Numerical Algorithms (2024) 95:1801-1827
https://doi.org/10.1007/s11075-023-01628-4

ORIGINAL PAPER

®

Check for
updates

Patch area and uniform sampling on the surface
of any ellipsoid

Callum Robert Marples' - Philip Michael Williams'

Received: 17 May 2023 / Accepted: 17 July 2023 / Published online: 14 August 2023
© The Author(s) 2023

Abstract

Algorithms for generating uniform random points on a triaxial ellipsoid are non-
trivial to verify because of the non-analytical form of the surface area. In this paper,
a formula for the surface area of an ellipsoidal patch is derived in the form of a one-
dimensional numerical integration problem, where the integrand is expressed using
elliptic integrals. In addition, analytical formulae were obtained for the special case of a
spheroid. The triaxial ellipsoid formula was used to calculate patch areas to investigate
a set of surface sampling algorithms. Particular attention was paid to the efficiency of
these methods. The results of this investigation show that the most efficient algorithm
depends on the required coordinate system. For Cartesian coordinates, the gradient
rejection sampling algorithm of Chen and Glotzer is best suited to this task, when
paired with Marsaglia’s method for generating points on a unit sphere. For outputs in
polar coordinates, it was found that a surface area rejection sampler is preferable.

Keywords Ellipsoid - Surface area - Random sampling

Mathematical Subject Classification (2010) 53A05 - 53-08 - 65D18

1 Introduction

Generating uniform random samples of points on surfaces finds many applications.
Some examples include: solving radiation transport problems in medical physics [1],
quantifying errors in brain image analysis techniques [2], modelling oxygen produc-
tion of trees in forests [3], simulating the effect of background radiation on detector
surfaces [4], statistical goodness-of-fit testing [5], solving problems in development
of visualisation software [6] and testing robot motion planning algorithms [7]. The

B Philip Michael Williams
phil.williams @nottingham.ac.uk

Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham,
Nottingham NG7 2RD, UK

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01628-4&domain=pdf

1802 Numerical Algorithms (2024) 95:1801-1827

particular problem of sampling the surface of an ellipsoid has been of interest for
modelling: dose-rate distributions of iodine- 125 for radiation therapy [1], prolate virus
capsid formation [8], protein coats of bacterial spores [9], and impacts on solar system
objects of unusual shape (such as the bilobate Kuiper belt object, Arrokoth) [10].

Many published studies consider sampling of arbitrary surfaces [1, 3-6, 11], as well
as the relatively simple example of the sphere [12—-15]. However, there is relatively
little published material that considers the ellipsoidal case. Williamson provided a
method for the ellipsoid surface based on rejection sampling [1]. Chen and Glotzer
improved upon this method, giving a proof and numerical verification for the case of a
prolate spheroid [8]. While this method is just as valid for any other kind of ellipsoid,
verifying the uniformity of a sample in the triaxial case is a highly non-trivial task
because the surface area cannot be expressed as an analytical function.

An explicit expression for the surface area of the entirety of a general ellipsoid
was first derived in 1825 by Legendre in terms of incomplete elliptic integrals of the
first and second kinds (See Reference [16] for a historical review). Many studies have
been undertaken regarding exact and approximate expressions for the surface area
of the entire ellipsoid [16-24]. However, only one of these considers the problem of
finding the area of a subset of the ellipsoid surface [17]. That work involved cutting the
ellipsoid into two segments using an intersecting plane and finding the area of those
segments.

In this study, the surface area of interest is that of a patch bounded by limits given
in (scaled) spherical polar coordinates, (6, ¢), defined such that

x =asinfcos¢, (D)
y=bsinfsing, 2)
z=ccosb, 3)

where 6 € [0, 7] is an angle measured from the c-axis and ¢ € [0, 27) is an azimuth
angle defined in the x-y plane. It is assumed in this work that a > b > c. The sole
exception to this is a prolate spheroid, for which it is assumed thata = b < c.

Figure 1 shows how an ellipsoidal patch is defined using limits 6p, 01, ¢o and ¢;.
The patch is an ‘ellipsoidal rectangle’ with vertices (8o, ¢o), (6o, ¢1), (61, ¢o) and
(61, ¢1). When a vertex is one of the two poles in 6 (with & = 0 or), the patch is no
longer ‘rectangular’, but is now the cap of the ellipsoid (with no divisions in ¢).

In Sect.2, an expression for the surface area of an ellipsoidal patch is derived and
a means of numerically evaluating this expression is outlined. Given the surface areas
of ellipsoidal patches, uniformity of ellipsoid surface sampling algorithms can be
studied. In Sect. 3, measures of speed as well as statistics describing uniformity are
discussed. These measures are applied in Sect. 4 to a selection of sampling algorithms
on a spherical surface. In Sect. 5, some rejection sampling algorithms for the ellipsoid
surface are outlined (some requiring sphere samplers to generate trial points). A similar
analysis as for spheres is performed in Sect. 6 on the surface of an oblate spheroid and
a triaxial ellipsoid. This analysis was performed to answer three questions: Firstly, do
these algorithms generate uniform distributions on the ellipsoid surface? Answering
this requires the patch area formula derived in Sect.2. Secondly, of those samplers

@ Springer

Numerical Algorithms (2024) 95:1801-1827 1803

-~ -

Fig. 1 A patch on the surface of an ellipsoid. For limits 6, 61, ¢ and ¢, one can determine curves of
constant 6 (solid) and of constant ¢ (dashed). The patch (red) is defined as the area enclosed by the four
curves. The dotted vertical line indicates the z-axis (from which 6 is measured)

found to be uniform, which one is the fastest? Thirdly, does the speed depend on the
aspect ratio of the ellipsoid? For example, can the symmetry of a spheroid favour one
class of sampler over another? By answering these questions, one can recommend a
particular algorithm (or algorithms) to uniformly sample the ellipsoid surface.

2 Surface area of an ellipsoidal patch

In polar coordinates, the ellipsoid area element is given by [21],

s(0, ¢) = sin 9\/ b2c? sin? 6 cos? ¢ + a2c2 sin? O sin? ¢ + a2b%cos? 6, (4)
so that infinitesimal area dJS is,
dS = s(0, ¢) d¢ do. (5)

Thus, the area of the ellipsoid is given by,

S://dS

T 2
_ / / 5(0. ¢) dep do ©6)
0 0

/2 pw/2
= 8/ / (0,) de do.
0 0

In the last equality, only the octant of the ellipsoid where x > 0, y > Oand z > 0
is considered. This corresponds to taking 0 < ¢ < w/2 and 0 < 6 < 7/2. By the
symmetry of the (general) ellipsoid, the area over the entire surface is given by the
area of the octant, multiplied by 8.

@ Springer

1804 Numerical Algorithms (2024) 95:1801-1827

The area of a patch can be obtained by replacing the limits with the values 6y, 61, ¢g
and ¢1, which define the vertices of the patch. The integral of interest here is therefore,

01 rd1
Spatch = / / 50, ¢) db do.)
6o Jo

2.1 Derivation of the patch area formula

It is entirely possible to integrate the double integral in Eq. 7 numerically [25]. How-
ever, it is also possible to rewrite the double integral so that the inner integral (over ¢)
is expressed using incomplete elliptic integrals of the second kind. Following Maas
[21], one can make the transformation

& =cos6 (8)

to give (using that d0 = — sin d¢ and sin® 0 = 1 — £2),

cos 61 b1
Spatch = f /¢ $(€.) d de ©)
¢ 0

0s 0o

where

2 2 1/2
s(§,¢) = —bc [1 + 82 <‘Cl—2 - 1) + (1 - 52) <‘Cl—2 - 1) sin? ¢} . (10)

Note that the minus sign in Eq. 10 does not indicate a negative area. This is because
cos 0 < cos by, when Gy < 67 with both limits within [0, 7r/2]. The minus sign can
thus be cancelled by interchanging the £ limits, and the resulting area is positive.

