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Abstract
Bidiagonal factorizations for the change of basis matrices between monomial and
Newton polynomial bases are obtained. The total positivity of these matrices is char-
acterized in terms of the sign of the nodes of the Newton bases. It is shown that
computations to high relative accuracy for algebraic problems related to these matri-
ces can be achieved whenever the nodes have the same sign. Stirling matrices can be
considered particular cases of these matrices, and then computations to high relative
accuracy for collocation and Wronskian matrices of Touchard polynomial bases can
be obtained. The performed numerical experimentation confirms the accurate solu-
tions obtained when solving algebraic problems using the proposed factorizations, for
instance, for the calculation of their eigenvalues, singular values, and inverses, as well
as the solution of some linear systems of equations associated with these matrices.

Keywords High relative accuracy · Totally positive matrices ·
Bidiagonal decompositions · Newton bases · Stirling numbers ·
Touchard polynomials

1 Introduction

The resolution of interpolation or approximation problems in a vector space of func-
tions usually requires linear algebra computations with collocation or Wronskian
matrices of a given basis of the space. For example, these matrices appear when
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imposing Lagrange or Taylor interpolation conditions on the considered basis func-
tions. Unfortunately, when the dimension increases, these matrices may become very
ill-conditioned, and so standard routines implementing best traditional numerical
methods cannot obtain accurate solutions for the considered problems.

Taking into account the previous considerations, an important topic in numerical
linear algebra is to achieve computations to high relative accuracy (HRAcomputations)
whose relative errors are of the order of the machine precision. In the last years, HRA
computations when considering totally positive collocation and Wronskian matrices
of different polynomial bases have been achieved (see [7, 8, 12, 13, 24–26]).

The Vandermonde matrices have relevant applications in interpolation and numer-
ical quadrature (see [15, 30]). These matrices are known to be totally positive at
increasing sequences of positive parameters and the HRA resolution of related alge-
braic problems has been achieved by considering a bidiagonal factorization of them
(see [4, 12] and references therein). Let us observe that Vandermonde matrices can be
considered the change of basis matrices between monomial and Lagrange polynomial
bases.

The polynomial basis used in theNewton interpolation formula is called theNewton
basis. In this paper, for a given sequence of nodes, not necessarily distinct, we shall
factorize the change of basis matrices between the monomial and the Newton bases
of the same dimension. These matrices have a triangular structure, and their total
positivity will be fully characterized in terms of the sign of the considered nodes.
Also, HRA calculations with the change of basis matrices will be achieved as long
as all nodes have the same sign even though the matrices are not totally positive.
Among other applications, the proposed factorization will be used to obtain HRA
computations with Wronskian matrices of Newton bases.

Furthermore, this paper shows that second-kind Stirling numbers can be consid-
ered divided differences of monomial polynomials at sets of nodes formed by the first
consecutive nonnegative integers. Then, the change of basis matrix between the corre-
sponding Newton and monomial bases is Stirling matrices, that is, triangular matrices
whose entries are given in terms of Stirling numbers. On the other hand, these matrices
allow us to define the Touchard polynomial bases.

Touchard polynomials are also called the exponential polynomials and general-
ize the Bell polynomials for the enumeration of the permutations when the cycles
possess certain properties. Algebraic, combinatorial, and probabilistic properties of
these polynomials are described in [6, 29, 31, 33]. In this paper, the total positivity of
Touchard polynomial bases is proved, and a procedure to get HRA computations with
their collocation and Wronskian matrices is provided.

This paper is organized as follows. Section 2 recalls basic aspects related to total
positivity and HRA. The Neville elimination procedure to derive the parameterization
of totally positive matrices leading to HRA algorithms is also described. In addition,
conditions that guarantee HRA computations for non totally positive matrices are
also provided. Section 3 focuses on the change of basis matrices relating monomial
and Newton polynomial bases and shows some applications of these matrices. Their
total positivity is characterized in terms of the sign of the considered nodes, and the
bidiagonal decompositions providing HRA computations are also obtained. These
findings are applied to achieve accurate computations with Wronskian matrices of
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Newton bases in Section 4 and with Stirling matrices in Section 5. The total positivity
of Touchard polynomial bases is proved in Section 6. Moreover, Touchard Wronskian
matrices are proved to be totally positive for positive parameters guaranteeing the
HRA resolution of related algebraic problems. Finally, Section 7 shows the accurate
computations obtained when solving relevant algebraic problems with collocation and
Wronskian matrices of Touchard polynomials.

2 Notations, basic concepts, and auxiliary results

Given a basis (b0, . . . , bn) of a space U (I ) of functions defined on I ⊆ R and a
sequence of values t0, . . . , tn on I , the corresponding collocation matrix is

M

[
b0, . . . , bn
t0, . . . , tn

]
:= (

b j−1(ti−1)
)
1≤i, j≤n+1. (1)

If the functions are n-times continuously differentiable at t ∈ I , we can define the
Wronskian matrix at t as follows

W (b0, . . . , bn)(t) := (b(i−1)
j−1 (t))i, j=1,...,n+1,

where the i-th derivative of b at the value t is denoted by b(i)(t).
A matrix is said to be totally positive or TP if all its minors are nonnegative and

strictly totally positive or STP if all its minors are positive (see [1]). In the literature, TP
and STP matrices are also called as totally nonnegative and totally positive matrices,
respectively (see [14, 20]). Nice and interesting TP and STP matrix applications can
be found in [1, 14, 32]. Let us recall that, from Theorem 3.1 of [1], the product of TP
matrices is another TP matrix.

An important topic in numerical linear algebra is the design and analysis of algo-
rithms adapted to the structure of TP matrices and allowing the resolution of related
algebraic problems with relative errors of the order the machine precision, that is,
algorithms to high relative accuracy (HRA).

A real value y �= 0 is said to be computed to HRAwhenever the obtained ỹ satisfies

‖y − ỹ‖
|y| < ku,

where u is the unit round-off (or machine precision), and k > 0 is a constant, which
does not depend on the arithmetic precision. Algorithms avoiding inaccurate cancela-
tions can be performed to HRA (see page 52 in [11]). Then, we say that they satisfy the
non-inaccurate cancellation condition, namely NIC condition, and they only compute
multiplications, divisions, and additions of numbers with the same sign. Moreover, if
the floating-point arithmetic is well-implemented, the subtraction of initial data can
also be allowed without losing HRA (see page 53 in [11]).

Nowadays, bidiagonal factorizations are very useful to achieve accurate algorithms
for performing computations with TP matrices. In fact, the parameterization of TP
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matrices leading to HRA algorithms is provided by their bidiagonal factorization,
which is in turn very closely related to the Neville elimination, NE hereafter (cf.
[16–18]).

