
Vol.:(0123456789)

Numerical Algorithms (2024) 95:1291–1308
https://doi.org/10.1007/s11075-023-01608-8

1 3

ORIGINAL PAPER

Efficient multiple‑precision computation of the scaled
complementary error function and the Dawson integral

Mofreh R. Zaghloul1

Received: 14 March 2023 / Accepted: 25 June 2023 / Published online: 9 August 2023
© The Author(s) 2023

Abstract
We present algorithms to approximate the scaled complementary error function,
���

(

x2
)

erfc(x) , and the Dawson integral, e−x2
x

∫
0

et
2

dt , to the best accuracy in the

standard single, double, and quadruple precision arithmetic. The algorithms are
based on expansion in Chebyshev subinterval polynomial approximations together
with expansion in terms of Taylor series and/or Laplace continued fraction. The pre-
sent algorithms, implemented as Fortran elemental modules, have been bench-
marked versus competitive algorithms available in the literature and versus func-
tions built-in in modern Fortran compilers, in addition to comprehensive tables
generated with variable precision computations using the Matlab™ symbolic tool-
box. The present algorithm for calculating the scaled complementary error function
showed an overall significant efficiency improvement (factors between 1.3 and 20
depending on the compiler and tested dataset) compared to the built-in function
“Erfc_Scaled” in modern Fortran compilers, whereas the algorithm for calculating
the Dawson integral is exceptional in calculating the function to 32 significant digits
(compared to 19 significant digits reported in the literature) while being more effi-
cient than competitive algorithms as well.

Keywords Special functions · Scaled complementary error function · Dawson
integral · Fortran

1 Introduction

The scaled complementary error function, commonly referred to as erfcx(x) , where x
is a real variable, occurs frequently in physics and chemistry and is defined as [1–3],

 * Mofreh R. Zaghloul
 m.zaghloul@uaeu.ac.ae

1 Department of Physics, College of Sciences, United Arab Emirates University, Al-Ain 15551,
UAE

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01608-8&domain=pdf

1292 Numerical Algorithms (2024) 95:1291–1308

1 3

In addition, the function is a central component in the computation of several
other important functions of real and complex arguments of particular interest to sci-
entists and researchers. For example, accurate and efficient calculations of the scaled
complementary error function may be required for the evaluation of the Voigt line
profile [4] and for the computations of the Faddeyeva or Faddeeva, w(z), or plasma
dispersion function, Z = i

√

�w(z) [5, 6]. The latter, in turn, is called from tens to
tens of thousands times in the calculation of a single point of the transcendental
Gordeyev integral, G

�
(�, �) [7].

In many software packages and libraries, the function is computed to double pre-
cision using rational functions, as described in [1, 2]. Recently, evaluation of the
function to higher precision is implemented in a number of modern Fortran compil-
ers as a built-in function under the name “Erfc_Scaled” [8, 9].

Similarly, the transcendental Dawson integral [10] is of great importance to sci-
entists and engineers. The integral is defined by,

One encounters this integration during the study of many physical phenomena
such as heat conduction, electrical oscillations in certain special vacuum tubes, cal-
culation of profile of absorption lines, and the propagation of electromagnetic radia-
tion along the earth’s surface [11]. The integral is closely related to the imaginary
error function, erfi(x) , where

Dawson’s integral is an analytic odd function that vanishes at the origin. It can
also be used in the calculation of the Faddeyeva/Faddeeva function, w(z), or plasma
dispersion function, Z = i

√

�w(z) , near the real axis [7, 12, 13].
Because of its importance to many scientific fields, several routines are developed

in the literature to calculate the Dawson integral using single and double precision
arithmetic [2, 14–20]. One of the most reliable of these routines is the one included
in Algorithm 715 [2, 15]. The routine uses rational Chebyshev approximations, the-
oretically accurate to about 19 significant decimal digits. The present author is not
aware of any published algorithm or computer code in a compiled computer lan-
guage that calculates the function to accuracy better than the 19 significant digits
introduced by Cody [2, 15].

Hardware capabilities of modern computing systems and the support of many
new compilers to quadruple precision arithmetic helped to increase the interest in
developing routines and computer codes using quadruple precision arithmetic.

(1)erfcx(x) = exp
�

x2
�

erfc(x) =
2ex

2

√

�
∫

∞

x

e−t
2

dt

(2)Daw(x) = e−x
2

x

∫
0

et
2

dt

(3)erfi(x) = −i erf (ix) =
2

√

�

���

�

x2
�

Daw(x) =
2

√

�

x

∫
0

et
2

dt

1293

1 3

Numerical Algorithms (2024) 95:1291–1308

Although low precision arithmetic provides significant computational efficiency,
their use in scientific computing raises the concern about preserving the accuracy
and stability of the computation. High precision arithmetic seems to be indispensa-
ble in modern scientific computing. At present, high precision arithmetic dominates
the supernova simulations [21], climate modeling [22], planetary orbit calculations
[23], and Coulomb N-body atomic system simulations [24]. Mixed precision algo-
rithms that combine low and high precisions have also emerged to address some of
the accuracy and instability issues. Furthermore, the development of reference solu-
tions that can be used for accuracy check is a continuing task.

In this paper, we introduce algorithms to compute these important functions
using the standard single, double, and quadruple precisions based on truncated
series expansions in Chebyshev subinterval polynomials in conjunction with asymp-
totic expressions in terms of Laplace continued fraction. The present algorithms are
both accurate and efficient on top of being simple enough to be easily implemented
into other software packages and added to computational libraries in different pro-
graming languages.

