
Numerical Algorithms (2024) 95:1715–1745
https://doi.org/10.1007/s11075-023-01625-7

ORIG INAL PAPER

A new optimal root-finding iterative algorithm: local
and semilocal analysis with polynomiography

Sania Qureshi1,2,3 · Ioannis K. Argyros4 · Amanullah Soomro1 ·
Krzysztof Gdawiec5 · Asif Ali Shaikh1,2 · Evren Hincal2

Received: 13 March 2023 / Accepted: 11 July 2023 / Published online: 3 August 2023
© The Author(s) 2023

Abstract
In this work, a new optimal iterative algorithm is presented with fourth-order accuracy
for root-finding of real functions. It uses only function as well as derivative evaluation.
The algorithm is obtained as a combination of existing third-order methods by spec-
ifying a parameter involved. The algorithm is based on local and semilocal analysis
and has been specifically designed to improve efficiency and accuracy. The proposed
algorithm represents a significant improvement over existing iterative algorithms. In
particular, it is tested on a range of polynomial functions and was found to produce
accurate and efficient results, with improved performance over existing algorithms in
terms of both speed and accuracy. The results demonstrate the effectiveness of the
proposed algorithm and suggest that it has great potential for use in a wide range of
applications in polynomiography and other areas of mathematical analysis.

Keywords Root finding · Fourth-order method · Local and semilocal analysis ·
Polynomiography

1 Introduction

Numerical methods play a crucial role in solving non-linear transcendental equations
in the field of numerical analysis [13]. These equations, also known as implicit equa-
tions, cannot be solved analytically and require the use of iterative techniques to find
approximate solutions. One of the most important reasons for using numerical meth-
ods to solve non-linear transcendental equations is the ability to handle complex and
non-analytic functions. These equations often arise in various fields such as physics,
engineering, and economics and cannot be solved using traditional analytical methods.
For example, in physics, non-linear equations often describe the behavior of systems

B Krzysztof Gdawiec
krzysztof.gdawiec@us.edu.pl

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01625-7&domain=pdf
http://orcid.org/0000-0002-7225-2309
http://orcid.org/0000-0002-9189-9298
http://orcid.org/0000-0002-5823-0170
http://orcid.org/0000-0001-9434-9307
http://orcid.org/0000-0002-3084-922X
http://orcid.org/0000-0001-6175-1455

1716 Numerical Algorithms (2024) 95:1715–1745

with multiple interacting components, such as the Navier–Stokes equations in fluid
dynamics. In engineering, non-linear equations are used to model the behavior of
materials under different loads and conditions. Another important reason for using
numerical methods is the ability to handle large systems. Non-linear equations often
describe the behavior of systems with many interacting components, and solving them
analytically can be extremely difficult, if not impossible. Numerical methods provide
a way to break down these large systems into smaller, more manageable parts and find
approximate solutions using iterative techniques.

There are several root-finding numerical methods that can be used to solve non-
linear transcendental equations, such as fixed-point iteration, the secant method, and
the Newton–Raphson method which is one of the most frequently used methods. Each
method has its own strengths and weaknesses, and the choice of method will depend
on the specific equation being solved and the desired level of accuracy. For example,
the bisection method is a simple and robust method for finding roots of a function, but
it is relatively slow and may not converge for certain types of functions. The Newton–
Raphson method, on the other hand, is faster and more accurate, but it requires the
derivative of the function and may not converge for certain types of functions. In
addition, the choice of the numerical method also depends on the initial conditions,
the interval of the solutions, and the number of solutions.

As a workaround, iterative methods have been developed to locate the initial values
of solutions to the non-linear equations in the form as follows:

ψ(x) = 0, (1)

where ψ is a differentiable operator defined on a non-empty, open convex subset � of
the real line H with values in itself. Such equations rarely have exact solutions. Slow
convergence, non-convergence, divergence, inefficiency, and failure are all issues that
researchers using iterative methods must contend with. As a result, scientists all over
the world are striving to perfect and create new higher-order multi-point methods
that do not rely on the second-order derivative. Theoretically, multi-point methods are
better than one-point approaches when it comes to ordering and how well they work
with computers.

In this paper,we develop a new fourth-order optimalmethod for finding simple roots
of non-linear equations. It isworth to be noted that an optimal root-finding algorithm, in
the sense of the classical Kung–Traub conjecture [15], possesses a convergence order
of 2κ−1 where κ stands for the number of function evaluations per iteration. To achieve
the optimal order of convergence, the proposed scheme requires only two values of
the involved function ψ(x) and one of its first-order derivatives. Our method also has
a relatively straightforward structure. When the number of roots is known in advance,
we also propose a main theorem that exemplifies convergence to the fourth order. We
also show how our method performs numerically on examples drawn from the real
world, including the continuous stirred tank reactor (CSTR), Plank’s radiation, and
the Van der Waals equation of state. To further illustrate the behavior of our methods
in comparison to the existing methods, we present numerical and graphical examples.

The rest of the paper is organized as follows. In Section 2, we introduce some
well-known root-finding methods that are later used for comparison purposes. Next,

123

Numerical Algorithms (2024) 95:1715–1745 1717

in Section 3, we derive a new root-finding method and prove its convergence. The
local analysis of the proposed method is carried out in Sections 4 and 5, whereas in
Section 6, we perform the semilocal analysis of the method. Then, in Section 7, we
present some examples divided into numerical and graphical examples. Finally, in
Section 8, we conclude the paper and give future study directions.

2 Some existing root-findingmethods

The importance of root-finding methods can also be seen in the development of new
technologies. For example, in the field of control systems, root-finding methods are
used to find the solutions of non-linear equations that describe the behavior of the sys-
tem, enabling the design of control systems that are more efficient and more robust. In
numerical optimization, root-finding methods are used to find solutions of equations
that describe the behavior of the system,which enables the design of optimization algo-
rithms that are more efficient and robust. In summary, root-finding numerical methods
are important because they provide a way to find the solutions of non-linear equations,
which often have no closed-form solutions. They are used in a wide range of fields
to solve problems that involve non-linear equations and to design new technologies,
which makes them essential in many areas of research and development.

There are several classical root-finding methods for solving non-linear transcen-
dental equations in the literature. Some common methods include the following:

1. Bisection method [7]: This is a simple and robust method that involves repeatedly
bisecting an interval and determining which subinterval a root lies in.

2. Newton–Raphson method [7]: This method uses an initial guess and an iterative
process to converge on a root. It requires the ability to compute the derivative of
the function.

3. Secant method [7]: This method is similar to the Newton–Raphson method but
uses the slope of the secant line between two points rather than the derivative of
the function.

4. Fixed point iteration [7]: This method involves finding the fixed point of a function
using an iterative process. It requires the function to be in a specific form.

5. Muller’s method [7]: This method is an extension of the secant method, and it is
used for complex roots.

6. Aitken’s �2 method [7]: This method is used for speeding up the convergence of
the fixed-point iteration method.

7. Bairstow’s method [16]: This method is used for finding the roots of polynomials
with real coefficients, and it is used to find the roots of polynomials of degrees
greater than 2.

8. Hybrid method: As the name suggests, this method combines two or more methods
to find the root of the non-linear equation. Several hybrid methods exist in the
current literature. See, for example, [6, 10, 17, 18] and the references cited therein.

9. Hybrid methods with optimization: Several root-finding algorithms exist that use
optimization techniques to reduce computational effort and save machine memory.

123

1718 Numerical Algorithms (2024) 95:1715–1745

A few of such algorithms can be found in [25, 26, 28] and most of the references
cited therein.

Given below are some of the root-finding numerical methods that are chosen to be
used for the comparative analysis in the present research work. Among all the existing
methods, one-step Newton–Raphson comes first with the second-order convergence.
Its computational steps are as follows:

xn+1 = xn − ψ(xn)

ψ ′(xn)
, n = 0, 1, 2, . . . , (2)

where ψ ′(xn) �= 0.
Jisheng et al. in [11] proposed an optimal two-step algorithm (KJNM) with fourth-

order convergence as follows:

yn = xn − ψ(xn)

ψ ′(xn)
,

xn+1 = xn − ψ(xn)2 + ψ(yn)2

ψ ′(xn)(ψ(xn) − ψ(yn))
.

(3)

Ostrowsiki’s optimal two-step fourth-order convergent algorithm (OWNM) in [14] is
given by the following:

yn = xn − ψ(xn)

ψ ′(xn)
,

xn+1 = yn − ψ(xn)ψ(yn)

ψ ′(xn)(ψ(xn) − 2ψ(yn))
.

(4)

Özban in [19] proposed an optimal two-step fourth-order convergent algorithm
(OZNM) which is given by the following steps:

yn = xn − ψ(xn)

ψ ′(xn)
,

xn+1 = xn − ψ(xn)(ψ ′(xn) + ψ ′(yn))
2ψ ′(yn)ψ ′(xn)

.

(5)

Kung and Traub in [15] proposed an optimal two-step fourth-order convergent algo-
rithm (KTNM) which is given by the following steps:

yn = xn − ψ(xn)

ψ ′(xn)
,

xn+1 = yn − ψ(xn)2ψ(yn)

ψ ′(xn)(ψ(xn) − ψ(yn))2
.

(6)

123

Numerical Algorithms (2024) 95:1715–1745 1719

3 Construction of themethod

In this section, we use the idea of an affine combination of two well-established
iterative methods for proposing a new optimal iterative method to deal with non-linear
equations of the type (1).

