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Abstract
We give properties of strict pseudocontractions and demicontractions defined on a
Hilbert space, which constitute wide classes of operators that arise in iterative meth-
ods for solving fixed point problems. In particular, we give necessary and sufficient
conditions under which a convex combination and composition of strict pseudocon-
tractions as well as demicontractions that share a common fixed point is again a strict
pseudocontraction or a demicontraction, respectively. Moreover, we introduce a gen-
eralized relaxation of composition of demicontraction and give its properties. We“
apply these properties to prove the weak convergence of a class of algorithms that is
wider than the Douglas–Rachford algorithm and projected Landweber algorithms.We
have also presented two numerical examples, where we compare the behavior of the
presented methods with the Douglas–Rachford method.

Keywords Quasi-nonexpansive operators · Strict pseudocontractions ·
Demicontractions · Douglas–Rachford algorithm

1 Introduction

In the last three decades, many researchers studied the properties of averaged operators
in real Hilbert spaces [2, 4, 6, 14, 15]. Here, we recall that an averaged operator T is
defined as a strict convex combination of a nonexpansive operator and identity. Impor-
tant examples of averaged operators in a real Hilbert spaceH are the metric projection
[4], the resolvent of amaximallymonotone operator [6], the proximity operator related
to a lower semi-continuous convex function [6], and the Landweber operator [13, 14].
It is well known that convex combinations as well as compositions of averaged opera-
tors are again averaged operators [4, 14, 15, 40]. This property enables construction of
a wide class of averaged operators which have many applications in signal processing,
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image reconstruction from projections, medical imaging (in particular in computer-
ized tomography), radiation therapy treatment planning, optics, supervised learning
process, and many other areas [15, 22, 28, 48]. These problems may be modelled
as common fixed point problems, split feasibility problems, or variational inequality
problems. For these problems, appropriate methods employing convex combinations
or compositions of averaged operators have been constructed in many papers. In the
last three decades, these methods were developed in many publications and extended
to algorithms employing averaged operators defined on a Hilbert space; see, e.g., [4,
6, 14–16, 22] and the references therein. Averaged operators T with nonempty FixT
have a convenient property, namely the demi-closedness principle

(xk⇀y and ‖T (xk) − xk‖ → 0) �⇒ y ∈ FixT

[41]. This yieldsweak convergence of algorithms employing these operators.However,
the evaluation of averaged operators with a specified subset of fixed points is often
not straightforward. Thus, classes of operators wider than the averaged ones that have
a fixed point, namely strongly quasi-nonexpansive operators (also called strongly
attracting), had to be defined [4, 12, 15, 35]. Here, we recall that an operator T : H →
H with nonempty FixT is called ρ-strongly quasi-nonexpansive, where ρ ∈ (0,+∞)

if
‖T (x) − z‖2 ≤ ‖x − z‖2 − ρ‖T (x) − x‖2

for all x ∈ H and all z ∈ FixT . In many cases, these operators may be evalu-
ated in a much simpler manner than their averaged counterparts [15]. An important
example of a strongly quasi-nonexpansive operator in a Hilbert space is a subgra-
dient projection related to a lower semicontinuous convex function. Other examples
include a Landweber operator related to a strongly quasi-nonexpansive operator [16,
17, 19, 51] and its extrapolation [17, 19, 33]. It turns out that convex combinations
as well as compositions of strongly quasi-nonexpansive operators that share a com-
mon fixed point are again strongly quasi-nonexpansive [4, 15, 52].Moreover, a class of
strongly quasi-nonexpansive operators that share a common fixed point and satisfy the
demi-closedness principle is also closed under convex combinations and compositions
[20]. This property is important for the convergence properties of corresponding algo-
rithms [20]. In the recent decade, operators fromwider classes than averaged operators
and quasi-nonexpansive operators, namely strict pseudocontractions and demicontrac-
tions, have been applied for solving the problems mentioned above; see, e.g., [3, 8, 9,
24, 34, 35, 37, 39, 45, 49, 50, 54]. Here, we recall that an operator T : H → H with
nonempty FixT is called α-strict pseudocontraction, where α ∈ (−∞, 1), if

‖T (x) − T (y)‖2 ≤ ‖x − y‖2 + α‖(T (x) − x) − (T (y) − y)‖2 (1)

for all x, y ∈ H [10, Def. 1], [32]. Properties of strict pseudocontractions were
studied recently in [3], where these operators were called conically averaged. If
we suppose that FixT 	= ∅ and set y ∈ FixT in (1), then we obtain the definition
of an α-demicontraction [32]. If α ∈ (−∞, 0), then T is respectively averaged or
−α-strongly quasi-nonexpansive. Demicontractions were also used in extrapolated
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versions of appropriate algorithms for the (multiple) split common fixed point prob-
lem; see, e.g., [23, 26, 31, 46, 47, 53]. Besides of a recent paper [3], other papers
mentioned above do not study the properties of strict pseudocontractions and demi-
contractions in detail. However, these properties are important for the convergence
of algorithms employing those operators, enable a simplification of proofs of conver-
gence, and allow to apply parameters from a wider range. The aim of this paper is
answering the following questions:

1. Are classes of strict pseudocontractions and classes of demicontractions that share
a common fixed point and satisfy the demi-closedness principle closed under
convex combinations?

2. Is it true (and under what conditions) that composition of strict pseudocontrac-
tions as well as composition of demicontractions that share a common fixed point
and satisfy the demi-closedness principle is again a strict pseudocontraction or a
demicontraction satisfying the demi-closedness principle, respectively?

3. What should we suppose on operators T and U being pseudocontractions or
demicontractions, on relaxation parameters λk , k ≥ 0, and on extrapolation
function σ : H → [1,+∞), employed in an iterative process xk+1 = xk +
λkσ(xk)(UT (xk) − xk) in order to guarantee weak convergence of xk to a fixed
point of UT ?

Answers on the part of questions 1 and 2 regarding strict pseudocontractions were
recently presented in [3, Props 2.4 and 2.5]. Themain results of this paper are contained
in Sections 3.2 and 3.3 and in Sect. 4, where we give answers to the remaining parts
of questions 1 and 2 and to question 3.

2 Preliminaries

In the whole paper, H denotes a real Hilbert space with inner product 〈·, ·〉 and the
related norm ‖ · ‖. We suppose that H is nontrivial, that is H 	= {0}. For an operator
T : H → H and λ > 0, denote by Tλ := Id+λ(T − Id) the λ-relaxation of T , where
Id denotes the identity operator. If λ ∈ (0, 1), then Tλ is a convex combination of T
and Id. Note that (Tλ)μ = Tλμ, λ,μ > 0. The set FixT := {z ∈ H : T z = z} is called
the fixed point set, and an element of FixT is called a fixed point. Below, we recall
some well-known notions which we use in this paper.

Definition 2.1 We say that an operator T : H → H is as follows:

(a) nonexpansive (NE), if for all x, y ∈ H

‖T (x) − T (y)‖ ≤ ‖x − y‖; (2)

(b) α-averaged (α-AV), where α ∈ (0, 1), if there is an NE operator S such that

T = (1 − α)Id + αS;
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(c) firmly nonexpansive (FNE), if for all x, y ∈ H

〈T (x) − T (y), x − y〉 ≥ ‖T (x) − T (y)‖2; (3)

(d) λ-relaxed firmly nonexpansive (λ-RFNE), where λ > 0, if T is a λ-relaxation of
an FNE operator;

(e) an α-strict pseudocontraction (α-SPC), where α ∈ (−∞, 1), if for all x, y ∈ H

‖T (x) − T (y)‖2 ≤ ‖x − y‖2 + α‖(T (x) − x) − (T (y) − y)‖2; (4)

Averaged operators were introduced in [2], where many properties of these opera-
tors were presented. FNE operators were studied in [12], in [43], and in [30, Section
11]. Strict pseudocontractions were studied in [10, Def. 1] and in [32]. In [3, Def. 2.1],
a λ-RFNE operator was called �-conically averaged, where � = λ/2.

Proposition 2.2 Let λ > 0. An operator T : H → H is λ-RFNE if and only if for all
x, y ∈ H

〈y − x, (T (x) − x) − (T (y) − y)〉 ≥ 1

λ
‖(T (x) − x) − (T (y) − y)‖2. (5)

Proof See [10, Th. 1] or [15, Cor. 2.2.3]. ��
Proposition 2.3 Let λ > 0. An operator T : H → H is λ-RFNE if and only if T is an
α-SPC, where α = (λ − 2)/λ ∈ (−∞, 1).

Proof For λ ∈ (0, 2), the proposition was proved in [15, Cor. 2.2.15]. It follows from
the proof of [15, Cor. 2.2.15], that the proposition is true for arbitrary λ > 0. See also
[3, Prop. 2.2(iii)]. ��

Clearly, an operator T is NE if and only if T is a 0-SPC. Moreover, Proposition 2.3
yields that an operator T is λ

2 -averaged (equivalently λ-RFNE with λ ∈ (0, 2)) if and
only if T is an α-SPC, where α = 1 − 2

λ
< 0.

Definition 2.4 Let T : H → H be an operator with nonempty FixT . We say that T is
as follows:

(a) quasi-nonexpansive (QNE), if for all x ∈ H and z ∈ FixT

‖T (x) − z‖ ≤ ‖x − z‖; (6)

(b) ρ-strongly quasi-nonexpansive (ρ-SQNE), where ρ ≥ 0, if for all x ∈ H and
z ∈ FixT

‖T (x) − z‖2 ≤ ‖x − z‖2 − ρ‖T (x) − x‖2; (7)

If ρ > 0 then we simply say that T is SQNE;
(c) a cutter, if for all x ∈ H and z ∈ FixT

〈z − x, T (x) − x〉 ≥ ‖T (x) − x‖2; (8)
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(d) a λ-relaxed cutter, where λ > 0, if T is a λ-relaxation of a cutter, equivalently, for
all x ∈ H and z ∈ FixT

λ〈z − x, T (x) − x〉 ≥ ‖T (x) − x‖2; (9)

(e) an α-demicontraction (or an α-demicontractive operator), where α ∈ (−∞, 1),
if for all x ∈ H and z ∈ FixT

‖T (x) − z‖2 ≤ ‖x − z‖2 + α‖T (x) − x‖2. (10)

The name QNE operator was introduced by Dotson in [29], and the name SQNE
operator was introduced by Bruck in [11]. In [38], a relaxed cutter was called an
operator satisfying condition (A). An α-strict pseudocontraction with a fixed point
is an α-demicontraction. Clearly, if α ≤ 0, then an α-demicontraction is ρ-SQNE,
where ρ = −α, so the notion of a demicontraction is an extension of the notion of
an SQNE operator. An example of FNE operator is the metric projection PC onto a
closed convex subset C ⊆ H. In particular, for an affine subspace H ⊆ H (e.g., a
hyperplane), for all x ∈ H and z ∈ H , it holds

〈z − x, PH (x) − x〉 = ‖PH (x) − x‖2.

