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Abstract
We present algorithms to approximate the scaled complementary error function, 
���

(

x2
)

erfc(x) , and the Dawson integral, e−x2
x

∫
0

et
2

dt , to the best accuracy in the 

standard single, double, and quadruple precision arithmetic. The algorithms are 
based on expansion in Chebyshev subinterval polynomial approximations together 
with expansion in terms of Taylor series and/or Laplace continued fraction. The pre-
sent algorithms, implemented as Fortran elemental modules, have been bench-
marked versus competitive algorithms available in the literature and versus func-
tions built-in in modern Fortran compilers, in addition to comprehensive tables 
generated with variable precision computations using the Matlab™ symbolic tool-
box. The present algorithm for calculating the scaled complementary error function 
showed an overall significant efficiency improvement (factors between 1.3 and 20 
depending on the compiler and tested dataset) compared to the built-in function 
“Erfc_Scaled” in modern Fortran compilers, whereas the algorithm for calculating 
the Dawson integral is exceptional in calculating the function to 32 significant digits 
(compared to 19 significant digits reported in the literature) while being more effi-
cient than competitive algorithms as well.

Keywords Special functions · Scaled complementary error function · Dawson 
integral · Fortran

1 Introduction

The scaled complementary error function, commonly referred to as erfcx(x) , where x 
is a real variable, occurs frequently in physics and chemistry and is defined as [1–3],
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In addition, the function is a central component in the computation of several 
other important functions of real and complex arguments of particular interest to sci-
entists and researchers. For example, accurate and efficient calculations of the scaled 
complementary error function may be required for the evaluation of the Voigt line 
profile [4] and for the computations of the Faddeyeva or Faddeeva, w(z), or plasma 
dispersion function, Z = i

√

�w(z) [5, 6]. The latter, in turn, is called from tens to 
tens of thousands times in the calculation of a single point of the transcendental 
Gordeyev integral, G

�
(�, �) [7].

In many software packages and libraries, the function is computed to double pre-
cision using rational functions, as described in [1, 2]. Recently, evaluation of the 
function to higher precision is implemented in a number of modern Fortran compil-
ers as a built-in function under the name “Erfc_Scaled” [8, 9].

Similarly, the transcendental Dawson integral [10] is of great importance to sci-
entists and engineers. The integral is defined by,

One encounters this integration during the study of many physical phenomena 
such as heat conduction, electrical oscillations in certain special vacuum tubes, cal-
culation of profile of absorption lines, and the propagation of electromagnetic radia-
tion along the earth’s surface [11]. The integral is closely related to the imaginary 
error function, erfi(x) , where

Dawson’s integral is an analytic odd function that vanishes at the origin. It can 
also be used in the calculation of the Faddeyeva/Faddeeva function, w(z), or plasma 
dispersion function, Z = i

√

�w(z) , near the real axis [7, 12, 13].
Because of its importance to many scientific fields, several routines are developed 

in the literature to calculate the Dawson integral using single and double precision 
arithmetic [2, 14–20]. One of the most reliable of these routines is the one included 
in Algorithm 715 [2, 15]. The routine uses rational Chebyshev approximations, the-
oretically accurate to about 19 significant decimal digits. The present author is not 
aware of any published algorithm or computer code in a compiled computer lan-
guage that calculates the function to accuracy better than the 19 significant digits 
introduced by Cody [2, 15].

Hardware capabilities of modern computing systems and the support of many 
new compilers to quadruple precision arithmetic helped to increase the interest in 
developing routines and computer codes using quadruple precision arithmetic. 
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Although low precision arithmetic provides significant computational efficiency, 
their use in scientific computing raises the concern about preserving the accuracy 
and stability of the computation. High precision arithmetic seems to be indispensa-
ble in modern scientific computing. At present, high precision arithmetic dominates 
the supernova simulations [21], climate modeling [22], planetary orbit calculations 
[23], and Coulomb N-body atomic system simulations [24]. Mixed precision algo-
rithms that combine low and high precisions have also emerged to address some of 
the accuracy and instability issues. Furthermore, the development of reference solu-
tions that can be used for accuracy check is a continuing task.