One of the methods proposed by Zhou in [29] is as follows:

xn+1 = xn −
ψ(xn)2 − 2ψ(xn)ψ

(
xn − ψ(xn)

ψ ′(xn)

)

ψ(xn)ψ ′(xn) − 3ψ ′(xn)ψ
(
xn − ψ(xn)

ψ ′(xn)

) , n = 0, 1, 2, (7)

It is known as a modified version of the Chebychev–Halley method and offers a third-
order convergence,while Potra–Pták in [21] proposed a third-order convergentmethod
as follows:

xn+1 = xn −
ψ(xn) + ψ

(
xn − ψ(xn)

ψ ′(xn)

)

ψ ′(xn)
, n = 0, 1, 2, (8)

Our aim is to construct a new optimal fourth-order convergent method by using
an affine combination of algorithms given in (7) and (8). The new method takes the
following form:

xn+1 = xn − η
ψ(xn) + ψ(yn)

ψ ′(xn)
− (1 − η)

ψ(xn)2 − 2ψ(xn)ψ(yn)

ψ(xn)ψ(xn)′ − 3ψ ′(xn)ψ(yn)
, (9)

where yn = xn− ψ(xn)
ψ ′(xn) and η ∈ R is the adjusting parameter.When η = 0, themethod

reduces to the method (7), and when η = 1, it gives the method (8). It is noticeable
that the methods which are given in (7) and (8) are not optimal while the one in (9)
is an optimal fourth-order convergent method, and its performance depends on the
parameter η which is obtained from Taylor expansion as given in Theorem 1.

Theorem 1 Assume that the function ψ : D ⊂ R → R has a simple root γ ∈ D,
where D is an open interval. If ψ is sufficiently smooth in the neighborhood of the
root γ , then the order of convergence of the iterative method defined by (9) is at least
three as shown in the following equation:

(3η − 1)c22e
3
n + O(e4n), (10)

where en = xn − γ , and cr = ψ(r)(γ)

r !ψ ′(γ)
, r = 2, 3, 4, Furthermore, if η = 1

3 , then

the order of convergence is four.

123

1720 Numerical Algorithms (2024) 95:1715–1745

Proof Let en = xn − γ and dn = yn − γ . Expanding ψ(xn) via Taylor expansion
about γ , we obtain

ψ(xn) = ψ ′(γ)

[
en + c2e

2
n + c3e

3
n + c4e

4
n + O(e5n)

]
. (11)

Expanding ψ ′(xn) via Taylor expansion about γ , we obtain

ψ ′(xn) = ψ ′(γ)

[
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + O(e4n)

]
. (12)

Dividing (11) by (12), we get

ψ(xn)

ψ ′(xn)
= en − c2e

2
n + 2(c3 − c22)e

3
n + (7c2c3 − 4c32 − 3c4)e

4
n + O(e5n). (13)

From the above equations, we have

dn = en − ψ(xn)

ψ ′(xn)
= c2e

2
n + 2(c3 − c22)e

3
n + (4c32 + 3c4 − 7c2c3)e

4
n + O(e5n). (14)

Now expanding ψ(yn) about γ , we get

ψ(yn) = ψ ′(γ)
(
dn + c2d

2
n + c3d

3
n + c4d

4
n + O(d5n)

)
. (15)

By using (14), we get the following Taylor expansion of ψ(yn):

ψ(yn) = ψ ′(γ)
(
c2e

2
n + 2(c3 − c22)e

3
n + (5c32 + 3c4 − 7c2c3)e

4
n + O(e5n)

)
. (16)

Finally, substituting the obtained series for (11)–(13) and (16) into the structure (9),
the error equation is obtained as follows:

en+1 = (3η − 1)c22e
3
n + O(e4n). (17)

This means that for any η ∈ R, the method defined by (9) is at least cubically con-
vergent. To increase the order of convergence for the method (9), the error equation
(17) suggests that the parameter η must be 1

3 . Using this value of η in (9), the optimal
proposed method (PONM) takes the following form:

yn = xn − ψ(xn)

ψ ′(xn)
,

xn+1 = xn −
ψ(xn)

(
ψ(xn) − 2ψ(yn)

)
− ψ(yn)2

ψ ′(xn)
(

ψ(xn) − 3ψ(yn)

) ,

(18)

while its fourth-order convergence is discussed in the following section. ��

123

Numerical Algorithms (2024) 95:1715–1745 1721

The flowchart of the optimal fourth-order two-step iterative method (18) is shown
in Fig. 1.

4 Local convergence analysis: first approach

Local convergence analysis for root-findingmethods is amethod used to determine the
conditions under which a given iterative method can converge to a root of a non-linear
equation of the type (1). Specifically, it determines the region of the complex plane
around a root where the iterative method will converge. The analysis begins by assum-
ing that the iterative method has converged to a root, and then analyzing the behavior
of the method in the vicinity of the root. The analysis typically involves examining
the behavior of the method’s iteration function, which maps the current estimate of
the root to the next estimate. An important tool used in local convergence analysis
is Taylor series expansion, which can be used to approximate the iteration function
around the root. This approximation can then be used to determine the rate at which
the method converges to the root, as well as any conditions that must be satisfied for
convergence. The analysis typically involves determining the radius of convergence,
which is the distance from the root at which the iteration function can be approximated

Fig. 1 Flowchart of two-step fourth-order proposed method given in (18)

123

1722 Numerical Algorithms (2024) 95:1715–1745

using a Taylor series expansion. If the initial estimate of the root is within the radius
of convergence, the iterative method is guaranteed to converge to the root. Common
root-finding methods that are analyzed using local convergence analysis include New-
ton’s method, the secant method, and the bisection method. By analyzing the behavior
of these methods, it is possible to determine their strengths and weaknesses and to
identify conditions under which they are most effective. Therefore, we also attempt to
discuss the local convergence for (18) with the Taylor series expansion for which we
need to state the following theorem.

Theorem 2 Suppose that γ ∈ D is the exact root of a differentiable function ψ : D ⊂
R → R defined for an open interval D. Then, the two-step method given in (18) has
fourth-order convergence, and the asymptotic error term is as follows:

en+1 = −c2(c
2
2 + c3)e

4
n + O(e5n), (19)

where en = xn − γ , and cr = ψ(r)(γ)

r !ψ ′(γ)
, r = 2, 3, 4,

Proof Expanding ψ(xn) via Taylor series expansion about γ , we obtain

ψ(xn) = ψ ′(γ)

[
en + c2e

2
n + c3e

3
n + c4e

4
n + O(e5n)

]
. (20)

Expanding ψ ′(xn) via Taylor series expansion about γ , we obtain

ψ ′(xn) = ψ ′(γ)
(
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + O(e4n)

)
. (21)

Dividing (20) by (21), we get

ψ(xn)

ψ ′(xn)
= en − c2e

2
n + 2(c3 − c22)e

3
n + (7c2c3 − 4c32 − 3c4)e

4
n + O(e5n). (22)

Substituting (22) in the first-step of (18), we obtain

ê = c2e
2
n + 2(c3 − c22)e

3
n + (4c32 + 3c4 − 7c2c3)e

4
n + O(e5n), (23)

where ê = yn − γ . Using the Taylor’s series for ψ(yn) around γ , we obtain

ψ(yn) = ψ ′(γ)

[
en + c2ên

2 + c3ên
3 + c4ên

4 + O(ên
5
)

]
. (24)

By using (23), the above expansion of ψ(yn) gives

ψ(yn) = ψ ′(γ)

[
c2e

2
n + 2(c3 − c22)e

3
n + (5c32 + 3c4 − 7c2c3)e

4
n + O(e5n)

]
. (25)

123

Numerical Algorithms (2024) 95:1715–1745 1723

Now, substituting (20), (21), and (25) in the second step of (18), the error equation is
obtained as

en+1 = −c2(c
2
2 + c3)e

4
n + O(e5n). (26)

The error equation clearly suggests that the proposed method (18) has fourth-order
convergence. It is also an optimal method in the sense of Kung–Traub conjecture. ��

5 Local convergence analysis: second approach

According to the proof of Theorem 2, the function ψ must be at least five times
differentiable for its conclusions to be valid. Therefore, we do not know if the method
(18) converges by this result if ψ is not at least five times differentiable although it
may converge. Hence, the applicability of this result is limited to solving equations
satisfying these constraints. Thus, many equations are left unhandled. For example,

ψ(x) =
{
x3 log x2 + x5 − x4, if x �= 0,

0, if x = 0.
(27)

Since
ψ ′′′(x) = 22 − 24x + 60x2 + 6 log x2, (28)

is not bounded on [−0.5, 1.5]. Thus, the convergence of the method (18) is not guar-
anteed by the analysis carried out in the earlier section. Notice also that the only
derivative in (18) is ψ ′. It follows that there is a need to develop a local convergence
result based on the derivatives in the method (18). This is the purpose of this section.
The concept of w-continuity [9] shall be used (see the new convergence conditions
(H) that follow). In order to achieve this objective, let us first rewrite the method (18)
in a more convenient way for our approach.