Thus, for any λ > 0 and a λ-relaxed projection (PH )λ, it holds

〈z − x, (PH )λ(x) − x〉 = 1

λ
‖(PH )λ(x) − x‖2,

x ∈ H and z ∈ H . Further properties of NE, AV, FNE, RFNE, QNE, SQNE operators,
cutters, and relaxed cutters as well as relations among these operators which we use
in this paper can be found, e.g., in [15, Secs 2.1 and 2.2]. Below, we recall relations
of demicontractions to relaxed cutters and to SQNE operators. The following results
are well known; see, e.g., [36, Rem. 2.3].

Theorem 2.5 Let T : H → H have a fixed point and λ > 0. The following conditions
are equivalent:

(i) T is a cutter;
(ii) Tλ is an α-demicontraction with α = (λ − 2)/λ ∈ (−∞, 1).

Proof If λ ∈ (0, 2], then it follows from [15, Th. 2.1.39] that T is a cutter if and only
if Tλ is ρ-SQNE with ρ:=(2 − λ)/λ ∈ [0,+∞). The second part of this equivalence
means that Tλ is an α-demicontraction with α = −ρ = (λ − 2)/λ ∈ (−∞, 0]. It
follows from the proof of [15, Th. 2.1.39] that the theorem is true for arbitrary λ > 0.
If λ > 2 then α = (λ − 2)/λ ∈ (0, 1). ��

Because the function f : (0,+∞) → (−∞, 1) defined by f (λ) = (λ − 2)/λ is a
bijection, Theorem 2.5 states that every demicontraction can be treated as a relaxation
of a cutter and vice versa. Replacing Tλ by S in Theorem 2.5, setting λ := 2/(1 − α)

for α ∈ (−∞, 1), we obtain the following result which is equivalent to Theorem 2.5.

123



1616 Numerical Algorithms (2024) 95:1611–1642

Corollary 2.6 Let S : H → H have a fixed point, α ∈ (−∞, 1) and λ = 2/(1 − α) ∈
(0,+∞). Then, the following conditions are equivalent:

(i) S is an α-demicontraction.
(ii) S is a λ-relaxed cutter.

Theorem 2.5 and Corollary 2.6 yield that a relaxation of a demicontraction is again
a demicontraction (cf. [9, Lem. 3.1]).

Corollary 2.7 Let S : H → H have a fixed point, α ∈ (−∞, 1) and μ > 0. Then the
following conditions are equivalent:

(i) S is an α-demicontraction.
(ii) Sμ is a β-demicontraction, where β = (μ + α − 1)/μ ∈ (−∞, 1).

The notion of the demi-closedness principle defined below is important for the
convergence properties of algorithms employing relaxed cutters.

Definition 2.8 We say that an operator T : H → H satisfies the demi-closedness
principle if T − Id is demiclosed at 0, i.e., for any bounded sequence {xk}∞k=0 with
‖T (xk) − xk‖ → 0 and for its weak cluster point y it holds that y ∈ FixT .

In some publications, the notion weak regularity of T is applied for an operator T
satisfying the demi-closedness principle; see, e.g., [20]. It is well known that a nonex-
pansive operator satisfies the demi closedness principle [41]. Obviously, a relaxation of
an operator satisfying the demi-closedness principle also satisfies the demi-closedness
principle. In particular, a strict pseudocontraction, as a relaxation of an FNE opera-
tor, satisfies the demi-closedness principle. Moreover, a convex combination as well
as composition of SQNE operators that share a common fixed point and satisfy the
demi-closedness principle also satisfies the demi-closedness principle [16, Thms 4.1
and 4.2]. In what follows, we give conditions under which strict pseudocontractions
as well as demicontractions also share these properties. It is well known that fixed
point iterations employing RFNE operators as well as algorithms employing relaxed
cutters (or, equivalently, SQNE operators) that satisfy the demi-closedness principle
generate sequences which converge weakly, under the assumption that the relaxation
parameters are in (0, 2). We briefly recall corresponding results. Let V : H → H be
an operator with a fixed point. Consider the following iteration

xk+1 = Vνk (x
k), (11)

where x0 ∈ H is arbitrary and νk ≥ 0 is a relaxation parameter applied in the k-th
iteration, k ≥ 0. The following result which is due to Reich [44, Theorem 2] is also
known in the literature as the Krasnosel’skiı̆-Mann theorem (see, e.g., [14, Thms 2.1
and 2.2]).

Proposition 2.9 If V is FNE with FixV 	= ∅, νk ∈ [ε, 2 − ε] for some ε ∈ (0, 1) and
xk is generated by iteration (11) then xk converges weakly to an element of FixV .

Many variants of the following result are well known (see, e.g., [15, Cor. 3.7.3] or
its more general versions [5, Th. 2.9] or [20, Th. 6.1(i)]).
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Proposition 2.10 If V is a cutter satisfying the demi-closedness principle, νk ∈ [ε, 2−
ε] for some ε ∈ (0, 1) and xk is generated by iteration (11), then xk converges weakly
to an element of FixV .

An equivalent formulation of the proposition below was proposed by Măruşter in
[38, Th. 1]. By the first look, this result seems to be more general than Proposition
2.10 (see also [10, Th. 12] for a related result).

Proposition 2.11 Let α ∈ (−∞, 1), V : H → H be an α-demicontraction satisfying
the demi-closedness principle and the sequence {xk}∞k=0 be generated by iteration
(11). If νk ∈ [ε, 1 − α − ε] for some ε ∈ (0, 1−α

2 ), then xk converges weakly to an
element of FixV .

Remark 2.12 If α = −1 in Proposition 2.11, then, by Corollary 2.6, V is a cutter (1-
RFNE operator). Thus, Proposition 2.10 follows from Proposition 2.11. Nevertheless,
Proposition 2.11 can also be reduced to Proposition 2.10. Indeed. Suppose that V is an
α-demicontraction and νk ∈ [ε, 1 − α − ε] for some ε ∈ (0, 1−α

2 ). By Corollary 2.6,

T := V 1−α
2

is a cutter. Consequently, Vνk = Tλk , where λk = 2νk
1−α

∈ [ 2ε
1−α

, 2 − 2ε
1−α

],
i.e., V satisfies the assumptions of Proposition 2.10. We see that the assumption that
V is an α-demicontraction in Proposition 2.11 is superfluous. It is enough to suppose
that V is a cutter and νk ∈ [ε, 2 − ε] for some ε ∈ (0, 1) or, equivalently, that V is
quasi-nonexpansive and νk ∈ [ε, 1 − ε] for some ε ∈ (0, 1/2).

Many iterations studied in the last decades can be presented as special cases of (11).
We recall here two algorithms.

Example 2.13 Let T and U be FNE. Define V := U2T2 (T2 and U2 are NE as 2-
relaxations of FNE operators) and let νk = ν = 1

2 . Then, U2T2 is NE as composition
of NE operators, consequently Vν is FNE and (11) with νk = 1

2 is, actually, the
averaged alternating reflection method (also called Douglas–Rachford method); see
[6]. Clearly, for arbitrary ν ∈ (0, 1), the operator Vν is averaged. If, additionally,
FixV 	= ∅, then Vν is an SQNE operator satisfying the demi-closedness principle,
thus, for any sequence {xk}∞k=0 generated by the iteration xk+1 = Vνk x

k where νk ∈
[ε, 1 − ε] for some ε ∈ (0, 1/2), converges weakly to a fixed point of V . Now define
V := UμTλ where λ,μ > 0 (or, equivalently, V is composition of an α- and a β-
SPC, where α, β ∈ (−∞, 1)). Under what conditions on λ,μ > 0 (equivalently on
α, β ∈ (−∞, 1)) and νk any sequence {xk}∞k=0 generated by iteration (11) converges
weakly to a fixed point of V ? In particular, may one of the parameters λ orμ be greater
than 2? For example, if V = UμTλ, where λ + μ = 4, does the convergence hold
for some νk? Answer on this questions follows from [3, Props 2.5 and 2.9]. Natural
questions arise at this point. Does the convergence remain true if we suppose that
T and U are cutter operators that share a common fixed point and satisfy the demi-
closedness principle instead of the assumption that T and U are FNE and FixV 	= ∅?
Under what conditions on λ and μ it holds FixV = FixT ∩ FixU? These questions
will be answered in Sects. 3 and 4.
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Example 2.14 In [39], Moudafi considered the following split common fixed point
problem (SCFPP):

find x∗ ∈ FixU such that Ax∗ ∈ FixT , (12)

where A : H1 → H2 is a nonzero bounded linear operator, H1 and H2 are two real
Hilbert spaces, S : H2 → H2 is an α-demicontraction with FixS = Q,U :H1 → H1
is a β-demicontraction with FixU = C , both satisfying the demi-closedness principle,
and F := C ∩ A−1(Q) 	= ∅. Moudafi proposed the following iteration for solving the
SCFPP:

xk+1 = Uμk Tλ(x
k), (13)

where x0 ∈ H1 is arbitrary, μk ∈ (ε, 1−β − ε) for some ε ∈ (0, 1−β
2 ), λ ∈ (0, 1−α)

and T is the Landweber operator related to S, i.e.