By defining
2 1/2
g = [1 + &2 (i—z - 1)} : (11)
and 12
2
k©) = 0= (1-5)] (12)
B g(&) ’
the patch area may be expressed as,
cos 6y
Spatch = bC/ , 8(&)[E(¢1, k) — E(¢o, k)] d§ , (13)
where " U
E(W, k) = / (1 — K2 sin? ¢) d¢ (14)
0

is Legendre’s incomplete elliptic integral of the second kind. If @ > b > c, then
the value of k(&) is purely imaginary for & # 1. This occurs because the factor

@ Springer

Numerical Algorithms (2024) 95:1801-1827 1805

1 — (a/b)? in the numerator of Eq. 12 becomes negative when a > b. The elliptic
integral with k purely imaginary can be transformed into an expression involving
real valued variables [26], however this involves additional trigonometric and square
root evaluations and thus requires extra computations. Instead, one can transform the
problem by interchanging a and b in Eq. 13 and replacing the ¢ limits with ¢g — /2
and ¢; — /2. This rotation gives the equivalent expression for patch area,

cos 6y
Spatch = aC/ , y@E) [E(p1 — /2, k) — E(po — /2, k)] d§ |, (15)
cos 61
where,
B2 1/2
y(€) = [1 + &2 (c—2 - 1)} : (16)
1/2
_0=-e(0-%)] -
k(&) = @) . (17)

When a > b, Eq. 15 should be used for patch area, while Eq. 13 gives the appropriate
formula for the b > a case. As for the choice of ¢, note that the value of g(&) is real
for any positive values of a (or b) and c, as the second term in Eq. 11 is always greater
than —1 as &2 € [0, 1]. Therefore, in Eqs. 13 and 15, ¢ can take any positive value
(whether smaller or greater than a or b).

The elliptic integral E (Y, k) can be efficiently evaluated by writing it in terms of
Carlson’s elliptic integrals,

1
E(W, k) =siny Rp(u, v, w) — 5k2 sin® W Rp(u, v, w), (18)

with
u =c0s21ﬁ, (19)
v=1—k’sin’>y, (20)
w=1, 1)

where Rrp and Rp are the Carlson elliptic integrals of the first and second kind,
respectively. These integrals can be efficiently computed numerically, using algorithms
based on duplication theorems [27, 28]. If computational speed is a priority, then one
could alternatively compute E (¥, k) using the faster method developed by Fukushima
[29, 30].

Given an efficient algorithm to compute E (Y, k), evaluation of Eq. 15 can be inter-
preted as a one-dimensional integration problem. This can be readily solved to the
required accuracy using an algorithm such as Gaussian quadrature or Romberg inte-
gration [25, 31], the latter of which was used in this study.

The patch area formula given in Eq. 15 assumes that both the 0 and ¢ limits are
within the interval [0, 7 /2]. Outside of this interval, it is possible to obtain unexpected

@ Springer

1806 Numerical Algorithms (2024) 95:1801-1827

negative values of patch area (for example, when using Eq. 18 for ¢ >) that lead to
unwanted cancellations. However, the [0, /2] interval is sufficient to calculate any
patch area on the ellipsoid by exploiting its eight-fold symmetry. By this symmetry,
the area of a patch entirely contained within the x, y, z > 0 octant of the surface equals
the area for reflected versions of the patch in the other octants. If the set of patches
have been chosen in such a way that a limit occurs halfway through a patch, then that
patch area can be determined by calculating the area of the half-patch within the limits
and doubling the answer. For patches containing both a 8 and a ¢ limit, one need only
calculate the quarter of the patch area within the limits and multiply by 4. These cases
together account for all patches on the surface, provided that the number of distinct
¢ values is chosen to be even, so that the set of patches match the symmetry of the
ellipsoid (the number of 6 values can be odd or even). By exploiting the symmetry
of the ellipsoid in this way, many redundant computations are avoided. This can be
useful if one wishes to obtain accurate areas by setting a low tolerance value in the
chosen numerical integration algorithm.

2.2 Spheres and spheroids

For a sphere of radius a, the patch area integral simplifies to,

01 ré1
Spatch = / / a’sin6 de dé. (22)
6o o

= a*(cos By — cos 1) (¢1 — ¢o) - (23)

For a spheroid with a = b # ¢, an analytical expression for patch area can be
derived. Starting from the triaxial patch area given in Eq. 15, it can immediately be
seen from Eq. 17 that « (&) vanishes when a = b. For k = 0, the elliptic integral
E (Y, k) reduces to,

2
E(W.«) = / (1—0)2dg = . (24)
0
Thus, .
cos 0 1/2
Spien =ac@r — o) [(1+4%2) " d, 25)
cos 01
where,
2 a?
=51 (26)
C

To solve this integral, one can make the substitution sinh u = g& to obtain,

— ui
Spatch = actor = 90) / cosh’ u du , (27)
q uo

@ Springer

Numerical Algorithms (2024) 95:1801-1827 1807

with ug = arcsinh(g cos 81) and | = arcsinh(g cos 6p). Using that,

| + cosh 2 inh(2
/cosh2xdx:/$dx=§+w+C, (28)

sinh2u = 2 sinhu coshu = 2g&/1 + ¢2&2, (29)

the spheroid patch area is given by,

and

Spatch,oblate = M [arcsinh(q cos 8y) — arcsinh(g cos 61)

24 (30)

+ g cosBpy/1 4+ g2 cos? 0y — g cosbiy/1 + g2 cos? 91] .

Equation 30 is named as ‘oblate’ because the quantity g is only real valued when
a > c.Inthe prolate case, g is imaginary valued. Using the relation sinh(ix) =i sin x,
the patch area of a prolate spheroid can be written as,

ac(p1 — ¢o)
2q

+ g cos o,/ 1+ g% cos? 0y — qcosbiy/1 +1§2c0s291],

where g2 = 1 — a?/c? (ie. § = iq).

Spatch, prolate = [arcsin(c} cos 6y) — arcsin(g cos 61)

€19

3 Speed and uniformity of the sampling algorithms

Ellipsoid patch areas calculated using Egs. 15 (for ellipsoids) and 23 (for spheres) were
used to investigate uniformity (with respect to surface area) of the sampling algorithms
to be discussed in Sects.4 and 5. For each algorithm studied, a sample of N = 103
random points was generated using implementations written in C++, run using the
Linux Subsystem for Windows and analysed using a Python script. This was done for
two different random number generators (RNG):

e Lagged Fibonacci (with 4 feedback shifts and the exclusive-or operation).
e YARNS generator.

The implementations used in this work are from the TRNG library! (using the
lagfibdxor_19937_64 and yarn5 classes, respectively) [32]. The following
analysis was done with two different RNG algorithms to verify that the source of
random numbers itself has no influence on the final results. This is done by checking
that the results from each generator are similar.

To study each sampling algorithm, the following quantities were measured:

e Run-time, typ.

I See https://www.numbercrunch.de/trng/

@ Springer

https://www.numbercrunch.de/trng/

1808 Numerical Algorithms (2024) 95:1801-1827

For each algorithm (and choice of RNG), the required run-time was measured using
the ct ime header from the C++ Standard Library.

e Relative speed.

Since the raw run-time depends on many factors; such as language, operating system
and CPU, the relative speed of each algorithm was computed from the measured
run-times. The speed relative to a given benchmark algorithm may be computed as
venchmark /1, Where fpenchmark 18 the run-time of the benchmark and ¢ is the run-time
for the desired algorithm.

e Acceptance rate, r.

For those algorithms that use rejection sampling, the acceptance rate is the pro-
portion of all trial points that were accepted. In cases where rejection sampling is not
employed, one obtains a value of r = 1, i.e. all generated points were accepted.

The above quantities can be used to evaluate the speed of each sampling method.
These were measured by a program that generated the 10% points and nothing else.
Thus, the measured run-times in this Paper constitute only the time required to generate
the points.