Suppose that all iterates in (18) exist for each n = 0, 1, 2, Set Cn = ψ(xn) −
3ψ(yn), An = ψ ′(xn)Cn and Bn = ψ(xn)(ψ(xn) − 2ψ(yn)) − 2ψ(yn). Then, the
expression A−1

n Bn can be rewritten as follows:

A−1
n Bn = ψ(xn)(ψ(xn) − 3ψ(yn)) + ψ(xn)ψ(yn) − ψ(yn)2

ψ ′(xn)(ψ(xn) − 3ψ(yn))
,

= ψ(xn)

ψ ′(xn)
+ ψ(yn)(ψ(xn)−ψ(yn))

ψ ′(xn)(ψ(xn)−3ψ(yn))
= xn−yn+ ψ(yn)(ψ(xn)−ψ(yn))

ψ ′(xn)(ψ(xn)−3ψ(yn))
.

Hence, the method can be rewritten in the form

xn+1 = yn − ψ ′(xn)−1ψ(yn) − 2ψ ′(xn)−1ψ(yn)C
−1
n ψ(yn). (29)

Notice that

ψ(yn)(ψ(xn) − ψ(yn)

ψ ′(xn)(ψ(xn) − 3ψ(yn))
= ψ(yn)(ψ(xn) − ψ(yn) − 2ψ(yn) + 2ψ(yn))

ψ ′(xn)(ψ(xn) − 3ψ(yn))

= ψ ′(xn)−1ψ(yn) + 2ψ ′(xn)−1ψ(yn)C
−1
n ψ(yn).

123

1724 Numerical Algorithms (2024) 95:1715–1745

Next, some needed functions and parameters are developed. Set M = [0,+∞). Sup-
pose that there exists a continuous and non-decreasing function Ω0 : M → R so
that the equation Ω0(t) − 1 = 0 has a smallest positive solution denoted as ρ0.
Set M0 = [0, ρ0). The equation g1(t) − 1 = 0 has a smallest solution denoted as
r1 ∈ M0 \ {0}, where Ω : M0 → R is a continuous and non-decreasing function and
g1 : M0 → R is a function defined by

g1(t) =
∫ 1
0 Ω((1 − θ)t)dθ

1 − Ω0(t)
.

The equation q(t) − 1 = 0 has a smallest solution denoted as rq ∈ M0 \ {0}, where
q : M0 → R is defined by

q(t) = 1

2

[∫ 1

0
Ω((1 − θ)t)dθ + 3(1 +

∫ 1

0
Ω0(θg1(t)t)dθ)g1(t) + 1

]
.

Set ρ1 = min{ρ0, ρq} and M1 = [0, ρ1).The equation g2(t) − 1 = 0 has a smallest
solution denoted as r2 ∈ M1 \ {0}, where g2 : M1 → R is defined by

g2(t) =
[∫ 1

0 Ω(1 − θ)g1(t)t)dθ

1 − Ω0(g1(t)t)
+ Ω̄(t)(1 + ∫ 1

0 Ω0(θg1(t)t)dθ)

(1 − Ω0(t))(1 − Ω0(g1(t))t)

+ (1 + ∫ 1
0 Ω0(θg1(t)t)dθ)2

(1 − q(t))(1 − Ω0(t))

]
g2(t),

where

Ω̄(t) =

⎧⎪⎨
⎪⎩

Ω((1 + g1(t))t)

OR

Ω0(t) + Ω0(g1(t)t).

(30)

The smallest of the two versions used in practice.
It is proven in Theorem 3 that a possible radius of convergence for (29) is defined

by the formula
r = min{r1, r2}. (31)

Set M2 = [0, r). It follows by these definitions that for each t ∈ M2 the following
estimates hold

0 ≤ Ω0(t) < 1, (32)

0 ≤ q(t) < 1, (33)

and
0 ≤ gi (t) < 1. (34)

The notation S[λ∗, a), S[λ∗, a] is adopted to denote the open and closed intervals
with center λ∗ and of radius a > 0. Next, it is time to connect the functions Ω0,Ω

and the parameter r to the functions appearing in the method provided that λ∗ ∈ Φ

123

Numerical Algorithms (2024) 95:1715–1745 1725

denotes a solution of the equation ψ(x) = 0 so that ψ ′(λ∗) �= 0 and Φ stands for a
subset of the real line.

Theorem 3 Suppose:
(H1) |ψ ′(λ∗)−1(ψ ′(v) − ψ ′(λ∗))| ≤ Ω0(|v − λ∗|) for each v ∈ Φ Set Φ0 =
Φ

⋂
S[λ∗, ρ0].

(H2) |ψ ′(λ∗)−1(ψ ′(v2) − ψ ′(v1))| ≤ Ω(|v2 − v1|) for each v1, v2 ∈ Φ0
(H3) S[λ∗, r] ∈ Φ.

The conditions (H1)–(H3) are called (H) for brevity. The local convergence of
the method (29) is based on the developed terminology and under the conditions
(H). Under conditions (H), choose the starting point x0 ∈ S(λ∗, r) \ {λ∗}. Then, the
sequence {xn} generated by the formula (29) converges to the solution of the equation
ψ(x) = 0 so that for each n = 0, 1, 2,

|yn − λ∗| ≤ g1(|xn − λ∗|)|xn − λ∗| ≤ |xn − λ∗| < r (35)

and
|xn+1 − λ∗| ≤ g2(|xn − λ∗|)|xn − λ∗| ≤ |xn − λ∗|, (36)

where the functions gi are defined previously and the radius r is given by the for-
mula (31).

Proof The assertions (35) and (36) are proven using induction. Let u ∈ S(λ∗) \ {λ∗}
be an arbitrary selection. By applying the condition (H1) and (35), we get in turn that

|ψ ′(λ∗)−1(ψ ′(u) − ψ ′(λ∗)| ≤ Ω0(|u − λ∗|) ≤ Ω0(r) < 1. (37)

Then the Banach lemma for function together with (37) give ψ ′(u) �= 0 and

|ψ ′(u)−1ψ ′(λ∗)| ≤ 1

1 − Ω0(|u − λ∗|) . (38)

If u = x0, then the iterate y0 is well defined by the first substep of (29). We can also
write

y0 − λ∗ = x0 − λ∗ − ψ ′(x0)ψ(x0)

=
∫ 1

0
(ψ ′(λ∗ + θ(x0 − λ∗))dθ − ψ ′(x0))(x0 − λ∗),

leading by (H2), (31) and (38)

|y0 − λ∗| ≤
∫ 1
0 Ω((1 − θ)|x0 − λ∗|)dθ |x0 − λ∗|

1 − Ω0(|x0 − λ∗|) ≤ g1(|x0 − λ∗|)|x0 − λ∗|
≤ |x0 − λ∗| < r , (39)

123

1726 Numerical Algorithms (2024) 95:1715–1745

proving that the iterates y0 ∈ S[λ∗, r) \ {λ∗} and additionally that the assertion (35)
holds if n = 0. Next, in order to establish the existence of the iterate x1, we must prove
that C0 �= D0. Notice that

C0 − 2ψ ′(λ∗)(x0 − λ∗) = ψ(x0) − 3ψ(y0) − 2ψ ′(λ∗)(x0 − λ∗)
= ψ(x0) − ψ(λ∗) − ψ ′(λ∗)(x0 − λ∗) − 3(ψ(yn) − ψ(λ∗))
− ψ ′(λ∗)(x0 − λ∗),

so by (H1) and the definition of the function q, for x �= λ∗, we get to in turn

|(2ψ ′(λ∗)(x0 − λ∗))−1(C0 − 2ψ ′(λ∗))(x0 − λ∗))|

≤ 1

2|x0 − λ∗|
(∫ 1

0
Ω((1 − θ)|x0 − λ∗|)dθ |x0 − λ∗|

+ 3(1 +
∫ 1

0
Ω0(θ |yn − λ∗|)dθ)|yn − λ∗| + |x0 − λ∗|

)

≤ qn(|x0 − λ∗|) ≤ q(r) < 1. (40)

Thus,

|C−1
0 ψ ′(λ∗)| ≤ 1

2(1 − qn)
, (41)

so the iterate x1 is well defined by the second substep of (29) if n = 0. Moreover, we
can write in turn (29) that by

x1 − λ∗ = y0 − λ∗ − ψ ′(y0)−1ψ(y0) + (ψ ′(y0)−1 − ψ ′(x0)−1)ψ(y0)

− 2ψ ′(x0)−1ψ(y0)C
−1
0 ψ(y0),

leading by the definition of the function g2 to

|x1 − λ∗| =
[∫ 1

0 Ω((1 − θ)|yn − λ∗|)dθ

1 − Ω0(|yn − λ∗|) + Ω̄n(1 + ∫ 1
0 Ω0(θ |yn − λ∗|)dθ)

(1−Ω0(x0−λ∗|))(1−Ω0(|y0−λ∗|))

+ 2(1 + ∫ 1
0 Ω0(θ |yn − λ∗|)dθ)

2(1 − q0)(1 − Ω0(|x0 − λ∗|))
]
|y0 − λ∗| ≤ g2(|x0 − λ∗|)|x0 − λ∗|

≤ |x0 − λ∗|, (42)

where we also used (39) and

Ω1
n =

{
Ω(|xn − λ∗| + |yn − λ∗|),
Ω0(|xn − λ∗| + Ω0(|yn − λ∗|), (43)

and

ψ(y0) = ψ(y0) − ψ(λ∗) =
∫ 1

0
ψ ′(λ∗ + θ(y0 − λ∗))dθ(y0 − λ∗)(yn − λ∗),

123

Numerical Algorithms (2024) 95:1715–1745 1727

so

|ψ ′(λ∗)−1ψ(y0)| ≤ (1 +
∫ 1

0
Ω0(θ |y0 − λ∗)dθ)|y0 − λ∗|.