2 Algorithm

2.1 Scaled complementary error function

The present new algorithm for computing the scaled complementary error function
exploits a combination of various numerical techniques for different regions of the
real argument, x, as explained below.

2.1.1 Expansions for |x| << 1

There exist series expansions for erf (x) and erfc(x) near x = 0 [25–27], which can be
used together with the Taylor expansion for exp(x2) to calculate the scaled comple-
mentary error function for very small values of x where

Equation (4) can be rearranged into a form less sensitive to roundoff errors and
written as [28],

Taking 8 terms of the first series (expansion of exp(x2)) and 8 terms of the second
series in Eq. (5) produces a polynomial of the 17th degree in x, sufficient to cal-
culate the erfcx(x) function up to 32 significant digits for the region |x|�[0, 0.037] .
A fewer number of terms of the polynomial can be used to calculate the func-
tion either to lower accuracy or within narrower sub-regions closer to zero in this

(4)ex
2

erfc(x) =
�

∑∞

n=0

x2n

n!

��

1 −
2

√

�

∑∞

k=0

(−1)kx2k+1

(2k+1)k!

�

for�x� ≪ 1

(5)ex
2

erfc(x) =
�

∑∞

n=0

x2n

n!

�

−
2x
√

�

∑∞

k=0

(2x2)
k

(2k+1)
for�x� ≪ 1

1294 Numerical Algorithms (2024) 95:1291–1308

1 3

domain. For referencing, the polynomial is provided explicitly in the appendix sec-
tion (Table 10), together with the number of terms required to satisfy the accuracy in
each subinterval.

2.1.2 Chebyshev polynomials, Tn(y)

Chebyshev polynomials [29] have advantageous features that render them useful in
developing numerical algorithms. There are four kinds of Chebyshev polynomials
[29]. However, following the practice of some references in the literature, we use
the expression “Chebyshev polynomial” to refer to the Chebyshev polynomial of the
first kind, Tn(y) where y = cosθ , with the real argument y �[−1, 1]. Chebyshev poly-
nomials of the first kind, Tn(y) , represent a set of orthogonal polynomials that are
easy to obtain and apply. Hence, they are widely used in economizing the evaluation
of transcendental functions. Expansion of functions in Chebyshev polynomials is
favored over expansion in Fourier series for the latter being an infinite series rather
than a polynomial. They are also favored over Taylor series expansion as the error
resulting from the Taylor series is not uniform and the number of required terms,
for a targeted accuracy, becomes incredibly larger the farther the point is from the
origin of expansion. On the contrary, the error resulting from expansion in terms of
Chebyshev polynomials is distributed uniformly over the given interval. The set of
the functions Tn(y) can be generated recursively [3, 30], and many software packages
have routines to generate these functions. A recursive method to evaluate a linear
combination of Chebyshev polynomials is also available [31]. The method is a gen-
eralization of Horner’s method for evaluating a linear combination of monomials
[32].

For a variable x�[a, b] , a linear transformation is used to map it into the range
[− 1, 1] where

For approximating the scaled complementary error function, one can calculate
the function in the region where x ≥ 0 , and use the relation

to find the function for negative values of x. Computationally, the expression in
Eq. (7) accurately reduces to 2���

(

x2
)

 for x ≤ −9.0 . However, the term 2���
(

x2
)

undergoes inevitable overflow problem for values of x ≤ −

√

ln
(

Remax

)

− ln2 where
Remax is the largest finite floating-point number in the precision arithmetic under
consideration. Needless to say that the polynomial resulting from Eq. (5) can be
used for both positive and negative x-values in the region |x|�[0, 0.037] . Accord-
ingly, for the rest of the domain, one only needs to calculate the function
���

(

x2
)

erfc(|x|) and use Eq. (7) to find the function for negative values of x.

(6)y =
2x − (b + a)

b − a

(7)���

(

x2
)

erfc(−|x|) = 2���
(

x2
)

− erfcx(|x|)

1295

1 3

Numerical Algorithms (2024) 95:1291–1308

For unbound variables like our case, where x�[0,∞], various nonlinear mapping
transformations can be used to map the infinite range to a finite one [33, 34]. In
this algorithm, we nonlinearly map the independent variable x�[0,∞] to the variable
t�[0, 1] where

where c is a constant.
The domain of t is divided into a fixed number of equal-sized sub-regions (20 for

single and double precession and 100 for quad precision) where a truncated series
in Chebyshev polynomials, leading to a polynomial P(t), is obtained to approximate
the original function to the sought accuracy for the precision arithmetic under con-
sideration in each region. The integrations involved in determining the coefficients
of the polynomial, P(t), and the Chebyshev polynomials of the first kind have been
calculated using variable precision arithmetic capabilities available in the Matlab
symbolic toolbox.

A significant effort is devoted to iteratively choose a suitable value of the con-
stant (for erfcx, c = 2.1) to secure the targeted accuracy for the planned power of the
polynomial for the fixed number of subintervals chosen. Evidently, the degree of the
polynomial is precision-dependent as shown in Table 1. Although the range of the
validity of the derived polynomials in the x-domain is from 0.0 to more than 500, for
efficiency reasons, we switch to Laplace continued fraction at a smaller border as
shown in Table 1 too.

It has to be noted that a transformation similar to that in Eq. (8) was introduced
by S. Johnson in developing the MIT Faddeeva package [35] except that a constant
of value 4.0 was used instead of 2.1. In Johnson’s code, the domain between 0 and 1
is divided into 100 equal divisions with a polynomial of degree 6 approximating the
function in each division for double precision calculations.