The essence of the NE is to obtain, from a given matrix A = (ai, j )1≤i, j≤n+1,
an upper triangular matrix by adding to each row a multiple of the previous one. In
particular, the NE of A consists of n major steps defining matrices A(1) := A and
A(r) = (a(r)

i, j )1≤i, j≤n+1, such that,

a(r)
i, j = 0, 1 ≤ j ≤ r − 1, j < i ≤ n + 1, (2)

r = 2, . . . , n + 1, so that U := A(n+1) is upper triangular. In more detail, A(r+1) is
computed from A(r) as follows

a(r+1)
i, j :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(r)
i, j , if 1 ≤ i ≤ r ,

a(r)
i, j − a(r)

i,r

a(r)
i−1,r

a(r)
i−1, j , if r + 1 ≤ i, j ≤ n + 1, and a(r)

i−1, j �= 0,

a(r)
i, j , if r + 1 ≤ i ≤ n + 1, and a(r)

i−1,r = 0.

(3)

The entry
pi, j := a( j)

i, j , 1 ≤ j ≤ i ≤ n + 1, (4)

is the (i, j) pivot and pi,i is called the i-th diagonal pivot of the NE of the matrix A.
Furthermore, the value

mi, j :=
{
a( j)
i, j /a

( j)
i−1, j = pi, j/pi−1, j , if a( j)

i−1, j �= 0,

0, if a( j)
i−1, j = 0,

(5)

for 1 ≤ j < i ≤ n + 1, is called the (i, j) multiplier of the NE of A. The complete
Neville elimination (CNE) of a matrix A can be performed whenever no row swaps
are needed in the NE of the matrices A and UT . In this case, the multipliers of the
CNE of A are the multipliers of the NE of A if i ≥ j and the multipliers of the NE of
AT if j ≥ i (see [18]).

The total positivity property of a matrix can not be immediately deduced. However,
the following result, derived from Corollary 5.5 of [16] and the reasoning in p. 116 of
[18], illustrates that NE characterizes the class of STP and nonsingular TP matrices.

Theorem 1 A given matrix A is STP (respectively, nonsingular TP) if and only if its
CNE can be performed with no row and column swaps, the diagonal pivots of the NE
of A are positive and the multipliers of the NE of A and AT are positive (respectively,
nonnegative).

In fact, total positivity of A ∈ R
(n+1)×(n+1) can be studied by analyzing a bidiagonal

factorization of the matrix. In this sense, by Theorem 4.2 and the arguments of p.116
of [18], a nonsingular TP matrix A admits a factorization of the form

A = FnFn−1 · · · F1DG1G2 · · ·Gn, (6)
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where Fi ∈ R
(n+1)×(n+1) (respectively, Gi ∈ R

(n+1)×(n+1)) is the TP, lower (respec-
tively, upper) triangular bidiagonal matrix given by

Fi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
mi+1,1 1

. . .
. . .

mn+1,n+1−i 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, GT
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
m̃i+1,1 1

. . .
. . .

m̃n+1,n+1−i 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)
and D = diag

(
p1,1, . . . , pn+1,n+1

)
has positive diagonal entries. The diagonal ele-

ments of D are the positive diagonal pivots of the NE of the matrix A, and the entries
mi, j and m̃i, j are the multipliers of the NE of the matrices A and AT , respectively.
Under certain conditions, the factorization (6) is unique, and in [2], more general
classes of matrices satisfying the bidiagonal factorization were obtained.

Remark 1 The NE of a nonsingular and TP matrix A also provides a bidiagonal fac-
torization of the matrix A−1. In fact, by considering (6), a bidiagonal decomposition
for A−1 can be computed as follows:

A−1 = Ĝ1Ĝ2 · · · ĜnD
−1 F̂n F̂n−1 · · · F̂1, (8)

where F̂i (respectively, Ĝi ) is the lower (respectively, upper) triangular bidiagonal
matrix with the form described by (7), which is obtained by replacing the off-
diagonal entries {mi+1,1, . . . ,mn+1,n+1−i } and {m̃i+1,1, . . . , m̃n+1,n+1−i } by the val-
ues {−mi+1,i , . . . ,−mn+1,i } and {−m̃i+1,i , . . . ,−m̃n+1,i }, respectively (seeTheorem
2.2 of [27]), that is

F̂i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−mi+1,i 1

. . .
. . .

−mn+1,i 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ĜT
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−m̃i+1,i 1

. . .
. . .

−m̃n+1,i 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the sequel, we shall use the matrix notation introduced in [19], allowing us to
store the bidiagonal factorization (6) of A, as well as the bidiagonal factorization (8) of
A−1, by means of a matrix BD(A) = (BD(A)i, j )1≤i, j≤n+1, whose diagonal entries
are the diagonal pivots of the NE of A and the entries above and below its diagonal
are the multipliers of the NE of AT and A, that is,

BD(A)i, j :=

⎧⎪⎨
⎪⎩
mi, j , if i > j,

pi,i , if i = j,

m̃ j,i , if i < j .

(9)
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If the pivots and multipliers, and so BD(A), are given to HRA, then the Matlab
functions TNEigenValues, TNSingularValues, TNInverseExpand and
TNSolve available in the software library TNTools in [21] take as input argument
BD(A) and compute to HRA the eigenvalues and singular values of A, the inverse
matrix A−1 (using the algorithm presented in [27]) and even the solution of linear
systems Ax = b, for vectors b with alternating signs.

The following result provides conditions that guarantee that a given matrix is the
inverse of a TPmatrix. Under these conditions, algebraic problems solving for non-TP
matrices can also be done to HRA.

Theorem 2 Let A ∈ R
(n+1)×(n+1) and J := diag((−1)i−1)1≤i≤n+1. If the CNE of the

matrix A can be performed with no row and column swaps, the diagonal pivots of the
NE of A are positive and the multipliers of the NE of A and AT are nonpositive, then
A is the inverse of a TP matrix and the matrix AJ := J AJ is nonsingular TP.

Moreover, if the computation of thementioned diagonal pivots andmultipliers satis-
fies theNIC condition, the eigenvalues and singular values of A, its inversematrix A−1,
as well as the solution of Ax = b, where the entries of the vector b = (b1, . . . , bn+1)

T

have the same sign, can be obtained to HRA.

Proof Under the considered hypotheses,

A = FnFn−1 · · · F1DG1G2 · · ·Gn, (10)

where the matrices Fi (respectively, Gi ), i = 1, . . . , n, are lower (respectively, upper)
triangular bidiagonal, and have the structure described by (7). The diagonal elements
of D are positive and the off-diagonal entries mi, j and m̃i, j of the bidiagonal factors
are nonpositive.

Let us notice that A−1 can be factorized as in (8) and the bidiagonal matrices F̂i
and Ĝi are TP since −mi, j ≥ 0 and −m̃i, j ≥ 0. Consequently, we can deduce that
A−1 is a TP matrix because it is the product of TP matrices. So, using Theorem 3.3
of [1], we can derive that AJ is TP. In fact,

BD(AJ )i, j :=

⎧⎪⎨
⎪⎩

−mi, j , if i > j,

pi,i , if i = j,

−m̃ j,i , if i < j,

(11)

has nonnegative entries.
If the computation of pi,i , mi, j and m̃i, j satisfies the NIC condition, (11) can be

computed to HRA. This fact guarantees that the eigenvalues and singular values of
AJ , the inverse matrix A−1

J and the solution of AJ x = d, where the entries of the
vector d = (d1, . . . , dn+1)

T have alternating signs can also be obtained to HRA (see
Section 3 of [12]).