In this paper, we introduce algorithms to compute these important functions 
using the standard single, double, and quadruple precisions based on truncated 
series expansions in Chebyshev subinterval polynomials in conjunction with asymp-
totic expressions in terms of Laplace continued fraction. The present algorithms are 
both accurate and efficient on top of being simple enough to be easily implemented 
into other software packages and added to computational libraries in different pro-
graming languages.

2  Algorithm

2.1  Scaled complementary error function

The present new algorithm for computing the scaled complementary error function 
exploits a combination of various numerical techniques for different regions of the 
real argument, x, as explained below.

2.1.1  Expansions for |x| << 1

There exist series expansions for erf (x) and erfc(x) near x = 0 [25–27], which can be 
used together with the Taylor expansion for exp(x2) to calculate the scaled comple-
mentary error function for very small values of x where

Equation (4) can be rearranged into a form less sensitive to roundoff errors and 
written as [28],

Taking 8 terms of the first series (expansion of exp(x2) ) and 8 terms of the second 
series in Eq.  (5) produces a polynomial of the 17th degree in x, sufficient to cal-
culate the erfcx(x) function up to 32 significant digits for the region |x|�[0, 0.037] . 
A fewer number of terms of the polynomial can be used to calculate the func-
tion either to lower accuracy or within narrower sub-regions closer to zero in this 

(4)ex
2
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�
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domain. For referencing, the polynomial is provided explicitly in the appendix sec-
tion (Table 10), together with the number of terms required to satisfy the accuracy in 
each subinterval.

2.1.2  Chebyshev polynomials, Tn(y)

Chebyshev polynomials [29] have advantageous features that render them useful in 
developing numerical algorithms. There are four kinds of Chebyshev polynomials 
[29]. However, following the practice of some references in the literature, we use 
the expression “Chebyshev polynomial” to refer to the Chebyshev polynomial of the 
first kind, Tn(y) where y = cosθ , with the real argument y �[−1, 1]. Chebyshev poly-
nomials of the first kind, Tn(y) , represent a set of orthogonal polynomials that are 
easy to obtain and apply. Hence, they are widely used in economizing the evaluation 
of transcendental functions. Expansion of functions in Chebyshev polynomials is 
favored over expansion in Fourier series for the latter being an infinite series rather 
than a polynomial. They are also favored over Taylor series expansion as the error 
resulting from the Taylor series is not uniform and the number of required terms, 
for a targeted accuracy, becomes incredibly larger the farther the point is from the 
origin of expansion. On the contrary, the error resulting from expansion in terms of 
Chebyshev polynomials is distributed uniformly over the given interval. The set of 
the functions Tn(y) can be generated recursively [3, 30], and many software packages 
have routines to generate these functions. A recursive method to evaluate a linear 
combination of Chebyshev polynomials is also available [31]. The method is a gen-
eralization of Horner’s method for evaluating a linear combination of monomials 
[32].

For a variable x�[a, b] , a linear transformation is used to map it into the range 
[− 1, 1] where

For approximating the scaled complementary error function, one can calculate 
the function in the region where x ≥ 0 , and use the relation

to find the function for negative values of x. Computationally, the expression in 
Eq.  (7) accurately reduces to 2���

(

x2
)

 for x ≤ −9.0 . However, the term 2���
(

x2
)

 
undergoes inevitable overflow problem for values of x ≤ −

√

ln
(

Remax

)

− ln2 where 
Remax is the largest finite floating-point number in the precision arithmetic under 
consideration. Needless to say that the polynomial resulting from Eq.  (5) can be 
used for both positive and negative x-values in the region |x|�[0, 0.037] . Accord-
ingly, for the rest of the domain, one only needs to calculate the function 
���

(

x2
)

erfc(|x|) and use Eq. (7) to find the function for negative values of x.