T (x) := L{S}(x) = x + 1

‖A‖2 A
∗(S(Ax) − Ax) (14)

(see [21] for a definition of the Landweber transform L{·}). Moudafi proved that for
arbitrary x0 ∈ H1 the sequence {xk}∞k=0 generated by iteration (13), where T is given
by (14), converges weakly to an element of F [39, Th. 2.1]. Related algorithms for
the so called multiple split fixed point problems (MSFPP) with cyclic application of
Landweber transform were studied in [49] and [50]. Moudafi supposed that α, β ∈
[0, 1), but the convergence also holds for arbitrary α, β ∈ (−∞, 1). Indeed, suppose
for simplicity, thatμk is constant, i.e.,μk = μ ∈ (0, 1−β) for all k ≥ 0. Similarly as in
[16, Lem. 4.1], one can prove that T is an α-demicontraction and FixT = A−1(FixS).
By Corollary 2.7, Tλ is a γ -demicontraction, where γ = 1 − 1−α

λ
< 0, i.e., Tλ is

−γ -SQNE, and Uμ is a δ-demicontraction, where δ = 1 − 1−β
μ

< 0, i.e. Uμ is

−δ-SQNE. Thus, UμTλ is κ-SQNE, where κ = −(γ −1 + δ−1)−1 [15, Cor. 2.1.47],
Fix(UμTλ) = FixUμ ∩ FixTλ = FixU ∩ FixT = F [15, Th. 2.1.26(ii)] and UμTλ

satisfies the demi-closedness principle [20, Cor. 5.6(i)]. Proposition 2.10 yields now
that any sequence {xk}∞k=0 generated by iteration (13), where T is given by (14),
converges weakly to an element of F . The convergence also holds ifμk is not constant.
To prove it, one should introduce a definition of a sequence of operators satisfying the
demi-closedness principle and apply [20, Cor. 5.5(i)] instead of [20, Cor. 5.6(i)]. Note
that iteration (13) employed, actually, SQNE operatorsUμk and Tλ. Natural questions
arise at this point. Is it possible to allow that Tλ and/or Uμk are demicontractions
which are not SQNE? Under what conditions on λ,μ, νk > 0 any sequence {xk}∞k=0
generated by the iteration xk+1 = (UμTλ)νk (x

k) converges weakly to an element of
F? Theses questions will be answered in Sects. 3 and 4.

3 Properties of strict pseudocontractions and demicontractions

In this section, we give conditions under which convex combinations as well as com-
positions of demicontractions (satisfying the demi-closedness principle) are again
demicontractions (satisfying the demi-closedness principle).
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3.1 Convex combinations of strict pseudocontractions and demicontractions

Let Ti : H → H, i ∈ I := {1, 2, ...,m}. The following theorems extend [15, Thms
2.1.50 and 2.2.35], where only the case λi ∈ (0, 2), i ∈ I , was considered. An
equivalent formulation of the theorem below is presented in [3, Prop. 2.4].

Theorem 3.1 Let Ti be λi -RFNE where λi ∈ (0,+∞), i ∈ I , wi > 0, i ∈ I , with∑m
i=1 wi = 1 and T := ∑m

i=1 wi Ti . Then:

(i) T is λ-RFNE with

λ =
m∑

i=1

wiλi ; (15)

(ii) The relaxation parameter λ satisfies inequalities

0 < min
i∈I λi ≤ λ ≤ max

i∈I λi < +∞. (16)

Proof In [15, Th. 2.2.35] the case λi ∈ (0, 2), i ∈ I , was considered. It follow from the
proof of [15, Th. 2.2.35] that the theorem is true for arbitrary λi ∈ (0,+∞), i ∈ I .��
Corollary 3.2 Let Ti be an αi -SPC, where αi ∈ (−∞, 1), i ∈ I , wi > 0, i ∈ I , with∑m

i=1 wi = 1, and T := ∑m
i=1 wi Ti . Then:

(i) T is an α-SPC with

α = 1 −
(

m∑

i=1

wi

1 − αi

)−1

; (17)

(ii) The parameter α satisfies inequalities

− ∞ < min
i∈I αi ≤ α ≤ max

i∈I αi < 1. (18)

Proof By Proposition 2.3, Ti is λi -RFNE, where λi = 2
1−αi

, i ∈ I . Theorem 3.1 yields

that T is λ-RFNE, where λ = ∑m
i=1

2wi
1−αi

. Applying Proposition 2.3 again, we obtain
that T is an α-SPC with

α = 1 − 2

λ
= 1 − 2

(
m∑

i=1

2wi

1 − αi

)−1

= 1 −
(

m∑

i=1

wi

1 − αi

)−1

.

This proves part (i). Moreover,

−∞ < min
j∈I α j = 1 −

(
m∑

i=1

wi

1 − min j∈I α j

)−1

≤ 1 −
(

m∑

i=1

wi

1 − αi

)−1

≤ 1 −
(

m∑

i=1

wi

1 − max j∈I α j

)−1

= max
j∈I α j < 1
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which proves part (ii). ��
Theorem 3.3 Let Ti : H → H be a λi -relaxed cutter, where λi ∈ (0,+∞), i ∈ I ,⋂m

i=1 FixTi 	= ∅, wi > 0, i ∈ I , with
∑m

i=1 wi = 1, and T = ∑m
i=1 wi Ti . Then:

(i) The operator T is a λ-relaxed cutter with λ given by (15).
(ii) The relaxation parameter λ satisfies inequalities (16).
(iii) FixT = ⋂m

i=1 FixTi .
(iv) Suppose that Ti , i ∈ I , satisfy the demi-closedness principle. Then T also satisfies

the demi-closedness principle.

Proof (cf. [15, Th. 2.1.50]) Let x ∈ H and all z ∈ ⋂
i∈I FixTi . Denote vi := wiλi

λ
and

defineUi := (Ti )λ−1
i
, i ∈ I . Then,Ui is a cutter, Ti x − x = λi (Ui − x), vi > 0, i ∈ I ,

and
∑m

i=1 vi = 1. By the convexity of the function ‖ · ‖2, we obtain

〈z − x, T (x) − x〉 =
m∑

i=1

wi 〈z − x, Ti (x) − x〉 (19)

≥
m∑

i=1

wi

λi
‖Ti (x) − x‖2 = λ

m∑

i=1

vi‖Ui (x) − x‖2 (20)

≥ λ

∥
∥
∥
∥
∥

m∑

i=1

vi (Ui (x) − x)

∥
∥
∥
∥
∥

2

= 1

λ

∥
∥
∥
∥
∥

m∑

i=1

wiλi (Ui (x) − x)

∥
∥
∥
∥
∥

2

(21)

= 1

λ

∥
∥
∥
∥
∥

m∑

i=1

wi (Ti (x) − x)

∥
∥
∥
∥
∥

2

= 1

λ
‖T (x) − x‖2. (22)

(ii) is obvious.
(i) and (iii) The inclusion

⋂m
i=1 FixTi ⊆ FixT is clear. If FixT = ∅, then the

converse inclusion is obvious. Suppose that FixT 	= ∅. For x ∈ FixT there hold
equalities in (19)–(22) which in view of wi

λi
> 0, i ∈ I , means that x ∈ FixTi , i ∈ I .

This yields (i) and (iii).
(iv) Define U := ∑m

i=1 viUi . By (i), U is a cutter. We have

T x−x =
m∑

i=1

wi (Ti x−x) = λ

m∑

i=1

wiλi

λ
(Ui x−x) = λ

m∑

i=1

vi (Ui x−x) = λ(Ux−x).

Because Ui satisfies the demi-closedness principle as a relaxation of Ti , i ∈ I , the
operatorU satisfies the demi-closedness principle [16, Th. 4.1]. Consequently, T also
satisfies the demi-closedness principle as a relaxation of U . ��
Corollary 3.4 Let Ti : H → H be an αi -demicontraction, where αi ∈ (−∞, 1), i ∈ I ,⋂m

i=1 FixTi 	= ∅, wi > 0, i ∈ I , with
∑m

i=1 wi = 1, and T := ∑m
i=1 wi Ti . Then:

(i) T is an α-demicontraction with α given by (17).
(ii) The parameter α satisfies inequalities (18).

123



Numerical Algorithms (2024) 95:1611–1642 1621

(iii) FixT = ⋂m
i=1 FixTi .

(iv) Suppose that Ti , i ∈ I , satisfy the demi-closedness principle. Then, T also satisfies
the demi-closedness principle.

3.2 Composition of strict pseudocontractions and demicontractions

Before we formulate the main result of this paper, we prove an auxiliary lemma. Let
λ,μ > 0. Consider the following equation:

(

1 − 2

ν

)2

= 4(
1

λ
− 1

ν
)(
1

μ
− 1

ν
). (23)

If λ = 2 and μ = 2, then arbitrary ν 	= 0 is a solution of (23). Otherwise, if λμ = 4,
then (23) has no solution. One can easily check that in other cases, the unique solution
of (23) is

ν∗ = ν(λ, μ) = 4(λ + μ − λμ)

4 − λμ
. (24)

In particular, if λ = 2 and μ 	= 2 or if μ = 2 and λ 	= 2, then ν∗ = 2 is the unique
solution of (23). Level lines of the function ν(λ, μ) are presented on Fig. 1. Note that
ν(λ, μ) is well defined if and only if λμ 	= 4. Moreover, one can be easily proved that
if λμ < 4, then λ + μ > λμ and ν(λ, μ) > 0 (see Appendix). If 4 < λμ < λ + μ,
then ν(λ, μ) < 0. If λ + μ < λμ, then λμ > 4 and ν(λ, μ) > 0. However, in the
latter case ν ≤ min{λ,μ}, where the equality holds if and only if min{λ,μ} = 2.

Fig. 1 Solution ν of (23) depending on λ and μ
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The following auxiliary lemma shows the properties of the solution of (23) for
λμ < 4 (cf. [15, Lem. 2.1.45], where the case λ,μ < 2 was considered).

Lemma 3.5 Let λ,μ > 0 be such that λμ < 4. Then:

(i) The unique solution ν∗ = ν(λ, μ) of (23) satisfies the following inequalities

0 < min{λ,μ} <
4min{λ,μ}

min{λ,μ} + 2
≤ ν∗ (25)

and
ν∗ ≥ max{λ,μ}; (26)

(ii) If, additionally, λ,μ < 2 then

ν∗ ≤ 4max{λ,μ}
max{λ,μ} + 2

< 2; (27)

Proof Note that ∂ν
∂λ

(λ, μ) = 4 (μ−2)2

(4−λμ)2
≥ 0. Similarly, ∂ν

∂μ
(λ, μ) = 4 (λ−2)2

(4−λμ)2
≥ 0.