Since J is a unitary matrix, we deduce that the eigenvalues and singular values of
A coincide with those of AJ , and therefore, using (11), their computation to HRA can
be also achieved.
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For the accurate computation of the inverse matrix A−1, we consider that A−1
J can

be computed to HRA. Since A−1 = J A−1
J J , by means of an appropriate change of

sign of the elements of A−1
J , we can also compute the matrix A−1 to HRA. Finally,

for the linear system Ax = d, since the entries of Jd have alternating signs, we can
compute to HRA the solution y ∈ R

n+1 of the system AJ y = Jd, and then x = J y.
�	

3 Matrix conversion between Newton andmonomial bases

The Lagrange formula of the polynomial interpolant p of a function f at nodes
t0, . . . , tn such that ti �= t j for i �= j , is obtained when the interpolant p is expressed
in terms of the Lagrange basis (�0, . . . , �n) of the space Pn of polynomials of degree
not greater than n,

p(t) =
n∑

i=0

f (ti )�i (t), �i (t) :=
∏
j �=i

t − t j
ti − t j

, i = 0, . . . , n. (12)

Denote fi := f (ti ) for i = 0, . . . , n. The polynomial p can also be written in terms
of the monomial basis (m0, . . . ,mn) of Pn ,

p(t) =
n∑

i=0

cimi (t), mi (t) := t i , i = 0, . . . , n, (13)

and, in this representation, the coefficients are the solution of the linear system

M

[
m0, . . . ,mn

t0, . . . , tn

]
c = f ,

where c = (c0, . . . , cn)T and f = ( f0, . . . , fn)T . Then, we can write

c = V−1 f , (14)

where V := M

[
m0, . . . ,mn

t0, . . . , tn

]
is the Vandermonde matrix at the nodes t0, . . . , tn .

Taking into account (12), (13) and (14), we have

p(t) = (�0(t), . . . , �n(t)) f = (m0(t), . . . ,mn(t))V
−1 f

and deduce that
(m0, . . . ,mn) = (�0, . . . , �n)V . (15)

This means that the Vandermonde matrix V is the change of basis matrix between the
monomial and the Lagrange basis of the polynomial space Pn .

123



754 Numerical Algorithms (2024) 95:747–772

This section is devoted to achieve HRA computations in algebraic problems related
to the change of basis matrix between the monomial basis and the Newton basis
corresponding to nodes not necessarily distinct.

Given nodes t0 ≤ · · · ≤ tn , the Newton form of the polynomial interpolant p of a
function f at t0, . . . , tn is obtained when p is written as follows:

p(t) =
n∑

i=0

[t0, . . . , ti ] f wi (t), (16)

where [t0, . . . , ti ] f denotes the divided difference of f at nodes t0, . . . , ti and

w0(t) := 1, wi (t) := (t − t0) · · · (t − ti−1), i = 1, . . . , n. (17)

The polynomial basis (w0, . . . , wn) is the Newton basis of the space Pn determined
by the nodes t0, . . . , tn−1. The Newton polynomial (16) is sometimes called Newton’s
divided differences interpolation polynomial because its coefficients can be obtained
using Newton’s divided differences method.

Let us recall that, if f is n times continuously differentiable on [t0, tn], the divided
differences [t0, . . . , ti ] f , i = 0, . . . , n, can be obtained using the following recursion

[ti , . . . , ti+k] f =
{ [ti+1,...,ti+k ] f −[ti ,...,ti+k−1] f

ti+k−ti
, if ti+k �= ti ,

f (k)(ti )
k! , if ti+k = ti .

Moreover, given two functions f and g defined on an interval containing the nodes
t0, . . . , tn , the following Leibnitz-type formula for divided differences is satisfied

[t0, . . . , tn]( f g) =
n∑

k=0

[t0, . . . , tk] f [tk, . . . , tn]g. (18)

This formula has played a relevant role to derive recurrence relations for B-spline
functions (cf. [3]).

Since mi (t) = t i , i = 0, . . . , n, coincides with its interpolant at t0, . . . , tn , taking
into account the Newton formula (16) formi , i = 0, . . . , n, we deduce that the change
of basis matrix U , satisfying

(m0, . . . ,mn) = (w0, . . . , wn)U , (19)

is upper triangular. In addition, U = (ui, j )1≤i, j≤n+1 with ui, j = [t0, . . . , ti−1]m j−1,
that is,

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 [t0]m1 [t0]m2 · · · [t0]mn

0 1 [t0, t1]m2 · · · [t0, t1]mn

0 0 1
. . .

...
...

...
. . .

. . . [t0, . . . , tn−1]mn

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (20)
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Let us notice that, by induction, it can be checked that

[t0, . . . , ti ]m j =
∑

α0+···+αi= j−i

tα00 · · · tαii , j > i .

On the other hand, the collocation matrix of the Newton basis (w0, . . . , wn) at
nodes t0, . . . , tn is a lower triangular matrix L = (li, j )1≤i, j≤n+1 whose entries

li, j = w j−1(ti−1) =
j−2∏
k=0

(ti−1 − tk), j ≤ i,

satisfy the following recurrences

li,1 = 1, li, j+1 = li, j (ti−1 − t j−1), j = 1, . . . , i − 1, i = 1, . . . , n + 1. (21)

Moreover, taking into account (15) and (19), we obtain the following Crout factoriza-
tion of Vandermonde matrices

V = M

[
�0, . . . , �n
t0, . . . , tn

]
V = M

[
m0, . . . ,mn

t0, . . . , tn

]
= M

[
w0, . . . , wn

t0, . . . , tn

]
U = LU .

This factorization can be used to solve linear Vandermonde systems V x = f by
considering the systems Ld = f and Ux = d. Note that, in Lagrange interpolation
problems, the vectors d := (d1, . . . , dn+1)

T and f := ( f1, . . . , fn+1)
T with di :=

[t0, . . . , ti−1] f and fi := f (ti−1), i = 1, . . . , n + 1, are related by

Ld = f .

So, the matrixU relates the vector solution x with an intermediate vector d of divided
differences (see [5]).

The following result deduces the pivots andmultipliers of the NE of the matrixU in
(20) and its inverseU−1. Their decomposition (6) is obtained and their total positivity
will be analyzed.