2.1.3 Continued fraction and asymptotic expansion for large x

Expansions in Chebyshev polynomials are used only for the ranges shown in
Table 1, while for larger values of x, Laplace continued fraction is found to be more

(8)t =
c

x + c

Table 1 Degree of approximating polynomials, P(t) , resulting from truncated expansion in Chebyshev
polynomials of the first kind and the range of applicability for approximating erfcx(x) , as a function of
the used precision

� is the spacing of floating-point numbers in the precision arithmetic under consideration

Quadruple
100 divisions

Double
20 divisions

Single
20 divisions

Degree of P(t) 12 8 4
Range of application

in the algorithm
6.9 �

1∕12–48.0 2.3 �
1∕12–7.8 2.3 �

1∕12

–7.8

1296 Numerical Algorithms (2024) 95:1291–1308

1 3

efficient. A computationally simple and efficient form of the continued fraction can
be used where [36, 37]

A number of 11 convergents of the continued fraction in Eq. (9) were found
to be sufficient to secure accuracy in the order of 10−32 for calculating erfcx(x)
for x ≥ 48.0 . This number of convergents was found to be sufficient to secure an
accuracy in the order of 10−16 for x ≥ 7.8 . A fewer number of convergents may
be required to secure these accuracies for regions of greater values of x. The
number of convergents, M, of the continued fraction required to secure the best
accuracy for the precision arithmetic under consideration depends on the preci-
sion and can be economized by dividing the domain of computations into a set
of subdomains.

It has to be noted that there also exists an asymptotic series expansion which
can be written as follows [26]:

However, numerical experiments showed that the continued fraction is more
efficient. Table 2 shows a summary of the subdomains, used in the present algo-
rithm, as a function of the precision used.

(9)
exp

�

x2
�

erfc(x) =
1

√

�

�

a0

x+

a1

x+

a2

x+

43

x+
……

am

x+
…

�

with a0 = 1, am =
m

2
for m ≥ 1

(10)exp
�

x2
�

erfc(x) =
1

x
√

�

�

1 +
�∞

k=1
(−1)k

1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2k − 1)

(2x2)
k

�

Table 2 Number of convergents
of the continued fraction and
applied subdomain(s) as a
function of the used precision

Precision Domain M

Quad x ≥ 48.0 10
Double and single x ≥ 7.8

Quad x ≥ 100.0 8
Double and single x ≥ 10.4

Quad x ≥ 300.0 6
Double and single x ≥ 17.2

Quad x ≥ 1600.0 4
Double and single x ≥ 42.0

Quad x ≥ 6.6 × 10
7

erfcx(x) ≈
1

√

�

�

x+
1∕2

x

�

Double x ≥ 1042.1

Single x ≥ 42.1

Quad x ≥ 6.71 × 10
15

erfcx(x) ≈
1

√

�x

Double x ≥ 6.71 × 10
9

Single x ≥ 6.71 × 10
3

1297

1 3

Numerical Algorithms (2024) 95:1291–1308

2.2 Dawson integral

Similar to the algorithm for erfcx(x), the present new algorithm for computing the Daw-
son integral uses a combination of various numerical techniques for different regions of
the real argument, x, as explained below.

2.2.1 Expansions for small |x|

Since Daw(0) = 0 , one can easily obtain a Maclaurin series, which is useful for evalu-
ating the function near the origin, where [15]

Although the series in (11) can be used to calculate Daw(x) for the whole
domain as it converges for any finite x (magnitude of the ratio of successive terms
is 2x2∕(2n + 3)), it is impractical except for very small x because the convergence is
delayed until n becomes greater than x2−3/2.

Alternatively, a more efficient and convenient expansion of Daw(x) in the form of a
continued fraction may be used where [11, 15],

It has to be noted that the coefficients (−1)k+1(2k)∕(4k2 − 1) can be calculated in
advance to improve the efficiency of calculating the continued fraction. In the pre-
sent algorithm, we use the continued fraction in (12) to calculate Daw(x) for small
values of x. Table 3 shows the range in which Eq. (12) is used to satisfy the targeted
accuracy as a function of the precision arithmetic used.

2.2.2 Chebyshev polynomials Tn(y)

Similar to the case for erfcx(x) , a linear transformation is commonly used to map a
variable x�[a, b] defined over the range [a, b] into the range [− 1, 1]. However, since
Dawson’s integral is an odd function, one may approximate the integral for positive x
values and use the relation

to extend the calculation to the whole domain.

(11)Daw(x) =
∑∞

n=0

(−1)n2n

(2n + 1)!!
x2n+1

(12)Daw(x) =
x

1+

2x2∕3

1−

4x2∕15

1+

6x2∕35

1 −…
… .

