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Abstract
This paper considers the iterative solution of finite element discretizations of second-
order elliptic boundary value problems. Mesh independent estimations are given for
the rate of superlinear convergence of preconditioned Krylov methods, involving the
connection between the convergence rate and the Lebesgue exponent of the data.
Numerical examples demonstrate the theoretical results.
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1 Introduction

The preconditioned conjugate gradient (PCG)method is a widespread way for the iter-
ative solution of discretized elliptic partial differential equations. It can be efficiently
coupled with multigrid methods and, under certain conditions, operator precondi-
tioning can provide mesh-independent convergence. Hence, its convergence has been
widely analyzed, see, e.g., [1, 3] and references therein.

In particular, superlinear convergence is often a characteristic second stage in the
convergence history: this notion expresses, roughly speaking, that the number of itera-
tions required to achieve a newcorrect digitwill be decreasing in course of the iteration.
This phenomenon is also favorable when the PCGmethod is used as an inner iteration
for an outer process. Such results were already obtained in [11, 15] on operator level.
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This paper considers some types of second-order elliptic boundary value problems
with variable zeroth order coefficients and their finite element discretizations. Our
goal is to find relevant estimations for the rate of superlinear convergence of the PCG
method for this type of problem; furthermore, we are interested in robust, that is, mesh
independent rates, which can be given independently of the finite element mesh size.
This means that the favorable behavior does not deteriorate as the mesh is refined.

This mesh-independence property of superlinear convergence was studied in var-
ious joint papers of the second author, see, e.g., [2] for a general result, [3] for a
survey in this journal, and [5] for some recent applications. The starting point of the
present paper is [10], where a superlinear rate was found in a particular situation
with continuous zeroth order coefficient. Our goal is to extend this result to a fam-
ily of estimations for general zeroth order (“linearized reaction”) coefficients, that is,
which are unbounded, and belong to some Lebesgue space. Furthermore, we would
like to explore the connection between the convergence rate and the Lebesgue expo-
nent. A practical motivation for such situations is, among other things, the Newton
linearization arising in reaction-diffusion models where the nonlinear rate of reaction
is typically of polynomial order, thus leading to linearized coefficients with given
Lebesgue exponent.

We present eigenvalue-based estimations of the rate of superlinear convergence
for such problems, first for single equations, then we show that similar estimations
can be obtained in the case of proper systems of PDEs, involving GMRES in the
nonsymmetric case. Finally, some numerical examples are shown, which properly
demonstrate our theoretical results.

2 Theoretical background

2.1 The abstract problem and its discretization

Let H be a real Hilbert space and let us consider a linear operator equation

Au g (1)

with some g H , under the following

Assumption 2.1

(i) The operator A is decomposed as

A S Q (2)

where S is a symmetric operator in H with dense domain D and Q is a compact
self-adjoint operator defined on the domain H .

(ii) There exists k 0 such that Su u k u 2 ( u D).
(iii) Qu u 0 ( u H ).
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We recall that the energy space HS is the completion of D under the energy inner
product

u S Su (3)

and the corresponding norm is denoted by S . Assumption i i implies HS H .
Then, there exists a unique bounded linear operator, denoted by QS HS HS , such
that

QSu S Qu u HS

We replace (1) by its formally preconditioned form

Bu S 1Au S 1g

that is, I S 1Q u S 1g in HS . This gives the weak formulation

I QS u S g HS (4)

Since by assumption i i i the bilinear form on the left is coercive on HS , by the
Lax-Milgram theorem, there exists a unique solution u HS of (4).

Now (4) is solved numerically using a Galerkin discretization. Consider a given
finite-dimensional subspace V span 1 n HS , and let

Sh i j S
n
i j 1 and Qh Q i j

n
i j 1

the Gram matrices corresponding to S and Q. We look for the numerical solution
uV V of (4) in V , i.e., for which

I QS uV S g V (5)

Then, uV
n
j 1 c j j , where c c1 cn n is the solution of the system

Sh Qh c b (6)

with b g j
n
j 1. The matrix Ah Sh Qh is SPD.

