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Abstract
We propose fast numerical algorithms to improve the accuracy of singular vectors for
a real matrix. Recently, Ogita and Aishima proposed an iterative refinement algorithm
for singular value decomposition that is constructed with highly accurate matrix mul-
tiplications carried out six times per iteration. The algorithm runs for the problem that
has no multiple and clustered singular values. In this study, we show that the same
algorithm can be runwith highly accuratematrixmultiplications carried out five times.
Also, we proposed four algorithms constructed with highly accurate matrix multipli-
cations, two algorithms with the multiplications carried out four times, and the other
two with the multiplications carried out five times. These algorithms adopt the idea of
a mixed-precision iterative refinement method for linear systems. Numerical experi-
ments demonstrate speed-up and quadratic convergence of the proposed algorithms.
As a result, the fastest algorithm is 1.7 and 1.4 times faster than the Ogita-Aishima
algorithm per iteration on a CPU and GPU, respectively.
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1 Introduction

This study investigates the singular value decomposition for A ∈ R
m×n :

A = U�V T , (1)

where U ∈ R
m×m and V ∈ R

n×n are orthogonal matrices whose i th columns are
the left singular vectors u(i) ∈ R

m for i = 1, . . . ,m and the right singular vectors
v(i) ∈ R

n for i = 1, . . . , n, respectively and � ∈ R
m×n is a rectangular diagonal

matrix whose i th diagonal elements are the singular values σi ∈ R for i = 1, . . . , n.
Throughout the paper, we assume thatm ≥ n. The approximation û(i) ≈ u(i), σ̂i ≈ σi ,
and v̂(i) ≈ v(i) for all i can be obtained by using various numerical solvers for singular
value decomposition, e.g.,gesdd,gesvd,gesvdx in LAPACK [1] and svd,svds,
or svdsketch in MATLAB.

Now, for k ≤ n, let

U1:k := (u(1), . . . , u(k)), Û ′
1:k := (û′

(1), . . . , û
′
(k)) ∈ R

m×k,

V1:k := (v(1), . . . , v(k)), V̂ ′
1:k := (v̂′

(1), . . . , v̂
′
(k)) ∈ R

n×k

with û′
(i) := û(i)/‖û(i)‖2 and v̂′

(i) := v̂(i)/‖v̂(i)‖2, and �̂′
k := diag(σ̂ ′

1, . . . , σ̂
′
k) ∈

R
k×k with σ̂ ′

i := (û′
(i))

T Av̂′
(i). The residuals are defined as

R1:k := AV̂ ′
1:k − Û ′

1:k�̂′
k, S1:k := AT Û ′

1:k − V̂ ′
1:k�̂′

k,

and the gap of the singular values is given by

δk := min
1≤i≤k

k< j≤max(n,k+1)

|σ̂ ′
i − σ j |, (2)

where σn+1 := 0 for the sake of convenience. Wedin [2] proposed the sin� theorem
for singular value decomposition extending the sin� theorems for Hermitian matrices
proposed by Davis and Kahan in [3]. If δk > 0, then from [2], it holds that

√
‖ sin�(U1:k, Û ′

1:k)‖2F + ‖ sin�(V1:k, V̂ ′
1:k)‖2F ≤

√
‖R1:k‖2F + ‖S1:k‖2F

δk
, (3)

where �(U1:k, Û ′
1:k) and �(V1:k, V̂ ′

1:k) are matrices of canonical angles (see [4])

betweenU1:k and Û ′
1:k and between V1:k and V̂ ′

1:k , respectively, and ‖ · ‖F denotes the
Frobenius norm. Note that Dopico [5] also proposed a similar theorem. From (3), the
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smaller the value of δk in (2), the lower the accuracy of the computed singular vec-
tors. Thus, iterative refinement methods are useful for obtaining sufficiently accurate
results in singular value decomposition.

Let Û := (û(1), . . . , û(m)) and V̂ := (v̂(1), . . . , v̂(n)). Davies and Smith proposed
an iterative refinement algorithm for singular value decomposition of Û T AV̂ in [6].
However, the singular values for Û T AV̂ are slightly perturbed compared to the exact
singular values for the original matrix A. Convergence to results that include per-
turbations indicates a limitation of the achievable accuracy using the Davies-Smith
algorithm. Recently, Ogita and Aishima proposed an iterative refinement algorithm
for singular value decomposition of A constructed with highly accurate matrix multi-
plications carried out six times per iteration in [7]. That algorithm converges to exact
singular vectors of A when Û and V̂ are moderately accurate.

The main contributions of this study are

• speeding up the Ogita-Aishima algorithm and
• performance evaluation of the proposedmethods on aCPUandGPUwhen improv-
ing the accuracy of Û and V̂ from double-precision to quadruple-precision or from
single-precision to double-precision.

We use the following environments for numerical experiments in this paper:

Env. 1) MATLAB R2021a on a personal computer with an Intel Core i9-10900X
CPU (3.70 GHz) with 128 GBmain memory, a GeForce RTX 3090 GPUwith
CUDA 11.6, and Windows 10 operating system

Env. 2) MATLABR2021b on a personal computer with four AMDEPYC 7542 CPUs
(2.90 GHz) with 512 GB shared main memory, a A100 Tensor Core GPUwith
CUDA 11.3, and Ubuntu 20.04.2 LTS operating system

Generally, double-precision arithmetic is faster than arbitrary precision arithmetic
implemented in software or arithmetic for multiple-component format values, such as
double-double arithmetic [8, 9]. Moreover, on an enthusiast-class GPU, such as the
GeForce RTX 3090, single-precision arithmetic is much faster than double-precision
arithmetic. For example, using Env. 1, we obtain the results shown in Table 1. The table
indicates double-precision matrix multiplication is 1353 times faster than quadruple-
precision on CPU and single-precision matrix multiplication is 34 times faster than
double-precision on GPU. Note that for quadruple-precision arithmetic in Table 1,
we use the Advanpix Multiprecision Computing Toolbox for MATLAB [10]. Hence,
lower-precision computations are much faster than higher-precision computations.
Thus, we consider algorithms that reduce the cost of higher-precision computations
at the expense of increasing the cost of lower-precision computations.

Table 1 Computing time in seconds for matrix multiplication of A ∈ R
n×n and B ∈ R

n×n for n = 10000
using Env. 1

CPU GPU
double quadruple ratio single double ratio

2.45 3316 1353 0.11 3.73 34
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The computing time ratio, (single-precision arithmetic):(double-precision arith-
metic), for singular value decomposition is about 1 : 2 to 2 : 3 on a CPU and
GPU in Env. 1 and 2, respectively. Moreover, matrix multiplication can be performed
much faster than singular value decomposition. For example, from Table 2, using
the single-precision results as the initial guess, the Ogita-Aishima algorithm with
double-precision matrix multiplication can be run for (22.7 − 15.4)/(0.11 · 6) ≈ 11
iterations within the double-precision computing time. For a linear system, LAPACK
provides a routine dsgesv that computes an initial guess for the solution using
single-precision arithmetic and obtains double-precision equivalent results by using
the mixed-precision iterative refinement method. Our study will enable the develop-
ment of a similar routine for singular value decomposition.

In this study, we first show that the Ogita-Aishima algorithm can be executed
with highly accurate matrix multiplications carried out four times per iteration, that
is, with one fewer multiplication than in their original paper. Next, we propose four
iterative refinement algorithms for singular value decomposition, combining the idea
of a mixed-precision iterative refinement method for a linear system with the Ogita-
Aishima algorithm. Those algorithms are constructed with highly accurate matrix
multiplications carried out either four or five times per iteration. The Ogita-Aishima
algorithm and proposed algorithms (Algorithms 5, 6, and 8 in the paper) are the same
in exact arithmetic, their limiting accuracy in finite precision is different, and will
be explored experimentally in this work. Numerical experiments are conducted to
demonstrate speed-up and quadratic convergence of the proposed algorithms on a
CPU and GPU.

The remainder of this paper is organized as follows: Section2 introduces results
obtained in previous studies; Section3 presents the proposed iterative refinement
algorithms for singular value decomposition; Section4 presents numerical examples
to illustrate the efficiency of the proposed algorithms; and Section5 provides final
remarks.