Theorem 3 LetU be the change of basis matrix between themonomial and the Newton
basis (17). Then,

U = G1 · · ·Gn, (22)

where Gi , i = 1, . . . , n, are upper triangular bidiagonal matrices whose structure is
described by (7) and their off-diagonal entries are

m̃i, j = t j−1, 1 ≤ j < i ≤ n + 1. (23)

Moreover,
U−1 = Ĝ1 · · · Ĝn, (24)
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where Ĝi , i = 1, . . . , n, are upper triangular bidiagonal matrices with the structure
described by (7) and off-diagonal entries

m̃i, j = −ti− j−1. 1 ≤ j < i ≤ n + 1. (25)

Proof Let us define the lower triangular matrix L := UT . Clearly, L = (li, j )1≤i, j≤n+1
with

li, j = [t0, . . . , t j−1]mi−1, 1 ≤ j ≤ i ≤ n + 1. (26)

Now, let L(1) := L and, for r = 2, . . . , n+ 1, let L(r) = (l(r)i j )1≤i, j≤n+1 be the matrix
obtained after r − 1 steps of the NE of L . By induction on r , we shall deduce that

l(r)i, j = [tr−1, . . . , t j−1]mi−r , r ≤ j ≤ i ≤ n + 1. (27)

First, taking into account formula (26), identities (27) clearly hold for r = 1. If (27)
holds for some r ∈ {1, . . . , n}, we have that

l(r)i,r

l(r)i−1,r

= [tr−1]mi−r

[tr−1]mi−r−1
= t i−r

r−1

t i−r−1
r−1

= tr−1. (28)

Since l(r+1)
i, j = l(r)i, j −

(
l(r)i,r /l

(r)
i−1,r

)
l(r)i−1, j , taking into account (27), (28) and the Leib-

nitz’s rule for divided differences (18) to m j (t) = tm j−1(t), we can write

l(r+1)
i, j = [tr−1, . . . , t j−1]mi−r − tr−1[tr−1, . . . , t j−1]mi−r−1=[tr , . . . , t j−1]mi−r−1,

corresponding to the identity (27) for r + 1. Now, from (4) and (27), the pivots pi, j
of the NE of L satisfy

pi, j = l( j)i, j = [t j−1]mi− j = t i− j
j−1. (29)

Consequently, the diagonal pivots are pi,i = 1, i = 1, . . . , n + 1, and the multipliers
satisfy

mi, j = pi, j
pi−1, j

= t i− j
j−1

t i− j−1
j−1

= t j−1, 1 ≤ j < i ≤ n + 1. (30)

Then,
UT = Fn · · · F1, (31)

and the off-diagonal elements mi, j of Fi , i = 1, . . . , n, are given by (30). Taking into
account that U = LT , we have

U = FT
1 · · · FT

n ,
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and defining Gi := FT
i , i = 1, . . . , n, the factorization (22) forU is obtained. Taking

into account (30), formula (23) for the off-diagonal entries m̃i, j is confirmed. Finally,
taking into account Remark 1, the factorization (24) for U−1 can be deduced.

�	
The provided factorization (6) for thematricesU in (20), as well as the factorization

(8) of U−1, can be stored by defining BD(U ) = (BD(U )i, j )1≤i, j1≤n+1 with

BD(U )i, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ti−1, if 2 ≤ i < j ≤ n + 1,

1, if 1 ≤ i = j ≤ n + 1,

0, elsewhere.

(32)

Taking into account the factorization derived in Theorem 3, computations to HRA
with the matrices U and U−1 can be deduced when the interpolation nodes do not
change their sign.

Corollary 4 The matrix U in (20) (respectively, U−1) is TP if and only if the nodes of
the Newton basis (17) satisfy ti ≥ 0 (respectively, ti ≤ 0), i = 0, . . . , n − 1.

Moreover, if U (respectively, U−1) is TP, its bidiagonal factorization (22) (respec-
tively, (24)) can be computed to HRA. Consequently, the eigenvalues and singular
values of U (respectively, U−1), as well as the solution of the linear systems Ux = b
(respectively, U−1x = b), where the entries of b = (b0, . . . , bn)T have alternating
signs, can be obtained to HRA.

Proof If U (respectively, U−1) is TP, by Theorem 1, we can guarantee that its CNE
can be performed with no row and column swaps, and the multipliers are nonnegative.
From Theorem 3, the decomposition (6) of U (respectively, U−1) is given in (22)
(respectively, in (24)), and we deduce that the nodes are nonnegative (respectively,
nonpositive).

If ti ≥ 0 (respectively, ti ≤ 0), i = 0, . . . , n − 1, the off-diagonal entries of the
bidiagonal matrix factors in (22) (respectively, in (24)) are nonnegative. Then, we can
derive that the bidiagonal matrix factors are TP and conclude that U (respectively,
U−1) is TP since it is the product of TP matrices. In addition, the computation of the
bidiagonal factorization (6) satisfies the NIC condition, and so, it can be computed to
HRA. This fact guarantees the computation of the mentioned algebraic problems to
HRA (see Section 3 of [12]).

�	
Furthermore, using Theorems 2 and 3, HRA computations with the matrix U can

also be obtained when considering the matrices JU J and JU−1 J .

Corollary 5 Let U be the matrix in (20). Then, JU J (respectively, JU−1 J ) is TP if
and only if the nodes of the Newton basis (17) satisfy ti ≤ 0 (respectively, ti ≥ 0),
i = 0, . . . , n − 1.

Moreover, if JU J (respectively, JU−1 J ) is TP, its decomposition (22) (respectively,
(24)) can be computed to HRA. Consequently, the eigenvalues and singular values
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of U (respectively, of U−1), as well as the solution of the linear systems Ux = b
(respectively, U−1x = b), where the entries of b = (b0, . . . , bn)T have the same sign,
can be obtained to HRA.

4 Accurate computations withWronskianmatrices of Newton bases

Let us recall that Corollary 1 of [23] provides the following factorization (6) of W :=
W (m0, . . . ,mn)(t), the Wronskian matrix of the monomial basis (m0, . . . ,mn) in
(13),

W (m0, . . . ,mn)(t) = DG1 · · ·Gn, (33)

where D = diag{0!, 1!, . . . , n!} and Gi , i = 1, . . . , n, are upper triangular bidiagonal
matrices with the structure described by (7) and off-diagonal entries

m̃k,k−i = t, i + 1 ≤ k ≤ n + 1.

For the matrix representation BD(W ) of (33), we have

BD(W )i, j :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t, if i < j,

(i − 1)!, if i = j,

0, if i > j .

(34)

Clearly, the computation of BD(W ) satisfies the NIC condition, and therefore, this
matrix can be computed to HRA. In addition, taking into consideration the sign of the
entries of BD(W ), one can derive that the Wronskian matrix of the monomial basis
is TP for any t > 0. In [23], using (33), computations to HRA when solving algebraic
problems related to W (m0, . . . ,mn)(t), t > 0, have been achieved.

For t < 0, taking into account (34), we clearly see that the hypotheses of Theorem 2
hold and deduce that HRA computations can also be obtained when considering the
Wronskian matrix W (m0, . . . ,mn)(t).

Corollary 6 Let W := W (m0, . . . ,mn)(t) be the Wronskian matrix of the monomial
polynomial basis in (13) and J := diag((−1)i−1)1≤i≤n+1. Given t < 0, the matrix
WJ := JW J is TP and its bidiagonal factorization (6) is

WJ = DĜ1 · · · Ĝn, (35)

where D = diag{0!, 1!, . . . , n!} and Ĝi , i = 1, . . . , n, are upper triangular bidiagonal
matrices with the structure described by (7) and off-diagonal entries

m̃k,k−i = −t, i + 1 ≤ k ≤ n + 1.