Thus, it follows by (43) that the iterate x1 ∈ S[λ∗, r) \ {λ∗} and the assertion (37)
holds if n = 0. Then, S with x0, y0, x1 by xm, ym, xm+1 in the preceding calculations
to complete the induction for the assertions (36) and (37). Finally, from the estimation

|xm+1 − λ∗| ≤ d|xm − λ∗| < r ,

where d = g1(|x0 − λ∗|) ∈ [0, 1), we concluded that limm→∞ xm = λ∗ and {xm} ⊂
S[λ∗, r). ��

The uniqueness interval for the solution λ∗ is determined in the next result.

Proposition 1 Suppose that there exists a solution y∗ ∈ S(λ∗, ρ2) of the equation
ψ(x) = 0 for some ρ2 > 0, the condition (H2) holds in the interval S(λ∗, ρ2), and
for some ρ3 ≥ ρ2 ∫ 1

0
Ω0(θρ3)dθ < 1. (44)

Set Φ1 = Φ
⋂

S[λ∗, ρ3]. Then, the only solution of the equation ψ(x) = 0 in the
domain Φ1 is λ∗.

Proof Let y∗ ∈ Φ1 be such that ψ(y∗) = 0. Define the function T = ∫ 1
0 ψ ′(λ∗ +

θ(y∗ − λ∗))dθ . It follows by (H1) and (44) in turn that

|ψ ′(λ∗)−1(T − ψ ′(λ∗))| ≤
∫ 1

0
Ω0(θ |y∗ − λ∗|)dθ ≤

∫ 1

0
Ω0(θρ3)dθ < 1,

thus T �= 0 and y∗ − λ∗ = T−1(ψ(y∗) − ψ(λ∗)) = T−1(0) = 0. Hence, we deduce
that y∗ = λ∗ ��

Remark 1 If all the (H) conditions hold, then we can set ρ2 = r .

6 Semilocal convergence

This type of analysis requires the concept of majorizing sequences [4, 5]. Let us define
for t0 = 0, s0 ≥ 0 and each n = 0, 1, 2, Consider

q̄n = 3
∫ 1
0 Ω0((1 − θ)(sn − tn))dθ

1 − Ω(tn)
.

123

1728 Numerical Algorithms (2024) 95:1715–1745

Then, the sequence {tn} is given by

tn+1=sn +
[∫ 1

0 Ω((1−θ)(sn − tn))dθ

1−Ω0(tn)
+
2
(∫ 1

0 Ω((1−θ))(sn−tn)dθ
)2

(1−q̄n)(1−Ω0(tn))2

]
(sn, tn),

Πn+1 =
∫ 1

0
Ω((1 − θ)(tn+1 − tn))dθ(tn+1 − tn) + (1 + Ω0(tn))(tn+1 − sn),

sn+1 = tn+1 + Πn+1

1 − Ω0(tn+1)
. (45)

Under certain conditions, the sequence {tn} is shown to bemajorizing for themethod
(29) in Theorem 4. But let us first provide convergence conditions for it.

Lemma 1 Suppose that there exists A > 0 such that for each n = 0, 1, 2, . . .

Ω0(tn) < 1, q̄n < 1, and tn < μ. (46)

Then the following assertion hold

0 ≤ tn ≤ sn ≤ tn+1 ≤ t∗ ≤ μ (47)

and
lim
n→∞ tn = t∗. (48)

Proof The assertion (47) and (48) follow immediately by the conditions (46) and the
definition of the sequence {tn} given by the formula (6). ��
Remark 2 If we suppose that the equation Ω0(t) − 1 = 0 has a smallest positive
solution μ0, then we can take μ = μ0. Next, as in the local case, we connect the
sequence {tn} and the functions in the method (29) provided that there exists x0 ∈ Φ

such that ψ ′(x0) �= 0. Suppose:
(h0) |ψ ′(x0)−1ψ(x0)| ≤ s0.
(h1) |ψ ′(x0)−1(ψ ′(v) − ψ ′(x0))| ≤ Ω0(|v − x0|) for each v ∈ Φ.
Set Φ2 = Φ

⋂
S(x0, μ0).

(h2) |ψ ′(x0)−1(ψ ′(v2) − ψ ′(v1))| ≤ Ω(|v2 − v1|) for each v1, v2 ∈ Φ2.
(h3) The condition (46) holds.
and
(h4) S[x0, t∗] ⊂ Φ.

We shall refer to (h0)–(h4) as the conditions (h).
Then, we prove the semilocal convergence of the method (29).

Theorem 4 Suppose that the conditions (h) hold. Then, the following assertions hold

{yk}, {xk} ⊂ S[x0, t∗) (49)

|yk − xk | ≤ sk − tk (50)

|xk+1 − yk | ≤ tk+1 − sk (51)

123

Numerical Algorithms (2024) 95:1715–1745 1729

and there exists λ∗ ∈ S[x0, t∗] solving the equation ψ(x) = 0.

Proof These time similar calculations are carried out to the local case out using x0, (h)

for λ∗, (H). First, notice that by the condition (h0),

|y0 − x0| = |ψ ′(x0)−1ψ(x0)| ≤ s0 = s0 − t0 < t∗.

Thus the iterate y0 ∈ S[x0, t∗) and (50) holds if k = 0. We can write

Ck − ψ ′(x0)(y0 − x0) = ψ(xk) − 3ψ(yk) − ψ ′(x0)(yk − xk)

= ψ(xk) − ψ(yk) − ψ ′(xk)(xk − yk) + ψ ′(xk)(xk − yk)

− 2ψ(yk) − ψ ′(x0)(yk − xk). (52)

Ck + ψ ′(xk)(yk − xk) = ψ(xk) − 3ψ(yk) + ψ ′(xk)(yk − xk)

=
[
ψ(yk) − ψ(xk) − ψ ′(xk)(yk − xk)

]
− 2ψ(yk).

But
ψ(yk) = ψ(yk) − ψ(xk) − ψ ′(xk)(yk − xk),

thus

Ck + ψ ′(xk)(yk − xk) = −3
∫ 1

0

[
ψ ′(xk + θ(yk − xk))dθ − ψ ′(xk)

]
(yk − xk).

Consequently, we have

|ψ ′(x0)−1(Cn + ψ ′(xk)(yk − xk))| ≤ 3
∫ 1

0
Ω(θ |yk − xk |)dθ |yk − xk |.

Then, it follows for yk �= xk

|(−ψ ′(xk)(yk − xk))
−1(Ck + ψ ′(xk)(yk − xk))|

≤ 3|ψ ′(xk)−1ψ ′(x0)(|y0 − xk |)−1
∫ 1

0
Ω(1 − θ)|yk − xk |)dθ |yk − xk |

≤ 3
∫ 1
0 Ω((1 − θ)(sk − tk))dθ

1 − Ω0(tk)
= q̄n < 1. (53)

So

|C−1
k ψ(x0)| ≤ 1

(1 − q̄k)(1 − Ω0(tk))|yk − xk | . (54)

123

1730 Numerical Algorithms (2024) 95:1715–1745

Hence, the iterate xk+1 is well defined and

|xk+1 − yk | ≤ |ψ ′(xk)−1ψ ′(x0)||ψ ′(x0)−1ψ(yk)|
+ 2|ψ(xk)

−1ψ ′(x0)||C−1
k ψ ′(x0)|(|ψ ′(x0)−1ψ(yk)|)2

≤
[
(
∫ 1
0 Ω(1−θ)(sk−tk))dθ

1−Ω0(tk)
+ 2(

∫ 1
0 Ω(1−θ)(sk − tk))dθ)2

(1 − ω0(tk))2(1 − q̄k)

]
(sk − tk)

= tk+1 − sk, (55)

thus

|xk+1 − x0| ≤ |xk+1 − yk | + |yk − x0| ≤ tn+1 − sn + sn − t0 = tn+1 < t∗.

It follows that the iterates xn+1 ∈ S[x0, t∗) and the assertion (51) holds. Moreover,
the first substep of (29) gives

ψ(xk+1) = ψ(xk+1) − ψ(xk) + ψ(xk) = ψ(xk+1) − ψ(xk) − ψ ′(xk)(yk − xk)

= ψ(xk+1) − ψ(xk) − ψ ′(xk)(xk+1 − xk) + ψ(xk)(xk+1 − xk)

−ψ ′(xk)(yk − xk).

Hence,

|ψ ′(x0)−1ψ(xn+1)|≤
∫ 1

0
Ω((1−θ)|xk+1−xk |)dθ |xn+1 − xn | + (1 + Ω(tk))(tk+1 − sk)

= Πn+1. (56)

Furthermore, we obtain

|yk+1− xk+1≤|ψ ′(xk+1)
−1ψ ′(x0)|ψ ′(x0)−1ψ(xk+1)|≤ Πk+1

1 − ω0(tk+1)
= sk+1− tk+1

and

|yk+1 − x0| ≤ |yk+1 − xk+1| + |xk+1 − x0| ≤ sk+1 − tk+1 + tk+1 − t0 = sk+1 < t∗.

Therefore, the induction for the assertions (49)–(51) is completed. In new of the fact
that {tk} is fundamental (as convergent), the sequence{xk} is also fundamental. Hence,
there exists λ∗ ∈ S[x0, t∗] such that limk→∞ xk = λ∗. Finally, by letting n → ∞ in
(56) using the continuity of ψ , we concluded ψ(λ∗) = 0. ��

The uniqueness of the solution is determined as in the local convergence case.