2 Notation and previous work

2.1 Notation

Let (·)h and (·)� denote the results of numerical arithmetic, where all operations
inside the parentheses are executed at higher- and lower-precision, respectively.
The combinations of precision [higher precision and lower precision] using in
this study are [quadruple-precision and double-precision] and [double-precision and
single-precision]. For simplicity, we will omit terms less than O(mkn�), k + � = 3
from the operations count. For example, wewill write s1m3+s2m2n+s3mn2+s4n3+
s5m2 + s6mn + s7n2 + · · · operations for si ∈ N as s1m3 + s2m2n + s3mn2 + s4n3

operations.

Table 2 Computing time in seconds for matrix multiplication of A and B and the singular value decompo-
sition of A for A ∈ R

n×n and B ∈ R
n×n for n = 10000 using GPU using Env. 2

svd matrix multiplication
single double ratio single double ratio

15.44 22.74 1.5 0.11 0.11 1
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2.2 Mixed-precision iterative refinement technique

We consider a linear system Ax = b for x, b ∈ R
n and a non-singular matrix A ∈

R
n×n . Let x̂ ≈ x be a computed solution to Ax = b. There is an iterative refinement

algorithm with mixed-precision arithmetic to improve the accuracy of x̂ . The process
is shown in Algorithm 1.

Algorithm 1 Iterative refinement for the approximate solution x̂ of a linear system
Ax = b. The initial x̂ is obtained using lower-precision arithmetic.
1: repeat
2: Compute r ← (b − Ax̂)h .
3: Convert r into lower-precision.
4: Compute y ← (A−1r)�.
5: Update x̂ as x̂ ← (x̂ + y)h or �.
6: until accuracy of x̂ is sufficient.

Note that if thematrix decomposition of A is already obtained for the initial approx-
imation x̂ , the cost of line 4 is almost negligible. For using a solver based on LU
factorization, Wilkinson [11] gave the error analysis for fixed-point arithmetic, and
Moler [12] extended that for floating-point arithmetic. Jankowski and Woźniakowski
[13] showed that the algorithm with an arbitrary solver could be made stable in the
usual sense by normwise error analysis. Skeel [14] also showed that with a solver based
on LU factorization by elementwise error analysis. Higham [15–17] extended Skeel’s
analysis to an arbitrary solver. Langou et al. [18] showed the maximum number of
iterations to convergence on the method with a solver based on LU factorization using
single- and double-precision arithmetic. Carson and Higham [19] gave an error anal-
ysis for ill-conditioned A. In addition, Algorithm 1 has been accelerated using three
precisions [20–22]. We focus on the lower-precision solution of the linear system in
line 4 in Algorithm 1. Based on this principle, this study aims to reduce the number
of higher-precision matrix multiplications of the iterative refinement algorithm for
singular value decomposition proposed by Ogita and Aishima.

2.3 Iterative refinement for symmetric eigenvalue decomposition

In this subsection, we introduce the iterative refinement algorithms for symmetric
eigenvalue decomposition proposed by Ogita and Aishima in [23] and Uchino, Ozaki,
and Ogita in [24]. We will write In to denote the n × n identity matrix. Now, we
assume A = AT ∈ R

n×n . Let X ∈ R
n×n be orthogonal, D ∈ R

n×n be diagonal,
and A = XDXT . The i th columns of X are the eigenvectors x(i) ∈ R

n and the i th
diagonal elements of D are the eigenvalues λi ∈ R for i = 1, . . . , n. Here, we assume
that λi 	= λ j for i 	= j . For X̂ ≈ X , we define the error matrix E ∈ R

n×n such that
X = X̂(In + E). Ogita and Aishima proposed an algorithm to compute Ẽ ≈ E and
update X̂ into X̃ as X̃ ← X̂(In + Ẽ). The algorithm converges quadratically, provided
that the error matrix E satisfies the following conditions from [25, Theorem 3.4]:

‖E‖2 < min

⎛
⎝

min
1≤i< j≤n

|λi − λ j |
10

√
n‖A‖2 ,

1

100

⎞
⎠ . (4)
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This process is shown in Algorithm 2. Note that Algorithm 2 is simplified from the
original algorithm [23, Algorithm 1] because multiple eigenvalues are not considered.

Algorithm 2Refinement of approximate eigenvectors X̂ ∈ R
n×n for a real symmetric

matrix A ∈ R
n×n from [23]. Assume λ̃i 	= λ̃ j for i 	= j . The total cost is 6n3 to 8n3

operations.

Require: A ∈ R
n×n , X̂ ∈ R

n×n

Ensure: X̃ ∈ R
n×n , D̃ ∈ R

n×n

1: function [X̃ , D̃] ← RefSyEv(A, X̂ )
2: R ← (In − X̂ T X̂)h � R = (ri j )

3: S ← (X̂ T AX̂)h � S = (si j )

4: λ̃i ←
(

sii
1−rii

)
h

(for 1 ≤ i ≤ n) � Approximate eigenvalues

5: D̃ ← diag(λ̃1, . . . , λ̃n)

6: F ← (S + RD̃)h � F = ( fi j )

7: ẽi j ←

⎧
⎪⎨
⎪⎩

(
fi j

λ̃ j−λ̃i

)

h
(i 	= j)

( ri j
2

)
h

(otherwise)
(for 1 ≤ i, j ≤ n)

8: X̃ ← (X̂ + X̂ Ẽ)h � Ẽ = (ẽi j )
9: end function

Since X̂ T X̂ and X̂ T (AX̂) are symmetric, only the upper or lower triangular part
needs to be computed. Thus, the total cost of Algorithm 2 is 6n3 operations. How-
ever, if the matrix product is obtained by using highly accurate algorithms, e.g.,
Ozaki’s scheme [26] or a subroutine in an arbitrary precision arithmetic library, such
as MPLAPACK [27]1, XBLAS (extra precise BLAS) [28], or Advanpix Multipreci-
sion Computing Toolbox for MATLAB, the total cost is up to 8n3 operations since the
symmetry of the matrix product may not be considered. The cost is divided into

2n3: AX̂ and X̂ Ẽ ,
n3: X̂ T X̂ and X̂ T (AX̂) after computing AX̂ (exploiting symmetry),

2n3: X̂ T X̂ and X̂ T (AX̂) after computing AX̂ (no exploiting symmetry).

Let e := �log10(‖Ẽ‖2)
. It is reported in [24] that the required arithmetic precision of
high-accuracy matrix multiplications is 2e decimal digits for X̂ T X̂ and X̂ T AX̂ and e
decimal digits for X̂ Ẽ in Algorithm 2, i.e., line 8 in Algorithm 2 can be replaced by
X̃ ← (X̂ + (X̂ Ẽ)�)h . Thus, the total cost of 2e decimal digit computations is 4n3 to
6n3 operations.

Uchino, Ozaki, and Ogita [24] proposed an algorithm to reduce the required arith-
metic precision of Algorithm 2. It is based on iterative refinement for the solution
of linear systems using mixed-precision arithmetic. From R = In − X̂ T X̂ and
S = X̂ T AX̂ in Algorithm 2, F at line 6 satisfies

F = S + RD̃ = X̂ T AX̂ + (In − X̂ T X̂)D̃ = X̂ T (AX̂ − X̂ D̃) + D̃.

1 MPLAPACK provides a subroutine rsyrk for X̂ T X̂ with n3 operations.
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Since the diagonal part of F is not referenced, it can be computed as

F := X̂ T W , (5)

whereW := AX̂ − X̂ D̃. From line 4 in Algorithm 1, (5) can be computed with lower-
precision. Moreover, the off-diagonal parts of R and S are not necessary. Finally, a
variant equivalent of Algorithm 2 in exact arithmetic is obtained. The condition for
convergence is the same as (4) for Algorithm 2.

Algorithm 3Refinement of approximate eigenvectors X̂ ∈ R
n×n for a real symmetric

matrix A ∈ R
n×n from [24]. Assume λ̃i 	= λ̃ j for i 	= j . The total cost is 6n3

operations.