(6)y =
2x − (b + a)

b − a

(7)���

(

x2
)

erfc(−|x|) = 2���
(

x2
)

− erfcx(|x|)
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For unbound variables like our case, where x�[0,∞], various nonlinear mapping 
transformations can be used to map the infinite range to a finite one [33, 34]. In 
this algorithm, we nonlinearly map the independent variable x�[0,∞] to the variable 
t�[0, 1] where

where c is a constant.
The domain of t is divided into a fixed number of equal-sized sub-regions (20 for 

single and double precession and 100 for quad precision) where a truncated series 
in Chebyshev polynomials, leading to a polynomial P(t), is obtained to approximate 
the original function to the sought accuracy for the precision arithmetic under con-
sideration in each region. The integrations involved in determining the coefficients 
of the polynomial, P(t), and the Chebyshev polynomials of the first kind have been 
calculated using variable precision arithmetic capabilities available in the Matlab 
symbolic toolbox.

A significant effort is devoted to iteratively choose a suitable value of the con-
stant (for erfcx, c = 2.1 ) to secure the targeted accuracy for the planned power of the 
polynomial for the fixed number of subintervals chosen. Evidently, the degree of the 
polynomial is precision-dependent as shown in Table 1. Although the range of the 
validity of the derived polynomials in the x-domain is from 0.0 to more than 500, for 
efficiency reasons, we switch to Laplace continued fraction at a smaller border as 
shown in Table 1 too.

It has to be noted that a transformation similar to that in Eq. (8) was introduced 
by S. Johnson in developing the MIT Faddeeva package [35] except that a constant 
of value 4.0 was used instead of 2.1. In Johnson’s code, the domain between 0 and 1 
is divided into 100 equal divisions with a polynomial of degree 6 approximating the 
function in each division for double precision calculations.

2.1.3  Continued fraction and asymptotic expansion for large x

Expansions in Chebyshev polynomials are used only for the ranges shown in 
Table 1, while for larger values of x, Laplace continued fraction is found to be more 

(8)t =
c

x + c

Table 1  Degree of approximating polynomials, P(t) , resulting from truncated expansion in Chebyshev 
polynomials of the first kind and the range of applicability for approximating erfcx(x) , as a function of 
the used precision

# � is the spacing of floating-point numbers in the precision arithmetic under consideration

Quadruple
100 divisions

Double
20 divisions

Single
20 divisions

Degree of P(t) 12 8 4
Range of application  

in the algorithm
6.9 �

1∕12–48.0 2.3 �
1∕12–7.8 2.3 �

1∕12

–7.8
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efficient. A computationally simple and efficient form of the continued fraction can 
be used where [36, 37]

A number of 11 convergents of the continued fraction in Eq. (9) were found 
to be sufficient to secure accuracy in the order of  10−32 for calculating erfcx(x) 
for x ≥ 48.0 . This number of convergents was found to be sufficient to secure an 
accuracy in the order of  10−16 for x ≥ 7.8 . A fewer number of convergents may 
be required to secure these accuracies for regions of greater values of x. The 
number of convergents, M, of the continued fraction required to secure the best 
accuracy for the precision arithmetic under consideration depends on the preci-
sion and can be economized by dividing the domain of computations into a set 
of subdomains.

It has to be noted that there also exists an asymptotic series expansion which 
can be written as follows [26]:

However, numerical experiments showed that the continued fraction is more 
efficient. Table 2 shows a summary of the subdomains, used in the present algo-
rithm, as a function of the precision used.

(9)
exp

�

x2
�

erfc(x) =
1

√

�

�
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x+
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x+

43

x+
……
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x+
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2
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(10)exp
�

x2
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1

x
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�

�

1 +
�∞

k=1
(−1)k

1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2k − 1)

(2x2)
k

�

Table 2  Number of convergents 
of the continued fraction and 
applied subdomain(s) as a 
function of the used precision