By using matrix Sh as the preconditioner for the system (6), we shall work with the
preconditioned system

I S 1
h Qh c b (7)

where I is the identity matrix in n and b S 1
h b. We apply the CGM for the solution

of this system.

2.2 The preconditioned conjugate gradient method and superlinear convergence

Let us consider a general linear system Ahu g and its preconditioned form

Bhu g (8)
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where Bh S 1
h A and g S 1

h g. The preconditioner Sh induces the energy inner
product c d Sh Sh c d, where denotes the standard Euclidean inner product.

Then, the PCG method is given by the following algorithm. Let u0 be arbitrary,
ρ0 Ahu0 g, Shp0 ρ0, r0 ρ0 and for k

uk 1 uk kpk
rk 1 rk kS

1
h Ahpk

pk 1 rk 1 kpk

with

k
rk 2

Sh

Ahpk pk
k

rk 1
2
Sh

rk 2
Sh

In fact, the vector zk S 1
h Ahpk is computed by solving the auxiliary problem

Shzk Ahpk

Moreover, setting wk zk pk , this problem is equivalent to

Shwk Qhpk
zk wk pk

(9)

We are interested in the superlinear convergence rates for the CGM, and now recall
the corresponding well-known estimation. Let Ah Sh Qh . Then, Bh in (8) has
the compact perturbation form Bh Ih Eh with Eh S 1

h Qh Let us order
the eigenvalues of the latter according to 1 S 1

h Qh 2 S 1
h Qh

n S 1
h Qh . Then, the error vectors ek ck c are measured by Bhek ek

1 2
Sh

S 1
h Ahek ek

1 2

Sh
Ahek ek 1 2 ek Ah

, and they are known to satisfy

ek Ah

e0 Ah

1 k 2 B 1
h Sh

k

k

j 1

j S
1

h Qh k 1 2 n (10)

This follows, e.g., from formula (13.13) in [1], see also (2.16) in [3].
For the discretized problem described in subsection 2.1, the following result allows

us to give a convergence rate for the upper bound of (10) through the eigenvalues
of the operator QS . This is a modification of Theorem 1 in [10] where the square of
eigenvalues was considered.

Lemma 1 Let assumptions 2.1 hold. Then, for any k 1 2 n

k

j 1

j S
1

h Qh

k

j 1

j QS (11)
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Proof We have in fact
k

j 1

j S
1

h Qh

k

j 1

j QS (12)

where the j denote the singular values of the given matrix or operator, see [4]. Now
both the matrix S 1

h Qh (with respect to the Sh-inner product) and the operator QS

(in HS) are self-adjoint, hence their singular values coincide with the modulus of the
eigenvalues. Since QS is a positive operator from assumption (iii), the modulus can
be omitted.

An immediate consequence of this lemma is the following mesh-independent
bound.

Corollary 1 For any k 1 2 n

ek Ah

e0 Ah

1 k 2 B 1
S

k

k

j 1

j QS k 1 2 n (13)

Proof By [2, Prop. 4.1], we are able to estimate B 1
h Sh B 1

S . This, together
with (10) and (11), completes the proof.

Since 1 QS 2 QS 0 and the eigenvalues tend to 0, the conver-
gence factor is less than 1 for k sufficiently large. Hence, the upper bound decreases
as k and we obtain superlinear convergence rate.

3 Estimation of the rates of superlinear convergence

We present the rate estimates in the following stages. First, we develop the results
in detail for single equations. The studied preconditioners have the advantage that
the original PDE is reduced to simpler PDEs whose discretizations can be solved
by proper optimal fast solvers. Then, we extend the estimates for systems of PDEs,
first for the symmetric and then for the nonsymmetric case. This situation shows
the real strength of the idea of preconditioning operators, since one can reduce large
coupled systems of PDEs to independent single PDEs, hence the numerical solution
of the latter can be parallelized. In each case, we provide an estimation of the rate of
mesh-independent superlinear convergence such that the dependence of the rate on
the integrability exponent of the reaction coefficient is determined.

3.1 Elliptic equations

Let d 2 and d be a bounded domain. We consider the elliptic problem

div G u u g

u 0
(14)
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in the following situation.