To investigate the uniformity of these algorithms, another set of N = 10 points
was generated for each method. In this case, the points were binned into one of a set
of patches (as defined by Fig. 1). This was done by defining patches with increments
of one degree in both angular coordinates 6 and ¢. This gives 181 distinct values of 6
and 360 values of ¢. Since two of the 6 values correspond to caps at the poles, there
are a total of

n= (181 —2) x 360 + 2 = 64442 (32)

patches (i.e. 64 442 bins) defined on the surface. Given a point in polar coordinates,
the relevant 6 and ¢ indices can be found by comparing each coordinate to a list
of the values defining each bin. For the sake of speed, these comparisons were here
performed using Bottenbruch’s version of the binary search algorithm [33, 34].

e Relative standard deviation, RSD.

Given a binned distribution of random surface points, one can calculate number of
points per area for each patch. From this distribution, a mean and a standard deviation
can be computed. The relative standard deviation is then just the standard deviation
divided by the mean. This quantity is interpreted here as a measure of non-uniformity,
with a large value indicating high deviation from the mean. Since these distributions
are expected to be uniform after dividing by patch areas, one can expect the relative
standard deviation to be small.

e Chi-squared, XZ.

Another way to measure uniformity (or lack thereof) is to perform a x?2 test for
goodness of fit [25, 35]. This uses the X2 statistic, defined as

n

Oi—Eiz
Xzzz%, (33)

i

@ Springer

Numerical Algorithms (2024) 95:1801-1827 1809

where index i refers to a particular patch, O; is the observed number of random points
within patch i and E; is the expected number of points within patch i. Knowing the
area of each patch, one can calculate Ej;; given the null hypothesis that this number
divided by surface area is uniform. This is given by,

_ NS;
i

where S is the surface area of patch i and) ;' S; is the sum of all patch areas. Given x2,
the validity of the null hypothesis can be tested by comparing this value to a critical
value, Xczrit’ which is determined using a chi-squared distribution function, with n
degrees of freedom. For n = 64 442 degrees of freedom (i.e. equal to the number of
bins) the critical value at the 5% confidence level is found to be (using the chi2 .ppf
function from the Python stats module).

E; (34)

X2 =65033.6. (35)

If a measured x 2 statistic exceeds the critical value, then there is sufficient evidence
to reject the null hypothesis and conclude that the distribution is non-uniform. On the
other hand, a x? value smaller than critical cannot prove the null hypothesis, but does
provide some confidence that the sample could be uniform.

4 Uniform sampling on the surface of a sphere

Before proceeding to investigate ellipsoid surface samplers, it is necessary to have
a reliable method for generating uniform random points on the surface of a sphere.
A simple approach, based on a two-dimensional circle rejection sampling method
given by von Neumann [36], is to generate points in a unit length cube. Points that
have magnitude smaller than unity (i.e. that lie within a unit sphere) are accepted and
scaled to lie on the required sphere surface.

While this approach suffices, other algorithms exist that are faster. In this work, six
sphere sampling algorithms (including the cubic rejection method) were considered.
The other five are: Marsaglia’s improved method [12], the ‘trig method’ (so-called
due to use of trigonometric functions) [8, 15], use of Gaussian random numbers [12,
13] (generated here using Doornik’s implementation of the ziggurat method [37, 38]),
Cook’s method [12, 14] and rejection sampling using the surface area element at a
point [3]. For details on how these algorithms work, see the given References. The
surface area rejection sampling method used here is a special case of an algorithm for
ellipsoids, described in more detail in Sect. 5.

4.1 Comparison of the sphere sampling algorithms
The quantities described in Sect. 3 were measured for samples of N = 10® randomly

generated points on the unit sphere. The results of this are shown in Table 1. Consider-
ing first the speed (relative to the cubic rejection method) of each algorithm, it is clear

@ Springer

1810 Numerical Algorithms (2024) 95:1801-1827

Table1 Results of using various sphere surface samplers to generate 108 points, using two different random
number generators. Each column shows (from left to right): algorithm name, run-time (in seconds), speed
relative to cubic rejection, acceptance rate, relative standard deviation (as a percentage), the Xz statistic and
whether X2 is smaller than the critical value, Xczm =65033.6

Sphere: (a,b,c) = (1,1, 1)

RNG Lagged Fibonacci (lagfib4xor)

Algorithm trun (8) speed r RSD (%) X2 XZ < Xczm
Cubic Rej 2.803 1.0 0.52364 3.741 63834.1 Yes
Marsaglia 1.205 2.326 0.78545 3.783 64958.6 Yes

Trig 2.345 1.195 1.0 3.735 64346.7 Yes
Gaussian 3.477 0.806 1.0 3.736 64059.1 Yes

Cook 4.493 0.624 0.30844 3.725 64454.0 Yes

Area Rej 5.513 0.508 0.63656 3.729 64260.0 Yes

RNG YARNSSs (yarn5s)

Algorithm trun (8) speed r RSD (%) x2 XZ < Xczm
Cubic Rej 7.226 1.0 0.52356 3.738 63920.5 Yes
Marsaglia 2.999 2.409 0.78543 3.726 64931.0 Yes

Trig 4.018 1.798 1.0 3.737 64792.5 Yes
Gaussian 7.367 0.981 1.0 3.723 64339.9 Yes

Cook 14.008 0.516 0.3084 3.769 64724.5 Yes

Area Rej 8.027 0.9 0.63664 3.704 64468.3 Yes

that the fastest is that of Marsaglia, which has the shortest run-time and highest relative
speed, regardless of random number generator. This is despite the fact that both the
trig and Gaussian methods have a perfect acceptance rate. The speed of Marsaglia’s
method lies in the fact that no costly trigonometric or Gaussian deviate calculations
are required.

Itis also of note that the relative speed of each algorithm differs based on the choice
of random number generator. For lagged Fibonacci, which is faster than YARNS,
Marsaglia’s method is nearly twice as fast as the trig method. With the YARNS gen-
erator, Marsaglia’s method remains fastest, but the gap compared to the trig method
is smaller. It is thus conceivable that for a much slower source of random numbers,
the trig method could be advantageous.

As far as uniformity is concerned, every sample yields a relative standard devia-
tion of roughly 3.7%, and a x? value just under the critical value (see Eq.35). This
may suggest that the distributions are indeed uniform. To shed further light on the
uniformity (or non-uniformity) of the obtained samples, one could visually inspect
the distributions. Figure 2 shows the distributions obtained using Marsaglia’s method
with the lagged Fibonacci generator. The raw number of points per patch is greater
at the equator than near the poles (with a high value at the patches containing the
poles themselves). The patches with more hits are those with greater surface area, as
is verified when looking at number of points per patch area. Now a much more uniform
distribution presents itself.

@ Springer

Numerical Algorithms (2024) 95:1801-1827 1811

x10~5
2500
2.5
2000
1500 20
1000 e
-

0
(a) (b)

Fig. 2 Distribution of random points on a unit sphere, generated using Marsaglia’s method with random
numbers obtained by the lagged Fibonacci algorithm. a Number of points per patch. b Selection probability
per patch area, with patch areas computed using Eq. 23

The use of relative standard deviations and x 2 tests allow uniformity to be assessed
without the need to produce plots for each sample. The corresponding values in Table
1 do not give evidence for non-uniformity, with small standard deviations relative to
the mean and all x 2 tests passing. This is expected since the algorithms are all designed
to produce uniformly random points.

5 Uniform sampling on the surface of an ellipsoid

Suppose one has a point on a unit sphere that was generated using a uniform sampling
algorithm, such as one of those discussed in Sect.4. This point can easily be trans-
formed so it lies on the surface of an ellipsoid of axis lengths a, b and ¢ by scaling
its Cartesian coordinates by each axis respectively. This ‘naive method’ is simple and
only requires a sphere sampler. However, it does not result in a uniform distribution
of points on the ellipsoid surface. Instead, there is a greater concentration of points
near the poles of the major and middle axes as shown by Figs. 3(a) and (b). By using
a uniform ellipsoid surface sampler, a sample such as that of Figs. 3(c) and (d) can be
obtained.

In this section, three different rejection sampling algorithms for generating uniform
distributions of points on the ellipsoid surface are explained. These are then studied
in Sect. 6, using the measures discussed in Sect. 3.