Precision Domain M

Quad x ≥ 48.0 10
Double and single x ≥ 7.8

Quad x ≥ 100.0 8
Double and single x ≥ 10.4

Quad x ≥ 300.0 6
Double and single x ≥ 17.2

Quad x ≥ 1600.0 4
Double and single x ≥ 42.0

Quad x ≥ 6.6 × 10
7

erfcx(x) ≈
1

√

�

�

x+
1∕2

x

�

Double x ≥ 1042.1

Single x ≥ 42.1

Quad x ≥ 6.71 × 10
15

erfcx(x) ≈
1

√

�x

Double x ≥ 6.71 × 10
9

Single x ≥ 6.71 × 10
3
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2.2  Dawson integral

Similar to the algorithm for erfcx(x), the present new algorithm for computing the Daw-
son integral uses a combination of various numerical techniques for different regions of 
the real argument, x, as explained below.

2.2.1  Expansions for small |x|

Since Daw(0) = 0 , one can easily obtain a Maclaurin series, which is useful for evalu-
ating the function near the origin, where [15]

Although the series in (11) can be used to calculate Daw(x) for the whole 
domain as it converges for any finite x (magnitude of the ratio of successive terms 
is 2x2∕(2n + 3) ), it is impractical except for very small x because the convergence is 
delayed until n becomes greater than x2−3/2.

Alternatively, a more efficient and convenient expansion of Daw(x) in the form of a 
continued fraction may be used where [11, 15],

It has to be noted that the coefficients (−1)k+1(2k)∕(4k2 − 1) can be calculated in 
advance to improve the efficiency of calculating the continued fraction. In the pre-
sent algorithm, we use the continued fraction in (12) to calculate Daw(x) for small 
values of x. Table 3 shows the range in which Eq. (12) is used to satisfy the targeted 
accuracy as a function of the precision arithmetic used.

2.2.2  Chebyshev polynomials Tn(y)

Similar to the case for erfcx(x) , a linear transformation is commonly used to map a 
variable x�[a, b] defined over the range [a, b] into the range [− 1, 1]. However, since 
Dawson’s integral is an odd function, one may approximate the integral for positive x 
values and use the relation

to extend the calculation to the whole domain.

(11)Daw(x) =
∑∞

n=0

(−1)n2n

(2n + 1)!!
x2n+1

(12)Daw(x) =
x

1+

2x2∕3

1−

4x2∕15

1+

6x2∕35

1 −…
… .

(−1)
k+1(2kx2)∕(4k2 − 1)

1 +…

(13)Daw(−|x|) = −Daw(|x|)

Table 3  Number of convergents 
from the continued fraction 
in Eq. (12) and the range of 
application in the present 
algorithm as a function of the 
precision arithmetic

Quadruple Double Single

No. of terms from 
Eq. (12)

≤ 7 ≤ 5 ≤ 4

Range of applica-
tion in the 
algorithm

0.0 − 0.03 0.0 − 0.12 0.0 − 0.45
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Accordingly, one only needs to expand the integral Daw(x) in terms of truncated 
series in Chebyshev polynomials, for the range [0,∞] together with the use of the rela-
tion (13) to find the function for negative values of x. Yet, with such unbound domain, 
b → ∞ , a nonlinear mapping transformations (similar to what has been used with the 
algorithm for erfcx ) can be used to map the infinite range to a finite one. The nonlin-
ear mapping described in Eq. (8) above is used with a value of the constant c equals 
1.8 while the domain of t is divided, herein, into 100 equal subintervals. A Chebyshev 
polynomial P(t) is obtained to approximate the Dawson’s integral (in each subinterval) 
to the targeted accuracy for the precision arithmetic under consideration. Again, the 
degree of the polynomial is precision-dependent as shown in Table 4. It has to be noted 
that the value of the constant c = 1.8 used herein is based on a number of numeri-
cal experiments; however, by no means one claims that this is an optimum value for 
the constant c although it is successful in generating the polynomials to the required 
accuracy.

While the derived polynomials cover the main part of the x-domain, we switch to 
Laplace continued fraction at very small values of x (Eq. (12) above) and for large val-
ues of x as explained in the next subsection, for efficiency reasons.