The bidiagonal decomposition (35) can be computed to HRA. Consequently, the eigen-
values and singular values of W, the matrix W−1, as well as the solution of linear
systems Wx = d, where the entries of d have the same sign, can be obtained to HRA.
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Taking into account the factorizations obtained for W (m0, . . . ,mn)(t) and for the
change of basismatrix between themonomial and theNewton bases, the total positivity
of Wronskian matrices of the Newton basis can be analyzed, and their bidiagonal
factorization can be derived.

Theorem 7 Let J := diag((−1)i−1)1≤i≤n+1 and W := W (w0, . . . , wn)(t) be the
Wronskian matrix of the Newton basis (w0, . . . , wn) defined in (17). Then,

(a) If ti ≤ 0, i = 0, . . . , n − 1, W is TP for any t > 0 and its factorization (6) can be
computed to HRA.

(b) If ti ≥ 0, i = 0, . . . , n − 1, WJ := JW J is TP for any t < 0 and its factorization
(6) can be computed to HRA.

Proof Let (m0, . . . ,mn) be the monomial basis of Pn and U be the change of basis
matrix such that (m0, . . . ,mn) = (w0, . . . , wn)U (see (20)). Then,

W = W (m0, . . . ,mn)(t)U
−1. (36)

If ti ≤ 0, i = 0, . . . , n − 1, by Corollary 4, U−1 is TP and its decomposition (24)
can be computed to HRA. If t > 0, by Corollary 1 of [23], W (m0, . . . ,mn)(t) is TP.
Taking into account that the product of TP matrices is TP, we deduce thatW is TP and
its factorization (6) can also be computed to HRA (see (34) for BD(W (m0, . . . ,mn)).

If ti ≥ 0, i = 0, . . . , n − 1, using Corollary 5, we deduce that JU−1 J is TP and
its factorization (24) can be obtained to HRA. Moreover, if t < 0, using Corollary 6,
we deduce that JW (m0, . . . ,mn)(t)J is TP and its bidiagonal factorization (6) can
be computed to HRA. Since J = J−1, from (36), we can write

JW J = (JW (m0, . . . ,mn)(t)J )(JU−1 J ), (37)

and deduce that JW J is TP because it can be written as the product of TP matrices.
Using Algorithm 5.1 of [20], if the decomposition (6) of two nonsingular TP matri-

ces is provided toHRA, then the decomposition (6) of the product is computed toHRA.
Consequently, the decomposition (6) of W for the case ti ≤ 0, i = 0, . . . , n − 1, and
t > 0 as well as the decomposition (6) of WJ for the case ti ≥ 0, i = 0, . . . , n − 1
and t < 0 can be obtained to HRA.

�	

5 Applications to Stirlingmatrices

Stirling numbers of the first kind arise in combinatorics, when analyzing permutations.
They can be seen as the coefficients s(n, k), n, k ∈ N ∪ {0}, k ≤ n, in the expansion
of the falling factorial, defined as

(x)0 := 1, (x)n := x(x − 1) · · · (x − n + 1), n ∈ N, (38)
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in terms of powers of the variable x , that is,

(x)n =
n∑

k=0

s(n, k)xk . (39)

First kind Stirling numbers can be computed using the relation

s(n + 1, k) = −n · s(n, k) + s(n, k − 1), (40)

with
s(0, 0) := 1, s(0, n) = s(n, 0) := 0, n ∈ N.

Since sign(s(n, k)) = (−1)n−k , Stirling numbers of the first kind are also called
signed Stirling numbers. The absolute values of the first kind Stirling numbers are

known as unsigned Stirling numbers and are usually denoted by c(n, k) or

[
n
k

]
. These

numbers satisfy

c(n, k) =
[
n
k

]
= (−1)n−ks ∗ (n, k), (41)

and can be seen as the coefficients in the expansion of the rising factorial:

xn̄ := x(x + 1) · · · (x + n − 1) =
n∑

k=0

c(n, k)xk . (42)

Unsigned Stirling numbers can be computed using the relation

[
n + 1
k

]
= n

[
n
k

]
+

[
n

k − 1

]
, (43)

with [
0
0

]
:= 1,

[
n
0

]
:=

[
0
n

]
= 0, n ∈ N.

The Stirling numbers of the second kind are denoted by S(n, k) or

{
n
k

}
, count

the number of partitions of a set of size n into k disjoint non-empty subsets and can
also be characterized as the coefficients arising when one expresses powers of an
indeterminate x in terms of the falling factorials (38), that is,

n∑
k=0

{
n
k

}
(x)k = xn . (44)

Second kind Stirling numbers can be computed using the relation

{
n + 1
k

}
= k

{
n
k

}
+

{
n

k − 1

}
, (45)
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with {
n
n

}
:= 1, n ≥ 0,

{
n
0

}
=

{
0
n

}
:= 0, n ∈ N,

or by the explicit formula

{
n
k

}
= 1

k!
k∑

i=0

(−1)i
(
k
i

)
(k − i)n, k = 0, . . . , n. (46)

Let us observe that, when considering the nodes ti := i for i = 0, . . . , n − 1, the
corresponding Newton basis (17) satisfies

wi (t) = (t)i , i = 0, . . . , n,

and, taking into account (44), Stirling numbers of the second kind can be seen as
divided differences of monomials with respect to the set of nodes formed by the first
consecutive nonnegative integers. In particular,

[0, 1, . . . , k]mn =
{
n
k

}

where mi (t) = t i , i = 0, . . . , n.
Moreover, the corresponding change of basis matrixU between the monomial and

the Newton basis corresponding to ti := i , i = 0, . . . , n − 1, and satisfying (19), is
upper triangular and U = (ui, j )1≤i, j≤n+1, with

ui, j =

⎧⎪⎨
⎪⎩

[0, . . . , i − 1]m j−1 =
{
j − 1

i − 1

}
, if 1 ≤ i ≤ j ≤ n + 1,

0, elsewhere.

(47)

We shall say that the matrixU , whose entries are given in (47), is the (n+1)× (n+1)
second kind Stirling matrix. As a direct consequence of Theorem 3 and Corollary 4,
we can deduce a bidiagonal decomposition providing HRA computations with second
kind Stirling matrices.