Assumption 3.1

(i) The symmetric matrix-valued function G L d d satisfies

G x m 2 d

for some m 0 independent of .
(ii) We have 0; furthermore, there exists 2 p 2d

d 2 such that

L p p 2 (15)

(iii) is a Lipschitz boundary.
(iv) g L2 .

Then, problem (14) has a unique weak solution in H1
0 . The relevance of the con-

dition on p in (ii) is that the continuous embedding H1
0 L p holds, which

ensures the boundedness of the corresponding bilinear form.
In practice, we are mostly interested in the case when the principal part has constant

or separable coefficients, whereas x is a general variable (i.e., nonconstant)
coefficient. In this case, the principal part will be an efficient preconditioning operator,
see Remark 1 for background and extensions.

Let Vh H1
0 be a given FEM subspace. We look for the numerical solution uh

of (14) in Vh :

G uh uh g Vh (16)

The corresponding linear algebraic system has the form

Gh Dh c gh

whereGh andDh are the corresponding weighted stiffness and mass matrices, respec-
tively. We apply the matrixGh as preconditioner, thus the preconditioned form of (16)
is given by

Ih G 1
h Dh c gh (17)

with gh G 1
h gh . Then, we apply the CGM to (17). The auxiliary systems with Gh

can be solved efficiently with fast solvers, see Remark 1.
Such equations for C were considered in [10]. That was a rather restrictive

assumption, see also Remark 2 for the motivations of the more general case (15).

Theorem 1 Let Assumptions 3.1 hold. Then, there exists C 0 such that for all k

ek Ah

e0 Ah

1
k

Ck (18)

where 1
d

1
2

1
p .
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Proof Let us consider the real Hilbert space L2 endowed with the usual inner
product. Let D H1

0 G u H1
0 H2 G u H div . We define

the operators

Su div G u u D and Qu u u H1
0 (19)

Then,

Su u L2 m u 2 mC u2 u D (20)

where C is the Poincaré–Friedrichs constant and m is the lower spectral bound of G
given by assumption i . Hence the energy space HS is a well-defined Hilbert space
with u S G u . It is easy to see that HS H1

0 and that the following
inequality holds:

m u H1
0

u HS u HS (21)

Since p 2d
d 2 , the embedding H1

0 L p is compact, in particular, there
exists c 0 such that for all u H1

0

u L p c u H1
0

(22)

Then,

QS HS sup
u HS 1

QS u S sup
u HS 1

Q u (23)

sup
u HS 1

u

sup
u HS 1

p
p 2

p 2
p

p

1
p

u p

1
p

c sup
u HS 1

L p p 2 L p u H1
0

c

m
sup

u HS 1
L p p 2 L p u HS

cM

m
L p

where M Lp p 2 . Here, we applied the extension of Hölder’s inequality ([6,
Th. 4.6]) with

1
1

p

1

p

p 2

p

Hence, QS is compact in HS . Altogether, QS is a compact self-adjoint operator in HS ,
hence, by [9, Ch.6, Th.1.5], we have the following characterization of the eigenvalues
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of QS :

n n QS min QS Ln 1 Ln 1 HS rank Ln 1 n 1
(24)

By taking the minimum over a smaller subset of finite rank operators, we obtain

n QS min QS QSLn 1 Ln 1 HS rank Ln 1 n 1 (25)

Now, by (23) and (21) we get

QS QSLn 1 sup
u HS

QS QSLn 1 u HS

u HS

sup
u HS

QS u Ln 1u HS

u HS

cM

m
sup
u HS

u Ln 1u L p

u HS

cM

m m
sup

u H1
0

u Ln 1u L p

u H1
0

This, together with (25) yields

n QS
cM

m
min Ln 1 Ln 1 H1

0 L p rank Ln 1 n 1

cM

m
an

(26)

where an denotes the approximation numbers of the compact embedding
H1
0 L p , see [14]. Furthermore, we have the estimation from [8]:

an Cn where
1

d

1

2

1

p
(27)

for some constant C 0. Therefore, we arrive at the inequality

n QS
CcM

m
n

Now, taking the arithmetic mean on both sides and estimating the sum from above by
an integral, we obtain

1

k

k

n 1

n QS
CcM

m

1

k
1

k

1

1

x
dx

CcM

m 1

1

k
(28)
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Then, by (13), we conclude.