Suppose that λ ≤ μ. Note that λ < 2 in this case, because λμ < 4. Thus,

λ <
4λ

2 + λ
= ν(λ, λ) ≤ ν(λ, μ). (28)

Moreover,

ν(λ, μ) ≤ ν(μ,μ) = 4μ

2 + μ
< 2

if λ ≤ μ < 2. Now suppose that μ ≤ λ. In a similar way as above one can prove that

μ <
4μ

2 + μ
= ν(μ,μ) ≤ ν(λ, μ). (29)

Moreover,

ν(λ, μ) ≤ ν(λ, λ) = 4λ

2 + λ
< 2

ifμ ≤ λ < 2. The considerations made above prove all of the inequalities in (25)-(27).
��

Let λ,μ > 0 be such that λμ < 4. The theorem below shows that composition of
λ-RFNE and μ-RFNE operators is ν(λ, ν)-RFNE. This result extends a well-known
result of Ogura and Yamada [40, Theorem 3(b)] (cf. [15, Theorem 2.2.37]), where the
case λ,μ ∈ (0, 2)was considered.Moreover, we show that the constant ν∗ := ν(λ, μ)

is optimal. An equivalent formulation of the first part of (ii) of the theorem below was
presented in [3, Prop. 2.5] in terms of conically averaged operators. However, we
give another proof of this part which we apply in Section 3.3 in order to introduce
extrapolations of compositions of RFNE operators and extrapolations of compositions
of relaxed cutters. As far as we know, the second part of item (ii) in the theorem below
as well as items (i) and (iii)-(v) are new. For x, y ∈ H denote a1 := T (x) − x ,
a2 := T (y) − y, b1 := UT (x) − T (x) and b2 := UT (y) − T (y).
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Theorem 3.6 Let λ,μ > 0, T : H → H be λ-RFNE, U : H → H be μ-RFNE. Then,

(i) For arbitrary x, y ∈ H and for arbitrary ν ∈ R\{0} it holds that

〈y − x, (UT (x) − x) − (UT (y) − y)〉 − 1

ν
‖(UT (x) − x) − (UT (y) − y)‖2

≥ (
1

λ
− 1

ν
)‖a1−a2‖2+(

1

μ
− 1

ν
)‖b1−b2‖2+(1 − 2

ν
)〈a1−a2, b1−b2〉. (30)

(ii) If λμ < 4, then UT is ν∗-RFNE, where ν∗ := ν(λ, μ) is given by (24). Conse-
quently, UT satisfies the demi-closedness principle.
Moreover, if dimH ≥ 2, then the constant ν∗ is optimal, i.e., for arbitrary ρ ∈
(0, ν∗) there are a λ-RFNE operator T and a μ-RFNE operator U such that UT
is not ρ-RFNE.

(iii) If λμ < λ + μ and FixT ∩ FixU 	= ∅, then FixUT = FixT ∩ FixU.
(iv) Suppose that λμ > 4. If λμ ≤ λ + μ and dimH ≥ 2 or if λμ > λ + μ, then

there are a λ-RFNE operator T and a μ-RFNE operator U such that UT is not
RFNE.

(v) If λμ ≥ λ + μ, then there are a λ-RFNE operator T and a μ-RFNE operator U
such that FixUT 	= FixT ∩ FixU 	= ∅.

Proof (i) Let ν ∈ R and x, y ∈ H be arbitrary. It follows from (5) that 〈y−x, a1−a2〉 ≥
1
λ
‖a1 − a2‖2 and 〈T (y) − T (x), b1 − b2〉 ≥ 1

μ
‖b1 − b2‖2. We have

〈y − x, (UT (x) − x) − (UT (y) − y)〉 − 1

ν
‖(UT (x) − x) − (UT (y) − y)‖2

= 〈y−x, (a1+b1)−(a2+b2)〉− 1

ν
‖(a1+b1)−(a2+b2)‖2 (31)

= 〈y−x, a1−a2〉+〈T (y)−T (x)+(a1−a2), b1−b2〉− 1

ν
‖(a1+b1)−(a2+b2)‖2

(32)

≥ 1

λ
‖a1−a2‖2+ 1

μ
‖b1−b2‖2+〈a1−a2, b1−b2〉− 1

ν
‖(a1+b1)−(a2+b2)‖2 (33)

= (
1

λ
− 1

ν
)‖a1 − a2‖2 + (

1

μ
− 1

ν
)‖b1 − b2‖2 + (1 − 2

ν
)〈a1 − a2, b1 − b2〉. (34)

(ii) Let λμ < 4 and ν∗ = ν(λ, μ) be defined by (24). By Lemma 3.5(i), ν∗ ≥
max{λ,μ} > 0, thus, 1

λ
− 1

ν∗ ≥ 0 and 1
μ

− 1
ν∗ ≥ 0. Now Lemma 3.5 and the properties

of the inner product give

(
1

λ
− 1

ν∗ )‖a1 − a2‖2 + (
1

μ
− 1

ν∗ )‖b1 − b2‖2 + (1 − 2

ν∗ )〈a1 − a2, b1 − b2〉

=
∥
∥
∥
∥
∥

√
1

λ
− 1

ν∗ (a1 − a2)∓
√

1

μ
− 1

ν∗ (b1 − b2)

∥
∥
∥
∥
∥

2

≥ 0, (35)
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where the sign ∓ should be replaced by – if 0 < ν∗ < 2 and by + if ν∗ ≥ 2. By
inequalities (31)-(35),

〈y−x, (UT (x)−x)−(UT (y)− y)〉− 1

ν∗ ‖(UT (x)−x)−(UT (y)− y)‖2 ≥ 0. (36)

By Proposition 2.2 this means thatUT is a ν∗-RFNE. Consequently,UT satisfies the
demi-closedness principle as a relaxation of an NE operator.

Now, suppose that dimH ≥ 2. We prove that ν∗ is optimal. Suppose for simplicity,
thatH = R

2. Denote H := {x = (x1, x2) ∈ R
2 : x2 = 0} and Hk := {x = (x1, x2) ∈

R
2 : x1 − kx2 = k} and define T := (PH )λ and Uk := (PHk )μ, k ≥ 0. Clearly, T is

λ-RFNE, Uk is μ-RFNE and zk := (k, 0) is the only fixed point of UkT . Let ρ ∈ (0,
ν∗). We prove that for some k ≥ 0 the operator UkT is not ρ-RFNE. For x = (0, ξ)

with ξ ∈ R we have T (x) = (0, (1 − λ)ξ),

UkT (x) − x =
(

μk[(1 − λ)ξ + 1]
k2 + 1

,−λξ − μk2[(1 − λ)ξ + 1]
k2 + 1

)

(37)

and

〈zk − x,UkT (x) − x〉 = μk2[(1 − λ)ξ + 1](1 + ξ)

k2 + 1
+ ξ2λ. (38)

Define
fk(ξ, ρ) := ρ〈zk − x,UkT x − x〉 − ‖UkT (x) − x‖2.

In order to prove that for ρ < ν∗ and for some k ≥ 0 the operatorUkT is not ρ-RFNE
it is enough to show that f (ξ, ρ) := limk→∞ fk(ξ, ρ) < 0 for some ξ ∈ R and for
arbitrary ρ ∈ (0, ν∗). Actually, it is enough to show this for ρ close to ν∗, because, if
an operator S is ν1-RFNE and ν2 > ν1, then S is ν2-RFNE. By (37)-(38), we have

f (ξ, ρ) = (λ+μ−λμ)[ρ−(λ+μ−λμ)]ξ2+[ρ(2−λ)−2(λ+μ−λμ)]μξ+μρ−μ2.

Note that 0 < λ + μ − λμ < ν∗. If ρ ∈ (λ + μ − λμ, ν∗), then the function f (·, ρ)

attains its minimum at

ξ = ξ∗(ρ) = − [ρ(2 − λ) − 2(λ + μ − λμ)]μ
2(λ + μ − λμ)[ρ − (λ + μ − λμ)] (39)

equal to

h(ρ) := f (ξ∗(ρ), ρ) = − μ2

4(λ + μ − λμ)

[ρ(2 − λ) − 2(λ + μ − λμ)]2
ρ − (λ + μ − λμ)

+μρ−μ2.

(40)
A direct calculus shows that h(ν∗) = 0 and that

dh

dρ
(ν∗) = 4 − λμ

λ + μ − λμ
> 0.
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Thus, for ρ < ν∗ and sufficiently close to ν∗ we have f (ξ∗(ρ), ρ) < 0. This completes
the proof of (ii).

(iii) Let λμ < λ + μ and FixT ∩ FixU 	= ∅. If max{λ,μ} < 2, then T and U are
SQNE and it follows from [4, Prop. 2.10] that FixUT = FixT ∩ FixU . Suppose that
max{λ,μ} ≥ 2. Lemma 3.5(i) yields that ν∗ ≥ 2 if λμ < 4. Moreover, ν∗ < 0 if
λμ > 4. The inclusion FixT ∩ FixU ⊆ FixUT is clear. We prove that

FixUT ⊆ FixT ∩ FixU . (41)

The inclusion is obvious if FixUT = ∅. Suppose that FixUT 	= ∅ and that the opposite
to (41) holds true. Inequalities (31)–(35) for y ∈ FixUT give

〈y− x,UT x− x〉− 1

ν∗ ‖UT x− x‖2≥
∥
∥
∥
∥
∥

√
1

λ
− 1

ν∗ (a1− a2)+
√

1

μ
− 1

ν∗ (b1− b2)

∥
∥
∥
∥
∥

2

≥0

(42)
(note that (35) with the + sign instead of ∓ is also true if 4 < λμ < λ + μ, because
ν∗ < 0 in this case). Let x ∈ FixUT be such that x /∈ FixT ∩ FixU . Then, it follows
from (42) that

√
1

λ
− 1

ν∗ (a1 − a2) +
√

1

μ
− 1

ν∗ (b1 − b2) = 0 (43)

and
(a1 − a2) + (b1 − b2) = a1 + b1 = UT x − x = 0.

This leads to
√

1
λ

− 1
ν∗ =

√
1
μ

− 1
ν∗ , consequently, λ = μ ≥ 2. This stands in contra-

diction to the assumption λμ < λ + μ, which proves (41).
(iv) We consider 2 cases:
(a) 4 < λμ ≤ λ + μ and dimH ≥ 2. For simplicity we suppose that H = R

2.
For the operators T and Uk , we use the same notation as in (ii). Let x = (0, ξ) with
ξ ∈ R. Then, UkT (x) is given by (37). Suppose that for all k ≥ 0, the operators
UkT are RFNE; consequently, they are relaxed cutters. Then, 〈zk − x,UkT (x)− x〉 ≥
1
νk

‖UkT (x) − x‖2 ≥ 0 for some νk > 0, k ≥ 0, and

α := lim
k

〈zk − x,UkT x − x〉 = lim
k

μk2[(1 − λ)ξ + 1](1 + ξ)

k2 + 1
+ ξ2λ

= μ[(1 − λ)ξ + 1](1 + ξ) + ξ2λ = (λ + μ − λμ)ξ2 + (2 − λ)μξ + μ ≥ 0

for all ξ ∈ R. If λμ = λ + μ, then we obtain α < 0 for some ξ , a contradiction. If
λμ < λ + μ, then

� := (2 − λ)2μ2 − 4μ(λ + μ − λμ) = λμ(λμ − 4) > 0.