Theorem 8 The second kind Stirling matrix U described by (47) is TP and admits the
following decomposition

U = G1 · · ·Gn, (48)

where Gi , i = 1, . . . , n, are upper triangular bidiagonal matrices with the structure
described by (7) and off-diagonal entries

m̃i, j = j − 1, 1 ≤ j < i ≤ n + 1. (49)

Moreover, the decomposition (48) can be computed to HRA. Consequently, the eigen-
values and singular values of U, as well as the solution of the linear systems Ux = b,
where the entries of b have alternating signs, can be obtained to HRA.
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Furthermore, using (39), we can also deduce that the inverse of the second kind Stir-
ling matrix U described by (47) is the upper triangular Ũ := U−1 = (̃ui, j )1≤i, j≤n+1
such that

ũi, j =
{
s( j − 1, i − 1), if 1 ≤ i ≤ j ≤ n + 1,

0, elsewhere.
(50)

where s(n, k) denotes the corresponding (signed) first kind Stirling number provided
by (40). We shall say that this matrix is the (n + 1) × (n + 1) signed Stirling matrix.
Using Theorems 3 and 2, we have the following result.

Theorem 9 Let J := diag((−1)i−1)1≤i≤n+1 and Ũ be the signed Stirling matrix
described by (50). Then, JŨ J is TP and admits the following factorization

JŨ J = G1 · · ·Gn, (51)

where Gi , i = 1, . . . , n, are upper triangular bidiagonal matrices with the structure
described by (7) and off-diagonal entries

m̃i, j = i − j − 1, 1 ≤ j < i ≤ n + 1.

Moreover, the decomposition (51) can be computed to HRA. Consequently, the eigen-
values and singular values of Ũ , as well as the solution of the linear systems Ũ x = b,
where the entries of b have the same sign, can be obtained to HRA.

Finally, let us observe that the matrix Û := JŨ J = (̂ui, j )1≤i, j≤n+1 in Theorem 9
satisfies

ûi, j =

⎧⎪⎨
⎪⎩

(−1)i+ j ũi, j =(−1)i+ j s( j− 1, i − 1) =
[
j − 1

i − 1

]
, if 1 ≤ i ≤ j ≤ n +1,

0, elsewhere,
(52)

where

[
n
k

]
denotes the unsigned Stirling numbers of the first kind that can be computed

by the recurrence relation (43). We shall say that this matrix is the (n + 1) × (n + 1)
unsigned Stirling matrix. Then, we have the following result.

Corollary 10 The unsigned Stirling matrix Û described by (52) is TP and admits the
following decomposition

Û = G1 · · ·Gn, (53)

where Gi , i = 1, . . . , n, are upper triangular bidiagonal matrices of the form (7),
whose off-diagonal entries are

m̃i, j = i − j − 1, 1 ≤ j < i ≤ n + 1.

Moreover, the decomposition (53) can be computed toHRA.Consequently, eigenvalues
and singular values of Û , as well as the solution of the linear systems Û x = b, where
the entries of b have alternating signs, can be obtained to HRA.
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In order to conclude this section, let us notice that bidiagonal factorizations of matrices
formedbyother types of Stirling numbers such as Jacobi-Stirling orq-Stirling numbers
can be found in [10] and [9], respectively.

6 Total positivity and HRA computations with Touchard bases

The Touchard polynomials are also called the exponential polynomials or Bell poly-
nomials and comprise a polynomial sequence defined by

Tn(x) =
n∑

k=0

S(n, k)xk =
n∑

k=0

{
n
k

}
xk, (54)

where S(n, k) =
{
n
k

}
is the Stirling number of the second kind in (44) (cf [33]). We

shall say that the basis (T0, . . . , Tn) of Pn is the (n + 1)-dimensional Touchard basis.
We clearly have

(T0, . . . , Tn) = (m0, . . . ,mn)U , (55)

where (m0, . . . ,mn) is the monomial basis of Pn and U = (ui, j )1≤i, j≤n+1 is the
(n + 1) × (n + 1) second kind Stirling matrix, that is,

ui, j =
{
S( j − 1, i − 1), 1 ≤ i ≤ j ≤ n + 1,

0, elsewhere,
(56)

(see (47)). Let us recall that themonomial basis (m0, . . . ,mn) ofPn is STP on (0,+∞)

and so, given 0 < t0 < · · · < tn , the corresponding collocation matrix

V :=
(
t j−1
i−1

)
1≤i, j≤n+1

, (57)

is STP (see Section 3 of [19]). V is the Vandermonde matrix at the considered nodes.
Taking into account the total positivity of the Vandermonde matrices at positive

nodes in increasing ordering and the total positivity of the second kind Stirling matri-
ces, we can deduce the total positivity of Touchard bases, as well as factorizations
providing computations to HRA when considering their collocation matrices.

Theorem 11 The basis (T0, . . . , Tn) of Touchard polynomials defined in (54) is STP
on (0,∞). Moreover, given 0 < t0 < · · · < tn, the collocation matrix

T := (
Tj−1(ti−1)

)
1≤i, j≤n+1 , (58)

and its bidiagonal factorization (6) can be computed to HRA.

Proof Given 0 < t0 < · · · < tn , by formula (55), the collocation matrix (58) of the
Touchard basis satisfies

T = VU , (59)
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where V is the Vandermonde matrix (57) and U is the (n + 1) × (n + 1) second kind
Stirling matrix described by (56).

It is well known that V is STP for 0 < t1 < · · · < tn+1 and its decomposition (6) can
be computed toHRA (see [19] or Theorem3of [22]). ByTheorem8,U is a nonsingular
TP matrix, and its decomposition (6) can be also computed to HRA. Therefore, we
can deduce that T is an STP matrix since it is the product of an STP matrix and a
nonsingular TP matrix (see Theorem 3.1 of [1]). Moreover, using Algorithm 5.1 of
[20], if the decomposition (6) of two nonsingular TP matrices is provided to HRA,
then the decomposition of the product can be obtained to HRA. Consequently, T and
its decomposition (6) can be obtained to HRA.

�	
Now, we can also analyze the total positivity of Wronskian matrices of Touchard

bases.

Theorem 12 Let (T0, . . . , Tn) be the Touchard polynomial basis in (54). For any t > 0,
the Wronskian matrix W := W (T0, . . . , Tn)(t) is nonsingular and TP. Furthermore,
W and its bidiagonal decomposition (6) can be computed to HRA.

Proof Using formula (55), it can be checked that

W (T0, . . . , Tn)(t) = W (m0, . . . ,mn)(t)U , (60)

Following the reasoning in the proof of Theorem 11, the result readily follows.
�	

7 Numerical experiments

In order to encourage the understanding of the numerical experimentation carried
out, we provide the pseudocode of several algorithms. Firstly, using Theorem 8, we
present Algorithm 1 for computing to HRA the matrix form BD(U ) (48) of the
bidiagonal decomposition of the second kind Stirling matrix U in (47). Furthermore,
we also provide the pseudocode of Algorithms 2 and 3 for computing to HRA the
matrix form (9) of the bidiagonal decomposition of the collocation and Wronskian
matrices of Touchard bases. Taking into account (59), Algorithm 2 requires BD(U )

and the bidiagonal decompositon of the Vandermonde matrix implemented in the
Matlab function TNVandBD available in [21]. In addition, following (60), Algorithm 3
requires BD(U ) and the bidiagonal decomposition (34) of theWronskianmatrix of the
monomial basis. Finally, let us observe that both algorithms call the Matlab function
TNProduct available in [21]. Let us recall that, given A = BD(F) and B = BD(G)

to HRA, TNProduct(A,B) computes BD(F · G) to HRA. The computational cost
of the mentioned function and algorithms is O(n3) arithmetic operations.