(−1)
k+1(2kx2)∕(4k2 − 1)

1 +…

(13)Daw(−|x|) = −Daw(|x|)

Table 3 Number of convergents
from the continued fraction
in Eq. (12) and the range of
application in the present
algorithm as a function of the
precision arithmetic

Quadruple Double Single

No. of terms from
Eq. (12)

≤ 7 ≤ 5 ≤ 4

Range of applica-
tion in the
algorithm

0.0 − 0.03 0.0 − 0.12 0.0 − 0.45

1298 Numerical Algorithms (2024) 95:1291–1308

1 3

Accordingly, one only needs to expand the integral Daw(x) in terms of truncated
series in Chebyshev polynomials, for the range [0,∞] together with the use of the rela-
tion (13) to find the function for negative values of x. Yet, with such unbound domain,
b → ∞ , a nonlinear mapping transformations (similar to what has been used with the
algorithm for erfcx) can be used to map the infinite range to a finite one. The nonlin-
ear mapping described in Eq. (8) above is used with a value of the constant c equals
1.8 while the domain of t is divided, herein, into 100 equal subintervals. A Chebyshev
polynomial P(t) is obtained to approximate the Dawson’s integral (in each subinterval)
to the targeted accuracy for the precision arithmetic under consideration. Again, the
degree of the polynomial is precision-dependent as shown in Table 4. It has to be noted
that the value of the constant c = 1.8 used herein is based on a number of numeri-
cal experiments; however, by no means one claims that this is an optimum value for
the constant c although it is successful in generating the polynomials to the required
accuracy.

While the derived polynomials cover the main part of the x-domain, we switch to
Laplace continued fraction at very small values of x (Eq. (12) above) and for large val-
ues of x as explained in the next subsection, for efficiency reasons.

It is worth mentioning that, when using the Intel Fortran 64 Compiler “ifort” (Ver-
sion 2021.6.0 running on Intel(R) 64) with double precision arithmetic, the accuracy of
the present algorithm for Daw(x) is found to be in the order of 10−15 although when
using the GNU Fortran 8.1.0 compiler “gfortran”, one gets accuracy in the order of
 10−16. Accordingly, we reworked this case to obtain the coefficients for the subinterval
truncated series expansion in terms of Chebyshev polynomials for

(

Daw(x)

x

)

 instead of
Daw(x) , which successfully produced the 10−16 accuracy for calculating Daw(x) using
any of the two compilers “gfortran” or “ifort.”

2.2.3 Continued fraction and asymptotic expansion for large x

For values of x larger than those in Table 4, the use of Laplace continued fraction or
asymptotic series expansion is more efficient. A simple continued fraction that can be
used to approximate the Dawson’s integral for large values of x is written as follows
[11]:

Also, there exists an asymptotic series expansion for the integral, which can be
written as follows:

(14)
Daw(x) ≈

a
0

2x−

a
1

2x−

a
2

2x−

a
3

2x−…
… .

am

2x−…
…

with a
0
= 1, am = 2m,m = 1, 2, 3…

Table 4 Degree of polynomials
P(t) , used to approximate
Daw(x) , and applied range as a
function of the used precision

Quadruple Double Single

Degree of P(t) 16 8 4
Range of application

in the algorithm
0.03 − 30.0 0.12 − 11.0 0.45 − 8.0

1299

1 3

Numerical Algorithms (2024) 95:1291–1308

where “!!” represents the double factorial.
However, the continued fraction is used in the present algorithm for efficiency

reasons. Similar to the case of erfcx(x) , explained above, the number of convergents
(M), from the continued fraction required to secure the targeted accuracy is a func-
tion of the precision used. Also, additional economization can be achieved by divid-
ing the domain of computations using the continuing fraction into a set of subdo-
mains. Table 5 shows the range in which Eq. (14) is used to satisfy the targeted
accuracy as a function of the precision arithmetic under consideration.

Further economization in evaluating the function in this large x region can be
achieved through slicing the region in several sub-regions with the use of a smaller
number of convergents.

3 Accuracy and efficiency comparisons

3.1 Erfcx(x)

The present algorithm for calculating the erfcx(x) function has been implemented as
a modern Fortran elemental module. An array of 40,001 points uniformly spaced on
the logarithmic scale between 10−30 and 104 is used to perform the accuracy check
of the present algorithm. Variable precision arithmetic from the Matlab™ [38] sym-
bolic toolbox is used to generate the corresponding array of the product of exp

(

x2
)

and erfc(x) . The maximum absolute relative error obtained for any of the standard
precisions used was in the same order as that obtained by Cody’s code [2], for single
and double precision, and by the built-in “Erfc_Scaled” function for all three stand-
ard precisions, as shown in Fig. 1. Because of the logarithmic scale used with the
y-axis, the majority of points for double and single precision do not appear in the
figure as the absolute of the relative error for these points is zero.

For efficiency comparison and because the time consumed per single-point evalu-
ation is very short, we generate an array of 106 points that are equally spaced on the
logarithmic scale for two cases: a case of very wide range x�[10−30 − 10

30] and a
case of practical range x�[10−6 − 10

6] . The 106 points of the exp
(

x2
)

erfc(x) function
are calculated using the built-in function “Erfc_Scaled” and by the implementation
of the present algorithm using quadruple, double, and single precision arithmetic.

(15)Daw(x) ∼
∑∞

k=0

(2k − 1)!!

2k+1x2k+1

Table 5 Number of convergents
from the continued fraction
in Eq. (14) and the range of
application in the present
algorithm as a function of the
precision arithmetic

Quadruple Double Single

No. of convergents
from Eq. (14)

≤ 12 ≤ 8 ≤ 3

Range of applica-
tion in the
algorithm

x ≥ 30.0 x ≥ 11.0 x ≥ 11.0

1300 Numerical Algorithms (2024) 95:1291–1308

1 3

Fi
g.

 1

A
bs

ol
ut

e
of

 r
el

at
iv

e
er

ro
r

in
 c

al
cu

la
tin

g
th

e
sc

al
ed

 c
om

pl
em

en
ta

ry
 e

rr
or

 f
un

ct
io

n
e
rf
c
x
(x
) u

si
ng

 th
e

pr
es

en
t a

lg
or

ith
m

 a
nd

 th
e

bu
ilt

-in
 f

un
ct

io
n,

 E
rf
c
_
S
ca
le
d
(x
) .