Thus, for ξ = (λ−2)μ
2(λ+μ−λμ)

we obtain α < 0, a contradiction. Thus, there is k ≥ 1 for
which 〈zk − x,UkT x − x〉 < 0. This means that UkT is not a relaxed cutter; thus,
UkT is not RFNE.
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(b) λμ > λ + μ. Then, λ > 1. Let H ⊆ H be a hyperplane. Denote P := PH and
define T := Pλ and U := Pμ. Clearly, T is λ-RFNE, U is μ-RFNE and FixUT =
FixT = FixU = H . Let x ∈ H and z ∈ H be arbitrary. We have y := Pλ(x) =
x + λ(P(x) − x). By the properties of the metric projection, P(y) = P(x). Thus,

UT (x) − x = PμPλ(x) − x = y + μ(P(y) − y) − x

= x + λ(P(x) − x) + μ(1 − λ)(P(x) − x) − x

= (λ + μ − λμ)(P(x) − x)

and

〈z − x,UT (x) − x〉 = (λ + μ − λμ)〈z − x, P(x) − x〉
= (λ + μ − λμ)‖P(x) − x‖2 < 0

if x /∈ H , which means that UT is not a relaxed cutter; thus, UT is not RFNE.
(v) Let λμ ≥ λ + μ. Then, λ > 1. Let H ⊆ H be a hyperplane. Denote P := PH ,

σ := λ
μ(λ−1) and define T := Pλ and U := (Pσ )μ = Pσμ. Clearly, T is λ-RFNE, U

is σμ-RFNE and FixT = FixU = H . Similarly as in the proof of case (b) of (iv), for
any x ∈ H, we have

UT (x) − x = PσμPλ(x) − x = (λ + σμ − λσμ)(P(x) − x)

= (λ + λ

λ − 1
− λ2

λ − 1
)(P(x) − x) = 0

which means that FixUT = H 	= H = FixT ∩ FixU . ��
By Proposition 2.3, there is equivalence between α-SPC and λ-RFNE operators,

where α ∈ (−∞, 1) and λ = 2/(1 − α) ∈ (0,+∞). Thus, Theorem 3.6 can be
presented in terms of SPC instead of RFNE operators. Note that for α, β ∈ (−∞, 1),
the inequality α + β < αβ implies that α + β < 0, consequently at least one of α, β

is negative and αβ
α+β

< 1 (see Appendix).

Corollary 3.7 Let α, β ∈ (−∞, 1), T : H → H be an α-SPC, U : H → H be a
β-SPC.

(i) If α + β < αβ, then UT is a γ ∗-SPC, where

γ ∗ = γ (α, β) = αβ

α + β
. (44)

Consequently, UT satisfies the demi-closedness principle. If, additionally,

(a) α, β < 0, then γ ∗ < 0.
(b) αβ < 0, then γ ∗ ∈ (0, 1).

Moreover, if dimH ≥ 2, then the constant γ ∗ is optimal, i.e., for arbitrary ρ ∈
(−∞, γ ∗), there are an α-SPC T and a β-SPC U such that UT is not a ρ-SPC.
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(ii) If α + β < 0 and FixT ∩ FixU 	= ∅, then FixUT = FixT ∩ FixU.
(iii) Suppose that α + β > αβ. If α + β ≤ 0 and dimH ≥ 2 or if α + β > 0, then

there are an α-SPC T and a β-SPC U such that UT is not an SPC.
(iv) If α + β ≥ 0, then there are an α-SPC T and a β-SPC U such that FixUT 	=

FixT ∩ FixU 	= ∅.
Let λ,μ > 0 be such that λμ < 4, T : H → H be λ-RFNE, U : H → H be

μ-RFNE (equivalently, let T : H → H be an α-SPC, U : H → H be a β-SPC,
where α, β ∈ (−∞, 1) are such that α + β < αβ) with Fix(UT ) 	= ∅. Theorem 3.6
(equivalently, Corollary 3.7) together with Proposition 2.9 and the fact that (UT )1/ν∗
is FNE yield the weak convergence of sequences xk+1 = (UT )λk/ν∗(xk) to some
x∗ ∈ Fix(UT ), where λk ∈ [ε, 2 − ε] for some small ε > 0. In Section 4 we show
that an enlarged range of λk guarantees the weak convergence (see Theorem 4.1 and
Corollaries 4.2 and 4.4).

If we set y ∈ FixT in Definition 2.1(e), then we receive the definition of
an α-demicontraction (equivalently a λ-relaxed cutter; see Corollary 2.6). Thus,
Theorem 3.6 yields a part of the following result which extends a well known result
of Yamada and Ogura [52, Proposition 1(d)] (cf. [15, Theorem 2.1.46]), where only
the case λ,μ ∈ (0, 2) was considered. The optimality of the constant ν∗ which was
proved in Theorem 3.6 also applies for composition of relaxed cutters. As far as we
know, the results presented in the theorem below are new. Denote a := T (x) − x and
b := UT (x) − T (x).

Theorem 3.8 Let λ,μ > 0, T : H → H be a λ-relaxed cutter, U : H → H be a
μ-relaxed cutter and let FixT ∩ FixU 	= ∅. Then
(i) For arbitrary x ∈ H and z ∈ FixT ∩ FixU and for arbitrary ν ∈ R it holds that

〈z−x,UT (x)−x〉− 1

ν
‖UT (x)−x‖2≥(

1

λ
− 1

ν
)‖a‖2+(

1

μ
− 1

ν
)‖b‖2+(1− 2

ν
)〈a, b〉.

(45)
(ii) If λμ < 4, then UT is a ν∗-relaxed cutter, where ν∗ = ν(λ, μ) is given by

(24). Moreover, if dimH ≥ 2, then the constant ν∗ is optimal, i.e. for arbitrary
ρ ∈ (0, ν∗) there are a λ-relaxed cutter T and a μ-relaxed cutter U such that
UT is not a ρ-relaxed cutter.

(iii) If λμ < λ + μ, then FixUT = FixT ∩ FixU.
(iv) Suppose that λμ > 4. If λμ ≤ λ + μ and dimH ≥ 2 or if λμ > λ + μ, then

there are a λ-relaxed cutter T and a μ-relaxed cutter U such that UT is not a
relaxed cutter.

(v) If λμ ≥ λ+μ, then there are a λ-relaxed cutter T and a μ-relaxed cutter U such
that FixUT 	= FixT ∩ FixU.

(vi) Suppose that T and U satisfy the demi-closedness principle. If 4 	= λμ < λ + μ,
then the operators UT and (UT )1/ν∗ also satisfy the demi-closedness principle.

Proof Let x ∈ H and z ∈ FixT ∩ FixU be arbitrary. Denote a := T (x) − x and
b := UT (x)− T (x). It follows from (9) that 〈z− x, a〉 ≥ 1

λ
‖a‖2 and 〈z− T (x), b〉 ≥
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1
μ
‖b‖2. Thus, for relaxed cutters T andU inequalities (31)-(34) hold for y = z which

proves (i). This and inequality (35) gives

〈z − x,UT (x) − x〉 − 1

ν∗ ‖UT (x) − x‖2 ≥
∥
∥
∥
∥
∥

√
1

λ
− 1

ν∗ a∓
√

1

μ
− 1

ν∗ b
∥
∥
∥
∥
∥

2

≥ 0, (46)

where the sign ∓ should be replaced by − if 0 < ν∗ < 2 and by + if ν∗ ≥ 2 or
ν∗ < 0. The proof of (ii)-(v) is similar to the proof of Theorem 3.6.

(vi) Let 4 	= λμ < λ + μ. If max{λ,μ} < 2, then T ,U are SQNE and UT
satisfies the demi-closedness principle [16, Th. 4.2]. Suppose that max{λ,μ} ≥ 2.
Then, ν(λ, μ) ≥ 2 or ν(λ, μ) < 0, as it was observed before. In this case, the sign
∓ in (46) should be replaced by +. Let z ∈ FixT be fixed, {xk}∞k=0 be a bounded
sequence with ‖UT (xk)− xk‖ → 0, y ∈ H be its weak cluster point and let {xnk }∞k=0
be its subsequence such that xnk⇀y. We prove that y ∈ FixUT . Note that Tλ−1 is a
cutter and FixTλ−1 = FixT . By [15, Cor. 2.1.37],

‖T (xk)−xk‖=λ‖Tλ−1(xk)−xk‖ ≤λ‖PFixT (xk)−xk‖≤λ‖PFixT (xk)−z‖ ≤λ‖xk−z‖,

i.e. ‖T (xk) − xk‖ is bounded. Similarly as before, denote ak := T (xk) − xk and
bk := UT (xk) − T (xk). Let {xmk }∞k=0 ⊆ {xnk }∞k=0 be such that ‖amk‖ → α for some
α ≥ 0. We prove that α = 0. Suppose that the opposite holds, i.e. α > 0. By setting
x = xmk in (46), we obtain

0≤
∥
∥
∥
∥
∥

√
1

λ
− 1

ν∗ a
mk +

√
1

μ
− 1

ν∗ b
mk

∥
∥
∥
∥
∥

2

≤〈z− xmk ,UT (xmk )− xmk 〉− 1

ν
‖UT (xmk )− xmk ‖2 →0,

consequently, ∥
∥
∥
∥
∥

√
1

λ
− 1

ν∗ a
mk +

√
1

μ
− 1

ν∗ b
mk

∥
∥
∥
∥
∥

→ 0

Because ak + bk = UT (xk) − xk → 0, it holds bk = −ak + dk with dk → 0, thus
‖bmk‖ → α. By the triangle inequality,

∥
∥
∥
∥
∥

√
1

λ
− 1

ν∗ a
mk +

√
1

μ
− 1

ν∗ b
mk

∥
∥
∥
∥
∥
≥

∣
∣
∣
∣
∣

√
1

λ
− 1

ν∗ −
√

1

μ
− 1

ν∗

∣
∣
∣
∣
∣
‖amk‖−

√
1

μ
− 1

ν∗ ‖dmk‖.

This yields ∣
∣
∣
∣
∣

√
1

λ
− 1

ν∗ −
√

1

μ
− 1

ν∗

∣
∣
∣
∣
∣
‖amk‖ → 0,

consequently,
√

1
λ

− 1
ν∗ =

√
1
μ

− 1
ν∗ which yields λ = μ ≥ 2, a contradiction to

the assumption λμ < λ + μ. Thus, α = 0, i.e. ‖T (xmk ) − xmk‖ = ‖amk‖ → 0
and ‖UT (xmk ) − T (xmk )‖ = ‖bmk‖ → 0. Because T satisfies the demi-closedness
principle, y ∈ FixT . Moreover ymk := T (xmk ) = amk + xmk⇀y. BecauseU satisfies

123



Numerical Algorithms (2024) 95:1611–1642 1629

the demi-closedness principle, y ∈ FixU . Thus, y ∈ FixUT , i.e. UT satisfies the
demi-closedness principle. Consequently, (UT )1/ν∗ also satisfies the demi-closedness
principle as a relaxation of an operator satisfying the demi-closedness principle. ��

Theorem 3.8 can be presented in terms of demicontractions instead of relaxed
cutters.