5.1 Gradient vector rejection sampling

One approach to generate uniform samples on the ellipsoid surface is to first generate
points on the unit sphere, perform anisotropic scaling to obtain trial points, p(x, y, z),
on the ellipsoid and then reject some of them in such a way that the accepted points
are uniformly distributed. Chen and Glotzer give such a method for prolate spheroids,

@ Springer

1812 Numerical Algorithms (2024) 95:1801-1827

3000
2500
2000
1500
1000
500

3000
2500

2000
1500
1000
0

500

(c)

(d)

x10~°

x10~5

3.0
2.5
2.0
1.5
1.0
0.5
0.0

3.0
2.5
2.0
1.5
1.0
0.5
0.0

Fig. 3 Distribution of random points on a triaxial ellipsoid, with random numbers obtained by the lagged
Fibonacci algorithm. a and b: Number of points per patch and selection probability per patch area respec-
tively, using the naive scaling method (with Marsaglia’s sphere sampler). ¢ and d: Number of points per
patch and selection probability per patch area respectively, using the gradient rejection method. Patch areas

were computed using Eq. 15

based on the work of Williamson, using the magnitude of the gradient vector of the
ellipsoid surface [1, 8]. This approach is easily generalised to the case of any ellipsoid,

as is demonstrated here.

The rejection sampling works by defining a function giving the probability of

accepting a trial point,
g, y.2)

8max

P (accept) =

where the function g(x, y, z) is given by,

gx.y.0) Il VS|

gmax |n|max |Vf|max ‘

@ Springer

(36)

(37

Numerical Algorithms (2024) 95:1801-1827 1813

The vector n is the normal to the surface at point (x, y, z), and V f is the gradient
vector. The function f defines the surface of the ellipsoid,

2 2 2
x2 ¥y oz
f(x’y’Z)za_2+ﬁ+c_2’ (38)

with the surface being the set of points where f(x, y,z) = 1. The magnitude of the
gradient vector is given by,

[38)
38

| I\

IVfl=2,/" + 5+

2
X2y
T+ . (39)

'

C

Since the acceptance probability is the ratio of this expression to its maximum
value, the prefactor of 2 may be ignored. With this factor dropped, the expression can
be used as function g(x, y, 2).

To use this expression, the maximum of the function

(40)

_ sin® @ cos? ¢ N sin® @ sin? ¢ N cos2 6
N a? b? 2

must be found. The latter equality in Eq.40 arises due to conversion of coordinates
from Cartesian to scaled spherical polars, using Eqgs. 1-3. Use of polar coordinates
gives a more natural parametrisation of the function to be maximised. The partial
derivatives of g(6, ¢) can be determined using the chain rule,

og 1 . cos2¢ sin?¢ 1
ﬁzgsmecosQ(a—zﬁ- 2 2) (41)
d 1 1 1

£ = gsmqbcosqb sin” @ (ﬁ - a_2> . (42)

At the extreme points of g(0, ¢), both partial derivatives equal zero. To make the
right-hand side of Eq.41 vanish, either sinf, cos or the term in brackets must be
zero. This is equivalent to the condition,

1 1 1 1
0=0,0r,0 =m/2,0r,0 =m, or, sin2¢(ﬁ—a—2>=c—2—a—2.

The first three cases simply state that the point is either a c-axis pole or an equator
point. The last case is satisfied for any point on a sphere. For Eq. 42, one requires either
sing =0,cos¢p =0,sinf0 =0ora =b,i.e.

¢=0,or,p=m,0r,¢p =n/2,0r,¢ =31/2,or,0 =0,0r,0 =m,or,a=>b.

@ Springer

1814 Numerical Algorithms (2024) 95:1801-1827

The latter case says that the ¢ derivative vanishes at any point on a spheroid, where
c is the distinct axis. The remaining cases require particular values of ¢ or 6. In order
to make both partial derivatives vanish simultaneously on an ellipsoid with arbitrary
axes, there are only six possible points. These points are the poles of the a, b and ¢
axes. Therefore, the maximum value of g is given by,

1

min(a, b, ¢) (43)

8max =

Substituting Egs. 40 and 43 into Eq. 36 gives the following expression for the accep-
tance probability of a trial point,

P (accept) = min(a, b, ¢) (44)

Equation44 forms the basis of a rejection sampling algorithm using the gradient
vector at a trial point generated by the ‘naive method’. This procedure is summarised
via pseudocode in Algorithm 1.

Algorithm 1 The gradient rejection algorithm on an ellipsoid with axis lengths a, b
and c.

1: accept < false

2: while accept = false do

3: p < uniform random point on a unit sphere

4: p < (apx,bpy,cpz)

. P Py, PP
g = min(a, b, &+ 7+

5:

6: u <= uniform random number on range (0, 1)
7: if u < g then

8: accept <= true

9: endif

10: end while

11: return p

5.2 Area element rejection sampling

A natural approach to generating random points that are uniform with respect to surface
area is to make use of the expression for the surface area element, s. Following Melfi
and Schoier [3], suppose an area element is given in terms of arbitrary coordinates
(u, v). Values of 1 and v are obtained using a uniform random number generator. One
can then define an acceptance probability,

P (accept) = S, v) , (45)

Smax

where smax 18 the maximum value of the surface area element.

@ Springer

Numerical Algorithms (2024) 95:1801-1827 1815

One could try selecting Cartesian coordinates x and y and use points (x, y, f(x, y)),
where

Fery) = el = x2/a® =32/ (46)

The surface area element is then given by,

2 2
s(x,y) = \/1 + (ﬂ) + <%) . a7
ax ay

The partial derivatives,

af —c%x
ox af(r,y)’ @
of —c?y
- = 49
by B fxy) @

are not defined at values where z = f(x, y) vanish (i.e. the equator, 6 = 7 /2), due to
division by zero. Therefore, Cartesian coordinates are unsuitable for this algorithm.

Instead, polar coordinates (6, ¢) can be used. The surface area element is given by
Eq.4, and so the acceptance probability is

Paccept) — sin 0y/b2¢2 sin? 0 cos? ¢ + a2 sin? 0 sin? ¢ + a2b? cos? 6 (50

Smax

The value of the maximum, derived in Appendix 1, depends on the choice of semi-
axis lengths. Defining,
b2

F=s =

(S

the maximum is given by,

B (a*c*B — a*b*B +a’b?), if triaxial or oblate,
Smax = . (52)
ac, otherwise.

Equations 50 and 52 can be used as the basis of an area rejection sampling method, as
shown in Algorithm 2. Values of 8 and ¢ are randomly chosen using uniform generators
and the area element used to determine whether to accept the corresponding point.

When dealing with a sphere or a spheroid, the area rejection algorithm becomes
computationally simpler. This is because the area element becomes,

Sspheroid (8,) = sin 0 a2c? sin? 6 + a* cos2 0, (53)

for a spheroid and
Ssphere (6,) = a’sin 6, (54)

@ Springer

1816 Numerical Algorithms (2024) 95:1801-1827

Algorithm 2 The polar coordinate area rejection algorithm on an ellipsoid with axis
lengths a, b and c.

1: accept < false
2: Calculate smax using Eq. 52
3: while accept = false do

4: 0 < uniform random number on (0,)

5: ¢ < uniform random number on (0, 27)

6: Calculate P (accept) using Eq. 50

7: u < uniform random number on range (0, 1)
8: if u < P(accept) then

9: accept <= true

10: endif

11: end while

12: x <= asinf cos ¢
13: y < bsinfsing
14: z <= ccosf

15: return (x, y, z)

for a sphere. In both cases, there is no dependence on ¢. This means that the random
generation of ¢ can be taken outside the loop in Algorithm 2. Combined with a simpler
form of the area element, this means fewer computations are required.