It is worth mentioning that, when using the Intel Fortran 64 Compiler “ifort” (Ver-
sion 2021.6.0 running on Intel(R) 64) with double precision arithmetic, the accuracy of 
the present algorithm for Daw(x) is found to be in the order of  10−15 although when 
using the GNU Fortran 8.1.0 compiler “gfortran”, one gets accuracy in the order of 
 10−16. Accordingly, we reworked this case to obtain the coefficients for the subinterval 
truncated series expansion in terms of Chebyshev polynomials for 

(

Daw(x)

x

)

 instead of 
Daw(x) , which successfully produced the  10−16 accuracy for calculating Daw(x) using 
any of the two compilers “gfortran” or “ifort.”

2.2.3  Continued fraction and asymptotic expansion for large x

For values of x larger than those in Table 4, the use of Laplace continued fraction or 
asymptotic series expansion is more efficient. A simple continued fraction that can be 
used to approximate the Dawson’s integral for large values of x is written as follows 
[11]:

Also, there exists an asymptotic series expansion for the integral, which can be 
written as follows:

(14)
Daw(x) ≈

a
0

2x−

a
1

2x−

a
2

2x−

a
3

2x−…
… .

am

2x−…
…

with a
0
= 1, am = 2m,m = 1, 2, 3…

Table 4  Degree of polynomials 
P(t) , used to approximate 
Daw(x) , and applied range as a 
function of the used precision

Quadruple Double Single

Degree of P(t) 16 8 4
Range of application 

in the algorithm
0.03 − 30.0 0.12 − 11.0 0.45 − 8.0
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where “!!” represents the double factorial.
However, the continued fraction is used in the present algorithm for efficiency 

reasons. Similar to the case of erfcx(x) , explained above, the number of convergents 
(M), from the continued fraction required to secure the targeted accuracy is a func-
tion of the precision used. Also, additional economization can be achieved by divid-
ing the domain of computations using the continuing fraction into a set of subdo-
mains. Table  5 shows the range in which Eq.  (14) is used to satisfy the targeted 
accuracy as a function of the precision arithmetic under consideration.

Further economization in evaluating the function in this large x region can be 
achieved through slicing the region in several sub-regions with the use of a smaller 
number of convergents.

3  Accuracy and efficiency comparisons

3.1  Erfcx(x)

The present algorithm for calculating the erfcx(x) function has been implemented as 
a modern Fortran elemental module. An array of 40,001 points uniformly spaced on 
the logarithmic scale between  10−30 and  104 is used to perform the accuracy check 
of the present algorithm. Variable precision arithmetic from the Matlab™ [38] sym-
bolic toolbox is used to generate the corresponding array of the product of exp

(

x2
)

 
and erfc(x) . The maximum absolute relative error obtained for any of the standard 
precisions used was in the same order as that obtained by Cody’s code [2], for single 
and double precision, and by the built-in “Erfc_Scaled” function for all three stand-
ard precisions, as shown in Fig. 1. Because of the logarithmic scale used with the 
y-axis, the majority of points for double and single precision do not appear in the 
figure as the absolute of the relative error for these points is zero.

For efficiency comparison and because the time consumed per single-point evalu-
ation is very short, we generate an array of  106 points that are equally spaced on the 
logarithmic scale for two cases: a case of very wide range x�[10−30 − 10

30] and a 
case of practical range x�[10−6 − 10

6] . The  106 points of the exp
(

x2
)

erfc(x) function 
are calculated using the built-in function “Erfc_Scaled” and by the implementation 
of the present algorithm using quadruple, double, and single precision arithmetic. 

(15)Daw(x) ∼
∑∞

k=0

(2k − 1)!!

2k+1x2k+1

Table 5  Number of convergents 
from the continued fraction 
in Eq. (14) and the range of 
application in the present 
algorithm as a function of the 
precision arithmetic

Quadruple Double Single

No. of convergents 
from Eq. (14)

≤ 12 ≤ 8 ≤ 3

Range of applica-
tion in the 
algorithm

x ≥ 30.0 x ≥ 11.0 x ≥ 11.0
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The average CPU time spent in the calculation using the present algorithm is com-
pared to the CPU time consumed by the built-in “Erfc_Scaled” for all three stand-
ard precisions using two compilers: the GNU Fortran 8.1.0 (gfortran) and the Intel 
2021.6.0 classic (ifort) compilers. For the cases of single and double precision arith-
metic, the CPU times consumed in performing the same calculations using Cody’s 
algorithm (Algorithm 715) are considered in the comparison as well.