Proposition 2 Suppose:
The equation ψ(x) = 0 has a solution y∗ ∈ S(x0, ρ4) for some ρ4 > 0.

123

Numerical Algorithms (2024) 95:1715–1745 1731

The condition (h1) holds on the interval S[x0, ρ4) and there exists ρ5 ≥ ρ4 such that

∫ 1

0
Ω((1 − θ)ρ4 + θρ5)dθ < 1. (57)

Set Φ3 = Φ
⋃

S[x0, ρ5].
Then, the equation ψ(x) = 0 is uniquely solvable by y∗.

Proof Let z∗ ∈ Φ3 with ψ(z∗) = 0. Define the function T1 = ∫ 1
0 ψ ′(y∗ + θ(z∗ −

y∗))dθ. Then, by (57), we obtain in turn

|ψ ′(x0)−1 < T1 − ψ(′(x0)| ≤
∫ 1

0
(1 − θ)|y∗ − x0| + θ |z∗ − x0|)dθ

≤
∫ 1

0
Ω0(1 − θ)ρ4 + θρ5)dθ < 1,

thus z∗ = y∗. ��
Proposition 3 If the limit point t∗ in the conditions (h0)–(h4) holds, then set by y∗ =
λ∗ and ρ4 = t∗ in the Proposition 2.

7 Numerical and graphical results

In this section, we present some numerical and graphical results obtained with the
proposed method. Numerical experiments are divided into two groups, that is, into
academic examples and real-life applications. The graphical examples consists of
polynomiographs generated for several complex polynomials. In each case, we com-
pare the proposed method (PONM – (18)) with other fourth-order methods known in
the literature (KJNM – (3), OWNM – (4), OZNM –(5), KTNM – (6)).

7.1 Polynomiography

Polynomiography—a term introduced by Kalantari around 2000—plays an important
role in themodern analysis of the quality of the root-findingmethods [20]. Themethods
of polynomiography (basins of attraction, dynamics planes, speed of convergence
etc.) were present in the literature much earlier, but Kalantari was the first who gave
them a common name. Kalantari defined it as the art and science of visualizing the
approximation of the zeros of complex polynomials using iteration functions [12] and
called the image obtained by polynomiography a polynomiograph. In this subsection,
we present polynomiographs and numerical measures computed from them for three
different polynomials and compare the obtained results for the proposed method with
some other fourth-order methods from the literature.

The general method for generating polynomiographs is presented in Algorithm 1.
There are several methods of determining the color in the algorithm. We selected a
method that combines the basins of attraction and the speed of convergence of the

123

1732 Numerical Algorithms (2024) 95:1715–1745

given root-finding method into one polynomiograph [2]. In the method, each root of
the polynomial ψ gets a distinct color, and, additionally, we set a black color for non-
convergent points. Then, for each point z0 in the considered area A, we iterate the
given root-finding method R using the maximum of N iterations. After finishing the
iteration process, if we performed less than N iterations (the method has converged
to a root), then we search for the root closest to zn+1 and take its color. Basing on
the number of performed iterations, we set the shade of the color (dark, high number
of iterations; light, low number of iterations), and color z0 using this color. In the
case where the root-finding method has not converged to any root (we performed the
maximum of N iterations), we color z0 using the black color. Using such a coloring
method, the color of the point gives us information on the root to which the starting
point has converged, and the shade of the color gives us information on the speed of
convergence.

Algorithm 1: Generation of a polynomiograph.
Input : ψ ∈ C[Z], degψ ≥ 2 – polynomial; R – root finding method; A ⊂ C – area; N – the

maximum number of iterations; ε – accuracy.
Output : Polynomiograph for the complex-valued polynomial ψ within the area A.

1 for z0 ∈ A do
2 n = 0
3 while n ≤ N do
4 zn+1 = R(zn , ψ)

5 if |zn+1 − zn | < ε then
6 break

7 n = n + 1

8 Determine the color for z0 based on zn and n.

Polynomiographs are used to visually analyze and compare root-finding methods.
But, we can compute some numerical measures based on a polynomiographs which
will allow a better analysis of the methods. In the literature, there are three such
measures: average number of iterations (ANI) [3], convergence area index (CAI) [3],
and generation time [8]. The average number of iterations is computed by averaging
the number of performed iterations (which is coded as the shade of the color in the
polynomiograph) for all points in the polynomiograph. CAI is computed as the ratio
of the number of starting points that converged to any root (points other than black
in the polynomiograph) to the number of all points in the polynomiograph. From the
definition of CAI, we see that its value is between 0 and 1, and it gives us information
about the percentage of the area shown in the polynomiograph that has converged to
roots. The generation time gives us information about the real time of computations
because it is the time needed to generate the polynomiograph.

In this section, we generated polynomiographs for three complex polynomials:

– ψ2(z) = z2 − 1, roots: −1, 1.

– ψ3(z) = z3 − 1, roots: 1, − 1
2 +

√
3
2 i , − 1

2 −
√
3
2 i .

– ψ4(z) = z4 − 0.75z2 − 0.25, roots: −1, 1, −0.5i , 0.5i .

123

Numerical Algorithms (2024) 95:1715–1745 1733

For each of the polynomials ψ2, ψ3, ψ4, the other parameters used to generate poly-
nomiographs were the following: A = [−2, 2]2, N = 30, ε = 0.001, image resolution
of 1000 × 1000 pixels. The experiments were performed on the computer with the
following specifications: Intel i5-9600K (@3.70 GHz), 32 GBDDR4 RAM, andWin-
dows 10 (64 bit). The program for generating polynomiographs was implemented in
Mathematica 13.2 using the parallelization option of the SPSVERBc1 command.

The polynomiographs for the ψ2 polynomial generated using various root-finding
methods are presented in Fig. 2, and the numerical measures calculated from them in
Table 1. From the polynomiographs, we see that the best stability in finding the roots
have the OWNM and OZNM methods. The plane is divided into two equal basins,
so that for the starting points for which the real part is less than zero, converge to
−1, and the points from the other half of the plane to 1. For the other methods, the
stability is lost in the neighborhood of the vertical line passing through the origin.
We see that the two basins are intertwined. The smallest interweawing is visible for
the PONM method. The speed of convergence is very similar for all methods, i.e.,
small differences in the shades of the colors. This is confirmed by the values of ANI
in Table 1. The values are between 2.341 and 3.016, where the lowest value was
obtained using the PONM method. The generation times are also very similar for
all the methods. They vary between 0.692 and 0.706 s, where the shortest time was
obtained by the OZNMmethod. For the CAI measure, we see that for all the methods
considered, each starting point in A has converged to a root, i.e., a CAI value equal to
1.0.

Fig. 2 Polynomiographs for the complex polynomial ψ2 generated using various root-finding methods

123

1734 Numerical Algorithms (2024) 95:1715–1745

Table 1 Numerical measures
obtained from the
polynomiographs generated for
ψ2 (Fig. 2)

Method ANI CAI Time (s)

PONM 2.341 1.0 0.705

KJNM 3.016 1.0 0.706

OWNM 2.380 1.0 0.694

OZNM 2.380 1.0 0.692

KTNM 2.755 1.0 0.702

The resulting polynomiographs and the values of numerical measures obtained for
the ψ3 polynomial are gathered in Fig. 3 and Table 2, respectively. In this case, we
see a diverse behavior of the methods. In each case, we can observe characteristic
braids, but their shape differs for each method. The interweaving of the basins around
the braids is the smallest for the OWNM and OZNM methods, and the braids are
similar. For the other three methods, the braids form various shapes and have different
complexities. The most complex braids are visible for the PONM method, and the
interweaving of the basins is the biggest. The behavior of the methods outside the
braids is very similar, that is, the methods converge to the same roots and have a
similar speed of convergence. When we look at the values of the numerical measures
collected in Table 2, we see that the lowest ANI value was obtained by the OWNM
method (2.863) and the highest by the KJNM method (4.632). In terms of CAI value,
the best two methods were OWNM and OZNM, which obtained convergence of all

Fig. 3 Polynomiographs for the complex polynomial ψ3 generated using various root-finding methods

123

Numerical Algorithms (2024) 95:1715–1745 1735

Table 2 Numerical measures
obtained from the
polynomiographs generated for
ψ3 (Fig. 3)

Method ANI CAI Time (s)

PONM 3.708 0.999 0.827

KJNM 4.632 0.996 0.828

OWNM 2.863 1.0 0.763

OZNM 3.143 1.0 0.735

KTNM 3.736 0.999 0.799

starting points in A, i.e., CAI value equal to 1.0. For the other three methods, we see
that a small percentage of the starting points did not converge to any of the roots. This
is clearly visible in the polynomiograph for the KJNMmethod (Fig. 3b), where we see
black areas. When it comes to generation times, the shortest time was obtained using
the OZNMmethod (0.735 s). But the difference between the times for the considered
methods was small because the times vary between 0.735 and 0.828 s.