Another area rejection algorithm can be created by selecting another coordinate
system. In this work, use of the Mercator parametrisation (u, v), where,

x =asechvcosu, (55)
y =bsechvsinu, (56)
7z =ctanhu, (57)

was studied. The u coordinate is defined similarly to the polar ¢ coordinate and exists
on the range [0, 2r]. However, the v coordinate is defined on range (—o0, 00). By
truncating to a finite range, it is possible to obtain an approximately uniform sampling
algorithm using these coordinates. Here, the finite range (—2m, 277) was used. Using
the coefficients of the first fundamental form, the area element can be found to be,

s(u,v) = sech?® v\/azbz(l — sech? v) + ¢? sech? v (a? sin? u + b2 cos?u) . (58)

Since this expression requires only one hyperbolic and one trigonometric function
evaluation to compute (as cos>u = 1 — sin”u), a single evaluation of s could be
expected to be faster here than for polar coordinates. The partial derivatives are,

a_s _ c2sech*v sin u cos u(a2 — bz) 7 (59)
u w(u, v)

]
2 = 2sech? v tanh v (
ov

sech? v

—(azb2 — cz(a2 sin? u + b? cos® u)) —wu,v) |,
2w(u, v)

(60)

@ Springer

Numerical Algorithms (2024) 95:1801-1827 1817

where,

w(u, v) = \/a2b2(1 — sech?v) + ¢2 sech? v (a2 sin? u + b2 cos? u) . (61)

The v derivative vanishes when sech v = 0 or tanh v = 0 (The bracketed term is
always positive for a > b > ¢). The former case requires infinite v, in which limit
the area element vanishes. The latter case is equivalent to v = 0, which corresponds
to the equator (i.e. z = 0). Given that v = 0, the only way to make the u derivative
equal zero is to make u a multiple of 27 (so sinu = 0 or cosu = 0). The maximum
possible value of s is thus obtained by taking u = /2 or 37/2, so that sin”u = 1
and therefore,

Smax = dcC . (62)

The acceptance probability in these coordinates is given by,

sech? v x w(u, v)

P (accept) = (63)

ac

The process for generating random points is similar to that for polar coordinates,
as shown by Algorithm 3.

Algorithm 3 The Mercator coordinate area rejection algorithm on an ellipsoid with
axis lengths a, b and c.

1: accept <« false

2: while accept = false do

3: u < uniform random number on (0, 27)

4 v <= uniform random number on (—1, 1) (t = 2 used in this study)
5: Calculate P(accept) using Eq. 63

6: u < uniform random number on range (0, 1)

7

8

if u < P(accept) then

: accept < true
9: endif
10: end while
11: x < asechvcosu
12: y <= b sechvsinu
13: z & ctanhu
14: return (x, y, z)

5.3 Ray intersection sampling

The final method considered here is the generic surface sampler of Detwiler et al. [4].
An equivalent formulation of this algorithm also appears in the work of Palais et al. [6].
The method works by starting with a randomly generated point on the bounding sphere
for the surface of interest. For an ellipsoid, this sphere has radius r = max(a, b, c).

@ Springer

1818 Numerical Algorithms (2024) 95:1801-1827

A uniform random point, @ is then generated in a disk of radius r. Intersections
are then sought between the surface and a ray orthogonal to the disk, starting at aey.
If any intersections are found, one of them is randomly selected and returned as the
generated surface point. If no intersections exist, the process is re-attempted until a
valid intersection is found.

The method is summarised as pseudocode in Algorithm 4. Firstly, the random sphere
point, n, is generated. This vector is normal to the sphere surface. Next, the orientation
of the tangent disk is represented through two mutually orthogonal vectors in the disk.
One of these, u, is constructed as orthogonal to n; while the other, v can be made
orthogonal to both n and u by taking a cross product. For subsequent calculations, u
and v must be normalised.

A point in the disk must then be generated. This requires a random radius B and a
random angle v (between 0 and 27). To ensure uniformly random points in the disk,
one must take the square root of a uniform random number on range (0,1) and then
multiply by the desired radius [39]. Given point (b, b1) in two-dimensions, the 3D
point in the disk is given by,

& =rn+ bou+ byv. (64)

Algorithm 4 The ray intersection algorithm on an ellipsoid with axis lengths a, b and

Normalise u and v

V¥ <= uniform random number on (0, 277)

10: g <« uniform random number on (0, 1)

11: B&<rx./q

12: (bg, b1) <= (Bcosyr, Bsiny)

13: &< rn+bou+byv

14: Determine whether line pg + ¢ o intersects the ellipsoid, using Equations 65-68
15: if 2 Intersections then

C.

1: accept < false

2: r < max(a, b, ¢)

3: while accept = false do

4: n = uniform random point on a unit sphere
5: ®y<rn

6: u< (1,1, —(ny +ny)/n;)

7. vV&uxn

8:

9:

16: p < randomly chosen intersection point
17: accept <= true

18: elseif 1 Intersection then

19: p <« intersection point

20: accept <= true

21: else

22: accept remains false

23: endif

24: end while

25: return p

Given point g, the line & + ra can be defined, where &9 = rn and ¢ is a real
number. With the ellipsoid oriented with semi-axes a, b, ¢ along the x, y, z directions

@ Springer

Numerical Algorithms (2024) 95:1801-1827 1819

respectively, the problem of determining whether the line intersects the ellipsoid can
be represented as a quadratic equation in parameter ¢, so that

t= (—ﬂ +./B% - 40()/) /20 (65)

where,
a=n}/a*+n}/b® +ni/c*, (66)
B = _ZIOO,xnx/a2 - 2,()O,yny/b2 - 2:0(),znz/c2) (67)
y = pg./a’ + 5 /b + 0./ - (68)

There are three possible outcomes based on the sign of the discriminant: two inter-
sections; one intersection; no intersection. In the latter case, the calculation is repeated
with new random numbers until an intersection is found. If two intersection points are
obtained, a random number can be drawn to decide which one to return.

6 Comparison of the ellipsoid sampling algorithms

Each of the aforementioned algorithms were used to generate a sample of N = 103
random points, and were analysed as discussed in Sect. 3. Eight separate algorithms
were used, including different variations of those outlined above. Along with the
‘naive scaling method’ and the ray intersection method, three variations of the gradient
rejection algorithm were studied,

e Using Marsaglia’s method to generate sphere points.

e Using the ‘trig method’ to generate sphere points.

e Converting to polar coordinates prior to output (using Marsaglia’s method for
spheres).

Three variations of the area rejection method were also used,

e Using polar coordinates, converting the output to Cartesians.
e Using polars, without converting to Cartesians.
e Using Mercator coordinates (with conversion to Cartesians).

The decision to consider implementations of the gradient and area rejection methods
with Cartesian and polar outputs was made to study the effect this has on run-time. If
one is interested in generating polar coordinates for uniform random surface points,
is it faster to use an algorithm that directly yields polar coordinates?

Tables 2 and 3 show the results for samples of N = 10% random points on an oblate
spheroid, (a, b, ¢) = (3,3, 1.5), and a triaxial ellipsoid, (a, b, ¢) = (3,2, 1), respec-
tively. First consider the uniformity of each method. In both tables, it is immediately
clear that the relative standard deviation and 2 statistics from the naive method are
much greater than those for all the other algorithms. This is to be expected, since the
naive method yields a non-uniform distribution.