Let us illustrate with a simple example the bidiagonal decompositions obtained by
Algorithms 2 and 3 for the collocation and Wronskian matrices of Touchard bases.
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Algorithm 1 HRA computation of the bidiagonal decomposition of the second kind
Stirling matrix U in (47).
Require: : n
Ensure: : BDU bidiagonal decomposition of U to HRA (see Theorem 8)
BDU = eye(n + 1)
for j = 1 : n
for i = j + 1 : n + 1
BDU ( j, i) = j − 1

end
end

Algorithm 2 HRA computation of the bidiagonal decomposition of the collocation
matrix T of Touchard bases (54).
Require: : t̃ := {ti }ni=0 such that 0 < t0 < · · · < tn
Ensure: : BDT bidiagonal decomposition of T to HRA (see Theorem 11)
BDU = zeros(n + 1)
BDV = zeros(n + 1)
BDU = BDU(n)

BDV = TNVandBD(̃t)
BDT = TNProduct(BDV , BDU )

Algorithm 3 HRA computation of the bidiagonal decomposition of the Wronskian
matrix W of Touchard bases (54).
Require: : t ∈ (0, ∞), n
Ensure: : BDW bidiagonal decomposition of W to HRA (see Therorem 12)
BDU = zeros(n + 1)
BDWM = zeros(n + 1)
BDW = zeros(n + 1)
BDU = BDU(n)

BDW̃ = BDW(t)
BDW = TNProduct(BDW̃ , BDU )

For n + 1 = 10, Algorithm 1 computes the following matrix storing the bidiagonal
decomposition of the second kind Stirling matrix U :

BD(U ) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1
0 0 1 2 2 2 2 2 2 2
0 0 0 1 3 3 3 3 3 3
0 0 0 0 1 4 4 4 4 4
0 0 0 0 0 1 5 5 5 5
0 0 0 0 0 0 1 6 6 6
0 0 0 0 0 0 0 1 7 7
0 0 0 0 0 0 0 0 1 8
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

Let us now considerer the following sequence of parameters t̃ := [2, 4, 6, 8, 10, 12,
14, 16, 18, 20]. The bidiagonal factorization of the corresponding Vandermonde
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matrix V computed by TNVandBD is as follows:

BD(V ) =

⎛
⎜⎜⎜⎜⎝

1 2 2 2 2 2 2 2 2 2
1 2 4 4 4 4 4 4 4 4
1 1 8 6 6 6 6 6 6 6
1 1 1 48 8 8 8 8 8 8
1 1 1 1 384 10 10 10 10 10
1 1 1 1 1 3840 12 12 12 12
1 1 1 1 1 1 46080 14 14 14
1 1 1 1 1 1 1 645120 16 16
1 1 1 1 1 1 1 1 10321920 18
1 1 1 1 1 1 1 1 1 185794560

⎞
⎟⎟⎟⎟⎠.

Using BD(V ) and BD(U ), Algorithm 2 computes BD(V · U ) = BD(T ) for
the bidiagonal factorization of the collocation matrix T at the parameters t̃ of the
(n + 1)-dimensional Touchard basis, obtaining the following:

BD(T ) =

⎛
⎜⎜⎜⎜⎝

1 2 3 11/3 47/11 227/47 1215/227 2369/405 2018/319 1839/271
1 2 4 16/3 537/88 3835/562 3317/443 12529/1545 3280/377 13381/1444
1 1 8 6 61/8 3285/389 3429/371 928/93 14123/1324 7653/676
1 1 1 48 8 604/61 1687/157 6995/603 3061/247 2771/211
1 1 1 1 384 10 1838/151 13191/1013 2492/179 2229/151
1 1 1 1 1 3840 12 13271/919 16903/1106 20906/1289
1 1 1 1 1 1 46080 14 1437/86 2823/161
1 1 1 1 1 1 1 645120 16 911/48
1 1 1 1 1 1 1 1 10321920 18
1 1 1 1 1 1 1 1 1 185794560

⎞
⎟⎟⎟⎟⎠.

On the other hand, let t := 2. The bidiagonal factorization of the Wronskian matrix
W̃ of the monomial basis at t can be represented by the following:

BD(W̃ ) =

⎛
⎜⎜⎜⎜⎝

1 2 2 2 2 2 2 2 2 2
0 1 2 2 2 2 2 2 2 2
0 0 2 2 2 2 2 2 2 2
0 0 0 6 2 2 2 2 2 2
0 0 0 0 24 2 2 2 2 2
0 0 0 0 0 120 2 2 2 2
0 0 0 0 0 0 720 2 2 2
0 0 0 0 0 0 0 5040 2 2
0 0 0 0 0 0 0 0 40320 2
0 0 0 0 0 0 0 0 0 362880

⎞
⎟⎟⎟⎟⎠.

Using BD(W̃ ) and BD(U ),Algorithm3computes BD(W̃ ·U ) = BD(W ) for the bidi-
agonal factorization of the Wronskian matrixW of the (n+ 1)-dimensional Touchard
basis at t .

BDW =

⎛
⎜⎜⎜⎜⎝

1 2 3 11/3 47/11 227/47 1215/227 2369/405 2018/319 1839/271
0 1 2 10/3 216/55 1953/431 967/190 3209/572 1398/229 1079/164
0 0 2 2 19/5 2885/684 484/101 2340/437 787/134 70/11
0 0 0 6 2 84/19 2059/450 1787/354 23184/4127 6737/1097
0 0 0 0 24 2 109/21 3383/668 893/168 3593/613
0 0 0 0 0 120 2 662/109 2043/356 1427/252
0 0 0 0 0 0 720 2 2325/331 1201/182
0 0 0 0 0 0 0 5040 2 3491/436
0 0 0 0 0 0 0 0 40320 2
0 0 0 0 0 0 0 0 0 362880

⎞
⎟⎟⎟⎟⎠.

To test the accuracy on floating point arithmetic provided by the proposed bidiagonal
factorizations, for different dimensions n+1 = 5, 6, . . . , 20, we have solved algebraic
problems related to collocationmatricesTn ofTouchard baseswith ti = 1+(i+1)/(n+
1), i = 0, . . . , n, and Wronskian matrices Wn of Touchard bases at t = 20. In order
to analyze the accuracy of the results, when calculating the relative errors, we have
considered the solutions obtained in Mathematica using 100-digit arithmetic as the
exact solutions.

In addition, we have also computed the 2-norm condition number of all considered
matrices. In Fig. 1, the conditioning obtained in Mathematica is depicted. It can be

123



Numerical Algorithms (2024) 95:747–772 767

Fig. 1 The 2-norm conditioning of collocation matrices Tn at ti = 1 + (i + 1)/(n + 1), i = 0, . . . , n, and
Wronskian matrices Wn at t = 20 of Touchard bases

easily observed that the conditioning drastically increases with the size of thematrices.
Due to the ill-conditioning of these matrices, standard routines do not obtain accu-
rate solutions because they can suffer from inaccurate cancelations. In contrast, the
algorithms using the factorizations obtained in this paper exploit the structure of the
considered matrices obtaining, as we will see, numerical results to HRA.