Remark 1 The PCG method requires the solution of auxiliary problems S k Qpk ,
see (9). In themain case, when the principal part has constant or separable coefficients,
these problems can be solved easily with fast solvers due to the special structure of
the operator Su div G u (in particular, when Su u), see, e.g., [7], [12].

Moreover, to generalize the above, one may also incorporate a constant lower order
term in S, i.e., (in the case of Laplacian principal part) define Su u cu for some
constant c 0. This gives a better approximation of Lu u u and, since S has
constant coefficients, the auxiliary problems can be still be solved by the mentioned
fast solvers. Theorem 1 remains true, since Qu c u is still compact; it may be
no more a positive operator, but the only arising difference is that in Corollary 1 we
replace j QS by j QS .

Remark 2 The relevance of the extension of the results of [10] on C to our
more general case (15) is motivated, e.g., by the following model. Consider a reaction-
diffusion equation

z q z f

z 0
(29)

where q C1 and there exists 2 p 2d
d 2 such that

0 q p 2 d (30)

Here,q describes the rate of reaction,which is typically of polynomial order as required
in (30). The restriction on p means that the continuous embedding H1

0 L p

holds, hence the above problem is well-posed in H1
0 . Then, the Newton lineariza-

tion around some zn leads to the linear problem of the form

u u g

u 0
(31)

where
q zn L p p 2 (32)

due to the above assumptions. That is, we obtain a problem of the type (14).

Remark 3 Owing to the equality ek Ah A 1 2rk , the estimate (18) implies a
similar one for the residuals:

rk
r0

1
k C1

k

where C1 C cond A .

3.2 Elliptic systems

In this section, we prove that the previous results can be extended to certain systems
of elliptic PDEs. For simplicity and also due to practical occurrence, we only include
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Laplacian principal parts; however, the results remain similar when the principal parts
have the form (19).

3.2.1 Symmetric systems

First let us consider systems of the form

ui i1u1 isus gi
ui 0 i 1 s

(33)

where H i j
s
i j 1 is a symmetric positive semidefinite variable coefficient matrix

such that
i j L p p 2 i j 1 s

Such systems arise, e.g., in the Newton linearization of gradient systems: if a nonlinear
reaction-diffusion system corresponds to a potential

u1 us
1

2

s

i 1

ui
2 F u1 us

then the linearized problems have the form (33), which extend (31)–(32) to systems
and the gradient structure implies the symmetry of the Jacobians H F u1 us .

We work with the space L p s with the norm

u L p s

s

j 1

u j
2
L p

1 2

u u1 us L p s

Let H L2 s ; furthermore, D H1
0 G

s , where H1
0 G was defined in subsection

3.1 before (19). Using notation u u1 us , we define the operators

Su

u1

us

u D Qu Hu u H1
0

s (34)

Clearly, S is a uniformly positive symmetric operator in H . In fact, from (20),

Su u C
s

i 1

ui
2
L2 C u 2

H (35)
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Then, the energy space HS is well defined with

u S

s

i 1

ui i u 2
HS

s

i 1

ui
2

and so HS H1
0

s . Furthermore, by (22), we have that

u 2
HS

1

c2

s

i 1

ui
2
L p

1

c2
u 2

L p s (36)

Then, there exists a unique bounded linear operator QS H1
0

s H1
0

s such
that

QSu S

s

i j 1

i j u j i (37)

It is easy to see that QS is self-adjoint in HS . Analogously to (23), by (36), (35) and
Hölder’s inequality, we get

QS HS sup
u S 1

QS u S

sup
u HS 1

s

i j 1

i j j ui

sup
u HS 1

s

i j 1

i j L p p 2 j L p ui L p

M sup
u HS 1

s

j 1

j L p

s

i 1

ui L p (38)