Require: A ∈ R
n×n , X̂ = (x(1), . . . , x(n)) ∈ R

n×n

Ensure: X̃ ∈ R
n×n , D̃ ∈ R

n×n

1: function [X̃ , D̃] ← RefSyEv2(A, X̂ )
2: P ← (AX̂)h � P = (p(1), . . . , p(n))

3: rii ← (1 − x̂ T
(i) x̂(i))h (for 1 ≤ i ≤ n)

4: sii ← (x̂ T
(i) p(i))h (for 1 ≤ i ≤ n)

5: λ̃i ←
(

sii
1−rii

)
h

(for 1 ≤ i ≤ n) � Approximate eigenvalues

6: D̃ ← diag(λ̃1, . . . , λ̃n)

7: W ← (P − X̂ D̃)h
8: F ← (X̂ T W )� � F = ( fi j )

9: ẽi j ←

⎧
⎪⎨
⎪⎩

(
fi j

λ̃ j−λ̃i

)

h
(i 	= j)

( ri j
2

)
h

(otherwise)
(for 1 ≤ i, j ≤ n)

10: X̃ ← (X̂ + (X̂ Ẽ)�)h � Ẽ = (ẽi j )
11: end function

The total cost of Algorithm 3 is 6n3 operations divided into

2n3: AX̂ , X̂ T W , and X̂ Ẽ ,

among which there are no matrix multiplications whose result is symmetric. It is
reported in [24] that the required arithmetic precision of high-accuracy matrix mul-
tiplications is 2e decimal digits for AX̂ and e decimal digits for X̂ T W and X̂ Ẽ in
Algorithm 3. Thus, the total cost of 2e decimal digit computations is 2n3 operations.

2.4 Iterative refinement for singular value decomposition

In this subsection, we introduce an iterative refinement for full singular value decom-
position proposed by Ogita and Aishima in [7]. Hereafter, we assume that

σ1 > σ2 > · · · > σn
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and the approximation σ̃i of σi satisfies σ̃i 	= σ̃ j for i 	= j . Let Û ≈ U and V̂ ≈ V
for U and V in (1). Define the error matrices F ∈ R

m×m and G ∈ R
n×n such that

U = Û (Im + F) and V = V̂ (In + G), (6)

respectively. Ogita and Aishima proposed an algorithm which is based on the same
idea as Algorithm 2. It computes F̃ ≈ F and G̃ ≈ G, which hold from [7, Lemma
2], and updates Û and V̂ to Ũ and Ṽ as Ũ ← Û (Im + F̃) and Ṽ ← V̂ (In + G̃),
respectively. This process is shown inAlgorithm 4. Note that for T , Û , Ũ , R ∈ R

m×m ,
we have

T = (T1 T2), Û = (Û1 Û2), Ũ = (Ũ1 Ũ2), and R =
(
R11 R12
R21 R22

)

with T1, Û1, Ũ1 ∈ R
m×n , T2, Û2, Ũ2 ∈ R

m×(m−n), R11 ∈ R
n×n , R12, RT

21 ∈
R
n×(m−n), and R22 ∈ R

(m−n)×(m−n).
Let Ũ and Ṽ be obtained from Û and V̂ using Algorithm 4. Define F ′ ∈ R

m×m

and G ′ ∈ R
n×n as U = Ũ (Im + F ′) and V = Ṽ (In + G ′), respectively, and ε :=

max(‖F‖2, ‖G‖2), ε′ := max(‖F ′‖2, ‖G ′‖2). If ε satisfies

ε <

min
1≤i≤n−1

(σi − σi+1)

30m‖A‖2 , (7)

then

ε′ <
7

10
ε and lim sup

ε→0

ε′

ε2
≤ 18m‖A‖2

min
1≤i≤n−1

(σi − σi+1)
(8)

hold from [7, Theorem 1], and (8) implies that Algorithm 4 converges quadratically.
For Algorithm 4, we assume that these are clustered singular values if (7) is not
satisfied.

The total cost of Algorithm 4 is 3m3 + 2m2n + 2mn2 + 3n3 operations; however,
the cost can be up to 4m3 + 2m2n + 2mn2 + 4n3 operations due to the computational
problem of symmetry of the result of Û T Û and V̂ T V̂ . The cost is divided into

m3: Û T Û (exploiting symmetry),

2m3: Û T Û (no exploiting symmetry),

n3: V̂ T V̂ (exploiting symmetry),

2n3: V̂ T V̂ (no exploiting symmetry),

2mn2: AV̂ ,

2m2n: Û T (AV̂ ) after computing AV̂ ,

2m3: Û F̃ ,

2n3: V̂ G̃.
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Algorithm 4 Refinement of approximate singular vectors Û ∈ R
m×m and V̂ ∈ R

n×n

for a real matrix A ∈ R
m×n from [7]. Assume σ̃i 	= σ̃ j for i 	= j . The total cost is

3m3 + 2m2n + 2mn2 + 3n3 to 4m3 + 2m2n + 2mn2 + 4n3 operations.

Require: A ∈ R
m×n , Û ∈ R

m×m , V̂ ∈ R
n×n

Ensure: Ũ ∈ R
m×m , �̃ ∈ R

m×n , Ṽ ∈ R
n×n

1: function [Ũ , �̃, Ṽ ] ← RefSVD(A, Û , V̂ )
2: R ← (Im − Û T Û )h � R = (ri j )

3: S ← (In − V̂ T V̂ )h � S = (si j )

4: T ← (Û T AV̂ )h � T = (ti j )

5: σ̃i ←
(

ti i
1−(rii+sii )/2

)
h

(for 1 ≤ i ≤ n) � Approximate singular values

6: �̃n ← diag(σ̃1, . . . , σ̃n); �̃ ← (�̃n , On,m−n)T

7: Cα ← (T1 + R11�̃n)h; Cβ ← (T T
1 + S�̃n)h

8: D ← (�̃nCα + Cβ�̃n)h � D = (di j )

9: E ← (Cα�̃n + �̃nCβ)h � E = (ei j )

10: g̃i j ←

⎧
⎪⎨
⎪⎩

(
di j

σ̃2
j −σ̃2

i

)

h

(i 	= j)

( sii
2

)
h (otherwise)

(for 1 ≤ i, j ≤ n)

11: f̃i j ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ei j

σ̃2
j −σ̃2

i

)

h

(i 	= j, i, j ≤ n)

(
− t j i

σ̃i

)
h

(i ≤ n < j)(
ri j − f̃ j i

)
h

( j ≤ n < i)( ri j
2

)
h

(otherwise)

(for 1 ≤ i, j ≤ m)

12: Ũ ← (Û + Û F̃)h; Ṽ ← (V̂ + V̂ G̃)h � F̃ = ( f̃i j ), G̃ = (g̃i j )
13: end function

Here, we define ε̃ := max(‖F̃‖2, ‖G̃‖2) and

d := �− log10 ε̃
. (9)

Then, using (6) and ε ≈ ε̃ from F ≈ F̃ and G ≈ G̃ yields

max

(
‖U − Û‖2

‖Û‖2
,
‖V − V̂ ‖2

‖V̂ ‖2

)
≤ ε ≈ ε̃ ≈ O(10−d). (10)

Since (8) holds,

max

(
‖U − Ũ‖2

‖Ũ‖2
,
‖V − Ṽ ‖2

‖Ṽ ‖2

)
≤ ε′

≤ 18m‖A‖2
min

1≤i≤n−1
(σi − σi+1)

ε2

≈ 18m‖A‖2
min

1≤i≤n−1
(σi − σi+1)

ε̃2 ≈ O(10−2d)
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988 Numerical Algorithms (2024) 95:979–1009

as ε → 0. Thus, the required arithmetic precision of Algorithm 4 is almost 2d decimal
digits. However, that for the computations of Û F̃ and V̂ G̃ at line 12 in Algorithm 4 is
about d decimal digits. The reason for this is the same as for the required arithmetic
precision for X̂ Ẽ in Algorithm 2 and 3—since the first d decimal digits or so of Û and
V̂ are correct from (10), only the first d decimal digits or so of Û F̃ and V̂ G̃ can affect
the results. This situation is depicted in Fig. 1. From the above considerations, line 12
in Algorithm 4 is replaced by Ũ ← (Û + (Û F̃)�)h; Ṽ ← (V̂ + (V̂ G̃)�)h . Therefore,
the total cost of 2d and d decimal digit computations is m3 + 2m2n + 2mn2 + n3 to
2m3 + 2m2n + 2mn2 + 2n3 operations and 2m3 + 2n3 operations, respectively.