Table 6 shows the CPU time, in seconds, consumed in the evaluation of the  106 
points as described above using the GNU Fortran 8.1.0 (gfortran) compiler for all 
three standard precision arithmetic and for the two cases of very wide range of x and 
the practical range described above by the present algorithm and competitive algo-
rithms including the built-in “Erfc_Scaled” function.

As it is clear from the results in the table, the present algorithm is considerably 
faster than both of Cody’s code and the built-in “Erfc_Scaled” function. Efficiency 
improvement for the wide range is greater than a factor of 2 (in general) and goes up 
to a factor of 5 for the case of quad precision.

Table  7 shows the same information as in Table  6 except that the calculations 
are performed using the Intel Fortran 64 Compiler Classic for applications running 
on Intel(R) 64, Version 2021.6.0. As it is clear from the results in the table, the 
present algorithm is more efficient than the built-in “Erfc_Scaled” function for the 
wide range by a factor greater than 2 for quad precision and, surprisingly, by a fac-
tor higher than an order of magnitude for double and single precision!. However, for 
the practical range  [10−6–106] the present algorithm is only slightly faster (between 
25 and 30% improvement) for the quad precision, although, for the cases of double 
and single precision, the present algorithm is still faster by more than an order of 
magnitude.

Figures 2, 3, and 4 show performance tests for each decade between  10−6 and  106 
(the region of interest or of useful and practical value) for all three standard preci-
sion arithmetic and using the “gfortran” compiler (part a) and “ifort” compiler (part 
b). The overall improvement of efficiency is clear in all of the three figures for the 
three standard precision and the two compilers.

Table 6  Average CPU time consumed in calculating  106 points uniformly distributed on the logarithmic 
scale for the two cases of wide range xϵ[10−30 −  1030] and the case of practical range xϵ[10−6 −  106] using 
Cody’s code, the built-in Erfc_Scaled function and the present algorithm. Computations are performed 
using the GNU Fortran 8.1.0 (gfortran) compiler on an Intel® Core™ i7-7600U CPU @2.80 GHz pro-
cessor in Windows 10 (64-bit operating system, × 64-based processor)

Range of x Erfcx Cody Erfc_Scaled Present Erfc_Scaled

Present

Quad precision 10−30–1030 N/A 1.6016 0.3203 5.00
10−6–106 N/A 2.7051 0.8906 3.04

Double precision 10−30–1030 0.0225 0.0225 0.0107 2.10
10−6–106 0.0381 0.0371 0.0137 2.71

Single precision 10−30–1030 0.0215 0.0137 0.0064 2.14
10−6–106 0.0361 0.0376 0.0078 4.82
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Table 7  Average CPU time consumed in calculating  106 points uniformly distributed on the logarithmic 
scale for the case of wide range xϵ[10−30–1030] and for the case of practical range xϵ[10−6–106] using 
Cody’s code, the built-in Erfc_Scaled function and the present algorithm. Computations are performed 
using Intel Fortran 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.6.0.com-
piler on an Intel® Core™ i7-7600U CPU @2.80 GHz processor in Windows 10 (64-bit operating sys-
tem, × 64-based processor)

Range of x Erfcx Cody Erfc_scaled Present Erfc_scaled

Present

Quad precision 10−30–1030 N/A 0.4179 0.1738 2.40
10−6–106 N/A 0.5136 0.4023 1.28

Double precision 10−30–1030 0.0068 0.0557 0.0039 14.28
10−6–106 0.0098 0.0791 0.0068 11.60

Single precision 10−30–1030 0.0068 0.0542 0.0039 13.90
10−6–106 0.0112 0.0874 0.0044 19.86