M sup
u HS 1

s
s

j 1

j
2
L p

1 2

s
s

i 1

ui
2
L p

1 2

Ms sup
u HS 1

L p s u L p s

Msc L p s

where M maxi j i j L p p 2 . Hence, we have proved that QS is a compact
self-adjoint operator in HS . Then, the characterization (24) of the eigenvalues of QS

holds. The rest of the proof follows by modifying the scalar case. Now, instead of
(25), we take the minimum in the following way over a smaller subset of finite rank
operators:

n QS min QS QSLn 1 Ln 1 diag HS rank Ln 1 n 1
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where we define Ln 1 diag HS by requiring

Ln 1u

Ls
n 1u1

Ls
n 1us

such that Ls
n 1 H1

0 and rank Ls
n 1

n 1

s

where denotes the lower integer part. Furthermore, we shall use the approximation
numbers

a n 1
s

min I Tn 1 Tn 1 H1
0 L p rank Tn 1

n 1

s

Note that if n s then we can use the bound n QS QS . For n s 1, from
(27), the above numbers are estimated by

a n 1
s

C
n 1

s
(39)

with 1
d

1
2

1
p Then,

QS QSLn 1 sup
u HS

QS QSLn 1 u HS

u HS

sup
u HS

QS u Ln 1u HS

u HS

Msc sup
u HS

u Ln 1u L p s

u HS

Msc sup
u HS

s
j 1 ui Ls

n 1ui
2
L p

1 2

s
j 1 ui 2

H1
0

1 2

Msc sup
u HS

I Ls
n 1

2
H1
0 L p

s
j 1 ui 2

H1
0

1 2

s
j 1 ui 2

H1
0

1 2

Msc I Ls
n 1 H1

0 L p
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Therefore,

n QS Mscmin I Lsn 1 H1
0 L p

Lsn 1 L H1
0 L p rank Lsn 1

n 1

s

Msca n 1
s

Hence, by (39), we obtain the estimations

n QS MscC
n 1

s
n s 1 (40)

n QS QS n s (41)

Note that there exists k0 k1 0 such that

k0
[x]

x
k1 x 1

(in fact, k0 1 2 and k1 1). Thus, for n s 1,

n 1

s

1

k0

s

n 1

s

k0

n

n 1

1

n

s 1

k0

1

n

Hence, (40) becomes

n QS MscC
s 1

k0

1

n
C1

1

n

and by taking arithmetic means on both sides and splitting the sum, we get

1

k

k

n 1

n QS
1

k
s QS

k

n s 1

n QS

1

k
s QS C1

k

n s 1

1

n

1

k
s QS C1

k

s

1

x
dx

s

k
QS

C1

1

1

k

C2
1

k
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where C2 max s QS C1 1 1 . Finally, by Corollary 1, we obtain that there
exists C 0 such that for all k

ek Ah

e0 Ah

1
k C

k
(42)

with 1
d

1
2

1
p , that is, Theorem 1 holds in exactly the same from for the above

systems of PDEs as well.

3.2.2 Extension to non-symmetric systems

Let us now study (33) for H i j
s
i j 1 non-symmetric. We apply the generalized

minimal residual (GMRES) method to the corresponding discretized system. This
method is the most widespread Krylov type iteration for non-symmetric systems, see,
e.g., [13].

By [5], we have an analog of Corollary 1 when A is non-Hermitian. In this case the
GMRES method provides superlinear convergence estimates for the residuals rk , and
(11) is replaced by the more general case (12). Altogether, we have

rk
r0

1 k B 1
S

k

k

j 1

s j QS k 1 2 n (43)

To show that Theorem 1 still holds in this case, we follow the same steps as we did pre-
viously.We define the operators S Q QS as before in (34), (37). Here QS is no longer
self-adjoint and its eigenvalues do not coincide with its singular values. Nonetheless,
by [9, Ch.6, Th.1.5], we have the following characterization of the singular values of
QS :

n sn QS min QS Ln 1 Ln 1 HS rank Ln 1 n 1
(44)

Then, similarly to the proof for symmetric systems, we can see that there existsC1 0
such that