2.5 Highly accurate matrix multiplication

We assume floating-point operations in rounding to nearest value according to IEEE
Std. 754 [29] and no overflow or underflow. Let F be a set of floating-point numbers
and fl(·) denote the result of a floating-point operation, where all operations inside
the parentheses are executed in ordinary precision. Ozaki, Ogita, Oishi, and Rump
proposed an algorithm for error-free transformation of matrix multiplication called
Ozaki’s scheme [26]. Their algorithm transforms A ∈ R

m×k and B ∈ R
k×n into

A =
nA−1∑
p=1

A(p) + A(nA), A(p), A(nA) ∈ F
m×k

B =
nB−1∑
q=1

B(q) + B(nB ), B(q), B(nB ) ∈ F
k×n,

where

A(s) := A −
s−1∑
p=1

A(p), B(s) := B −
s−1∑
p=1

B(p),

and

|a(s)
i j | ≥ |a(t)

i j | if a(s)
i j 	= 0 for s < t,

|b(s)
i j | ≥ |b(t)

i j | if b(s)
i j 	= 0 for s < t

Fig. 1 Diagram representing Ũ ← Û + Û F̃ and Ṽ ← V̂ + V̂ G̃ from Algorithm 4
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as described in [26,Algorithm3]. In this case, there is no rounding error in fl(A(p)B(q))

for all (p, q) pairs. In this study, we compute (AB)h as

⎛
⎝ ∑

p+q≤max(nA,nB)

(A(p)B(q))� +
nA−1∑
p=1

(A(p)B(nB−p+1))� + (A(nA)B)�

⎞
⎠

h

. (11)

We set nA = nB = 4 in this paper.

3 Proposed algorithms

In this section,we propose four faster algorithms for the iterative refinement of singular
vectors.

3.1 Proposed algorithms based on iterative refinement for singular value
decomposition

Here, we propose two algorithms based on Algorithm 4. From R = Im − Û T Û ,
S = In − V̂ T V̂ , and T = Û T AV̂ in Algorithm 4, Cα and Cβ at line 7 satisfy

Cα = T1 + R11�̃n

= Û T
1 AV̂ + (In − Û T

1 Û1)�̃n

= Û T
1 (AV̂ − Û1�̃n) + �̃n,

Cβ = T T
1 + S�̃n

= V̂ T AT Û1 + (In − V̂ T V̂ )�̃n

= V̂ T (AT Û1 − V̂ �̃n) + �̃n .

Since the diagonal parts of Cα and Cβ are not necessary because the diagonal parts of
D and E are not used, they can be computed as

Cα = Û T
1 (AV̂ − Û1�̃n),

Cβ = V̂ T (AT Û1 − V̂ �̃n).

Let F̃11 ∈ R
n×n, F̃12 ∈ R

n×(m−n), F̃21 ∈ R
(m−n)×n, F̃22 ∈ R

(m−n)×(m−n) such that

F̃ =
(
F̃11 F̃12
F̃21 F̃22

)
.
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Then, from line 11 in Algorithm 4, the following holds:

(F̃11)i j =
{ ei j

σ̃ j−σ̃i
(i 	= j)

ri j
2 (otherwise)

(for 1 ≤ i, j ≤ n),

F̃12 = −�̃−1
n T T

2 = −�̃−1
n V̂ T AT Û2,

F̃21 = R21 − F̃T
12 = −Û T

2 Û1 + Û T
2 AV̂ �̃−1

n = Û T
2 (AV̂ − Û1�̃n)�̃

−1
n ,

F̃22 = 1

2
R22 = 1

2
(Im−n − Û T

2 Û2).

Thus, only the computations for diag(R11), R22, and T2 are necessary. Finally, we
obtain the following algorithm, which is a variant equivalent to Algorithm 4 in exact
arithmetic.

Algorithm 5 Refinement of approximate singular vectors Û ∈ R
m×m and V̂ ∈ R

n×n

for a real matrix A ∈ R
m×n . Assume σ̃i 	= σ̃ j for i 	= j . The total cost is 3m3 +

2m2n+3mn2 +4n3 to 4m3 +4mn2 +4n3 operations. Bold font indicates differences
from Algorithm 4.

Require: A ∈ R
m×n , Û ∈ R

m×m , V̂ ∈ R
n×n

Ensure: Ũ ∈ R
m×m , �̃ ∈ R

m×n , Ṽ ∈ R
n×n

1: function [Ũ , �̃, Ṽ ] ← RefSVD2(A, Û , V̂ )
2: P ← (AV̂ )h � P = (p(1), . . . , p(n))

3: Q ← (AT Û1)h � Q = (q(1), . . . , q(n))

4: ri i ← (1 − ûT
(i) û(i))h (for 1 ≤ i ≤ n)

5: si i ← (1 − v̂T
(i)v̂(i))h (for 1 ≤ i ≤ n)

6: ti i ← (ûT
(i) p̂(i))h (for 1 ≤ i ≤ n)

7: σ̃i ←
(

ti i
1−(rii+sii )/2

)
h

(for 1 ≤ i ≤ n) � Approximate singular values

8: �̃n ← diag(σ̃1, . . . , σ̃n); �̃ ← (�̃n , On,m−n)T

9: Cγ ← (P − Û1�̃n)h; Cδ ← (Q − V̂ �̃n)h;
10: Cα ← (ÛT

1 Cγ )�; Cβ ← (V̂ T Cδ)�

11: D ← (�̃nCα + Cβ�̃n)h � D = (di j )

12: E ← (Cα�̃n + �̃nCβ)h � E = (ei j )

13: g̃i j ←

⎧
⎪⎨
⎪⎩

(
di j

σ̃2
j −σ̃2

i

)

h

(i 	= j)

( sii
2

)
h (otherwise)

(for 1 ≤ i, j ≤ n)

14: f̃i j ←

⎧
⎪⎪⎨
⎪⎪⎩

(
ei j

σ̃2
j −σ̃2

i

)

h

(i 	= j)
( ri j

2

)
h

(otherwise)

(for 1 ≤ i, j ≤ n) � F̃11 = ( f̃i j )

15: F̃12 ← (�̃−1
n PT Û2)h

16: F̃21 ← ((ÛT
2 Cγ )��̃

−1
n )h

17: F̃22 ←
(
1
2 (Im−n − ÛT

2 Û2)
)
h

18: Ũ ← (Û + (Û F̃)�)h; Ṽ ← (V̂ + (V̂ G̃)�)h � G̃ = (g̃i j )
19: end function
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The total cost of Algorithm 5 is 3m3 + 2m2n + 3mn2 + 4n3 to 4m3 + 4mn2 + 4n3

operations divided into

2n3: V̂ T Cδ ,

2mn2: AV̂ , AT Û1, Û
T
1 Cγ ,

2mn(m − n): PT Û2, Û
T
2 Cγ ,

m(m − n)2: Û T
2 Û2 (exploiting symmetry),

2m(m − n)2: Û T
2 Û2 (no exploiting symmetry),

2m3: Û F̃ ,

2n3: V̂ G̃

and is more expensive than that of Algorithm 4. The difference between the cost of
Algorithms 4 and 5 ismn2 +n3 to 2m2n−2mn2 operations. For d in (9), the required
arithmetic precision for the computations of Û T

1 Cγ , V̂ T Cδ , Û T
2 Cγ , Û F̃ , and V̂ G̃ is d

decimal digits, while that for the other computations is 2d decimal digits. Therefore,
the total cost of 2d and d decimal digits higher-precision computations is m3 + 3mn2

to 2m3 − 2m2n + 4mn2 operations and 2m3 + 2m2n + 4n3 operations, respectively.
The cost of 2d decimal digit computations in Algorithm 5 is 2m2n − mn2 + n3 to
4m2n − 2mn2 + 2n3 operations less than that of Algorithm 4.

We propose another algorithm with lower total cost than Algorithm 5. From Cα

and Cβ at line 7 in Algorithm 4 and R = RT , the following holds:

Cβ = T T
1 + S�̃n

= V̂ T AT Û + S�̃n

= V̂ T AT Û + �̃n R − �̃n R + S�̃n

= (Û T AV̂ + R�̃n)
T − �̃n R + S�̃n

= CT
α − �̃n R + S�̃n . (12)

Thus, we obtain the following algorithm combining Algorithms 4, 5, and (12).
The total cost of Algorithm 6 is 3m3 + 2m2n + 2mn2 + 3n3 to 4m3 + 4mn2 + 4n3

operations divided into

n3: V̂ T V̂ (exploiting symmetry),

2n3: V̂ T V̂ (no exploiting symmetry),

2mn2: AV̂ , Û T
1 Û1, Û

T
1 Cγ ,

2mn(m − n): PT Û2, Û
T
2 Cγ ,

m(m − n)2: Û T
2 Û2 (exploiting symmetry),

2m(m − n)2: Û T
2 Û2 (no exploiting symmetry),

2m3: Û F̃ ,

2n3: V̂ G̃,
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Algorithm 6 Refinement of approximate singular vectors Û ∈ R
m×m and V̂ ∈ R

n×n

for a real matrix A ∈ R
m×n . Assume σ̃i 	= σ̃ j for i 	= j . The total cost is 3m3 +

2m2n+2mn2 +3n3 to 4m3 +4mn2 +4n3 operations. Bold font indicates differences
from Algorithm 5.

