doi.org/10.1090/S0002-9904-1975-13874-2
https://doi.org/10.1007/s10957-015-0746-4
https://doi.org/10.1007/s10957-015-0746-4
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1137/S1052623495290179
https://doi.org/10.1007/s11784-018-0526-5
https://doi.org/10.1007/s11784-018-0526-5
https://doi.org/10.1007/978-1-4419-9569-8_10
https://doi.org/10.1007/s10957-012-0245-9
https://doi.org/10.1007/s10957-012-0245-9
http://hdl.handle.net/1721.1/14356
https://doi.org/10.1137/20M1345062
https://doi.org/10.1109/CDC.2016.7798401
https://doi.org/10.1109/CDC.2016.7798401
https://doi.org/10.1007/s10107-021-01643-0
https://doi.org/10.1007/s10589-017-9909-6
https://doi.org/10.1007/s10589-017-9909-6
https://doi.org/10.1007/s11590-020-01617-9
https://doi.org/10.1137/0716071

Numerical Algorithms

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Lorenz, D.A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math.
Imaging Vis. 51(2), 311-325 (2015). https://doi.org/10.1007/s10851-014-0523-2

Morin, M., Banert, S., Giselsson, P.: Nonlinear forward—backward splitting with momentum correction
(2021). arXiv:2112.00481v4 [math.OC]

Passty G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math.
Anal. Appl. 72.2, 383x390 (1979). https://doi.org/10.1016/0022-247x(79)90234-8

Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput.
Mathem. Math. Phys. 4(5), 1-17 (1964). https://doi.org/10.1016/0041-5553(64)90137-5

Raguet, H., Landrieu, L.: Preconditioning of a generalized forward—backward splitting and application
to optimization on graphs. SIAM J. Imaging Sci. 8(4), 2706-2739 (2015). https://doi.org/10.1137/
15m1018253

Rockafellar, R., T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim
14.5, 877-898 (1976). https://doi.org/10.1137/0314056

Ryu, E.K., et al.: Operator splitting performance estimation: tight contraction factors and optimal
parameter selection. SIAM J. Optim. 30(3), 2251-2271 (2020). https://doi.org/10.1137/19M 1304854
Sadeghi, H., Banert, S., Giselsson, P.: DWIFOB: A dynamically weighted inertial forward—backward
algorithm for monotone inclusions (2021). arXiv:2203.00028 [math.OC]

Sadeghi, H., Banert, S., Giselsson, P.: Forward—backward splitting with deviations for monotone inclu-
sions (2021). arXiv:2112.00776 [math.OC]

Sadeghi, H., Giselsson, P.: Hybrid acceleration scheme for variance reduced stochastic optimization
algorithms (2021). arXiv:2111.06791 [math.OC]

Taylor, A.B., Hendrickx, J.M., Glineur, F.: Performance estimation toolbox (PESTO): Automated
worst-case analysis of first-order optimization methods. In: 2017 IEEE 56th Annual conference on
decision and control (CDC). IEEE, pp. 1278-1283 (2017). https://doi.org/10.1109/CDC.2017.8263832
Taylor, A.B., Hendrickx, J.M., Glineur, F.: Exact worst-case performance of first-order methods for
composite convex optimization. SIAM J. Optim. 27(3), 1283-1313 (2017). https://doi.org/10.1137/
16M108104X

Themelis, A., Patrinos, P.: SuperMann: a superlinearly convergent algorithm for finding fixed points
of nonexpansive operators. IEEE Trans. Autom. Control 64(12), 4875-4890 (2019). https://doi.org/
10.1109/TAC.2019.2906393

Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J.
Control Optim. 38(2), 431-446 (2000). https://doi.org/10.1137/S0363012998338806

Vi, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv.
Comput. Math. 38(3), 667-681 (2013). https://doi.org/10.1007/s10444-011-9254-8

Zhang, J., O’Donoghue, B., Boyd, S.: Globally convergent type-I Anderson acceleration for nonsmooth
fixed-point iterations. SIAM J. Optim. 30.4, 3170-3197 (2020). https://doi.org/10.1137/18M 1232772

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1007/s10851-014-0523-2
http://arxiv.org/abs/2112.00481v4
https://doi.org/10.1016/0022-247x(79)90234-8
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1137/15m1018253
https://doi.org/10.1137/15m1018253
https://doi.org/10.1137/0314056
https://doi.org/10.1137/19M1304854
http://arxiv.org/abs/2203.00028
http://arxiv.org/abs/2112.00776
http://arxiv.org/abs/2111.06791
https://doi.org/10.1109/CDC.2017.8263832
https://doi.org/10.1137/16M108104X
https://doi.org/10.1137/16M108104X
https://doi.org/10.1109/TAC.2019.2906393
https://doi.org/10.1109/TAC.2019.2906393
https://doi.org/10.1137/S0363012998338806
https://doi.org/10.1007/s10444-011-9254-8
https://doi.org/10.1137/18M1232772

	Incorporating history and deviations in forward–backward splitting
	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem statement and proposed algorithm
	3.1 Preview of special cases

	4 Convergence analysis
	5 A special case
	5.1 Alternative formulation
	5.2 Fixed-point residual convergence rate
	5.2.1 Accelerated proximal point method and Halpern iteration

	6 Numerical examples
	7 Deferred results and proofs
	7.1 Proof of Theorem 1

	8 Conclusions
	Acknowledgements
	References