In the case of the last polynomial, ψ4, the polynomiographs generated using the
considered methods are presented in Fig. 4, and the values of numerical measures
are collected in Table 3. This time, we see the biggest differences between the poly-
nomiographs. The most stable behavior is visible for the OWNMmethod—the braids
and the interweaving of the basins are smaller than for the other methods. The worst
stability can be observed for the PONMmethod, where we do not see the characteristic
braids as for the other methods. Instead, we see a large number of interweaving basins

Fig. 4 Polynomiographs for the complex polynomial ψ4 generated using various root-finding methods

123

1736 Numerical Algorithms (2024) 95:1715–1745

Table 3 Numerical measures
obtained from the
polynomiographs generated for
ψ4 (Fig. 4)

Method ANI CAI Time (s)

PONM 5.560 0.999 0.967

KJNM 5.785 0.996 0.915

OWNM 3.498 1.0 0.844

OZNM 4.070 0.999 0.856

KTNM 4.874 0.999 0.872

resulting in a division of the basins into many small areas, forming a very interesting
pattern. The speed of convergence is very similar for the OWNM, OZNM, and KTNM
methods. This is confirmed by the values of ANI in Table 3, where the lowest value
of ANI was obtained by the OWNM, and it is equal to 3.498. The worst speed of con-
vergence is observed, like for the previous two polynomials, for the KJNM method
(5.785). Despite the worst stability, the PONM method obtained a good convergence
ratio, that is, CAI value equal to 0.999. Only the OWNM method has a higher value
of CAI (1.0). When we compare the generation times, we notice that the differences
are minor. The times are between 0.844 (for the OWNMmethod) and 0.967 s (for the
PONM method).

7.2 Academic numerical experiments

In this subsection, we will use numerical simulations for some academic-type non-
linear equations to demonstrate the efficacy of the proposed optimal iterative method
with fourth-order convergence, as shown in (18). Many different classes of non-linear
functions are considered as shown in Table 4 which contains the test function ψ , the
initial guess x0 for the method, and the exact root γ for the test function. To determine
when to end the iteration process, we use the stopping criterion |ψ(xN)| ≤ ε, where
the tolerance is set to ε = 10−300 and the desired degree of precision is determined to
be as high as 4, 000. The amount of CPU time consumed by each approach is computed
in seconds. Numerical experiments were performed on a laptop with Windows 11 (64
bit), 24 GB of RAM, and Intel Core i7-1065G7 CPU (@1.50 GHz) processor.

For the numerical simulations, the following notations were used:

– TFE: Total number of function evaluations.
– N : Total number of iterations.

Table 4 Some academic test problems for the comparative analysis

Test function Initial guess Exact root

ψ1(x) = sin(x) + cos(x) + x 1.5 −0.45662470456763082444

ψ2(x) = cos(x) − x 2.5 0.73908513321516064166

ψ3(x) = log(x2 + exp(x)) 1.7 0

ψ4(x) = sin(x)2 − x2 + 1 6.5 1.4044916482153412260

123

Numerical Algorithms (2024) 95:1715–1745 1737

– CPU: Computational time in seconds.

For the test functions from Table 4, we have attempted to compute the absolute
error at the last iteration given as |xn − xn−1|, the test function’s value at the last
iteration given as |ψ(xn)|, and the computational time in seconds. The results for the
test functions ψ1–ψ4 are presented in Table 5.

It can be observed in Table 5 for the test function ψ1(x) that the only methods
that could converge to the exact solution, in seven iterations, are the optimal proposed
method and the method KJNM while the former is the method with the smallest
absolute error and the functional value nearly equal to 0. In six iterations, the optimal
proposed method yielded the smallest absolute error and thereby the smallest absolute
functional value for the second test functionψ2 as shown in Table 5. Similar results are
witnessed for the remaining two test functions in Table 5 wherein the method OZNM
diverges to some other solution for the test function ψ3(x).

7.3 Some real-life applications

Non-linear transcendental equations have a wide range of applications from mathe-
matical modeling to physics, engineering, and economics. For example, in economics,
these equations are used to solve problems related to demand and supply, taxation,
elasticity, pricing, etc. In mathematics, these equations are used to solve non-linear
differential equations and to study the stability of dynamical systems. In physics, these
equations are used to describe physical phenomena such as wave motion and electrical
circuits. In engineering, these equations are used to model complex systems such as
aircraft and spacecraft. Moreover, they can be used to solve optimization problems

Table 5 Numerical comparison of (18) with some existing optimal methods for the test functions ψ1(x) −
ψ4(x)

Method |xn − xn−1| |ψ(xn)| Time (s) |xn − xn−1| |ψ(xn)| Time (s)

ψ1(x): N = 7 and T FE = 21 ψ2(x): N = 6 and T FE = 18

PONM 9.37e−545 1.51e−2178 1.71e−01 1.54e−522 3.77e−2090 1.25e−01

KJNM 3.28e−49 3.30e−196 2.81e−02 4.21e−385 2.47e−1539 9.30e−02

OWNM Failed – – 1.09e−421 6.02e−1686 1.87e−01

OZNM Diverge – – 1.08e−84 7.08e−254 1.41e−01

KTNM Failed – – 3.20e−402 6.41e−1608 9.40e−02

ψ3(x): N = 7 and T FE = 21 ψ4(x): N = 6 and T FE = 18

PONM 9.49e−1458 4.00e−4000 1.40e−01 1.26e−686 3.44e−2744 2.03e−01

KJNM 9.75e−421 3.62e−1680 4.70e−02 2.82e−98 2.16e−390 1.41e−01

OWNM 5.40e−604 1.69e−2413 6.20e−02 2.94e−149 7.62e−595 1.10e−01

OZNM Diverge – – 8.00e−111 5.57e−332 2.50e−01

KTNM 5.55e−507 2.85e−2025 4.70e−02 1.20e−113 4.62e−452 1.25e−01

123

1738 Numerical Algorithms (2024) 95:1715–1745

and to calculate the optimal parameters of a system. Other applications include the
following:

– Engineering: non-linear systems analysis, control systems design.
– Physics: mechanics, electromagnetism, fluid dynamics, quantum mechanics.
– Biology: modeling population dynamics, spread of diseases.
– Economics: macroeconomic modeling, financial forecasting.
– Cryptography: mathematical encryption and decryption of information.
– Geology: modeling of geological systems and processes.
– Meteorology: weather forecasting, atmospheric modeling.

Problem 1 Volume from Van der Waals’ equation [27].

Van der Waals equation is a mathematical expression used to describe the behavior
of real gases, which deviate from the ideal gas law. The ideal gas law assumes that
gas molecules have no volume and do not interact with one another, but in reality, gas
molecules do have a finite volume and interact with each other through forces like
attraction and repulsion. The Van der Waals equation is given as follows:

P = nRT

V − nb
− an2

V 2 , (58)

where:

– P is the absolute pressure of the gas.
– n is the number of moles of gas.
– R is the gas constant (0.0820578).
– T is the temperature.
– V is the volume of the gas.
– a and b are constants representing the attractive and repulsive forces between gas
molecules, respectively.

The Van der Waals equation takes into account the intermolecular forces and the
finite volume of gas molecules, making it a more accurate representation of real gases
compared to the ideal gas law. The equation is used to predict the behavior of gases
under various conditions such as pressure, temperature, and volume. It also plays a
crucial role in understanding the behavior of real gases in applications like refriger-
ation, gas storage, and transportation. The Van der Waals equation is used in many
other fields study, such as thermodynamics, chemistry, engineering, and physics. It is
useful in calculating the properties of real gases such as density, enthalpy, entropy, and
internal energy. It is also used to study the phase transitions of a gas and to calculate
its critical point. Furthermore, it is used to model the behavior of a gas in a variety of
situations, such as when a gas is subjected to shock waves or when a gas is in a closed
container. (58) can be rewritten as follows:

(P + an2

V 2)(V − bn) = nRT . (59)

123

Numerical Algorithms (2024) 95:1715–1745 1739

The model (59) is a modified version of the ideal gas equation V = RT /nP . The
above equation can be rearranged as follows:

ψ1(V) = PV 3 − n(RT + bP)V 2 + n2aV − n3ab.

Substituting P = 40atm, T = 773◦C , n = 1.4, a = 18 and b = 0.1154, we get

ψ1(V) = 40V 3 − 95.26535116V 2 + 35.28V − 5.6998368. (60)

The approximate solution for the above model up to 20 dp is given as follows:

V ∗ = 1.97078421940702941145.

The numerical results for the model (60) are shown in Table 6, wherein the optimal
proposed method having fourth-order convergence, in eight iterations, surpasses other
methods chosen for comparison irrespective of the initial guess.

Problem 2 Fluid permeability in biogels [23].

Fluid permeability in biogels refers to the ability of fluid to pass through the
gel network structure. Biogels are three-dimensional hydrogel networks made up of
biopolymers such as proteins, polysaccharides, or nucleic acids. The fluid permeabil-
ity of a biogel is dependent on several factors, including the composition, structure,
and mechanical properties of the gel. The gel’s permeability is important in a number
of applications. By understanding the factors that affect fluid permeability in bio-
gels, it may be possible to design more effective and efficient biogels for a variety of
applications.