Corollary 3.9 Let α, β ∈ (−∞, 1), T : H → H be an α-demicontraction, U : H →
H be a β-demicontraction, and let FixT ∩ FixU 	= ∅.
(i) If α + β < αβ, then UT is a γ ∗-demicontraction, where γ ∗ is given by (44).

If, additionally,

(a) α, β < 0 then γ ∗ < 0 and UT is −γ ∗-SQNE.
(b) αβ < 0 then γ ∗ ∈ (0, 1).

Moreover, if dimH ≥ 2, then the constant γ ∗ is optimal, i.e., for arbitrary ρ ∈
(−∞, γ ∗) there are an α-demicontraction T and a β-demicontraction U such
that UT is not a ρ-demicontraction.

(ii) If α + β < 0, then FixUT = FixT ∩ FixU.
(iii) Suppose that α + β > αβ. If α + β ≤ 0 and dimH ≥ 2 or if α + β > 0, then

there are an α-demicontraction T and a β-demicontraction U such that UT is
not a demicontraction.

(iv) If α + β ≥ 0, then there are an α-demicontraction T and a β-demicontraction U
such that FixUT 	= FixT ∩ FixU.

(v) Suppose that T and U satisfy the demi-closedness principle. If α + β < 0, then
the operators UT and (UT )1/ν∗ also satisfy the demi-closedness principle.

Let λ,μ > 0 be such that λμ < 4, T : H → H be a λ-relaxed cutter,U : H → H
be a μ-relaxed cutter (equivalently, let T : H → H be an α-demicontraction, U :
H → H be a β-demicontraction, where α, β ∈ (−∞, 1) are such that α + β < αβ )
with FixT ∩ FixU 	= ∅, both satisfying the demi-closedness principle. Theorem 3.8
(equivalently, Corollary 3.9) together with Proposition 2.10 and the fact that (UT )1/ν∗
is a cutter yield the weak convergence of sequences xk+1 = (UT )λk/ν∗(xk) to some
x∗ ∈ FixT ∩ FixU , where λk ∈ [ε − 2 − ε] for some small ε > 0. In Section 4, we
show that an enlarged range of λk guarantees the weak convergence (see Theorem 4.5
and Corollary 4.6).

Let Ti : H → H be an αi -demicontraction where αi ∈ (−∞, 1) � {0}, i ∈ I :=
{1, 2, ...,m}. Define T := TmTm−1...T1 and denote

γk := (

k∑

i=1

α−1
i )−1 and βk := (

m∑

i=k

α−1
i )−1, (47)

k = 1, 2, ...,m. The following Theorem extends [15, Th. 2.1.48], where the case
αi < 0, i ∈ I , is considered.

Theorem 3.10 Let αi ∈ (−∞, 1) � {0}, i ∈ I , where αi > 0 for at most one i ∈ I .
Suppose that Ti : H → H, i ∈ I , are αi -demicontractions that share a common fixed
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point. Ifγm < 1, then the operator T is aγm-demicontraction andFixT = ⋂m
i=1 FixTi .

If, moreover, Ti , i ∈ I , satisfy the demi-closedness principle, then the operator T also
satisfies the demi-closedness principle.

Proof Consider two cases:
(a) αi < 0 for all i ∈ I . Then, Ti is −αi -SQNE, i ∈ I , and it follows from

[15, Th. 2.1.48] that T is −γm-SQNE which means that T is a γm-demicontraction.
Moreover, [4, Prop. 2.10(i)] yields FixT = ⋂m

i=1 FixTi . If all Ti , i ∈ I , satisfy the
demi-closedness principle, then [16, Th. 4.2] yields that T also satisfies the demi-
closedness principle.

(b) α j > 0 for some j ∈ I . Then, αi < 0 for all i 	= j . Suppose that γm < 1.
Denote

Ui := Tm ...Ti and Vi := Ti ...T1.

We have
Uj = Uj+1Tj , Vj = Tj Vj−1 and T = Uj+1Vj .

Note that γ j−1 < 0, β j+1 < 0 and

1

γ j
+ 1

β j+1
= 1

γ j−1
+ 1

α j
+ 1

β j+1
= 1

γm
> 1.

Thus,
1

γ j−1
+ 1

α j
= 1

γ j
> 1. (48)

By (a), Uj+1 is a β j+1-demicontraction with β j+1 < 0, FixUj+1 = ⋂m
i= j+1 FixTi ,

Vj−1 is a γ j−1-demicontraction with γ j−1 < 0 and FixVj−1 = ⋂ j−1
i=1 FixTi . If Ti ,

i = 1, 2, ..., j −1, satisfy the demi-closedness principle, then [16, Th. 4.2] yields that
Vj−1 also satisfies the demi-closedness principle. Because γ j−1α j < 0, (48) yields

γ j−1 + α j < γ j−1α j < 0. (49)

Now, Corollary 3.9(i)-(ii) yields that Vj is a γ j -demicontraction with γ j ∈ (0, 1) and

FixVj = FixTj ∩ FixVj−1 =
j⋂

i=1

FixTi .

If Ti , i = 1, 2, ..., j , satisfy the demi-closedness principle, then Corollary 3.9(v)
yields that Vj also satisfies the demi-closedness principle as composition of Tj and
Vj−1 satisfying (49). Because β j+1γ j < 0, it holds

β j+1 + γ j < β j+1γ j < 0. (50)
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Applying Corollary 3.9(i)-(ii) again, we obtain that T = Uj+1Vj is a γm-
demicontraction and

FixT = FixUj+1 ∩ FixVj =
m⋂

i= j+1

FixTi ∩
j⋂

i=1

FixTi =
m⋂

i=1

FixTi .

Finally, if Ti , i ∈ I , satisfy the demi-closedness principle, then [16, Th. 4.2] yields that
Uj+1 also satisfies the demi-closedness principle and Corollary 3.9(v) yields that T
also satisfies the demi-closedness principle as composition ofUj+1 and Vj satisfying
(50). ��

3.3 Extrapolation of composition of demicontractions

Let λ,μ > 0 be such that λμ < 4. In Theorem 3.8, we proved that for composition of
λ- and μ-relaxed cutters T and U , the operator UT is a ν∗-relaxed cutter, where the
constant ν∗ is given by (24).Moreover, we proved that for ρ ∈ (0, ν∗) the operatorUT
need not to be a ρ-relaxed cutter. It turns out that if we allow ρ to depend on T ,U and
x then we can decrease ρ for which UT is a ρ-relaxed cutter. Applying this property
in corresponding algorithms, we are able to enlarge the step size ‖xk+1 − xk‖ without
loss of the Fejér monotonicity of {xk}∞k=0. This can lead to a faster convergence of x

k

to a solution. We start with the definition of a generalized relaxation of an operator.

Definition 3.11 Let σ : H → (0,+∞) and let S : H → H be an operator. We call
the operator Sσ : H → H defined by

Sσ (x) := x + σ(x)(S(x) − x)

a generalized relaxation of S and σ is called a relaxation function. If σ(x) ≥ 1 for
all x ∈ H and σ(x) > 1 for at least one x /∈ FixS, then Sσ is called an extrapolation
of S and σ is called an extrapolation function. If S is a cutter, then Sσ is called a
generalized σ -relaxed cutter.

If the function σ is constant, then the above definition coincides with the classical
definition of a relaxation. Clearly, in the case of generalized relaxation, the constant
λ in inequality (9) should be replaced by σ(x).

Extrapolations of FNEoperators aswell as of cutters have been successfully applied
in many papers, e.g., in [25, 42] (extrapolation of simultaneous projection), [17, 21,
33, 35] (extrapolation of a Landweber type operator) or [18] (extrapolation of cyclic
projection).

In this and in the next section, we answer the following questions:

1. Let T and U be SPCs with Fix(UT ) 	= ∅. What should be supposed on the
extrapolation functionσ : H → (0,+∞) in order to receive theweak convergence
of sequences xk generated by the iteration xk+1 = (UT )σ (xk), x0 ∈ H, to a fixed
point of UT ?
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2. Let T andU be demicontractionswith FixT∩FixU 	= ∅.What should be supposed
on the extrapolation function σ : H → (0,+∞) in order to receive the weak
convergence of sequences xk generated by the iteration xk+1 = (UT )σ (xk), x0 ∈
H, to a common fixed point of U and T ?

Beforewe formulate ourmain result of this section, we prove the following Lemma.

Lemma 3.12 Let λ,μ > 0 be such that λμ < 4 and a, b ∈ H be such that ‖a‖2 +
‖b‖2 > 0. Then,

1

λ
‖a‖2 + 1

μ
‖b‖2 + 〈a, b〉 > 0 (51)

and

0 <
‖a + b‖2

1
λ
‖a‖2 + 1

μ
‖b‖2 + 〈a, b〉 ≤ ν∗ = 4(λ + μ − λμ)

4 − λμ
. (52)

Proof Inequality (51) is clear if 〈a, b〉 ≥ 0. If 〈a, b〉 < 0, then it follows from the
properties of the inner product and from the assumption that

1

λ
‖a‖2 + 1

μ
‖b‖2 + 〈a, b〉 = ‖ 1√

λ
a + 1√

μ
b‖2 + (1 − 2√

λμ
)〈a, b〉 > 0.

Moreover, λ+μ−λμ > 0, because λμ < 4 (see Appendix). A direct calculus shows
that

4(λ + μ − λμ)(
1

λ
‖a‖2 + 1

μ
‖b‖2 + 〈a, b〉) − (4 − λμ)‖a + b‖2

=
∥
∥
∥
∥
∥

√
μ

λ
(|λ − 2|) a ±

√
λ

μ
(|μ − 2|) b

∥
∥
∥
∥
∥

2

≥ 0,

where the sign ± should be replaced by + if (λ − 2)(μ − 2) ≤ 0 and by − if
(λ − 2)(μ − 2) > 0. This proves inequality (52) which completes the proof. ��

Similarly as before, for operators T and U with Fix(UT ) 	= ∅ and for x, y ∈ H
denote a1 := T (x)− x , a2 := T (y)− y, b1 := UT (x)−T (x), b2 := UT (y)−T (y).
Moreover, for λ,μ > 0 with λμ < 4 denote

τ ∗(x, y) :=
{ ‖(a1−a2)+(b1−b2)‖2

1
λ
‖a1−a2‖2+ 1

μ
‖b1−b2‖2+〈a1−a2,b1−b2〉 , if x, y /∈ Fix(UT ),

1, otherwise.
(53)

By Lemma 3.12 with a := a1 − a2 and b := b1 − b2 and by the definition of of ν∗
given by (24), the function τ ∗ is well defined and 0 < τ ∗(x, y) ≤ ν∗. Moreover, for
y = z ∈ Fix(UT ),

τ ∗(x, z) :=
{ ‖a1+b1‖2

1
λ
‖a1−a2‖2+ 1

μ
‖b1−b2‖2+〈a1−a2,b1−b2〉 , if x /∈ Fix(UT ),

1, otherwise,
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because a2 + b2 = UT (z) − z = 0.