@ Springer

1820 Numerical Algorithms (2024) 95:1801-1827

Table 2 Results of using various ellipsoid surface samplers to generate 108 points on an oblate spheroid,
using two different random number generators. Each column shows (from left to right): algorithm name,
run-time (in seconds), speed relative to naive rejection, acceptance rate, relative standard deviation (as a

percentage of the mean), the X2 statistic and whether XZ is smaller than the critical value, x czrit =65033.6

Oblate Spheroid: (a, b, ¢) = (3,3, 1.5)

RNG Lagged Fibonacci (lagfib4xor)

Algorithm trun (8) speed r RSD (%) X2 X2 < Xczm
Naive Scale 1.493 1.0 1.0 24.878 5005750.1 No

Grad Rej 4.284 0.349 0.69007 3.316 64726.9 Yes

Grad (Trig) 5.83 0.256 0.69009 3.336 64634.3 Yes

Grad (Pol) 9.447 0.158 0.69014 3.318 64978.8 Yes

Area Rej 4.995 0.299 0.76086 3.307 64426.4 Yes

Area (Pol) 3.223 0.463 0.76099 3.303 64032.3 Yes

Area (Merc) 10.794 0.138 0.21841 3.461 73037.1 No

Ray Method 9.281 0.161 0.69011 3.309 64192.8 Yes

RNG YARNSs (yarn5s)

Algorithm trun (S) speed r RSD (%) X2 x2 < Xczm
Naive Scale 3.155 1.0 1.0 24.87 5006451.3 No

Grad Rej 8.02 0.393 0.69001 3.291 64402.6 Yes

Grad (Trig) 9.331 0.338 0.69010 3.346 64716.3 Yes

Grad (Pol) 12.433 0.254 0.69012 3.283 64401.4 Yes

Area Rej 7.286 0.433 0.76088 3.295 63825.3 Yes

Area (Pol) 6.285 0.502 0.76093 3.317 63805.3 Yes

Area (Merc) 17.333 0.182 0.21846 3.39 73010.7 No

Ray Method 14.121 0.223 0.69002 3.318 64134.3 Yes

Another algorithm that fails the x? tests is the Mercator coordinate area rejection
method. The fact that a uniformity test fails might not be considered surprising, since
the method uses a finite truncation on the range of the v coordinate, meaning that it is
not completely uniform. The loss of uniformity thus occurs near the c-axis poles, with
fewer generated points than expected in those regions. For every other algorithm, the
x? values are below critical and the relative standard deviations are roughly 3.2%.

Looking at the run-times in Tables 2 and 3, the fastest algorithm is the naive method
and the slowest is Mercator coordinate area rejection. The former is fast as it simply
scales a point generated on the sphere by Marsaglia’s method, while the latter is
slow because of a low acceptance rate, combined with the need for trigonometric and
hyperbolic function calls. Regardless of efficiency, neither sampler is a good choice
due to their non-uniformity.

Of the uniform ellipsoid samplers, the ray intersection algorithm is the slowest. This
can be explained in Table 3 by a low acceptance rate. In the oblate case, the value of r
is higher and the run-time shorter, but the gradient and area rejection methods are still
faster. This is because of the algorithmic complexity of the method, with trigonometric
function evaluations and multiple random number generator calls.

@ Springer

Numerical Algorithms (2024) 95:1801-1827 1821

Table 3 Results of using various ellipsoid surface samplers to generate 108 points on a triaxial ellipsoid,
using two different random number generators. Each column shows (from left to right): algorithm name,
run-time (in seconds), speed relative to naive rejection, acceptance rate, relative standard deviation (as a

percentage of the mean), the X2 statistic and whether XZ is smaller than the critical value, x czrit =65033.6

Triaxial Ellipsoid: (a, b, c) = (3,2, 1)

RNG Lagged Fibonacci (lagfib4xor)

Algorithm trun (8) speed r RSD (%) X2 X2 < Xczm
Naive Scale 1.488 1.0 1.0 33.063 8716777.8 No

Grad Rej 4.669 0.319 0.64832 3.222 63735.1 Yes

Grad (Trig) 6.237 0.239 0.64838 3.263 64731.0 Yes

Grad (Pol) 9.692 0.154 0.64830 3.27 64894.7 Yes

Area Rej 5.956 0.25 0.71481 3.252 64109.0 Yes

Area (Pol) 5.281 0.282 0.71489 3.234 64490.2 Yes

Area (Merc) 15.64 0.095 0.20620 3.24 65870.9 No

Ray Method 14.205 0.105 0.43220 3.269 64564.7 Yes

RNG YARNSs (yarn5s)

Algorithm trun (S) speed r RSD (%) X2 x2 < Xczm
Naive Scale 3.137 1.0 1.0 33.087 8724015.4 No

Grad Rej 8.592 0.365 0.64833 3.29 64737.6 Yes

Grad (Trig) 10.03 0.313 0.64832 3.234 64219.2 Yes

Grad (Pol) 13.074 0.24 0.64830 3.276 64459.8 Yes

Area Rej 8.521 0.368 0.71483 3.243 64377.8 Yes

Area (Pol) 8.217 0.382 0.71489 3.261 64086.4 Yes

Area (Merc) 28.426 0.11 0.20619 3.227 65387.4 No

Ray Method 21.785 0.144 0.43221 3.276 64486.1 Yes

If one wishes to output the generated point in polar coordinates, the area rejection
method is faster than the gradient rejection method for both shape examples. The
computational cost of converting from Cartesian to polar coordinates in the gradi-
ent rejection method is higher than that of using area rejection and returning polar
coordinates directly.

When the output is given in Cartesian coordinates, the fastest uniform sampler
depends on the choice of random number generator. For the lagged Fibonacci algo-
rithm, gradient rejection is fastest. Meanwhile, area rejection with Cartesian output
has slightly greater speed when using the YARN generator. Tables 2 and 3 show that
area rejection has a slightly greater acceptance rate than gradient rejection. Therefore,
it might be expected that area rejection is more efficient. However, gradient rejec-
tion does not require trigonometric function calls and so each iteration for a proposed
point is swifter. With a fast enough random number generator, this outweighs the lower
acceptance rate to give a more efficient method.

It should also be noted that the acceptance rates given in Tables 2 and 3 apply only
to the particular aspect ratios studied in this analysis. The acceptance rate is a function
of aspect ratio and might be expected to decrease as the shape deviates from a sphere.

@ Springer

1822 Numerical Algorithms (2024) 95:1801-1827

7 Conclusions

Expressions for the surface area of an ellipsoidal patch (as defined by Fig. 1) were
derived (see Eqs. 15,23,30 and 31). The triaxial patch area expression can be evaluated
using a one-dimensional numerical integration algorithm. The integrand requires eval-
uation of elliptic integrals, for which efficient numerical methods exist. This expression
was used to investigate ellipsoid sampling algorithms that are uniform with respect to
surface area. The three methods studied in Sect.5; gradient rejection, area rejection
(based on polar coordinates) and ray intersection were all found to result in uniform
distributions. For a fast random number generator, the gradient rejection algorithm
was found to be the fastest method for generating Cartesian coordinates, with run-
time minimised when used with Marsaglia’s method for sphere sampling. For outputs
in polar coordinates (or for both Cartesian and polar), the area rejection algorithm is
more efficient. This was found to occur for both a spheroid and a triaxial ellipsoid. If
one wishes to generate polar coordinates and speed is essential, then the area rejection
is preferable. Otherwise, the gradient rejection method is recommended due to its
mathematical and computational simplicity.

Acknowledgements Not Applicable.

Author Contributions Conceptualization, C.R.M.; methodology, C.R.M.; software, C.R.M.; investigation,
C.R.M.; writing-original draft preparation, C.R.M.; writing-review and editing, C.R.M. and PM.W.; super-
vision, PM.W.; All authors have read and agreed to the published version of the manuscript.

Funding This work was supported by the Engineering and Physical Sciences Research Council DTP funding
(EP/M50810X/1) to the University of Nottingham, and the University of Nottingham, via a PhD studentship
to CRM.

Data Availability Code used to implement the algorithms as well as generate/analyse the data discussed in
this article are openly available in the Nottingham Research Data Management Repository at http://doi.org/
10.17639/nott.7302. The code is also available on GitHub at https://github.com/cmarples/ESS.

Declarations

Ethical approval Not Applicable.
Conflict of interest The authors declare no competing interests.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

http://doi.org/10.17639/nott.7302
http://doi.org/10.17639/nott.7302
https://github.com/cmarples/ESS
http://creativecommons.org/licenses/by/4.0/

Numerical Algorithms (2024) 95:1801-1827 1823

Appendix A. Maximum value of the area element

In order to use polar coordinates (0, ¢) for the area rejection method, the maximum
of the area element function,

50, ¢) =sinbr,), (69)

where,

r @, ¢) = \/ b2c2 sin% 0 cos? ¢ + a2c? sin? 0 sin? ¢ + a2b? cos2 6 , (70)

must be found. The partial derivatives are given by,

3 ine \2
5 =r(, ¢)cosH |:1 —i—(s) (b2620082¢+d26‘2 Sinzﬁb—azbz)] , (7D

30 r@, ¢)
s _ c? sin ¢ cos ¢ sin” @ (a2 B bz) . (72)
¢ r@, ¢)

The ¢ derivative vanishes if one of the following holds:
¢=0,0r,¢p=m/2,0r,¢p =m, or, =37/2,0r,0 =0,0r,0 =m,0r,a=>b.