C
al

cu
la

tio
ns

 a
re

 p
er

fo
rm

ed
 u

si
ng

 th
e

G
N

U
 F

or
tra

n
8.

1.
0

(g
fo

rtr
an

) w
ith

 d
at

a
ge

ne
ra

te
d

us
in

g
va

ria
bl

e
pr

ec
is

io
n

ar
ith

m
et

ic
 o

ffe
re

d
in

 th
e

M
at

la
b

sy
m

bo
lic

 to
ol

bo
x

as
 th

e
re

fe
re

nc
e

1301

1 3

Numerical Algorithms (2024) 95:1291–1308

The average CPU time spent in the calculation using the present algorithm is com-
pared to the CPU time consumed by the built-in “Erfc_Scaled” for all three stand-
ard precisions using two compilers: the GNU Fortran 8.1.0 (gfortran) and the Intel
2021.6.0 classic (ifort) compilers. For the cases of single and double precision arith-
metic, the CPU times consumed in performing the same calculations using Cody’s
algorithm (Algorithm 715) are considered in the comparison as well.

Table 6 shows the CPU time, in seconds, consumed in the evaluation of the 106
points as described above using the GNU Fortran 8.1.0 (gfortran) compiler for all
three standard precision arithmetic and for the two cases of very wide range of x and
the practical range described above by the present algorithm and competitive algo-
rithms including the built-in “Erfc_Scaled” function.

As it is clear from the results in the table, the present algorithm is considerably
faster than both of Cody’s code and the built-in “Erfc_Scaled” function. Efficiency
improvement for the wide range is greater than a factor of 2 (in general) and goes up
to a factor of 5 for the case of quad precision.

Table 7 shows the same information as in Table 6 except that the calculations
are performed using the Intel Fortran 64 Compiler Classic for applications running
on Intel(R) 64, Version 2021.6.0. As it is clear from the results in the table, the
present algorithm is more efficient than the built-in “Erfc_Scaled” function for the
wide range by a factor greater than 2 for quad precision and, surprisingly, by a fac-
tor higher than an order of magnitude for double and single precision!. However, for
the practical range [10−6–106] the present algorithm is only slightly faster (between
25 and 30% improvement) for the quad precision, although, for the cases of double
and single precision, the present algorithm is still faster by more than an order of
magnitude.

Figures 2, 3, and 4 show performance tests for each decade between 10−6 and 106
(the region of interest or of useful and practical value) for all three standard preci-
sion arithmetic and using the “gfortran” compiler (part a) and “ifort” compiler (part
b). The overall improvement of efficiency is clear in all of the three figures for the
three standard precision and the two compilers.

Table 6 Average CPU time consumed in calculating 106 points uniformly distributed on the logarithmic
scale for the two cases of wide range xϵ[10−30 − 1030] and the case of practical range xϵ[10−6 − 106] using
Cody’s code, the built-in Erfc_Scaled function and the present algorithm. Computations are performed
using the GNU Fortran 8.1.0 (gfortran) compiler on an Intel® Core™ i7-7600U CPU @2.80 GHz pro-
cessor in Windows 10 (64-bit operating system, × 64-based processor)

Range of x Erfcx Cody Erfc_Scaled Present Erfc_Scaled

Present

Quad precision 10−30–1030 N/A 1.6016 0.3203 5.00
10−6–106 N/A 2.7051 0.8906 3.04

Double precision 10−30–1030 0.0225 0.0225 0.0107 2.10
10−6–106 0.0381 0.0371 0.0137 2.71

Single precision 10−30–1030 0.0215 0.0137 0.0064 2.14
10−6–106 0.0361 0.0376 0.0078 4.82

1302 Numerical Algorithms (2024) 95:1291–1308

1 3

Table 7 Average CPU time consumed in calculating 106 points uniformly distributed on the logarithmic
scale for the case of wide range xϵ[10−30–1030] and for the case of practical range xϵ[10−6–106] using
Cody’s code, the built-in Erfc_Scaled function and the present algorithm. Computations are performed
using Intel Fortran 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.6.0.com-
piler on an Intel® Core™ i7-7600U CPU @2.80 GHz processor in Windows 10 (64-bit operating sys-
tem, × 64-based processor)

Range of x Erfcx Cody Erfc_scaled Present Erfc_scaled

Present

Quad precision 10−30–1030 N/A 0.4179 0.1738 2.40
10−6–106 N/A 0.5136 0.4023 1.28

Double precision 10−30–1030 0.0068 0.0557 0.0039 14.28
10−6–106 0.0098 0.0791 0.0068 11.60

Single precision 10−30–1030 0.0068 0.0542 0.0039 13.90
10−6–106 0.0112 0.0874 0.0044 19.86

Fig. 2 A stair-step plot per decade of CPU time, in seconds, consumed for 10.6 evaluations using quadru-
ple precision arithmetic and the “gfortran” compiler (a) and the “ifort” compiler (b)

Fig. 3 A stair-step plot per decade of CPU time, in seconds, consumed for 10.6 evaluations using double
precision arithmetic and the “gfortran” compiler (a) and the “ifort” compiler (b)

1303

1 3

Numerical Algorithms (2024) 95:1291–1308

For timing comparison for negative x-values and for 0 > x ≥ −9.0 , the present
code is faster than the built-in function “ Erfc_Scaled ” by a factor greater than 3 for
all precisions using the “gfortran” compiler. For negative x-values with x < −9.0
where the function is approximated by 2 ���

(

x2
)

 , the present code is also faster than
the built-in function by a factor greater than 2 for double and single precision though
it takes almost the same time as the built-in function for quad precision. With the
“ifort” compiler, the present code is faster than the built-in “ Erfc_Scaled ” function
by a factor greater than 20 for single and double precision arithmetic for both of the
above cases; i.e., 0 > x ≥ −9.0 and x < −9.0 and factors greater than 4 and 2, when
using quadruple precision for both cases, respectively.