Require: A ∈ R
m×n , Û ∈ R

m×m , V̂ ∈ R
n×n

Ensure: Ũ ∈ R
m×m , �̃ ∈ R

m×n , Ṽ ∈ R
n×n

1: function [Ũ , �̃, Ṽ ] ← RefSVD3(A, Û , V̂ )
2: P ← (AV̂ )h � P = (p(1), . . . , p(n))

3: R ← (In − ÛT
1 Û1)h � R = (ri j )

4: S ← (In − V̂ T V̂ )h � S = (si j )

5: ti i ← (ûT
(i) p(i))h (for 1 ≤ i ≤ n)

6: σ̃i ←
(

ti i
1−(rii+sii )/2

)
h

(for 1 ≤ i ≤ n) � Approximate singular values

7: �̃n ← diag(σ̃1, . . . , σ̃n); �̃ ← (�̃n , On,m−n)T

8: Cγ ← (P − Û1�̃n)h

9: Cα ← (Û T
1 Cγ )�; Cβ ← (CT

α − �̃nR + S�̃n)h

10: D ← (�̃nCα + Cβ�̃n)h � D = (di j )

11: E ← (Cα�̃n + �̃nCβ)h � E = (ei j )

12: g̃i j ←

⎧
⎪⎨
⎪⎩

(
di j

σ̃2
j −σ̃2

i

)

h

(i 	= j)

( sii
2

)
h (otherwise)

(for 1 ≤ i, j ≤ n)

13: f̃i j ←

⎧
⎪⎪⎨
⎪⎪⎩

(
ei j

σ̃2
j −σ̃2

i

)

h

(i 	= j)
( ri j

2

)
h

(otherwise)

(for 1 ≤ i, j ≤ n) � F̃11 = ( f̃i j )

14: F̃12 ← (�̃−1
n PT Û2)h

15: F̃21 ← ((Û T
2 Cγ )��̃

−1
n )h

16: F̃22 ←
(
1
2 (Im−n − Û T

2 Û2)
)
h

17: Ũ ← (Û + (Û F̃)�)h; Ṽ ← (V̂ + (V̂ G̃)�)h � G̃ = (g̃i j )
18: end function

which is a little more expensive than Algorithm 4. The difference between the costs
of Algorithms 4 and 6 is 0 to 2m2n − 2mn2 operations, i.e., the minimum costs of
Algorithm 4 and 6 are the same. For d in (9), the required arithmetic precision for the
computations of Û T

1 Cγ , Û T
2 Cγ , Û F̃ , and V̂ G̃ is d decimal digits, while that for the

other computations is 2d decimal digits. Therefore, the total cost of 2d and d decimal
digit computations is m3 + 2mn2 + n3 to 2m3 − 2m2n + 4mn2 + 2n3 operations and
2m3+2m2n+2n3 operations, respectively. The cost of 2d decimal digit computations
in Algorithm 6 is 2m2n to 4m2n − 2mn2 operations less than that of Algorithm 4.

3.2 Proposed algorithms based on iterative refinement for symmetric eigenvalue
decomposition

Here, we propose two algorithms based on Algorithm 3. The singular value decom-
position is easily extended to eigenvalue decomposition. From (1),
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AT A = V�T�V T and

AAT = U��TUT (13)

are satisfied, and these represent the eigenvalue decomposition of AT A and AAT ,
respectively. From Algorithms 3, 5, and (13), we immediately obtain the following
algorithm. Note that Ṽ obtained using Algorithm 7 may not converge as well as
Algorithm 4 because Algorithm 7 does not use V̂ .

Algorithm 7 Refinement of approximate singular vectors Û ∈ R
m×m and V̂ ∈ R

n×n

for a realmatrix A ∈ R
m×n . Assume σ̃i 	= σ̃ j for i 	= j . The total cost is 3m3+4m2n−

mn2 to 4m3 + 2m2n operations. Bold font indicates differences from Algorithm 5.

Require: A ∈ R
m×n , B ← (AAT )h ∈ R

m×m , Û ∈ R
m×m

Ensure: Ũ ∈ R
m×m , �̃ ∈ R

m×n

1: function [Ũ , �̃] ← RefSVD4(B, Û )
2: P ← (BÛ1)h � P = (p(1), . . . , p(n))

3: rii ← (1 − ûT
(i)û(i))h (for 1 ≤ i ≤ n)

4: si i ← (ûT
(i) p(i))h (for 1 ≤ i ≤ n)

5: λ̃i ←
(

si i
1−ri i

)
h

(for 1 ≤ i ≤ n)

6: D ← diag(λ̃1, . . . , λ̃n)

7: σ̃i ← (

√
λ̃i )h (for 1 ≤ i ≤ n) � Approximate singular values

8: �̃n ← diag(σ̃1, . . . , σ̃n); �̃ ← (�̃n , On,m−n)T

9: Cγ ← (P − Û1D)h
10: E ← (Û T

1 Cγ )� � E = (ei j )

11: f̃i j ←

⎧
⎪⎨
⎪⎩

(
ei j

λ̃ j−λ̃i

)

h
(i 	= j)

( ri j
2

)
h

(otherwise)
(for 1 ≤ i, j ≤ n) � F̃11 = ( f̃i j )

12: F̃12 ← (�̃−1
n PT Û2)h

13: F̃21 ← ((Û T
2 Cγ )��̃

−1
n )h

14: F̃22 ←
(
1
2 (Im−n − Û T

2 Û2)
)
h

15: Ũ ← (Û + (Û F̃)�)h � F̃ = ( f̃i j )
16: end function

We can obtain Ṽ as Ṽ ← AT Ũ1�̃
−1
n . The costs for B ← AAT and Ṽ ←

AT Ũ1�̃
−1
n are m2n to 2m2n and 2mn2, respectively. Thus, the total cost of ν iter-

ations of Algorithm 7 is (3m3 + 4m2n −mn2)ν +m2n + 2mn2 to (4m3 + 2m2n)ν +
2m2n + 2mn2 operations divided into

m2n: AAT (exploiting symmetry),

2m2n: AAT (no exploiting symmetry),

2mn2: AT Ũ1,

2m2nν: BÛ1,

2mn2ν: Û T
1 Cγ ,
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2mn(m − n)ν: PT Û2, Û
T
2 Cγ ,

m(m − n)2: Û T
2 Û2 (exploiting symmetry),

2m(m − n)2: Û T
2 Û2 (no exploiting symmetry),

2m3ν: Û F̃ ,

which is less expensive than Algorithm 4. The difference between the costs of Algo-
rithms 4 and 7 is (2m2n−3mn2−3n3)ν+m2n+2mn2 to (−2mn2−4n3)ν+2m2n+
2mn2 operations. For d in (9), the required arithmetic precision for the computations
of Û T

1 Cγ , Û T
2 Cγ , and Û F̃ is d decimal digits, while that for the other computations

is 2d decimal digits. Therefore, the total cost of 2d and d decimal digit computations
is (m3 + 2m2n − mn2)ν + m2n + 2mn2 to 2m3ν + 2m2n + 2mn2 operations and
(2m3+2m2n)ν operations, respectively. The cost of 2d decimal digit computations in
Algorithm 7 is (n3+3mn2)ν−m2n−2mn2 to (2m2n+2mn2+2n3)ν−2m2n−2mn2

operations less than that of Algorithm 4.
We now introduce another extension of the singular value decomposition to the

eigenvalue decomposition. We will write Om,n to denote the m × n zero matrix. Let
�n := diag(σ1, . . . , σn) ∈ R

n×n . The eigenvalues of

B :=
(
On,n AT

A Om,m

)
∈ R

(m+n)×(m+n) (14)

are σ1, . . . , σn,−σ1, . . . ,−σn, 0, . . . , 0 from [30], and for X , D ∈ R
(m+n)×(m+n)

such that

X := 1√
2

(
V V On,m−n

U1 −U1
√
2U2

)
, D :=

(
�n On,n On,m−n

Om,n −� Om,m−n

)
,

it holds that
B = XDXT (15)

from [31].
We consider transforming the singular value decomposition into the symmet-

ric eigenvalue decomposition as (15) and improving the approximate results using
Algorithm 3. Hereafter, we discuss omitting unnecessary computations to improve
efficiency because the matrix size is increased. Assume that �̃n is obtained by the
same computation as in Algorithm 5. Let X̂ , D̃ = (d̃i j ) ∈ R

(m+n)×(m+n) be

X̂ := 1√
2

(
V̂ V̂ On,m−n

Û1 −Û1
√
2Û2

)
, D̃ :=

(
�̃n On,n On,m−n

Om,n −�̃ Om,m−n

)
.