Fig. 2  A stair-step plot per decade of CPU time, in seconds, consumed for 10.6 evaluations using quadru-
ple precision arithmetic and the “gfortran” compiler (a) and the “ifort” compiler (b)

Fig. 3  A stair-step plot per decade of CPU time, in seconds, consumed for 10.6 evaluations using double 
precision arithmetic and the “gfortran” compiler (a) and the “ifort” compiler (b)
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For timing comparison for negative x-values and for 0 > x ≥ −9.0 , the present 
code is faster than the built-in function “ Erfc_Scaled ” by a factor greater than 3 for 
all precisions using the “gfortran” compiler. For negative x-values with x < −9.0 
where the function is approximated by 2 ���

(

x2
)

 , the present code is also faster than 
the built-in function by a factor greater than 2 for double and single precision though 
it takes almost the same time as the built-in function for quad precision. With the 
“ifort” compiler, the present code is faster than the built-in “ Erfc_Scaled ” function 
by a factor greater than 20 for single and double precision arithmetic for both of the 
above cases; i.e., 0 > x ≥ −9.0 and x < −9.0 and factors greater than 4 and 2, when 
using quadruple precision for both cases, respectively.

3.2  Daw (x)

An array of 400001 points uniformly spaced on the logarithmic scale between  10−30 
and  105 is used to perform the accuracy check of the present algorithm. A table of 
reference values corresponding to this array is generated using variable precision 
arithmetic from the Matlab [38] symbolic toolbox. The maximum absolute relative 
error obtained for the quadruple precision computations using the present algorithm 
is in the order of  10−32 as intended and as shown in Fig.  5. Figure  5 also shows 
the absolute of the relative error in calculating Daw(x) using the present algorithm 
together with the error resulting from using Algorithm715 with single and double 
precision arithmetic. For single and double precision calculations, the maximum of 
the absolute of relative error obtained using the present algorithm is in the order of 
 10−16 for double precision and  10−7 for single precision as expected. For the last two 
cases, calculations using Algorithm715 showed the same order for the maximum of 
the absolute of relative error which confirms the accuracy of the present algorithm 
for all standard precision arithmetic used.

A computer code that calculates the Dawson integral to quadruple precision 
arithmetic or to 32 significant digits in a compiled language is not available to the 
author for efficiency comparison. However, Algorithm715 [2] includes a func-
tion to calculate Dawson’s integral, which can be run using single and double 

Fig. 4  A stair-step plot per decade of CPU time, in seconds, consumed for 10.6 evaluations using single 
precision arithmetic and the “gfortran” compiler (a) and the “ifort” compiler (b)
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precision arithmetic for efficiency comparison. Similar to the case of erfcx(x) , the 
time consumed to calculate a single point is very short. Accordingly, we report 
the time required for calculating the whole array of 400001 points. We repeat the 
calculations several hundreds of times and take the average time consumed per 
evaluation of the array for comparison.

Table  8 shows the total CPU time spent in calculating the 400001 points by 
Algorithm715 and by the present algorithm for both single and double precision 
arithmetic using the “gfortran” compiler. As can be seen from the table, the pre-
sent algorithm is faster than Algorithm715 and takes only about 53–74% of the 
time spent by Algorithm715 for the computations.

Similarly, Table 9 shows the same data as in Table 8 except that compilation 
is performed using the “ifort” compiler. The present algorithm is also faster than 

Fig. 5  Absolute of relative error in calculating Dawson integral, Daw(x) using the present algorithm and 
using Algorithm715 (for single and double precision arithmetic). Calculations are performed using the 
GNU Fortran 8.1.0 (gfortran) with data generated using variable precision arithmetic offered in the Mat-
lab symbolic toolbox as the reference

Table 8  Average CPU time, 
in seconds, consumed in 
calculating 400,001 points of 
Daw(x) , uniformly distributed 
on the logarithmic scale, 
for a case of wide range 
x�[10−30 − 10

30] and a case of 
practical range x�[10−6 − 10

6] . 
Calculations are performed 
using the GNU Fortran 8.1.0 
(gfortran)

Range of x Cody Present Cody

Present

Quad precision 10−30–1030 N/A 0.18838 N/A
10−6–106 N/A 0.55249 N/A

Double precision 10−30–1030 0.00309 0.00210 1.47
10−6–106 0.00701 0.00400 1.75

Single precision 10−30–1030 0.00157 0.00116 1.35
10−6–106 0.00477 0.00252 1.89
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Algorithm715 and takes only about 49–61.1% of the time spent by Algorithm715 
for the computations.

