
Numerical Algorithms (2023) 94:1763–1795
https://doi.org/10.1007/s11075-023-01554-5

ORIG INAL PAPER

A proximal subgradient algorithmwith extrapolation
for structured nonconvex nonsmooth problems

Tan Nhat Pham1,3 · Minh N. Dao2 · Rakibuzzaman Shah3 ·
Nargiz Sultanova1 · Guoyin Li4 · Syed Islam3

Received: 10 November 2022 / Accepted: 1 April 2023 / Published online: 20 June 2023
© The Author(s) 2023

Abstract
In this paper, we consider a class of structured nonconvex nonsmooth optimization
problems, inwhich the objective function is formedby the sumof apossibly nonsmooth
nonconvex function and a differentiable function with Lipschitz continuous gradient,
subtracted by a weakly convex function. This general framework allows us to tackle
problems involving nonconvex loss functions and problems with specific nonconvex
constraints, and it has many applications such as signal recovery, compressed sensing,
and optimal power flow distribution. We develop a proximal subgradient algorithm
with extrapolation for solving these problems with guaranteed subsequential conver-
gence to a stationary point. The convergence of the whole sequence generated by our
algorithm is also established under the widely used Kurdyka–Łojasiewicz property.
To illustrate the promising numerical performance of the proposed algorithm, we con-
duct numerical experiments on two important nonconvex models. These include a
compressed sensing problem with a nonconvex regularization and an optimal power
flow problem with distributed energy resources.

Keywords Composite optimization problem · Difference of convex ·
Distributed energy resources · Extrapolation · Optimal power flow ·
Proximal subgradient algorithm

Mathematics Subject Classification (2010) 90C26 · 49M27 · 65K05

B Minh N. Dao
minh.dao@rmit.edu.au

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01554-5&domain=pdf
http://orcid.org/0000-0002-8074-6675
http://orcid.org/0000-0002-2099-7974

1764 Numerical Algorithms (2023) 94:1763–1795

1 Introduction

In this work, we consider the structured optimization problem

min
x∈C

F(x) := f (x) + h(Ax) − g(x), (P)

where C is a nonempty closed subset of a finite-dimensional real Hilbert space H,
A is a linear mapping from H to another finite-dimensional real Hilbert space K,
f : H → (−∞,+∞] is a proper lower semicontinuous (possibly nonsmooth and
nonconvex) function, h : K → R is a differentiable (possibly nonconvex) function
whose gradient is Lipschitz continuous with modulus �, and g : H → (−∞,+∞] is a
continuous weakly convex function with modulus β on an open convex set containing
C . This broad optimization problem has many important applications in diverse areas,
including power control problems [1], compressed sensing [2], portfolio optimization,
supply chain problem, image segmentation, and others [3].

In particular, the model problem (P) covers two of the most general models in the
literature. Firstly, in statistical learning, the following optimization model is often
used

min
x∈Rd

(ϕ(x) + γ r(x)) , (1)

whereϕ is called a loss functionwhichmeasures the datamisfitting, r is a regularization
which promotes specific structure in the solution such as sparsity, and γ > 0 is a
weighting parameter. Typical choices of the loss function are the least square loss
function ϕ(x) = 1

2‖Ax − b‖2 where A ∈ R
m×d and b ∈ R

m and the logistic loss
function, which are both convex. In the literature, nonconvex loss functions have also
received increased attentions. Somepopular nonconvex loss functions include the ramp
loss function [4, 5] and the Lorentzian norm [6]. In addition, [7] recently showed that
many regularization r used in the literature can be written as difference of two convex
functions, and so, the model (1) can be formulated into problem (P). These include
popular regularizations such as the smoothly clipped absolute deviation (SCAD) [8],
the indicator function of cardinality constraint [9], L1 − L2 regularization [2], or
minimax concave penalty (MCP) [10]. Therefore, problem (P) can be interpreted as
a problem with the form (1) whose objective function is the sum of a nonconvex and
nonsmooth loss function and a regularization which can be expressed as a specific
form of difference-of-(possibly) nonconvex functions.1 Secondly, in the case when
C = R

d and A is the identity mapping, problem (P) reduces to

min
x∈Rd

(f (x) + h(x) − g(x)) , (2)

1 Indeed, note that any smooth function with Lipschitz gradient function is weakly convex. By adding and
subtracting α‖x‖2 for large α > 0, our model problem (P) can also be mathematically reduced to the form
(1) whose objective function is the sum of a nonconvex and nonsmooth loss function and a difference-of-
convex regularization.