Computation of eigenvalues and singular values. Given B = BD(A) to HRA,
the Matlab functions TNEigenValues(B) and TNSingularValues(B) avail-
able in [21] compute the eigenvalues and singular values of a matrix A to HRA. Its
computational cost is O(n3) (see [19]).

Algorithm 4 uses the bidiagonal decompositions provided by Algorithms 2 and 3 to
compute the eigenvalues and singular values of collocation matrices and singular val-
ues ofWronskian matrices of Touchard bases to HRA. Let us note that the eigenvalues
of the Wronskian matrices of Touchard bases are exact.

Algorithm 4HRA computation of the eigenvalues of Tn and singular values of Tn and
Wn .
Require: : t̃ := {ti }ni=0 such that 0 < t0 < · · · < tn and t ∈ (0, ∞)

Ensure: : vTe, vTs, vWs
BDT = zeros(n + 1)
BDW = zeros(n + 1)
BDT = BDT(̃t) (see Algorithm 2)
BDW = BDW(t) (see Algorithm 3)
vTe = TNEigenvalues(BDT )

vTs = TNSingularValues(BDT )

vWs = TNSingularValues(BDW )

Let us observe that ill-conditioned matrices have extremely small singular values.
Moreover, small relative perturbations in the entries of a totally positive matrix can
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Fig. 2 Relative error in the approximations to the lowest eigenvalue at Tn with ti = 1 + (i + 1)/(n + 1),
i = 0, . . . , n

produce enormous relative perturbations in the small eigenvalues and singular val-
ues. So, traditional methods to obtain the eigenvalues or the singular values of an
ill-conditioned TP matrix only guarantee relative accuracy in the computation of the
largest eigenvalues or singular values (cf. [19]). In this context, we have compared
the smallest eigenvalue and singular value obtained using Algorithm 4 and Matlab
comands eig and svd. The values provided by Mathematica using 100-digit arith-
metic have been considered the exact solution of the algebraic problem, and the relative
error e of each approximation has been computed as e := |a− ã|/|a|, where a denotes
the smallest eigenvalue and singular value computed inMathematica and ã the smallest
eigenvalue and singular value computed in Matlab.

In Figs. 2 and 3, the relative errors are shown.Note that our approach computes accu-
rately the smallest eigenvalue and singular value regardless of the 2-norm condition

Fig. 3 Relative error in the approximations to the smallest singular value at Tn with ti = 1+(i+1)/(n+1),
i = 0, . . . , n, and Wn at t = 20
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number of the considered matrices. In contrast, the Matlab commands eig and svd
return results that are not accurate at all.

Computation of inverses. Given B = BD(A) to HRA, the function TNInverse
Expand(B) available in [21] returns A−1 to HRA, requiring O(n2) arithmetic oper-
ations (see [27]).

Algorithm 5 uses the bidiagonal decomposition provided by Algorithms 2 and 3 to
compute the inverse of these matrices to HRA.

Algorithm 5 Computation of the inverse of Tn and Wn to HRA.
Require: : t̃ := {ti }ni=0 such that 0 < t0 < · · · < tn and t ∈ (0, ∞)

Ensure: : Tinv, Winv
BDT = zeros(n + 1)
BDW = zeros(n + 1)
BDT = BDT(̃t) (see Algorithm 2)
BDW = BDW(t) (see Algorithm 3)
Tinv = TNInverseExpand(BDT )

Winv = TNInverseExpand(BDW )

For all considered matrices, we have compared their inverses obtained using
Algorithm 5 and the Matlab command inv. To look over the accuracy of these two
methods, we have compared both Matlab approximations with the inverse matrix A−1

computed byMathematica using 100-digit arithmetic, taking into account the formula
e = ‖A−1 − Ã−1‖/‖A−1‖ for the corresponding relative error.

The achieved relative errors are shown in Fig. 4. Note that, in contrast to the Matlab
command inv, our algorithm provides HRA results.

Resolution of linear systems. Given B = BD(A) to HRA and a vector d with
alternating signs, the Matlab function TNSolve(B, d) available in [21] returns the
solution c of Ac = d to HRA. It requires O(n2) arithmetic operations (see [21]).

Algorithm 6 uses the bidiagonal decomposition provided by Algorithms 2 and 3
to compute to HRA the solution of the linear systems Tnc = d and Wnc = d where
d = ((−1)i+1di )1≤i≤n+1 and di , i = 1, . . . , n + 1, are random nonnegative integer
values.

Fig. 4 Relative error of the approximations to the inverse of Tn with ti = 1+ (i +1)/(n+1), i = 0, . . . , n,
and Wn at t = 20
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Fig. 5 Relative error of the approximations to the solution of the linear systems Tnc = d and Wnc = d,
where d = ((−1)i+1di )1≤i≤n+1 and di , i = 1, . . . , n + 1, are random nonnegative integer values

For all considered matrices, we have compared the solution obtained using
Algorithm 6 and theMatlab command \. The solution provided byMathematica using
100-digit arithmetic has been considered the exact solution c. Then, we have com-
puted in Mathematica the relative error of the computed approximation with Matlab
c̃, taking into account the formula e = ‖c − c̃‖/‖c‖.

Algorithm 6 Resolution of linear systems of equations T c = d andWc = d to HRA.
Require: : t̃ := {ti }ni=0 such that 0 < t0 < · · · < tn and t ∈ (0, ∞)

d ∈ R
n+1 such that d is a vector with alternating signs

Ensure: : cT, cW ∈ R
n+1

BDT = zeros(n + 1)
BDW = zeros(n + 1)
BDT = BDT(̃t) (see Algorithm 2)
BDW = BDW(t) (see Algorithm 3)
cT = TNSolve(BDT , d)

cW = TNSolve(BDW , d)

As opposed to the results obtainedwith the command \, the proposed algorithm pre-
serves the accuracy for all the considered dimensions. Figure5 illustrates the relative
errors.

8 Conclusions

In this paper, we have focused on the change of bases matrices between the monomial
and the Newton bases corresponding to a given sequence of nodes, illustrating that
their total positivity can be characterized in terms of the sign of the nodes. If the nodes
have the same sign, using the bidiagonal factorization (6) provided by Theorem 3,
algebraic problems related to these matrices can be achieved to high relative accuracy,
even though the matrix does not possess the total positivity property. As an interest-
ing application, the Stirling numbers of the second kind can be considered divided
differences of monomial polynomials at sets of nodes formed by the first consecutive
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nonnegative integers. Then, Stirling matrices can be considered particular cases of
the above mentioned change of bases matrices, and consequently, algorithms to high
relative accuracy have been delivered for the resolution of algebraic problems with
collocation and Wronskian matrices of Touchard polynomial bases.
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