1

k

k

n 1

sn QS
C1

k
where

1

d

1

2

1

p
(45)

Therefore, by (43), we obtain that there exists C2 0 such that

rk
r0

1 k C2

k
(46)
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3.2.3 The efficiency of the preconditioners

For elliptic systems, the auxiliary problem S k Qpk is the FEM discretization of
the elliptic system

k 1
s
j 1 1 j pk j

k 2
s
j 1 2 j pk j

k s
s
j 1 s j pk j

i 0 i 1 s

where k k 1 k s is the unknown function and the right-hand side
arises from the known functions pk 1 pk s . The main point is that (in contrast
to the original one) this system is uncoupled, i.e., the above equations are independent
of one another. Hence, they can be solved in parallel.

We note that the idea of Remark 1 can also be used here: one may include constant
lower order terms in S,which is especially useful if H has large entries. Then, k i

above is replaced by k i ci k i . For instance, we may set ci 1 2 H or
ci 1 2 s

j 1 i j .
In practice, these types of systems can be very large, e.g., in [16], long-range trans-

port of air pollution models are described by a system of PDEs with s 30. That is,
whereas the original problem is a coupled PDE system of several components, the pre-
conditioner leads to uncoupled problems corresponding to the FEM discretization of
single PDEs, which is considerably cheaper. This shows the efficiency of the proposed
preconditioners.

4 Numerical tests

Let us solve the following PDEs numerically:

u 1u fi in 0 1 2

u 0
(47)

with i 1 2, and
u 2u f1 in 0 1 2

u 0
(48)

where p 2, and 1 2 L
p

p 2 are defined as

1 x y x2 y2

and
2 x y x 0 5 2 y 0 5 2
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Fig. 1 Graphs of the numerical solutions with N 40 for (47) with right-hand side fi (i 1 2) and
1 4, and for (48) with right-hand side f1 and 3 4, respectively

for some 0 p 2
p . Furthermore,

f1 x y 1

f2 x y 1 x y

Applying the finite element method to (47) and (48) with stepsize h 1 N 1 ,
we obtain the algebraic system

Gh Dh ci gih i 1 2 3 (49)

The cases i 1 2 and i 3 refer to the FEM discretization of (47) and (48),
respectively. Then, we apply Gh as a preconditioner and we solve the preconditioned
systemusing theCGM.WeusedCourant elements and the computationswere executed
in Matlab (Fig. 1).

To measure the error of the PCGM, we use the energy norm

e Ah Ahe e
1
2 e N2

Table 1 Norm of residual error r ik at each iteration of PCGM applied to system (49). Here N 40 and
1 4

r1k Gh r2k Gh r3k Gh

1 0.1872869890826060000000 0.043859195130465000000 0.187286989082606000000

2 0.0021778212752603100000 0.000374462121567490000 0.005761180739756000000

3 0.0000134272507943374000 0.000008998388683811820 0.000004194704792965480

4 0.0000001224317125796750 0.000000061469010091297 0.000000150342994888464

5 0.0000000004417617185916 0.000000000307598713847 0.000000000403838970113

6 0.0000000000021058757996 0.0000000000011266031196 0.000000000003834039672

7 0.0000000000000082093367 0.0000000000000035087716 0.000000000000119227495

8 0.0000000000000003001190 0.0000000000000000110731 0.000000000000001254764

9 0.0000000000000000000816 0.0000000000000000000864 0.000000000000000014252

10 0.0000000000000000000006 0.0000000000000000000005 0.000000000000000000098
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Table 2 Values of k for different ’s and ’s, with a fixed mesh size. Here N 40

2 3 0 15 3 4 0 12 1 4 0 374 1 2 0 24
1
k

2
k

3
k

1
k

2
k

3
k

1
k

2
k

3
k

1
k

2
k

3
k

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.1786 0.1904 0.5319 0.1921 0.2098 0.6236 0.1397 0.1197 0.2273 0.1592 0.1593 0.3827

3 0.0925 0.1087 0.2623 0.1027 0.1127 0.3229 0.0627 0.0889 0.0905 0.0790 0.1026 0.1714