3.2 Daw (x)

An array of 400001 points uniformly spaced on the logarithmic scale between 10−30
and 105 is used to perform the accuracy check of the present algorithm. A table of
reference values corresponding to this array is generated using variable precision
arithmetic from the Matlab [38] symbolic toolbox. The maximum absolute relative
error obtained for the quadruple precision computations using the present algorithm
is in the order of 10−32 as intended and as shown in Fig. 5. Figure 5 also shows
the absolute of the relative error in calculating Daw(x) using the present algorithm
together with the error resulting from using Algorithm715 with single and double
precision arithmetic. For single and double precision calculations, the maximum of
the absolute of relative error obtained using the present algorithm is in the order of
 10−16 for double precision and 10−7 for single precision as expected. For the last two
cases, calculations using Algorithm715 showed the same order for the maximum of
the absolute of relative error which confirms the accuracy of the present algorithm
for all standard precision arithmetic used.

A computer code that calculates the Dawson integral to quadruple precision
arithmetic or to 32 significant digits in a compiled language is not available to the
author for efficiency comparison. However, Algorithm715 [2] includes a func-
tion to calculate Dawson’s integral, which can be run using single and double

Fig. 4 A stair-step plot per decade of CPU time, in seconds, consumed for 10.6 evaluations using single
precision arithmetic and the “gfortran” compiler (a) and the “ifort” compiler (b)

1304 Numerical Algorithms (2024) 95:1291–1308

1 3

precision arithmetic for efficiency comparison. Similar to the case of erfcx(x) , the
time consumed to calculate a single point is very short. Accordingly, we report
the time required for calculating the whole array of 400001 points. We repeat the
calculations several hundreds of times and take the average time consumed per
evaluation of the array for comparison.

Table 8 shows the total CPU time spent in calculating the 400001 points by
Algorithm715 and by the present algorithm for both single and double precision
arithmetic using the “gfortran” compiler. As can be seen from the table, the pre-
sent algorithm is faster than Algorithm715 and takes only about 53–74% of the
time spent by Algorithm715 for the computations.

Similarly, Table 9 shows the same data as in Table 8 except that compilation
is performed using the “ifort” compiler. The present algorithm is also faster than

Fig. 5 Absolute of relative error in calculating Dawson integral, Daw(x) using the present algorithm and
using Algorithm715 (for single and double precision arithmetic). Calculations are performed using the
GNU Fortran 8.1.0 (gfortran) with data generated using variable precision arithmetic offered in the Mat-
lab symbolic toolbox as the reference

Table 8 Average CPU time,
in seconds, consumed in
calculating 400,001 points of
Daw(x) , uniformly distributed
on the logarithmic scale,
for a case of wide range
x�[10−30 − 10

30] and a case of
practical range x�[10−6 − 10

6] .
Calculations are performed
using the GNU Fortran 8.1.0
(gfortran)

Range of x Cody Present Cody

Present

Quad precision 10−30–1030 N/A 0.18838 N/A
10−6–106 N/A 0.55249 N/A

Double precision 10−30–1030 0.00309 0.00210 1.47
10−6–106 0.00701 0.00400 1.75

Single precision 10−30–1030 0.00157 0.00116 1.35
10−6–106 0.00477 0.00252 1.89

1305

1 3

Numerical Algorithms (2024) 95:1291–1308

Algorithm715 and takes only about 49–61.1% of the time spent by Algorithm715
for the computations.

4 Conclusions

Efficient, multiple precision algorithms for the computation of the scaled com-
plementary error function, exp(x2) erfc(x) and the Dawson integral, Daw(x) ,
are presented and implemented in the form of Fortran elemental modules. The
accompanying Fortran codes can be run in single, double, and quadruple preci-
sion arithmetic at the convenience of the user by assigning the required preci-
sion to an integer “rk” in a subsidiary module “set_rk.” Results from the present
code for erfcx(x) are compared with the built-in “Erfc_Scaled” function, available
in modern Fortran compilers showing that the present algorithm is considerably
more efficient than the built-in function. With the “gfortran” compiler, the effi-
ciency improvements for all tested data sets and all of the three precisions (single,
double, and quadruple) are between a factor of 2 and a factor of 5. However, with
the “ifort” compiler, efficiency improvements vary between a factor of 1.3 and a
factor of 20 depending on the tested data set and the precision used.

The present code for Daw(x) is distinctive in calculating the function to 32
significant digits. Results from the present code for Daw(x) for double and single
precision arithmetic are compared with calculation using the Dawson function
from Algoritm715 showing that the present algorithm is also faster than Algo-
rithm715. The efficiency improvements range between a factor of 1.35 and a fac-
tor of 2.0 depending on the tested dataset and the precision.

The present algorithms for erfcx(x) and Daw(x) can be easily implemented in
any software package and to numerical libraries in any programming language
with the possibility of extension to consider complex arguments in a future
planned work.