For the 6 derivative to vanish, either cos & = 0 or the following expression holds,

. 2
(rzg? Z)) <b2c2 cos> ¢+ a?c? sin? ¢ — azbz) =-1. (73)

Thus, maxima of the area element satisfy one of the following,
0 =m/2, or, Eq. 73 holds.

Both derivatives equal zero when one of the following cases hold:

Case1:0 =n/2and ¢ =0orm.
Case2:0 =n/2and ¢ = /2 or 3w /2.
Case3:0 =n/2and a = b.

Case 4: Eq.73 holdsand ¢ = O or .

Case 5: Eq.73 holds and ¢ = 7 /2 or 37 /2.
Case 6: Eq.73 holds and a = b.

Case 7: Eq.73 holds and 6 = O or «.

Each of the above cases shall now be considered in turn, with the extreme value
Scase no. calculated for each. The maximum of these values is then determined.

@ Springer

1824 Numerical Algorithms (2024) 95:1801-1827

Case 1

For6 = m/2and ¢ =0 orm, s(0, ¢) reads
s1=1xvb2c24+0+0=bc. (74)

Case 2

For6 =mn/2and ¢ = /1 or3m/2, s(0, ¢) reads
s5=1x+v0+a%2+0=ac. (75)

Case3
For a spheroid (a = b), s does not depend on the ¢ coordinate. Thus, at the equator,

§3 =ac. (76)

Case 4
When ¢ = 0 or 7, Eq. 73 takes the form,
sin? 0(b>c* — a’b*) = —(b*c? sin® 0 + a*b* cos? 0) . (77)

Solving for sin” # gives,

a2

.2
sin“ = —————— |
2(a? — c?)

(78)

and so the area element becomes,

a? a? a?
sS4 = \/m X (bQCZZ(aZ —a a’b? TP + azbz)) (79)
Case5
For ¢ = /2 or 3w /2, Eq. 73 reads,
sin? 0(a’c? — a’b*) = —(a’c? sin? 0 + a’b?* cos® 6) (80)

By a similar argument to case 4, the area element is,

b2 2.2 b2 212 b2 212
Y — a2). (@81
SEV2pr =) © (a Y S Yy S) 1)

@ Springer

Numerical Algorithms (2024) 95:1801-1827 1825

Case 6

When a = b, the ¢ terms disappear from Eq.73. This leads to,

a? cZat ab .
56 = 2(612 — 02) X (2(612 _ C2) - 2(612 _02) +a) . (82)

Case7

For & = 0 or m, sin® = 0, making the left-hand side of Eq.73 vanish. This means
that 73 cannot be true, since 0 # —1. Therefore, this case can never hold.

Assuming a triaxial ellipsoid with @ > b > c, this leaves three possibilities for
the maximum; s, s4 or s5. First compare s4 and s5. On can determine the larger by
taking the difference s4 — s5 and determining whether it is positive or negative. To
simplify the calculation, one can calculate sf — s52 instead (as area elements are always
non-negative). Using the SymPy library in Python [40], the difference yields,

a?b2ct(b? — a?)
4(a? -)% -2’

2 2 _
S4_SS—

(83)

The numerator is negative, since a > b. Meanwhile, the denominator is positive
since a > c¢ and b > c¢. Therefore, si < s52 when a > b > ¢. The maximum value
is thus either s5 or s = ac. Taking the difference s52 — s% (SymPy was again used)
gives,
a2(b2 _ 2C2)2

402 —c2) -

2 2
S5 — 8 =

(84)
The numerator is non-negative and if b > ¢, the denominator is positive. Therefore,
s5 >= s for a triaxial ellipsoid and so spmax = s5. For an oblate spheroid with
a = b > c, the same argument holds and s5 gives the maximum. This leaves two
special cases to consider; the prolate spheroid with a = b < ¢, and the sphere.

For a prolate spheroid, s4 = s5 and the denominator of Eq.84 is negative. Thus
Smax = 82 = ac is the maximum. For the sphere, the area element is simply a’siné,
so the maximum is sy = a2.

In summary, the ellipsoid (as defined in Sect. 1) has maximum area element,

B (a2cz,3 —a’b*B + a2b2) , if triaxial or oblate
Smax = . (85)
ac, otherwise
where
b2
R 86
/3 2(b2 _ C2) ()

@ Springer

1826 Numerical Algorithms (2024) 95:1801-1827

References

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Williamson, J.F.: Random selection of points distributed on curved surfaces. Phys. Med. Biol. 32(10),

1311-1319 (1987). https://doi.org/10.1088/0031-9155/32/10/009

. Pfluger, T., Vollmar, C., Wismiiller, A., Dresel, S., Berger, F., Suntheim, P., Leinsinger, G., Hahn, K.:

Quantitative comparison of automatic and interactive methods for MRI-SPECT image registration of
the brain based on 3-dimensional calculation of error. J. Nucl. Med. 41(11), 1823-1829 (2000)

. Melfi, G., Schoier, G.: Simulation of random distributions on surfaces. Societa Italiana di Statistica

(SIS), Atti della XLII Riunione Scientifica, Bari, pp. 173-176 (2004)

. Detwiler, J.A., Henning, R., Johnson, R.A., Marino, M.G.: A generic surface sampler for Monte

Carlo simulations. IEEE Trans. Nucl. Sci. 55(4), 2329-2333 (2008). https://doi.org/10.1109/tns.2008.
2001063

. Narayanan, H., Niyogi, P.: Sampling hypersurfaces through diffusion. In: Goel, A., Jansen, K., Rolim,

J.D.P,, Rubinfeld, R. (eds.) approximation, randomization and combinatorial optimization. Algorithms
and Techniques, pp. 535-548. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85363-3_42

. Palais, R., Palais, B., Karcher, H.: Point clouds: distributing points uniformly on a surface. Preprint at

https://arxiv.org/abs/1611.04690 (2016)

. Orthey, A., Pokorny, E.T., Toussaint, M.: Approximate topological optimization using multi-mode

estimation for robot motion planning. Preprint at https://arxiv.org/abs/2107.02498 (2021)

. Chen, T., Glotzer, S.C.: Simulation studies of a phenomenological model for elongated virus capsid

formation. Phys. Rev. E 75(5) (2007). https://doi.org/10.1103/physreve.75.051504

. Manetsberger, J., Manton, J.D., Erdelyi, M.J., Lin, H., Rees, D., Christie, G., Rees, E.J.: Ellipsoid

localization microscopy infers the size and order of protein layers in bacillus spore coats. Biophys. J.
109(10), 2058-2066 (2015). https://doi.org/10.1016/j.bpj.2015.09.023

Mao, X., McKinnon, W.B., Singer, K.N., Keane, J.T., Beyer, R.A., Greenstreet, S., Robbins, S.J.,
Schenk, P.M., Moore, J.M., Stern, S.A., Weaver, H.A., Spencer, J.R., and, C.B.O.: Collisions of small
Kuiper belt objects with (486958) Arrokoth: implications for its spin evolution and bulk density. J.
Geophys. Res. Planets 126(12) (2021). https://doi.org/10.1029/2021je00696 1

Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over bounded
regions. Oper. Res. 32(6), 1296-1308 (1984). https://doi.org/10.1287/opre.32.6.1296

. Marsaglia, G.: Choosing a point from the surface of a sphere. Ann. Math. Statist. 43(2), 645-646

(1972). https://doi.org/10.1214/a0oms/ 1177692644

Muller, M.E.: A note on a method for generating points uniformly on n-dimensional spheres. Commun.
ACM 2(4), 19-20 (1959). https://doi.org/10.1145/377939.377946