4  Conclusions

Efficient, multiple precision algorithms for the computation of the scaled com-
plementary error function, exp(x2) erfc(x) and the Dawson integral, Daw(x) , 
are presented and implemented in the form of Fortran elemental modules. The 
accompanying Fortran codes can be run in single, double, and quadruple preci-
sion arithmetic at the convenience of the user by assigning the required preci-
sion to an integer “rk” in a subsidiary module “set_rk.” Results from the present 
code for erfcx(x) are compared with the built-in “Erfc_Scaled” function, available 
in modern Fortran compilers showing that the present algorithm is considerably 
more efficient than the built-in function. With the “gfortran” compiler, the effi-
ciency improvements for all tested data sets and all of the three precisions (single, 
double, and quadruple) are between a factor of 2 and a factor of 5. However, with 
the “ifort” compiler, efficiency improvements vary between a factor of 1.3 and a 
factor of 20 depending on the tested data set and the precision used.

The present code for Daw(x) is distinctive in calculating the function to 32 
significant digits. Results from the present code for Daw(x) for double and single 
precision arithmetic are compared with calculation using the Dawson function 
from Algoritm715 showing that the present algorithm is also faster than Algo-
rithm715. The efficiency improvements range between a factor of 1.35 and a fac-
tor of 2.0 depending on the tested dataset and the precision.

The present algorithms for erfcx(x) and Daw(x) can be easily implemented in 
any software package and to numerical libraries in any programming language 
with the possibility of extension to consider complex arguments in a future 
planned work.

Table 9  Average CPU time, in seconds, consumed in calculating 400,001 points of Daw(x) , uniformly 
distributed on the logarithmic scale, for a case of wide range x�[10−30 − 10

30] and a case of practical 
range x�[10−6 − 10

6] . Calculations are performed using the Intel Fortran 64 Compiler Classic for appli-
cations running on Intel(R) 64, Version 2021.6.0.compiler (ifort)

Range of x Cody Present Cody

Present

Quad precision 10−30–1030 N/A 0.13613 N/A
10−6–106 N/A 0.24182 N/A

Double precision 10−30–1030 0.00257 0.00141 1.82
10−6–106 0.00687 0.00387 1.78

Single precision 10−30–1030 0.00221 0.00135 1.64
10−6–106 0.00333 0.00163 2.04
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Appendix. The polynomial of  17th degree resulting from Eq. (5), 
approximating the erfcx(x) function to 32 significant digits accuracy 
in the region |x|ϵ[0,0.037]
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Table 10  Minimum power of 
the above polynomial required 
to secure the accuracy in the 
range shown

Precision Domain Power

All |x|≤ 0.00015 ε(1/12) 3
All |x|≤ 0.005 ε(1/12) 5
All |x|≤ 0.1 ε(1/12) 7
All |x|≤ 0.7 ε(1/12) 9
All |x|≤ 1.8 ε(1/12) 11
Quad |x|≤ 6.9 ε(1/12) 13
Double and single |x|≤ 2.3 ε(1/12)

erfcx(x) ∼
1

4410806400

��

109395x16 + 875160x14 + 6126120x12 + 3675672x10 + 18378360x8+

735134400x6 + 2205403200x4 + 4410806400x2 + 4410806400x14
�

−
1

√

�

�

65536x17 + 557056x15+

4177920x13 + 27156480x11 + 149360640x9 + 672122880x7 + 2352430080x5 + 5881075200x3+

8821612800x)} for x ≤ 0.037
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