4 0.0621 0.0744 0.1509 0.0702 0.0792 0.1907 0.0478 0.0578 0.0503 0.0537 0.0670 0.0960

5 0.0476 0.0548 0.0973 0.0542 0.0611 0.1239 0.0344 0.0427 0.0337 0.0406 0.0476 0.0617

6 0.0372 0.0434 0.0751 0.0432 0.0490 0.0946 0.0293 0.0336 0.0323 0.0324 0.0376 0.0514

7 0.0313 0.0352 0.0941 0.0362 0.0406 0.1188 0.0256 0.0279 0.0375 0.0260 0.0304 0.0623

8 0.0264 0.0297 0.0754 0.0300 0.0340 0.0921 0.0231 0.0244 0.0368 0.0225 0.0254 0.0569

9 0.0227 0.0253 0.0749 0.0261 0.0287 0.0893 0.0207 0.0245 0.0368 0.0205 0.0225 0.0562

10 0.0203 0.0221 0.0743 0.0232 0.0250 0.0901 0.0213 0.0242 0.0352 0.0191 0.0208 0.0544

where Ah Gh Dh . Table 1 shows the residual error obtained at each iteration
k 10 of the method applied to (49) for i 1 2 3, respectively.

To test Theorem 1, note that d 2 and so 1
p . Furthermore, recall that

1 2 L
p

p 2 if
p 2

p
1 2

That is, if p 2
1 , we get that the theorem holds when 1

2 Table 2 shows the
values of

k
rk Gh

r0 Gh

1
k

k

Table 3 Values of k for different mesh sizes with 3 4 0 12

1
k

2
k

3
k

N 20 N 40 N 80 N 20 N 40 N 80 N 20 N 40 N 80

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.1910 0.1921 0.1924 0.2080 0.2098 0.2103 0.5838 0.6236 0.6518

3 0.1013 0.1027 0.1031 0.1123 0.1127 0.1128 0.2865 0.3229 0.3499

4 0.0683 0.0702 0.0707 0.0785 0.0792 0.0794 0.1620 0.1907 0.2129

5 0.0519 0.0542 0.0549 0.0594 0.0611 0.0616 0.1037 0.1239 0.1412

6 0.0403 0.0432 0.0443 0.0466 0.0490 0.0499 0.1320 0.0946 0.0997

7 0.0333 0.0362 0.0373 0.0375 0.0406 0.0418 0.1069 0.1188 0.0999

8 0.0274 0.0300 0.0316 0.0310 0.0340 0.0353 0.1018 0.0921 0.1009

9 0.0234 0.0261 0.0279 0.0279 0.0287 0.0305 0.1001 0.0893 0.0802

10 0.0223 0.0232 0.0245 0.0245 0.0250 0.0268 0.1026 0.0901 0.0781
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Fig. 2 Graphical representation of Table 2

for i 1 2 3, respectively, with different choices of and while fixing a mesh size.
The value of i

k (i 1 2) corresponds to the system (47) with right-hand side fi and
the case i 3 corresponds to the system (48). Note that residuals can be used when
the exact solution is not known. In the symmetric case the bound (46) follows from the
bound (18) owing to the equivalence of ek Ah and rk , see Remark 3. Altogether,
the estimate (46) is equivalent to requiring that k is bounded by some constant as k
increases, and this is indeed demonstrated by Table 2 and Fig. 2.

Finally, Table 3 and Fig. 3 show the values of k for different mesh sizes while
fixing the values of . The numbers demonstrate that the results of Theorem 1 are not
sensitive to the size of the mesh.

5 Summary and conclusions

We have studied the mesh independent superlinear convergence of preconditioned
Krylov methods for the iterative solution of finite element discretizations of second-
order elliptic boundary value problems.We have provedmesh independent estimations
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Fig. 3 Graphical representation of Table 3

for proper operator preconditioners for single equations and for systems, setting up
a connection between the convergence rate and the Lebesgue exponent of the data.
We have run numerical tests for equations with singular coefficients using different
parameters. The tests have demonstrated the theoretical results.
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