Cook, J.M.: Rational formulae for the production of a spherically symmetric probability distribution.
Math. Comput. 11(58), 81-82 (1957). https://doi.org/10.1090/50025-5718-1957-0690630-7

Tashiro, Y.: On methods for generating uniform random points on the surface of a sphere. Ann. Inst.
Stat. Math. 29(1), 295-300 (1977). https://doi.org/10.1007/bf02532791

Tee, G.J.: Surface area and capacity of ellipsoids in 7 dimensions. NZ J. Math. 34(2), 165-198 (2005)
Tee, G.J.: Surface area of ellipsoid segment. Technical report, Department of Mathematics, The Univer-
sity of Auckland, New Zealand (2005). Available at: https://researchspace.auckland.ac.nz/bitstream/
handle/2292/5083/539.pdf?sequence=1

Lehmer, D.H.: Approximations to the area of an n-dimensional ellipsoid. Can. J. Math. 2, 267-282
(1950). https://doi.org/10.4153/cjm-1950-024-2

Klamkin, M.S.: Elementary approximations to the area of N-dimensional ellipsoids. Amer. Math.
Monthly 78(3), 280 (1971). https://doi.org/10.2307/2317530

Keller, S.R.: On the surface area of the ellipsoid. Math. Comput. 33(145), 310-314 (1979). https://doi.
org/10.1090/s0025-5718-1979-0514826-4

Maas, L.R.M.: On the surface area of an ellipsoid and related integrals of elliptic integrals. J. Comput.
Appl. Math. 51(2), 237-249 (1994). https://doi.org/10.1016/0377-0427(92)00009-x

Thomsen, K.: Spheroids & scalene ellipsoids. Available at http://www.numericana.com/answer/
ellipsoid.htm - Accessed 09/09/21 (2004)

Poelaert, D., Schniewind, J., Janssens, F.: Surface area and curvature of the general ellipsoid. Preprint
at https://arxiv.org/abs/1104.5145 (2011)

Kraniotis, G.V., Leontaris, G.K.: Closed form solution for the surface area, the capacitance and the
demagnetizing factors of the ellipsoid. Preprint at https://arxiv.org/abs/1306.0509 (2013)

@ Springer

https://doi.org/10.1088/0031-9155/32/10/009
https://doi.org/10.1109/tns.2008.2001063
https://doi.org/10.1109/tns.2008.2001063
https://doi.org/10.1007/978-3-540-85363-3_42
https://doi.org/10.1007/978-3-540-85363-3_42
https://arxiv.org/abs/1611.04690
https://arxiv.org/abs/2107.02498
https://doi.org/10.1103/physreve.75.051504
https://doi.org/10.1016/j.bpj.2015.09.023
https://doi.org/10.1029/2021je006961
https://doi.org/10.1287/opre.32.6.1296
https://doi.org/10.1214/aoms/1177692644
https://doi.org/10.1145/377939.377946
https://doi.org/10.1090/s0025-5718-1957-0690630-7
https://doi.org/10.1007/bf02532791
https://researchspace.auckland.ac.nz/bitstream/handle/2292/5083/539.pdf?sequence=1
https://researchspace.auckland.ac.nz/bitstream/handle/2292/5083/539.pdf?sequence=1
https://doi.org/10.4153/cjm-1950-024-2
https://doi.org/10.2307/2317530
https://doi.org/10.1090/s0025-5718-1979-0514826-4
https://doi.org/10.1090/s0025-5718-1979-0514826-4
https://doi.org/10.1016/0377-0427(92)00009-x
http://www.numericana.com/answer/ellipsoid.htm
http://www.numericana.com/answer/ellipsoid.htm
https://arxiv.org/abs/1104.5145
https://arxiv.org/abs/1306.0509

Numerical Algorithms (2024) 95:1801-1827 1827

25.

26.

217.
28.

29.
30.
31
32.
33.

34.

35.
. Neumann, J.: Various techniques used in connection with random digits. In: Householder, A.S.,

37.
38.

39.
40.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C: the art of
scientific computing, 2nd edn. Cambridge University Press, Cambridge (1992)

NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.5 of 2022-03-15.
F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. E. Boisvert, C. W. Clark, B. R.
Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds

Carlson, B.C.: Computing elliptic integrals by duplication. Numer. Math. 33(1), 1-16 (1979). https://
doi.org/10.1007/b£01396491

Carlson, B.C.: Numerical computation of real or complex elliptic integrals. Numer. Algorithms 10(1),
13-26 (1995). https://doi.org/10.1007/b£f02198293

Fukushima, T.: Precise and fast computation of a general incomplete elliptic integral of second kind
by half and double argument transformations. J. Comput. Appl. Math. 235(14), 4140-4148 (2011).
https://doi.org/10.1016/j.cam.2011.03.004

Fukushima, T.: Precise and fast computation of elliptic integrals and functions. In: Proc. IEEE 22nd
Symp. Comput. Arithmetic. IEEE, Lyon, France (22-24 June 2015). https://doi.org/10.1109/arith.2015.
15

Burden, R.L., Faires, J.D.: Numerical analysis, 9th edition. Cencage Learning, Boston (2011)

Bauke, H., Mertens, S.: Random numbers for large-scale distributed Monte Carlo simulations. Phys.
Rev. E 75(6) (2007). https://doi.org/10.1103/physreve.75.066701

Knuth, D.E.: The art of computer programming: volume 3: sorting and searching. Addison Wesley
Pub. Co. Inc., Reading, Massachusetts (1998)

Bottenbruch, H.: Structure and ese of ALGOL 60. J. ACM 9(2), 161-221 (1962). https://doi.org/10.
1145/321119.321120

Cochran, W.G.: The x2 test of goodness of fit. Ann. Math. Statist. 315-345 (1952)

Forsythe, G.E., Germond, H.H. (eds.) Monte Carlo Method. National Bureau of Standards Applied
Mathematics Series, vol. 12, pp. 36-38. US Government Printing Office, Washington, DC (1951).
Chap. 13

Marsaglia, G., Tsang, W.W.: The Ziggurat method for generating random variables. J. Stat. Softw. 5(8)
(2000). https://doi.org/10.18637/js5.v005.i08

Doornik, J.A.: An improved Ziggurat method to generate normal random samples. Technical report,
University of Oxford (2005). Available at: https://www.doornik.com/research/ziggurat.pdf

Devroye, L.: Non-uniform random variate generation. Springer, New York (1986)

Meurer, A., Smith, C.P., Paprocki, M., Cem’k, 0., Kirpichev, S.B., Rocklin, M., Kumar, A., Ivanov,
S., Moore, J.K., Singh, S., ef al: Sympy: symbolic computing in Python. Peer] Comput. Sci. 3, 103
(2017). https://doi.org/10.7717/peerj-cs.103

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://dlmf.nist.gov/
https://doi.org/10.1007/bf01396491
https://doi.org/10.1007/bf01396491
https://doi.org/10.1007/bf02198293
https://doi.org/10.1016/j.cam.2011.03.004
https://doi.org/10.1109/arith.2015.15
https://doi.org/10.1109/arith.2015.15
https://doi.org/10.1103/physreve.75.066701
https://doi.org/10.1145/321119.321120
https://doi.org/10.1145/321119.321120
https://doi.org/10.18637/jss.v005.i08
https://www.doornik.com/research/ziggurat.pdf
https://doi.org/10.7717/peerj-cs.103

	Patch area and uniform sampling on the surface of any ellipsoid
	Abstract
	1 Introduction
	2 Surface area of an ellipsoidal patch
	2.1 Derivation of the patch area formula
	2.2 Spheres and spheroids

	3 Speed and uniformity of the sampling algorithms
	4 Uniform sampling on the surface of a sphere
	4.1 Comparison of the sphere sampling algorithms

	5 Uniform sampling on the surface of an ellipsoid
	5.1 Gradient vector rejection sampling
	5.2 Area element rejection sampling
	5.3 Ray intersection sampling

	6 Comparison of the ellipsoid sampling algorithms
	7 Conclusions
	Acknowledgements
	Appendix A. Maximum value of the area element
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6
	Case 7

	References