Then, for B ∈ R
(m+n)×(m+n) in (14),

B X̂ = 1√
2

(
AT Û1 −AT Û1

√
2AT Û2

AV̂ AV̂ Om,m−n

)
,

X̂ D̃ = 1√
2

(
V̂ �̃n −V̂ �̃n On,m−n

Û1�̃n Û1�̃n Om,m−n

)
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and

B X̂ − X̂ D̃ = 1√
2

(
P1 −P1

√
2AT Û2

P2 P2 Om,m−n

)
,

where {
P1 := AT Û1 − V̂ �̃n,

P2 := AV̂ − Û1�̃n

are satisfied. Therefore,

H = (hi j ) := X̂ T (B X̂ − X̂ D̃) = 1

2

⎛
⎝

Q1 −Q2
√
2V̂ T AT Û2

Q2 −Q1
√
2V̂ T AT Û2√

2Û T
2 P2

√
2Û T

2 P2 Om−n,m−n

⎞
⎠ ,

where {
Q1 := V̂ T P1 + Û T

1 P2,

Q2 := V̂ T P1 − Û T
1 P2

holds. From the 8th line of Algorithm 3, we can write the approximate error matrix
Ẽ = (ẽi j ) for X̂ as

ẽi j :=
{ ri j

2 (i = j or i, j > 2n)
hi j

d̃ j j−d̃i i
(otherwise)

for R = (ri j ) = Im+n − X̂ T X̂ . Now, let Ẽ1, Ẽ2 ∈ R
n×n , Ẽ3 ∈ R

n×(m−n), Ẽ4 ∈
R

(m−n)×n , and Ẽ5 ∈ R
(m−n)×(m−n) such that

Ẽ =
⎛
⎝
Ẽ1 Ẽ2 −Ẽ3

Ẽ2 Ẽ1 Ẽ3

Ẽ4 −Ẽ4 Ẽ5

⎞
⎠ .

Then, it holds that

X̂ Ẽ = 1√
2

(
G̃ G̃ On,m−n

F̃1 −F̃1
√
2F̃2

)
,

where ⎧
⎪⎨
⎪⎩

G̃ := V̂ (Ẽ1 + Ẽ2),

F̃1 := Û1(Ẽ1 − Ẽ2) + √
2Û2 Ẽ4,

F̃2 := Û2 Ẽ5 − √
2Û1 Ẽ3.

Thus, we can update V̂ , Û1, and Û2 as

Ṽ ← V̂ + G̃, Ũ1 ← Ũ1 + F̃1, Ũ2 ← Ũ2 + F̃2.

Finally, we obtain the following algorithm to improve the accuracy of the approxima-
tion of singular vectors of A.
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The total cost of Algorithm 8 is 3m3 + 2m2n + 3mn2 + 4n3 to 4m3 + 4mn2 + 4n3

operations divided into

2n3: V̂ T P1,

2mn2: AV̂ , AT Û1, Û
T
1 P2, Û1(Ẽ1 − Ẽ2)

2mn(m − n): PT Û2, Û
T
2 P2, Û2 Ẽ4, Û1 Ẽ3

m(m − n)2: Û T
2 Û2 (exploiting symmetry),

2m(m − n)2: Û T
2 Û2 (no exploiting symmetry),

2m(m − n)2: Û2 Ẽ5,

2n3: V̂ (Ẽ1 + Ẽ2),

which is more expensive than Algorithm 4. The difference between the costs of Algo-
rithms 4 and 8 is −mn2 − n3 to 2m2n − 2mn2 operations. For d in (9), the required
arithmetic precision for the computations of multiplications V̂ T P1, Û T

1 P2, Û T
2 P2,

Û1(Ẽ1 − Ẽ2), Û2 Ẽ4, Û2 Ẽ5, Û1 Ẽ3, and V̂ (Ẽ1 + Ẽ2) is d decimal digits, while that
for the other computations is 2d decimal digits. Therefore, the total costs of 2d and
d decimal digit computations is m3 + 3mn2 to 2m3 − 2m2n + 4mn2 operations and
2m3+2m2n+4n3 operations, respectively. The cost of 2d decimal digit computations
in Algorithm 8 is 2m2n −mn2 + n3 to 4m2n − 2mn2 + 2n3 operations less than that
of Algorithm 4. Moreover, the costs of Algorithms 5 and 8 are the same.

3.3 Comparison of the algorithms costs

Here, we compare the costs of Algorithms 4, 5, 6, 7, and 8. Let ν denote the number of
iterations. Define Case 1 and 2 as the cases when the symmetry of thematrix product is
considered and not, respectively. We first focus on Case 1. Table 3 shows the total cost
of higher-precision computations for all algorithms, and Figs. 2 and 3 indicate their
ratios to the cost of Algorithm 4. From Fig. 3, the efficiency of Algorithm 7 increases
with ν. For m/n � 1.5 or ν ≤ 2, the costs of Algorithms 6 and 8 are the lowest from
Fig. 2, while for other cases, the cost of Algorithm 7 is the lowest, as shown in Fig. 3.

Next, we focus on Case 2. Table 4 shows the total costs of higher-precision compu-
tations for all algorithms, and Figs. 4 and 5 indicate the ratio to the cost of Algorithm 4.
From Fig. 5, the efficiency of Algorithm 7 increases with ν. For small m/n or ν = 1,

Table 3 Total cost (number of operations) of higher-precision computations for ν iterations for Case 1

algorithms m > n m = n

Alg. 4 2νm3 + 2νm2n + 2νmn2 + 2νn3 8νm3

Alg. 5 2νm3 − 2νm2n + 4νmn2 4νm3

Alg. 6 2νm3 − 2νm2n + 4νmn2 + 2νn3 6νm3

Alg. 7 2νm3 + 2m2n + 2mn2 (2ν + 4)m3

Alg. 8 2νm3 − 2νm2n + 4νmn2 4νm3
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Algorithm 8 Refinement of approximate singular vectors Û ∈ R
m×m and V̂ ∈ R

n×n

for a real matrix A ∈ R
m×n . Assume σ̃i 	= σ̃ j for i 	= j . The total cost is 3m3 +

2m2n+3mn2 +4n3 to 4m3 +4mn2 +4n3 operations. Bold font indicates differences
from Algorithm 5.
b!
Require: A ∈ R

m×n , Û ∈ R
m×m

Ensure: Ũ ∈ R
m×m , �̃ ∈ R

m×n , Ṽ ∈ R
n×n

1: function [Ũ , �̃, Ṽ ] ← RefSVD5(A, Û , V̂ )
2: P ← (AV̂ )h; Q ← (AT Û1)h

3: ri i ←
(
1 − ûT

(i) û(i)+v̂T
(i)v̂(i)

2

)

h

(for 1 ≤ i ≤ n)

4: ti i ← (ûT
(i) p(i))h (for 1 ≤ i ≤ n)

5: σ̃i ←
(

ti i
1−ri i

)
h

(for 1 ≤ i ≤ n) � Approximate singular values

6: �̃n ← diag(σ̃1, . . . , σ̃n); �̃ ← (�̃n , On,m−n)T

7: P1 ← (Q − V̂ �̃n)h; P2 ← (P − Û1�̃n)h
8: P3 ← (V̂ T P1)�; P4 ← (Û T

1 P2)�

9: Q1 ←
(
1
2 (P3 + P4)