Theorem 3.13 Let λ,μ > 0 with λμ < 4, T be λ-RFNE and U be μ-RFNE with
Fix(UT ) 	= ∅. Let x ∈ H and z ∈ Fix(UT ) be fixed and the function τ : H →
(0,+∞) be such that

τ ∗(x, z) ≤ τ(x) ≤ ν∗ (54)

for x /∈ Fix(UT ). Then, the operator UT is a generalized τ -relaxed cutter, conse-
quently, (UT )1/τ is a cutterwhich is an extrapolationof the cutter (UT )1/ν∗ .Moreover,
(UT )1/τ satisfies the demi-closedness principle.

Proof Let x ∈ H. By Lemma 3.12 with a := a1 − a2 and b := b1 − b2, there is
a function τ satisfying (54). Note that for y = z ∈ Fix(UT ) it holds a2 + b2 =
UT (z) − z = 0. We prove that UT is a generalized τ(x)-relaxed cutter, i.e.,

τ(x)〈z − x,UT (x) − x〉 ≥ ‖UT (x) − x‖2.

For z ∈ Fix(UT ) we have

〈z − x,UT (x) − x〉 − 1

τ(x)
‖UT (x) − x‖2

= 〈z − x, (UT (x) − x) − (UT (z) − z)〉 − 1

τ(x)
‖UT (x) − x − (UT (z) − z)‖2.

Thus, Theorem 3.6(i) with y = z and ν = τ(x) > 0 yields that it is enough to prove
that

(
1

λ
− 1

τ(x)
)‖a1 −a2‖2 + (

1

μ
− 1

τ(x)
)‖b1 −b2‖2 + (1− 2

τ(x)
)〈a1 −a2, b1 −b2〉 ≥ 0.

(55)
If x /∈ Fix(UT ), then (55) is equivalent to

τ(x) ≥ ‖a1 + b1‖2
1
λ
‖a1 − a2‖2 + 1

μ
‖b1 − b2‖2 + 〈a1 − a2, b1 − b2〉

= τ ∗(x, z).

Consequently, UT is a generalized τ -relaxed cutter and (UT )1/τ is a cutter. This and
the second inequality in (54) yield that (UT )1/τ is an extrapolation of (UT )1/ν∗ . By
Theorem 3.6(ii), UT is ν∗-RFNE, thus (UT )1/ν∗ is a FNE. Because Fix(UT ) 	= ∅,
this yields that (UT )1/ν∗ is a cutter. Moreover, (UT )1/ν∗ satisfies the demi-closedness
principle as anNE operator; thus, (UT )1/τ also satisfied the demi-closedness principle
as an extrapolation of (UT )1/ν∗ . ��

In order to apply Theorem 3.13, we should be able to evaluate τ ∗(x, z) for some z ∈
FixUT . However, in general, this is a hard task because we do not know z ∈ Fix(UT )

explicitly. Nevertheless, in some cases, one can define a function τ(x) satisfying (54)
without knowledge of z ∈ Fix(UT ). This function can be applied for a construction
of a cutter which is an extrapolation of the cutter (UT )1/ν∗ .
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Example 3.14 Suppose that λ ∈ [1, 4),μ = 1. Then, obviously, λμ < 4. Furthermore,
let T := (PA)λ, where A ⊆ H is closed convex, U := PB , where B is a closed affine
subspace and Fix(PB PA) 	= ∅. It is easily seen that Fix(UT ) = Fix(PB PA). Let
z ∈ Fix(PB PA) be arbitrary, w := T z and d := z − PA(z). Then, ‖d‖ is the distance
between A and B. We prove that

(i) For x ∈ B, it holds that

τ ∗(x, z) =
{ ‖a1+b1‖2

1
λ
‖a1‖2+‖b1‖2+〈a1,b1〉+λ‖d‖2−2〈b1,d〉 , if x /∈ Fix(UT ),

1, otherwise.
(56)

(ii) For

τ̄ (x) :=
{ ‖a1+b1‖2

1
λ
‖a1‖2+‖b1‖2+〈a1,b1〉− 1

λ
‖b1‖2 , if x /∈ Fix(UT ),

1, otherwise,
(57)

where x ∈ B, it holds τ̄ (x) ≥ τ ∗(x, z) and the operator UT is a generalized
τ̄ -relaxed cutter; consequently, (UT )1/τ̄ is a cutter.

(iii) For τ̂ := min{τ̄ , ν∗}, where ν∗ = ν∗(λ, 1) the operator UT is a generalized
τ̂ -relaxed cutter and (UT )1/τ̂ is a cutter which is an extrapolation of the cutter
(UT )1/ν∗ . Moreover, (UT )1/τ̂ satisfies the demi-closedness principle.

Proof Let x ∈ B. For y = z ∈ Fix(UT ) we have b2 = −a2. Moreover,

T (z) − z = a2 = (PA)λ(z) − z = λ(PA(z) − z) = −λd.

Let x ∈ B \ Fix(UT ). We have UT (x) = PBT (x) ∈ B and z = PB(w). These facts,
the properties of the metric projection, and the affinity of B yield

〈a1 + b1, d〉 = 〈a1 + b1, z − PA(z)〉 = 1

λ
〈PBT (x) − x, PBT (z) − T (z)〉 = 0,

and
〈a1 + b1, b1〉 = 〈PBT (x) − x, PBT (x) − T (x)〉 = 0

i.e. 〈a1, d〉 = −〈b1, d〉 and 〈a1, b1〉 = −‖b1‖2. Moreover, λ‖d‖2 − 2‖b1‖ · ‖d‖ ≥
− 1

λ
‖b1‖2, because the function f (ξ) := λξ2 − 2βξ attains its minimum at ξ = β/λ

equal to −β2/λ. These facts yield

1

λ
‖a1 − a2‖2 + ‖b1 − b2‖2 + 〈a1 − a2, b1 − b2〉 (58)

= 1

λ
‖a1 + λd‖2 + ‖b1 − λd‖2 + 〈a1 + λd, b1 − λd〉 (59)

= 1

λ
‖a1‖2 + ‖b1‖2 + 〈a1, b1〉 + λ‖d‖2 − 2〈b1, d〉 (60)

≥ 1

λ
‖a1‖2 + ‖b1‖2 + 〈a1, b1〉 + λ‖d‖2 − 2‖b1‖ · ‖d‖ (61)

≥ 1

λ
‖a1‖2 + ‖b1‖2 + 〈a1, b1〉 − 1

λ
‖b1‖2. (62)
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Part (i) follows from equalities (58)-(60) and from (53). Note that ‖a1‖ > ‖b1‖,
because x ∈ B\Fix(UT ), consequently, 1

λ
‖a1‖2 + ‖b1‖2 + 〈a1, b1〉 − 1

λ
‖b1‖2 > 0.

Thus, τ̄ is well defined and inequalities (61)-(62) show that τ̄ (x) ≥ τ ∗(x, z). This
shows that UT is a generalized τ̄ -relaxed cutter, consequently, (UT )1/τ̄ is a cutter.
This proves part (ii).

Unfortunately, τ̄ (x) needs not to satisfy τ̄ (x) ≤ ν∗(λ, 1), thus, (UT )1/τ̄ needs not
to be an extrapolation of (UT )1/ν∗ . Thus, we introduce the function τ̂ := min{τ̄ , ν∗},
where ν∗ = ν∗(λ, 1), which obviously satisfies τ ∗(x, z) ≤ τ̂ (x) ≤ ν∗(λ, 1). Similarly
as before, this yields, that (UT )1/τ̂ is a cutter which is an extrapolation of the cutter
(UT )1/ν∗ and satisfies the demi-closedness principle. ��

If FixT ∩ FixU 	= ∅, then the function τ ∗ can be evaluated without knowledge
of z ∈ FixT ∩ FixU , because for y = z ∈ FixT ∩ FixU we have a2 = b2 = 0.
Consequently, for x /∈ FixT ∩ FixU and for arbitrary z ∈ FixT ∩ FixU we have

τ ∗(x) := τ ∗(x, z) =
{ ‖a1+b1‖2

1
λ
‖a1‖2+ 1

μ
‖b1‖2+〈a1,b1〉 , if x /∈ FixT ∩ FixU ,

1, otherwise.
(63)

In this case it enough to suppose that T and U are relaxed cutters satisfying the
demi-closedness principle instead of being RFNE operators.

Corollary 3.15 Let λ,μ > 0 with λμ < 4, T be a λ-relaxed cutter and U be a μ-
relaxed cutter with FixT ∩ FixU 	= ∅. Let x ∈ H be arbitrary and the function
τ : H → (0,+∞) be such that

τ ∗(x) ≤ τ(x) ≤ ν∗ (64)

for x /∈ FixT ∩ FixU, where τ ∗(x) is given by (63). Then, the operator UT is a gen-
eralized τ -relaxed cutter, consequently, (UT )1/τ is a cutter which is an extrapolation
of the cutter (UT )1/ν∗ . Moreover, if T and U satisfy the demi-closedness principle,
then (UT )1/τ also satisfies the demi-closedness principle.

4 Convergence properties of algorithms employing strict
pseudocontractions and demicontractions

Let T ,U : H → H be two relaxed cutters (equivalently, T ,U are two demicontrac-
tions) with Fix(UT ) 	= ∅. For a relaxation function σ : H → (0,+∞) we define

V := (UT )σ ,

a σ -generalized relaxation of UT . We consider the iteration

xk+1 = Vλk (x
k) = (UT )λkσ (xk), (65)

where x0 ∈ H is arbitrary and the relaxation parameter λk ∈ [ε, 2− ε] for some small
ε > 0. In this section we give conditions under which sequences generated by iteration
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(65) converge weakly to an element of Fix(UT ) 	= ∅. We use the same notation as in
Subsection 3.3.