Non-linear fluid permeability in biogels can be mathematically described using
non-linear equations that capture the complex behavior of fluid transport through the
gel network. One such equation is the Darcy’s law for non-linear porous media, which
accounts for the non-linear relationship between the fluid flow rate and the applied
pressure difference. The equation includes terms that describe the effects of gel pore
size, pore connectivity, and other factors that affect fluid permeation, and is given by

R f m
3 − 20p(1 − m)2 = 0, (61)

Table 6 Comparison of optimal fourth-order method for Problem 1 taking N = 8 iterations and T FE = 24

V0 = 0.5 V0 = 18.5
Method |Vn − Vn−1| |ψ(Vn)| Time (s) |Vn − Vn−1| |ψ(Vn)| Time (s)

PONM 1.80e−932 2.32e−3725 1.40e−01 7.70e−628 7.84e−2507 4.70e−02

KJNM 4.11e−92 1.40e−363 9.40e−02 3.83e−45 1.05e−175 4.70e−02

OWNM – Diverge – 1.47e−126 6.18e−502 3.10e−02

OZNM – Diverge – 8.58e−43 1.26e−125 3.10e−02

KTNM 4.61e−302 1.40e−1203 4.60e−02 1.11e−62 4.73e−246 4.70e−02

123

1740 Numerical Algorithms (2024) 95:1715–1745

where R f stands for the radius of the fiber, p shows the specific hydraulic permeability,
and m ∈ [0, 1] is the porosity of the medium. If we assume R f = 100 × 10−9 and
p = 0.4655, we obtain the following third-degree polynomial:

ψ2(m) = 1 × 10−7m3 − 9.31m2 + 18.62m − 9.31. (62)

The approximate solution for the above model up to 20 dp is given as follows:

m∗ = 1.0001036555789320136

The numerical results for the model (62) are shown in Table 7, wherein the opti-
mal proposed method having fourth-order convergence, in eleven iterations, surpasses
other methods chosen for comparison irrespective of the initial guess. For this cubic
model, the proposed method has considerably shorter computational time in compar-
ison to other methods in most cases.

Problem 3 Fraction conversion of nitrogen and hydrogen to ammonia [24].

The fractional conversion of nitrogen and hydrogen to ammonia refers to the per-
centage of the reactants that have been converted into ammonia during the reaction
process. The fractional conversion is a measure of the extent of the reaction and can be
used to determine optimal conditions for maximum yield. The fractional conversion
is calculated as the ratio of the amount of ammonia produced to the total amount of
nitrogen and hydrogen fed into the reaction system. The equation for the fractional
conversion of nitrogen and hydrogen to ammonia is given by the following:

Fractional conversion = (Amount of ammonia produced)/(Total amount of nitrogen
and hydrogen fed into the reaction system)

This relation provides a ratio that represents the extent to which nitrogen and hydro-
gen have been converted into ammonia (A). The fractional conversion can be used
to monitor the progress of the reaction and determine when the reaction has reached
completion. The fractional conversion is usually expressed as a decimal or a percent-
age. In this problem, the values of temperature and pressure have been taken as 500◦C
and 250 atm, respectively. This problem has the following non-linear form:

ψ3(A) = −0.186 − 8A2(A − 4)2

9(A − 2)3
, (63)

Table 7 Comparisonof optimal fourth-ordermethod forProblem2 taking N = 11 iterations andT FE = 33

Method |mn − mn−1| |ψ2(mn)| Time (s) |mn − mn−1| |ψ2(mn)| Time (s)
m0 = 3.9 m0 = 7.5

PONM 2.31e−1152 3.00e−3999 9.30e−02 9.69e−568 1.91e−2260 9.40e−02

KJNM 2.77e−12 3.85e−38 9.40e−02 1.12e−07 1.01e−19 1.09e−01

OWNM 5.85e−37 2.54e−137 9.40e−02 6.23e−19 3.27e−65 1.41e−01

OZNM 5.85e−37 1.00e−116 9.40e−02 6.23e−19 1.21e−62 6.30e−02

KTNM 3.34e−17 5.39e−58 9.40e−02 8.24e−10 2.00e−28 9.40e−02

123

Numerical Algorithms (2024) 95:1715–1745 1741

Table 8 Comparison of optimal fourth-order method for Problem 3 taking N = 6 iterations and T FE = 18

Method |An − An−1| |ψ(An)| Time (s) |An − An−1| |ψ(An)| Time (s)
A0 = 0.15 A0 = 0.8

PONM 2.68e−865 8.90e−3459 6.20e−02 8.15e−620 7.60e−2477 6.30e−02

KJNM 4.12e−582 8.96e−2325 4.60e−02 2.04e−487 5.38e−1946 3.10e−02

OWNM 4.58e−743 6.46e−2969 3.10e−02 4.98e−523 9.00e−2089 3.20e−02

OZNM 3.38e−237 1.29e−709 4.70e−02 2.04e−143 2.85e−428 3.10e−02

KTNM 1.86e−653 2.75e−2610 4.70e−02 3.01e−502 1.87e−2005 3.10e−02

which can be easily reduced to the following fourth-degree polynomial:

ψ3(A) = A4 − 7.79075A3 + 14.744A2 + 2.511A − 1.674. (64)

Since the degree of the above polynomial is four, so, it must have exactly four roots.
By definition, the fraction conversion lies in (0, 1), so only one positive real root exists
in this interval which is A∗ = 0.2777595428. The other three roots have no physical
meanings. The numerical results for the model (64) are shown in Table 8, wherein the
optimal proposedmethod having fourth-order convergence, in six iterations, surpasses
other methods chosen for comparison irrespective of the initial guess.

Problem 4 Planck’s blackbody radiation law [22].

Plank’s radiation law, also known as Planck’s blackbody radiation law, describes
the spectral density of electromagnetic radiation emitted by a blackbody in thermal
equilibrium at a given temperature. The law states that the spectral radiance of a
blackbody, or the amount of radiation emitted per unit area per unit solid angle per
unit frequency, is proportional to the frequency of the radiation and the temperature
of the blackbody and is given by the following equation:

ψ4(w) = exp(−w) + w

5
− 1, (65)

where w stands for the maximal wavelength.

Table 9 Comparison of optimal fourth-order method for Problem 4 taking N = 6 iterations and T FE = 18

Method |wn − wn−1| |ψ(wn)| Time (s) |wn − wn−1| |ψ(wn)| Time (s)
w0 = 0.25 w0 = 0.45

PONM 3.69e−724 5.55e−2895 1.2500e−01 4.68e−420 1.44e−1678 9.40e−02

KJNM – Diverge – 2.73e−252 2.66e−1007 4.70e−02

OWNM – Diverge – – Diverge –

OZNM 4.78e−282 9.07e−846 7.80e−02 1.78e−283 4.73e−850 6.30e−02

KTNM – Diverge – – Diverge –

123

1742 Numerical Algorithms (2024) 95:1715–1745

Table 10 Comparison of optimal fourth-order method for Problem 5 taking N = 11 iterations and T FE =
22

[x1,0, x2,0]T ||xn − xn−1||∞ [x1, x2]T Time (s)

−0.3,−0.3 7.9406e−462 7.0058e−923, 7.0058e−923 7.6600e−01

0.2,0.2 1.5886e−673 2.8042e−1346, 2.8042e−1346 1.1560e+00

0.4,0.4 4.2299e−369 1.9880e−737, 1.9880e−737 1.1250e+00

The exact solution of (65) is 0.0. The numerical results for themodel (65) are shown
in Table 9, wherein the optimal proposed method having fourth-order convergence,
in six iterations, surpasses other methods chosen for comparison irrespective of the
initial guess.

Problem 5 The non-linear system of two equations from [1] is given as follows:

x1 + exp(x2) − cos(x2) = 0,

3x1 − x2 − sin(x1) = 0. (66)

The exact solution of the system (66) is [0, 0]T .
For the computation of the error term, we use the infinity norm as εn = ||xn −

xn−1||∞. The numerical simulations are shown in Table 10 for the system (66), while
assuming three different guesses. It is observed that the optimal proposed method (18)
gives promising results and approaches to the exact solution in eleven iterations. In
other words, the approximate root at the eleventh iteration is≈ [0, 0]T for each choice
of the initial guess.

8 Concluding remarks with future directions

The optimal iterative algorithm has shown improved fourth-order accuracy in both
local and semilocal convergence analysis. The results of this study suggest that the
optimal algorithm is efficient and accurate, and it is expected that it will continue
to be developed and refined in the future. Some numerical measures including an
average number of iterations, convergence area index, and generation time are taken
into considerationwhile analyzing the performance of the proposed and other methods
with polynomiographs. Overall, this work highlights the importance of developing
optimal algorithms and opens up some possibilities for research in this field. Further
research can be conducted to explore its potential applications in awider range of fields
and to optimize its performance even further. It is possible that this algorithm might
be combined with other methods to produce a more powerful and all-encompassing
approach to solving a wide range of non-linear equations.

Author Contributions Sania Qureshi: conceptualization, formal analysis, investigation, software, writing—
original draft, writing—review and editing. Ioannis K. Argyros: conceptualization, validation, writing—
review and editing. Amanullah Soomro: conceptualization, formal analysis, writing—original draft,

123

Numerical Algorithms (2024) 95:1715–1745 1743

writing—review and editing. Krzysztof Gdawiec: conceptualization, formal analysis, investigation, soft-
ware, visualization, writing—original draft, writing—review and editing. Asif Ali Shaikh: writing—review
and editing. Evren Hincal: writing—review and editing.

Data Availability The data and code that support the findings of this study are available from the corre-
sponding author, upon reasonable request.