Table 9 Average CPU time, in seconds, consumed in calculating 400,001 points of Daw(x) , uniformly
distributed on the logarithmic scale, for a case of wide range x�[10−30 − 10

30] and a case of practical
range x�[10−6 − 10

6] . Calculations are performed using the Intel Fortran 64 Compiler Classic for appli-
cations running on Intel(R) 64, Version 2021.6.0.compiler (ifort)

Range of x Cody Present Cody

Present

Quad precision 10−30–1030 N/A 0.13613 N/A
10−6–106 N/A 0.24182 N/A

Double precision 10−30–1030 0.00257 0.00141 1.82
10−6–106 0.00687 0.00387 1.78

Single precision 10−30–1030 0.00221 0.00135 1.64
10−6–106 0.00333 0.00163 2.04

1306 Numerical Algorithms (2024) 95:1291–1308

1 3

Appendix. The polynomial of 17th degree resulting from Eq. (5),
approximating the erfcx(x) function to 32 significant digits accuracy
in the region |x|ϵ[0,0.037]

Acknowledgements The author would like to acknowledge comments and suggestions received from the
anonymous referee. The author would like also to thank Tran Quoc Viet, Ton Duc Thang University,
Ho Chi Minh City, Vietnam for insightful comments and suggestions. Furthermore, the author is deeply
appreciative of the warm hospitality extended by Professor Jingfang Huang during his time at UNC
Chapel Hill, where a substantial portion of this research was conducted.

Author contribution Single author work.

Funding Work is partially supported by the UAE University SURE PLUS research grant number 2062,
2022 and UPAR research grant number 2278, 2023.

Data availability Modern Fortran implementation of the algorithms is available up on request from the
author.

Declarations

Ethical approval The author declares that he followed all the rules of a good scientific practice.

Competing interests The author declares no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

Table 10 Minimum power of
the above polynomial required
to secure the accuracy in the
range shown

Precision Domain Power

All |x|≤ 0.00015 ε(1/12) 3
All |x|≤ 0.005 ε(1/12) 5
All |x|≤ 0.1 ε(1/12) 7
All |x|≤ 0.7 ε(1/12) 9
All |x|≤ 1.8 ε(1/12) 11
Quad |x|≤ 6.9 ε(1/12) 13
Double and single |x|≤ 2.3 ε(1/12)

erfcx(x) ∼
1

4410806400

��

109395x16 + 875160x14 + 6126120x12 + 3675672x10 + 18378360x8+

735134400x6 + 2205403200x4 + 4410806400x2 + 4410806400x14
�

−
1

√

�

�

65536x17 + 557056x15+

4177920x13 + 27156480x11 + 149360640x9 + 672122880x7 + 2352430080x5 + 5881075200x3+

8821612800x)} for x ≤ 0.037

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1307

1 3

Numerical Algorithms (2024) 95:1291–1308

References

 1. Cody, W.J.: Rational Chebyshev approximations for the error function. Math. Comput. 23(107),
631–637 (1969). https:// doi. org/ 10. 2307/ 20043 90

 2. Cody, W.J.: Algorithm 715: SPECFUN—A portable FORTRAN package of special function
routines and test drivers. ACM Trans. Math. Softw. 19(1), 22–32 (1993)

 3. Oldham K.B., Myland, J.C., Spanier, J.: An atlas of functions: with equator, the atlas function
calculator. Springer (2009)

 4. Zaghloul, M.R.: On the calculation of the Voigt line profile: a single proper integral with a damped
sine integrand. Mon. Not. R. Astron. Soc. 375(3), 1043–1048 (2007)

 5. Zaghloul, M.R., Ali, A.N.: Algorithm 916: computing the Faddeyeva and Voigt functions. ACM
Trans. Math. Soft. (TOMS) 38(2), 1–22 (2011)

 6. Zaghloul, M.R.: Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: effi-
ciency improvements and FORTRAN translation. ACM Trans. Math. Softw. (TOMS) 42(3), 1–9
(2016)

 7. Zaghloul, M.R.: Accurate and efficient computations of the Gordeyev integral. J Appl Math Comput
6(2), 219–229 (2022)

 8. Van Snyder: Intrinsic math functions. J3 US Fortran Standards Committee Meeting Documents,
264r3 (2005)

 9. Reid, J.: The new features of Fortran 2008. ACM SIGPLAN Fortran Forum. 27(2), 8–21 (2008)
 10. Dawson, H.G.: On the numerical value of ∫0

hex2 dx. Proc. Lond. Math. Soc. S1–29(1), 519–522
(1897). https:// doi. org/ 10. 1112/ plms/ s1- 29.1. 519

 11. McCabe, J.H.: A continued fraction expansion, with truncation error estimate, for Dawson’s inte-
gral. Math. Comput. 28(127), 811–816 (1974)

 12. Zaghloul, M.R.: A FORTRAN package for efficient multi-accuracy computations of the Faddeyeva
function and related functions of complex arguments. arXiv preprint ar:1806.01656 (2017)

 13 Zaghloul, M.R.: Remark on “Algorithm 680: evaluation of the complex error function”: cause and
remedy for the loss of accuracy near the real axis”. ACM Trans. Math. Softw. (TOMS) 45(2), 1–3
(2019). https:// doi. org/ 10. 1145/ 33096 81

 14. Hummer, D.G.: Expansion of Dawson’s function in a series of Chebyshev polynomials. Math. Com-
put. 18, 317–319 (1964)

 15. Cody, W.J., Paciorek, K.A., Thacher, H.C., Jr.: Chebyshev approximations for Dawson’s integral.
Math. Comput. 24(109), 171–178 (1970)