Theorem 4.1 Let λ,μ > 0 be such that λμ < 4, T : H → H be λ-RFNE and
U : H → H be μ-RFNE with Fix(UT ) 	= ∅. Then, the sequence {xk}∞k=0 generated
by iteration (65), where σ = 1/τ with τ satisfying (54) for all x ∈ H and for some
z ∈ Fix(UT ) converges weakly to an element of Fix(UT ).

Proof The theorem follows directly from Theorem 3.13 and from Proposition 2.10.
��

Setting τ(x) = ν∗ for x /∈ Fix(UT ) in Theorem 4.1 we receive the following result.

Corollary 4.2 Let λ,μ > 0 be such that λμ < 4, T : H → H be λ-RFNE and
U : H → H be μ-RFNE with Fix(UT ) 	= ∅. Then, the sequence {xk}∞k=0 generated
by the iteration

xk+1 = (UT )λk/ν∗(xk), (66)

where x0 ∈ H, λk ∈ [ε, 2 − ε] for some small ε > 0 and ν∗ is defined by (24),
converges weakly to an element of Fix(UT ).

We call the iteration (66) a relaxed alternating strict pseudocontraction (RASPC)
method.

Remark 4.3 If λ = μ = 2, T := (PA)λ and U := (PB)μ, then V := (UT )ρ with
ρ = 1

2 is, actually, the Douglas–Rachford operator which is FNE. Thus, Theorem 4.1
extends the convergence of the Douglas–Rachford method to the case λμ < 4.

Applying Proposition 2.3, Theorem 4.1 can be equivalently formulated as follows.

Corollary 4.4 Let α, β ∈ (−∞, 1) be such that α + β < αβ, T : H → H be an
α-SPC and U : H → H be a β-SPC with Fix(UT ) 	= ∅. Then, the sequence {xk}∞k=0
generated by iteration (65), where the generalized relaxation function σ = 1/τ with
τ satisfying

2‖a1+b1‖2
(1 − α)‖a1−a2‖2+(1−β)‖b1− b2‖2+ 2〈a1 − a2, b1 − b2〉 ≤τ(x)≤ 2(α+β)

α+β−αβ
(67)

for arbitrary x ∈ H\Fix(UT ) and some y = z ∈ Fix(UT ), converges weakly to an
element of FixUT .

Theorem 4.5 Let λ,μ > 0, T : H → H be a λ-relaxed cutter and U : H → H be
a μ-relaxed cutter with FixT ∩ FixU 	= ∅. Suppose that T and U satisfy the demi-
closedness principle. If λμ < 4, then the sequence {xk}∞k=0 generated by iteration
(65), where σ = 1/τ with τ satisfying (64) and τ ∗(x) defined by (63) for all x ∈ H,
converges weakly to an element of FixT ∩ FixU.

Proof Suppose that λμ < 4. By Corollary 3.15, (UT )σ is a cutter which is an extrap-
olation of the cutter (UT )1/ν∗ and (UT )σ satisfies the demi-closedness principle. The
remaining part follows from Proposition 2.10. ��
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We call iteration (65), where σ = 1/τ with τ satisfying (64) and τ ∗(x) defined by
(63) an extrapolated alternating demicontraction (EADC) method.

Theorem 4.5 can be equivalently formulated as follows.

Corollary 4.6 Let α, β ∈ (−∞, 1), T : H → H be an α-demicontraction and U :
H → H be a β-demicontraction with FixT ∩FixU 	= ∅. Suppose that T andU satisfy
the demi-closedness principle. If α + β < αβ, then the sequence {xk}∞k=0 generated
by the iteration (65), where σ = 1/τ with τ satisfying

2‖a1 + b1‖2
(1 − α)‖a1‖2 + (1 − β)‖b1‖2 + 2〈a1, b1〉 ≤ τ(x) ≤ 2(α + β)

α + β − αβ

for arbitrary x ∈ H\Fix(UT ) converges weakly to an element of FixT ∩ FixU.

Contrary to Theorem 4.5 and Corollary 4.6, in Theorem 4.1 and in Corollary 4.4
we do not suppose that FixT ∩ FixU 	= ∅. We only suppose that Fix(UT ) 	= ∅. In
the case of the Douglas–Rachford operator, i.e. T = 2PA − Id andU = 2PB − Id for
closed convex subsets A, B ⊆ H it is well known that Fix(UT ) 	= ∅ if and only if
A ∩ B 	= ∅ [1, Prop. 7]. The first part of the proposition below extends [1, Prop. 7],
where the case λ = μ = 2 was proved, and is a special case of [27, Lemma 4.1(iii)].
The second part shows that for λ + μ 	= λμ the nonemptiness of Fix(UT ) is also
possible if A ∩ B = ∅.
Proposition 4.7 Let λ,μ > 0, A, B ⊆ H be nonempty, closed and convex, T :=
(PA)λ, U := (PB)μ and V := UT .

(i) If λ + μ = λμ then
FixV 	= ∅ ⇐⇒ A ∩ B 	= ∅; (68)

If, moreover, A ∩ B 	= ∅, then

PA(FixV ) = A ∩ B. (69)

(ii) If λ + μ 	= λμ, then there are A, B with A ∩ B = ∅ and FixV 	= ∅.

Proof (i) Suppose that λ + μ = λμ. Clearly, A ∩ B ⊆ FixV , so, if A ∩ B 	= ∅,
then FixV 	= ∅. Suppose that FixV 	= ∅. By V = (μPB + (1 − μ)Id)(PA)λ and by
λ + μ = λμ,

z ∈ FixV ⇐⇒ PB(PA)λ(z) = PA(z). (70)

This yields A ∩ B 	= ∅ which proves (68). Now we prove (69). If x ∈ A ∩ B, then
x ∈ FixV and PA(x) = x , thus x ∈ PA(FixV ). Let now x ∈ PA(FixV ). Then, x ∈ A
and there is z ∈ FixV such that x = PA(z). By (70), PB(PA)λ(z) = x , thus x ∈ B.
This proves (69).

(ii) Suppose that λ + μ 	= λμ. Let A, B ⊆ H be two disjoint hyperplanes. Let
a ∈ A and b := PB(a). If we set

x = λa + μb − λμa

λ + μ − λμ
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then we obtain V (x) = x . ��
Example 4.8 Let A, B ⊆ H be nonempty closed convex subsets that share a common
point, T = (PA)λ and U = (PB)μ, where λ,μ > 0 and λ + μ = 4. In particular, if
λ = μ = 2 then UT is NE and (UT ) 1

2
is, actually, the Douglas–Rachford operator.

Now suppose that λ,μ 	= 2. We have λμ < 4 and ν∗ = ν(λ, μ) = 4. By Theorem
3.6(ii)–(iii) the operator UT is 4-RFNE and FixUT = A ∩ B, consequently, the
operator V defined by

V (x) := (UT ) 1
4
(x) = x + 1

4
(UT (x) − x)

is FNE with FixV = A ∩ B and the sequence {xk}∞k=0 generated by the iteration

xk+1 = x + σk

4
(UT (xk) − xk), (71)

where x0 ∈ H is arbitrary and σk ∈ [ε, 2 − ε] for some ε ∈ (0, 1) converges weakly
to some z ∈ FixV . By Corollary 4.6, the convergence also holds if T and U are
demicontractions (equivalently, relaxed cutters) with FixT = A and FixU = B which
satisfy the demi-closedness principle. By Theorem 4.1, the convergence also holds if
we suppose that T and U are RFNE (or, equivalently, SPC) with Fix(UT ) 	= ∅ (even
if A ∩ B = ∅). On Fig. 2, we compare the behavior of the DR iteration and iteration
(71) with λ = 3, μ = 1 and σk = 1 (a relaxed alternating strict pseudocontraction
method), where A, B ⊆ H are two intersecting hyperplanes.

Example 4.9 Let A ⊆ H be a ball and B be a hyperplane tangent to A, T :=
(PA)λ,U := (PB)μ. On Fig. 3, we compare the behavior of the DR method with
an extrapolated alternating demicontraction method xk+1 = (UT )1/τ∗(xk) for λ = 3
and μ = 1, where τ ∗ is given by (63).

Fig. 2 Behavior of DR method
and RASPC metod
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Fig. 3 Behavior of DR method and EADC method

Example 4.10 Let us come back to Example 2.14 and to iteration (13), where α, β ∈
(−∞, 1) and λ > 0. We suppose for simplicity, that μk is constant, μk = μ > 0.
Because T is an α-demicontraction with FixT = A−1(FixS) = A−1(Q) andU is a β-
demicontraction with FixU = C , Corollary 2.7 yields that Tλ is a γ -demicontraction
with γ = 1− 1−α

λ
andUμ is a δ-demicontractionwith δ = 1− 1−β

μ
. Note that, contrary

to Example 2.14, Tλ is not SQNE if λ > 1 − α and Uμ is not SQNE if μ > 1 − β.
If γ + δ < γ δ then, by Corollary 3.9, UμTλ is a ν-demicontraction with ν = γ δ

γ+δ
.

Now Corollary 4.6 yields that the operator V := (UμTλ)1/τ with τ := 2(γ+δ)
γ+δ−γ δ

is a

cutter and the sequence generated by the iteration xk+1 = Vλk (x
k), where x0 ∈ H

is arbitrary and λk ∈ [ε, 2 − ε] for some ε ∈ (0, 1), converges weakly to an element
of F := C ∩ A−1(Q). Note that Moudafi supposed in [39] that λ ∈ (0, 1 − α),
μ ∈ (0, 1 − β), τ = 1 and λk = 1.

Appendix

Lemma 4.11 Let λ,μ > 0. If λμ < 4, then λ + μ > λμ.

Proof Let λμ < 4. If λ ≤ 1, then

λ + μ(1 − λ) ≥ λ > 0

which yields λ + μ > λμ. Let now λ > 1 and suppose that λ + μ ≤ λμ. Then, we
obtain

0 ≥ λ + μ(1 − λ) > λ + 4

λ
(1 − λ) = (λ − 2)2

λ
≥ 0,

a contradiction. ��
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Lemma 4.12 Let α, β ∈ (−∞, 1).

(i) If α + β < αβ then α + β < 0 and αβ
α+β

< 1.

(ii) If αβ
α+β

< 1 and at most one of α, β ≥ 0 then α + β < αβ.

Proof (i) Define f (x) = 1 − 2
x for x > 0. Then, (i) follows from Lemma 4.11 by

setting α = f (λ) and β = f (μ).
(ii) Let αβ

α+β
< 1. If α, β < 0 then α + β < 0, consequently, αβ > α + β. By

the symmetry it is enough to consider the case α < 0, β ≥ 0. If β = 0 then
α + β = α < 0 = αβ. If β > 0 then α+β

αβ
> 1 which yields α + β < αβ. ��
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