Declarations

Ethical approval Not applicable

Conflict of interest The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abro, H., Shaikh, M.: A new time-efficient and convergent nonlinear solver. Appl. Math. Comput. 355,
516–536 (2019). https://doi.org/10.1016/j.amc.2019.03.012

2. Andreev, F., Kalantari, B., Kalantari, I.: Measuring the average performance of root-finding algorithms
and imaging it through polynomiography. In: Proceedings of 17th IMACSWorld Congress, Scientific
Computation, Applied Mathematics and Simulation. Paris, France (2005)

3. Ardelean, G., Cosma, O., Balog, L.: A comparison of some fixed point iteration procedures by using
the basins of attraction. Carpathian J. Math. 32(3), 277–284 (2016)

4. Argyros, I.: Unified convergence criteria for iterative Banach space valued methods with applications.
Mathematics 9(16), 1942 (2021). https://doi.org/10.3390/math9161942

5. Argyros, I., Szidarovszky, F.: The theory and applications of iterationmethods. CRC Press, Boca Raton
(1993)

6. Awadalla, M., Qureshi, S., Soomro, A., Abuasbeh, K.: A novel three-step numerical solver for physical
models under fractal behavior. Symmetry 15(2), 330 (2023). https://doi.org/10.3390/sym15020330

7. Burden, R., Faires, J., Burden, A.: Numerical analysis, 10th edn. Cengage Learning Inc., Boston (2015)
8. Gdawiec, K., Kotarski, W., Lisowska, A.: On the robust Newton’s method with the Mann iteration and

the artistic patterns from its dynamics. Nonlinear Dynamics 104(1), 297–331 (2021). https://doi.org/
10.1007/s11071-021-06306-5

9. Jaiswal, J.: Semilocal convergence of a computationally efficient eighth-ordermethod inBanach spaces
under w-continuity condition. Iranian J. Sci. Technol. Trans. A: Sci. 42(2), 819–826 (2018). https://
doi.org/10.1007/s40995-016-0115-7

10. Jamali, K., Solangi, M., Qureshi, S.: A novel hybrid iterative method for applied mathematical models
with time-efficiency. J. Appl. Math. Comput. Mech. 21(3), 19–29 (2022). https://doi.org/10.17512/
jamcm.2022.3.02

11. Jisheng, K., Yitian, L., Xiuhua, W.: A composite fourth-order iterative method for solving non-linear
equations. Appl. Math. Comput. 184(2), 471–475 (2007). https://doi.org/10.1016/j.amc.2006.05.181

12. Kalantari, B.: Polynomial root-finding and polynomiography. World Scientific, Singapore (2009).
https://doi.org/10.1142/6265

13. Kantorovich, L., Akilov, G.: Functional analysis in normed spaces. Pergamon Press, Oxford (1964)
14. King, R.: A family of fourth order methods for nonlinear equations. SIAM J. Numeric. Anal. 10(5),

876–879 (1973). https://doi.org/10.1137/0710072

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.amc.2019.03.012
https://doi.org/10.3390/math9161942
https://doi.org/10.3390/sym15020330
https://doi.org/10.1007/s11071-021-06306-5
https://doi.org/10.1007/s11071-021-06306-5
https://doi.org/10.1007/s40995-016-0115-7
https://doi.org/10.1007/s40995-016-0115-7
https://doi.org/10.17512/jamcm.2022.3.02
https://doi.org/10.17512/jamcm.2022.3.02
https://doi.org/10.1016/j.amc.2006.05.181
https://doi.org/10.1142/6265
https://doi.org/10.1137/0710072

1744 Numerical Algorithms (2024) 95:1715–1745

15. Kung, H., Traub, J.: Optimal order of one-point and multipoint iteration. J. ACM 21(4), 643–651
(1974). https://doi.org/10.1145/321850.321860

16. Luk, W.: Finding roots of a real polynomial simultaneously by means of Bairstow’s method. BIT
Numeric. Math. 36(2), 302–308 (1996). https://doi.org/10.1007/BF01731985

17. Noor, K., Noor, M.: Predictor-corrector Halley method for nonlinear equations. Appl. Math. Comput.
188(2), 1587–1591 (2007). https://doi.org/10.1016/j.amc.2006.11.023

18. Noor, M., Khan, W., Noor, K., Al-Said, E.: Higher-order iterative methods free from second derivative
for solving nonlinear equations. Int. J. Phys. Sci. 6(8), 1887–1893 (2011). https://doi.org/10.5897/
IJPS11.425

19. Özban, A.: Some new variants of Newton’s method. Appl. Math. Lett. 17(6), 677–682 (2004). https://
doi.org/10.1016/S0893-9659(04)90104-8

20. Petković, I., Rančić, L.: Computational geometry as a tool for studying root-finding methods. Filomat
33(4), 1019–1027 (2019). https://doi.org/10.2298/FIL1904019P

21. Potra, F., Ptak,V.:Nondiscrete induction and iterative processes. PitmanAdvancedPublishingProgram,
Boston (1984)

22. Qureshi, S., Ramos, H., Soomro, A.: A new nonlinear ninth-order root-finding method with error anal-
ysis and basins of attraction. Mathematics 9(16), 1996 (2021). https://doi.org/10.3390/math9161996

23. Qureshi, S., Soomro, A., Shaikh, A., Hincal, E., Gokbulut, N.: A novel multistep iterative technique
for models in medical sciences with complex dynamics. Comput. Math. Methods Med. 2022, Article
ID 7656451 (2022). https://doi.org/10.1155/2022/7656451

24. Rehman, M., Naseem, A., Abdeljawad, T.: Some novel sixth-order iteration schemes for computing
zeros of nonlinear scalar equations and their applications in engineering. J. Function Spaces 2021,
Article ID 5566379 (2021). https://doi.org/10.1155/2021/5566379

25. Sihwail, R., Solaiman, O., Ariffin, K.: New robust hybrid Jarratt–Butterfly optimization algorithm for
nonlinear models. J. King Saud University – Comput. Inf. Sci. 34(10), 8207–8220 (2022). https://doi.
org/10.1016/j.jksuci.2022.08.004

26. Sihwail, R., Solaiman, O., Omar, K., Ariffin, K., Alswaitti, M., Hashim, I.: A hybrid approach for
solving systems of nonlinear equations using Harris hawks optimization and Newton’s method. IEEE
Access 9, 95791–95807 (2021). https://doi.org/10.1109/ACCESS.2021.3094471

27. Solaiman, O., Hashim, I.: Optimal eighth-order solver for nonlinear equations with applications in
chemical engineering. Intell. Auto. Soft Comput. 27(2), 379–390 (2021). https://doi.org/10.32604/
iasc.2021.015285

28. Solaiman, O., Sihwail, R., Shehadeh, H., Hashim, I., Alieyan, K.: Hybrid Newton-Sperm swarm opti-
mization algorithm for nonlinear systems. Mathematics 11(6), 1473 (2023). https://doi.org/10.3390/
math11061473

29. Xiaojian, Z.: Modified Chebyshev-Halley methods free from second derivative. Appl. Math. Comput.
203(2), 824–827 (2008). https://doi.org/10.1016/j.amc.2008.05.092

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1145/321850.321860
https://doi.org/10.1007/BF01731985
https://doi.org/10.1016/j.amc.2006.11.023
https://doi.org/10.5897/IJPS11.425
https://doi.org/10.5897/IJPS11.425
https://doi.org/10.1016/S0893-9659(04)90104-8
https://doi.org/10.1016/S0893-9659(04)90104-8
https://doi.org/10.2298/FIL1904019P
https://doi.org/10.3390/math9161996
https://doi.org/10.1155/2022/7656451
https://doi.org/10.1155/2021/5566379
https://doi.org/10.1016/j.jksuci.2022.08.004
https://doi.org/10.1016/j.jksuci.2022.08.004
https://doi.org/10.1109/ACCESS.2021.3094471
https://doi.org/10.32604/iasc.2021.015285
https://doi.org/10.32604/iasc.2021.015285
https://doi.org/10.3390/math11061473
https://doi.org/10.3390/math11061473
https://doi.org/10.1016/j.amc.2008.05.092

Numerical Algorithms (2024) 95:1715–1745 1745

Authors and Affiliations

Sania Qureshi1,2,3 · Ioannis K. Argyros4 · Amanullah Soomro1 ·
Krzysztof Gdawiec5 · Asif Ali Shaikh1,2 · Evren Hincal2

Sania Qureshi
sania.shahid@lau.edu.lb

Ioannis K. Argyros
iargyros@cameron.edu

Amanullah Soomro
amanullah.soomro@faculty.muet.edu.pk

Asif Ali Shaikh
asif.shaikh@faculty.muet.edu.pk

Evren Hincal
evren.hincal@neu.edu.tr

1 Department of Basic Sciences and Related Studies, Mehran University of Engineering and
Technology, Jamshoro 76062, Pakistan

2 Department of Mathematics, Near East University, 99138 Mersin, Turkey

3 Department of Computer Science and Mathematics, Lebanese American University, Beirut P.O.
Box 13-5053, Beirut, Lebanon

4 Department of Computing and Mathematics Sciences, Cameron University, Lawton, OK 73505,
USA

5 Institute of Computer Science, University of Silesia in Katowice, Bedzinska 39, 41-200
Sosnowiec, Poland

123

http://orcid.org/0000-0002-7225-2309
http://orcid.org/0000-0002-9189-9298
http://orcid.org/0000-0002-5823-0170
http://orcid.org/0000-0001-9434-9307
http://orcid.org/0000-0002-3084-922X
http://orcid.org/0000-0001-6175-1455

	A new optimal root-finding iterative algorithm: local and semilocal analysis with polynomiography
	Abstract
	1 Introduction
	2 Some existing root-finding methods
	3 Construction of the method
	4 Local convergence analysis: first approach
	5 Local convergence analysis: second approach
	6 Semilocal convergence
	7 Numerical and graphical results
	7.1 Polynomiography
	7.2 Academic numerical experiments
	7.3 Some real-life applications

	8 Concluding remarks with future directions
	References