 16. Milone, L.A., Milone, A.A.E.: Evaluation of Dawson’s function. Astrophys. Space Sci. 147, 189–
191 (1988)

 17. Rybicki, G.B.: Dawson’s integral and the sampling theorem. Comput. Phys. 3(2), 85 (1989). https://
doi. org/ 10. 1063/1. 48228 32

 18. Lether, F.G.: Constrained near-minimax rational approximations to Dawson’s integral. Appl. Math.
Comput. 88, 267–274 (1997)

 19. Lether, F.G.: Shifted rectangular quadrature rule approximations to Dawson’s integral F(x). J. Com-
put. Appl. Math. 92, 97–102 (1998)

 20. Abrarov, S.M., Quine, B.M.: A rational approximation of the Dawson’s integral for efficient compu-
tation of the complex error function. Appl. Math. Comput. 321, 526–543 (2018). https:// doi. org/ 10.
1016/j. amc. 2017. 10. 032

 21. Hauschildt, P.H., Baron, E.: The numerical solution of the expanding stellar atmosphere problem. J.
Comput. Appl. Math. 109, 41–63 (1999)

 22. He, Y., Ding, C.: Using accurate arithmetics to improve numerical reproducibility and stability in
parallel applications. J. Supercomput. 18(3), 259–277 (2001)

 23. Lake, G., Quinn, T., Richardson, D.C.: From Sir Isaac to the Sloan Survey: calculating the structure
and chaos due to gravity in the universe. Proceedings of the Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SIAM, Philadelphia, pg. 1–10 (1997)

 24. Frolov, A.M., Bailey, D.H.: Highly accurate evaluation of the few-body auxiliary functions and four-
body integrals. J. Phys. B 36(9), 1857–1867 (2003)

 25. Zwillinger, D. Editor-in-Chief 2003. CRC Standard mathematical tables and formulae 31st Edition.
CRC Press, ISBN ISBN-10: 1584882913

https://doi.org/10.2307/2004390
https://doi.org/10.1112/plms/s1-29.1.519
https://doi.org/10.1145/3309681
https://doi.org/10.1063/1.4822832
https://doi.org/10.1063/1.4822832
https://doi.org/10.1016/j.amc.2017.10.032
https://doi.org/10.1016/j.amc.2017.10.032

1308 Numerical Algorithms (2024) 95:1291–1308

1 3

 26. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C. W.: NIST handbook of mathematical func-
tions, Cambridge University Press and the National Institute of Standards and Technology. See also
https:// dlmf. nist. gov/7 (2010)

 27. Howard, R.M.: Arbitrarily accurate analytical approximations for the error function. Math. Comput.
Appl. 2022(27), 14 (2022). https:// doi. org/ 10. 3390/ mca27 010014

 28. Shepherd, M.M., Laframboise, J.G.: Chebyshev approximation of (1+2x)exp(x2) erfc(x) in 0bx<∞.
Math. Comput. 36(15), 249 (1981)

 29. Fox, L., Parker, I.B.: Chebyshev polynomials in numerical analysis. Oxford University Press, Lon-
don (1968)

 30. Abramowitz, M., And Stegun, I.A.: Handbook of Mathematical Functions, New York: National
Bureau of Standards, AMS55 (1964)

 31. Clenshaw, C.W.: A note on the summation of Chebyshev series. Math. Tables Other Aids to Com-
put. 9(51), 118 (1955)

 32. Mason, J. C., Handscomb, D.C.: Chebyshev polynomials, p. 182. CRC Press (2003)
 33. Boyd, J. P., Chebyshev and Fourier spectral methods: Second revised edition. Dover Publications

(2001)
 34. Canuto, C., Yousuff Hussaini, M., Quarteroni, A., Zang, T.A.: Spectral methods: fundamentals in

single domains. Springer (2006)
 35. Johnson, S.G.: Faddeeva package, a free/open-source C++ software to compute the various error

functions of arbitrary complex arguments. Massachusetts Institute of Technology, Cambridge, MA,
USA. http:// ab- initio. mit. edu/ wiki/ index. php/ Fadde eva_ Packa ge (2012)

 36. Stegun, I.A., Zucker, R.: Automatic computing methods for special functions. J. Res. Natl. Bur.
aStand.-B Math. Sci. 74B(3), 211–224 (1970)

 37. Cuyt, A., Petersen, V.B., Verdonk, B., Waadeland, H., Jones, W.B.: Handbook of continued frac-
tions for special functions, Springer Science+Business Media B.V. (2008)

 38. MATLAB 9.2.0.538062 (R2017a). 2017. The MathWorks, Inc., Natick, Massachusetts, United
States.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://dlmf.nist.gov/7
https://doi.org/10.3390/mca27010014
http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package

	Efficient multiple-precision computation of the scaled complementary error function and the Dawson integral
	Abstract
	1 Introduction
	2 Algorithm
	2.1 Scaled complementary error function
	2.1.1 Expansions for
	2.1.2 Chebyshev polynomials,
	2.1.3 Continued fraction and asymptotic expansion for large

	2.2 Dawson integral
	2.2.1 Expansions for small
	2.2.2 Chebyshev polynomials
	2.2.3 Continued fraction and asymptotic expansion for large

	3 Accuracy and efficiency comparisons
	3.1 Erfcx(x)
	3.2 Daw (x)

	4 Conclusions
	Appendix. The polynomial of 17th degree resulting from Eq. (5), approximating the erfcx(x) function to 32 significant digits accuracy in the region |x|ϵ[0,0.037]
	Acknowledgements
	References