)
h

; Q2 ←
(
1
2 (P3 − P4)

)
h

� Qi = (q(i)
i j )

10: Q3 ←
(

1√
2
PT Û2

)
h

; Q4 ←
(

1√
2
(ÛT

2 P2)�
)
h

11: ẽ(1)i j ←

⎧⎪⎪⎨
⎪⎪⎩

(
q(1)
i j

σ̃ j−σ̃i

)

h

(i �= j)
(
ri i
2

)
h

(otherwise)

(for 1 ≤ i, j ≤ n) � Ẽ1 = (ẽ(1)i j )

12: ẽ(2)i j ←
(

q(2)
i j

σ̃i+σ̃ j

)

h

(for 1 ≤ i, j ≤ n) � Ẽ2 = (ẽ(2)i j )

13: Ẽ3 ← (�̃−1
n Q3)h; Ẽ4 ← (Q4�̃

−1
n )h; Ẽ5 ←

(
1
2 (Im−n − Û T

2 Û2)
)
h

14: Ũ1 ← (Û1 + (Û1(Ẽ1 − Ẽ2)h)� + (
√
2(Û2 Ẽ4))�)h

15: Ũ2 ← (Û2 + (Û2 Ẽ5)� − (
√
2(Û1 Ẽ3))�)h

16: Ṽ ← (V̂ + (V̂ (Ẽ1 + Ẽ2)h)�)h
17: end function

Fig. 2 Ratio of total cost of Algorithms 5, 6, and 8 to that of Algorithm 4 for any ν for Case 1
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Fig. 3 Ratio of total cost of Algorithm 7 to that of Algorithm 4 for ν ∈ {2, 4, 6, 8, 10} for Case 1

Table 4 Total cost (number of operations) of higher-precision computations for ν iterations for Case 2

algorithms m > n m = n

Alg. 4 νm3 + 2νm2n + 2νmn2 + νn3 6νm3

Alg. 5 νm3 + 3νmn2 4νm3

Alg. 6 νm3 + 2νmn2 + νn3 4νm3

Alg. 7 νm3 + (2ν + 1)m2n + (2 − ν)mn2 (2ν + 3)m3

Alg. 8 νm3 + 3νmn2 4νm3

Fig. 4 Ratio of total costs of Algorithms 5, 6, and 8 to that of Algorithm 4 for any ν for Case 2
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Fig. 5 Ratio of total cost of Algorithm 7 to that of Algorithm 4 for ν ∈ {2, 4, 6, 8, 10} for Case 2

the costs of Algorithms 6 and 8 are the lowest, as shown in Fig. 4, while for other
cases, the cost of Algorithm 7 is the lowest, as shown in Fig. 5.

Next, we show that the performance ratio thresholds for higher- and lower-precision
computations for each algorithm are lower than or comparable to Algorithm 4. We
assume the performance of lower-precision arithmetic is r times faster than that of
higher-precision arithmetic. Note that r means the ratio of hardware’s actual mea-
sured computation speed between higher- and lower-precision computations, not the
hardware peak performance ratio. The performance ratio threshold t is defined as
follows:

t := Alg. * (r · (higher-precision costs) + (lower-precision costs))

Alg. 4 (r · (higher-precision costs) + (lower-precision costs))
. (16)

Table 5 indicates r when t = 1 in (16) for each algorithm for ν iterations. If the
performance ratio is greater than one, the algorithm is faster than Algorithm 4. The
values for Algorithms 5, 6, and 8 in the table are less than or equal to 2. For example,
in Env. 1, Algorithms 5, 6, and 8 are expected to be faster than Algorithm 4 because
the performance ratio of double- and quadruple-precision arithmetic is 1353 on CPU
and that of single- and double-precision arithmetic is 34 on GPU from Table 1. In

Table 5 Necessary performance ratio of higher- and lower-precision computations for Algorithms 5, 6, 7,
and 8 to be comparable to the speed of Algorithm 4 for ν iterations

Alg. 5 Alg. 6 Alg. 7 Alg. 8

Case 1 2m2+2n2

2m2−mn+n2
1 (2m2−2n2)ν

3mnν+n2ν−2mn−m2
2m2+2n2

2m2−mn+n2

Case 2 m2+n2

2m2−mn+n2
m

2m−n
(m2−n2)ν

m2ν+mnν+n2ν−mn−m2
m2+n2

2m2−mn+n2
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Env. 2, Algorithms 5, 6, and 8 are expected to be slower than or comparable to the
speed of Algorithm 4 because the performance ratio of single- and double-precision
arithmetic is 1. The performance ratio thresholds for Algorithm 7 depend on ν, and
Algorithm 7 to be faster than Algorithm 4 for larger ν.

4 Numerical experiments

In this section, we present the results of numerical experiments showing the perfor-
mance of Algorithms 4, 5, 6, 7, and 8. We generate A ∈ F

m×n using the MATLAB
built-in function gallery as

A = gallery(’randsvd’,[m n],cnd,mode,m,n,1),
where cnd denotes the approximate condition number of A, and mode is a variable
that specifies

1. one large and n − 1 small singular values: σ1 ≈ 1, σi ≈ cnd−1, i = 2, . . . , n,
2. one small and n−1 large singular values: σn ≈ cnd−1, σi ≈ 1, i = 1, . . . , n−1,
3. geometrically distributed singular values: σi ≈ cnd−(i−1)/(n−1), i = 1, . . . , n,
4. arithmetically distributed singular values: σi ≈ 1− (1− cnd−1)(i − 1)/(n − 1),

i = 1, . . . , n, and
5. random singular values with uniformly distributed logarithm: σi ≈ cnd−r(i),

r(i) ∈ (0, 1), i = 1, . . . , n.

Figure6 shows the singular value distribution for n = 100 and cnd = 105.
We fix mode = 4 to satisfy (7). Note that for mode = 3, (7) is satisfied if A is

very well-conditioned; otherwise, clustered singular values appear and all algorithms
do not work well. We regard the approximate singular values of A obtained by using
the built-in function svd in the Advanpix Multiprecision Computing Toolbox for
MATLAB with 68 decimal digits as the exact singular values.

Fig. 6 Distribution of the singular values for n = 100 and cnd = 105
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Fig. 7 Convergence of all algorithms for m = 2n = 1000 and cnd = 1010

4.1 Convergence of algorithms

We show the results of convergence of Algorithms 4, 5, 6, 7, and 8 computed in 340
decimal digits arithmetic in order to simulate exact arithmetic. Here, we regard the
approximate singular values of A obtained by using the built-in function svd in 340
decimal digits as the exact singular values. Figures7 and 8 show the convergence of
all algorithms for cnd = 1010 and m = 1000. Among the results, the convergence
for Algorithms 4, 5, 6, and 8 are the same, while that for Algorithm 7 is worse. The
reason for this is that the condition number of AAT is squared compared to that of A
and Algorithm 7 does not consider the improvement of V̂ .

4.2 Numerical experiments on CPU

Here, we show the numerical results obtained using a CPU. The numerical exper-
iments are run using Env. 1. Assume that the results of the approximate singular
value decomposition of A obtained using the MATLAB built-in function svd with
double-precision arithmetic are the initial values Û and V̂ of U and V , respectively.
Additionally, all operations inside the parentheses of (·)h and (·)� are executed in
double-double- and double-precision, respectively.

Tables 6 and 7 show the computing time in seconds for all algorithms for cnd =
102. Note that svd in the following tables is executed as [U,S,V]=svd(A). Also,
the results of Algorithm 7 include the computing time for AAT and AT Ũ1�̃

−1
n . Fig-

ures9 and 10 show the convergence of all algorithms for cnd = 102 and m = 5000.

Fig. 8 Convergence of all algorithms for m = n = 1000 and cnd = 1010
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Table 6 Cumulative computing time in seconds for all algorithms for m = 2n on CPU

m svd(A) Alg. 4 Alg. 5 Alg. 6 Alg. 7 Alg. 8

1000 1st 0.05 0.79 0.66 0.71 0.79 0.69

2nd 1.57 1.29 1.46 1.31 1.37

3rd 2.35 1.92 2.21 1.84 2.05

5000 1st 2.80 20.0 15.2 16.7 20.2 15.6

2nd 37.4 27.7 30.6 31.1 28.4

3rd 54.6 40.3 44.4 41.9 41.1

10000 1st 18.4 110 79.6 86.1 107.5 80.7

2nd 201 140 153 162 143

3rd 293 202 221 217 205

Note that offdiag(Ũ T AṼ ) denotes the off-diagonal part of Ũ T AṼ , that is, the diagonal
elements are set to zero. The results indicate that Algorithms 5 and 8 are comparable.
More specifically, they are 1.5 and 1.7 times faster than Algorithm 4 for m = 2n and
m = n per iteration, respectively. Moreover, Algorithm 7 is the fastest; however, the
convergence is a little worse than the others. Figures11 and 12 show the convergence
for all algorithms for cnd = 106 and m = 5000. Among the results, the convergence
for Algorithms 4, 5, 6, and 8 are similar for the case of cnd = 102, while that for
Algorithm 7 is worse. The reason for this is that the condition number of AAT is
squared compared to that of A. Figures13 and 14 show the convergence for all algo-
rithms for cnd = 1010 and m = 5000. From Figs. 9, 10, 11, 12, 13, and 14, we can
see the tendency of bounds on the limiting accuracy for each cnd.

4.3 Numerical experiments on GPU

Next,we show the numerical results obtained using aGPU.The numerical experiments
are run using the environments Env. 1 and 2. Let B ∈ F

m×n be the conversion of A

Table 7 Cumulative computing time in seconds for all algorithms for m = n on CPU

m svd(A) Alg. 4 Alg. 5 Alg. 6 Alg. 7 Alg. 8

1000 1st 0.14 1.22 0.84 1.01 0.95 0.86

2nd 2.46 1.59 2.02 1.32 1.62

3rd 3.70 2.34 3.03 1.68 2.38

5000 1st 10.7 43.2 30.2 36.8 33.2 30.2

2nd 75.8 49.5 63.0 42.8 49.8

3rd 108 68.9 89.3 52.2 69.4

10000 1st 72.6 252 178 216 201 179

2nd 430 283 359 253 285

3rd 609 388 502 304 392
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Fig. 9 Convergence of all algorithms for m = 2n = 5000 and cnd = 102 on CPU

Fig. 10 Convergence of all algorithms for m = n = 5000 and cnd = 102 on CPU

Fig. 11 Convergence of all algorithms for m = 2n = 5000 and cnd = 106 on CPU

Fig. 12 Convergence of all algorithms for m = n = 5000 and cnd = 106 on CPU
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Fig. 13 Convergence of all algorithms for m = 2n = 5000 and cnd = 1010 on CPU

to a single-precision floating-point matrix as B=single(A), where single is the
built-in function in MATLAB. Assume that the results of the approximate singular
value decomposition of B obtained by using the MATLAB built-in function svdwith
single-precision arithmetic are the initial values Û and V̂ of U and V , respectively.
Here, all operations inside the parentheses of (·)h and (·)� are executed in double- and
single-precision, respectively.

Tables 8 and 9 show the computing time in seconds for all algorithms forcnd = 102

using Env. 1. Figures15 and 16 show the convergence for all algorithms forcnd = 102

and m = 10000. The results show that Algorithm 5 and 8 are comparable. More
specifically, these algorithms are 1.2 times faster than Algorithm 4 for m = 2n and
m = n per iteration. Moreover, Algorithm 7 is the fastest; however, the convergence
is worse than the others. Figures17 and 18 show the convergence of all algorithms
for cnd = 104 and m = 10000. Among these, the convergence of Algorithms 4, 5,
6, and 8 are similar for the case of cnd = 102, while that of Algorithm 7 is worse.
This result is due to the condition number of AAT . For cnd = 102, the approximate
singular values obtained by using two iterations of Algorithms 5 and 8 are as accurate
as or more accurate than those obtained by using svd(A). Also, the computing time
for two iterations using Algorithms 5 or 8 is faster than that of svd(A). Thus, for a
well-conditioned matrix, iterative refinement with Algorithms 5 and 8 for the results
of svd(B) is superior to svd(A) in terms of computation speed and accuracy of the
approximate singular values.

Tables 10 and 11 show the computing time in seconds for all algorithms for cnd =
102 using Env. 2. Using Env. 1 and 2, the convergence for all algorithms is almost the
same. In the results, using Env. 2, all algorithms are much faster than the functions for

Fig. 14 Convergence of all algorithms for m = n = 5000 and cnd = 1010 on CPU
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Table 8 Cumulative computing time in seconds for all algorithms for m = 2n using Env. 1

m svd(A) svd(B) Alg. 4 Alg. 5 Alg. 6 Alg. 7 Alg. 8

5000 1st 2.87 2.01 2.68 2.48 2.47 2.72 2.51

2nd 3.35 2.95 2.93 3.18 3.01

3rd 4.02 3.42 3.39 3.64 3.51

10000 1st 14.4 7.78 12.9 11.4 11.2 13.3 11.5

2nd 18.1 15.1 14.6 16.9 15.3

3rd 23.2 18.7 18.0 20.5 19.1

Table 9 Cumulative computing time in seconds for all algorithms for m = n using Env. 1

m svd(A) svd(B) Alg. 4 Alg. 5 Alg. 6 Alg. 7 Alg. 8

5000 1st 8.99 6.61 8.10 7.65 7.66 7.85 7.65

2nd 9.60 8.69 8.70 8.37 8.69

3rd 11.1 9.73 9.75 8.89 9.73

10000 1st 47.0 29.3 40.9 37.9 37.6 39.2 37.9

2nd 52.5 46.4 45.9 43.5 46.5

3rd 64.2 55.0 54.1 47.8 55.1

Fig. 15 Convergence of all algorithms for m = 2n = 10000 and cnd = 102 using Env. 1

Fig. 16 Convergence of all algorithms for m = n = 10000 and cnd = 102 using Env. 1
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Fig. 17 Convergence of all algorithms for m = 2n = 10000 and cnd = 104 using Env. 1

Fig. 18 Convergence of all algorithms for m = n = 10000 and cnd = 104 using Env. 1

Table 10 Cumulative computing time in seconds and ratio for all algorithms for m = 2n using Env. 2

m svd(A) svd(B) Alg. 4 Alg. 5 Alg. 6 Alg. 7 Alg. 8

5000 1st 1.56 1.10 1.15 1.15 1.15 1.15 1.16

2nd 1.19 1.19 1.19 1.19 1.21

3rd 1.23 1.23 1.23 1.23 1.26

10000 1st 6.94 4.56 4.85 4.86 4.85 4.89 4.90

2nd 5.13 5.16 5.13 5.16 5.23

3rd 5.41 5.46 5.42 5.43 5.56

Table 11 Cumulative computing time in seconds and ratio for all algorithms for m = n using Env. 2

m svd(A) svd(B) Alg. 4 Alg. 5 Alg. 6 Alg. 7 Alg. 8

5000 1st 4.81 3.30 3.38 3.39 3.38 3.37 3.39

2nd 3.46 3.47 3.46 3.41 3.48

3rd 3.54 3.56 3.54 3.46 3.57

10000 1st 23.9 15.3 15.9 16.1 15.9 15.9 16.1

2nd 16.5 16.8 16.5 16.2 16.8

3rd 17.0 17.5 17.1 16.6 17.6
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singular value decomposition. In particular, Algorithm 7 is the fastest but has the worst
convergence. For a well-conditioned matrix, iterative refinement with Algorithms 4,
5, 6 and 8 of the results of svd(B) is superior to the same method applied to those
of svd(A) in terms of computation speed and accuracy of the approximate singular
values.

5 Conclusion

In this paper, we showed that theOgita-Aishima algorithm can be executedwith highly
accurate matrix multiplications carried out five times per iteration. Moreover, we
proposed four iterative refinement algorithms for singular value decomposition con-
structedwith highly accuratematrixmultiplications carried out either four or five times
per iteration. In an environment where lower-precision arithmetic is much faster than
higher-precision arithmetic, the proposed algorithms are faster than theOgita-Aishima
algorithm. However, in an environment where the performance of lower-precision
arithmetic is comparable to that of higher-precision arithmetic, the computing time
for all algorithms is comparable.

All iterative refinement algorithms introduced in this paper do not work when mul-
tiple or clustered singular values are present. In the future, we will consider methods to
overcome this problem. We also need to analyze the bounds on the limiting accuracy
based on the precisions used and the convergence conditions.
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