123

Numerical Algorithms (2023) 94:1763–1795 1765

referred as the general difference-of-convex (DC) program, which is a broad class
of optimization problems studied in the literature. To solve problem (2) under the
convexity of g, a generalized proximal point algorithm was developed in [11]. For
the case when both f and g are convex, [12] provided an accelerated difference-of-
convex algorithm incorporating Nesterov’s acceleration technique into the standard
difference-of-convex algorithm (DCA) to improve its performance, while [13] pro-
posed an inexact successive quadratic approximation method. When f , h, and g are
all required to be convex, a proximal difference-of-convex algorithm with extrapola-
tion (pDCAe) was proposed in [14], and there are also other existing studies (e.g.,
[15, 16]) that developed algorithms to solve such a problem.

In the cases where the loss function f is smooth and the regularization r is prox-
friendly in the sense that its proximal operator can be computed efficiently, the
proximal gradient method is a widely used algorithm for solving (1) (for example,
see [17]). Moreover, incorporating information from previous iterations to accelerate
the proximal algorithm while trying not to significantly increase the computational
cost has also been a research area which receives a lot of attention. One such approach
is to make use of the extrapolation technique. In this approach, momentum terms that
involve the information from previous iterations are used to update the current iter-
ation. Such techniques have been successfully implemented and achieved significant
results, including Polyak’s heavy ball method [18], Nesterov’s techniques [19, 20], and
the fast iterative shrinking-threshold algorithm (FISTA) [21]. In particular, extrapola-
tion techniques have shown competitive results for optimization problems that involve
sum of convex functions [22], difference of convex functions [14, 16], and ratio of
nonconvex and nonsmooth functions [23].

In view of these successes, this paper proposes an extrapolated proximal subgra-
dient algorithm for solving problem (P). In our work, comparing to the literature, the
convexity and smoothness of the loss functions f are relaxed. We also allow a closed
feasible set C instead of optimizing over the whole space. This general framework
allows us to tackle problems involving nonconvex loss functions such as Lorentzian
norm and problems with specific nonconvex constraints such as spherical constraint.
We then prove that the sequence generated by the algorithm is bounded and any
of its cluster points is a stationary point of the problem. We also prove the conver-
gence of the full sequence under the assumption of Kurdyka–Łojasiewicz property.
We then evaluate the performance of the proposed algorithm on a compressed sens-
ing problem for both convex and nonconvex loss functions together with the recently
proposed nonconvex L1 − L2 regularization. Finally, we formulate an optimal power
flow problem considering photovoltaic systems placement, and address it using our
algorithm.

The rest of this paper is organized as follows. In Section 2, we provide preliminary
materials used in this work. In Section 3, we introduce our algorithm, and establish
subsequential convergence and full sequential convergence of the proposed algorithm.
In Section 4, we present numerical experiments for several case studies. Finally, we
conclude the paper in Section 5.

123

1766 Numerical Algorithms (2023) 94:1763–1795

2 Premilinaries

Throughout this paper,H is a finite-dimensional real Hilbert space with inner product
〈·, ·〉 and the induced norm ‖ · ‖. We use the notation N for the set of nonnegative
integers, R for the set of real numbers, R+ for the set of nonnegative real numbers,
and R++ for the set of the positive real numbers.

Let f : H → [−∞,+∞]. The domain of f is dom f := {x ∈ H : f (x) < +∞}
and the epigraph of f is epi f := {(x, ρ) ∈ H × R : f (x) ≤ ρ}. The function f
is proper if dom f 	= ∅ and it never takes the value −∞, lower semicontinuous if
its epigraph is a closed set, and convex if its epigraph is a convex set. We say that
f is weakly convex if f + α

2 ‖ · ‖2 is convex for some α ∈ R+. The modulus of the
weak convexity is the smallest constant α such that f + α

2 ‖ · ‖2 is convex. Given a
subset C of H, the indicator function ιC of C is defined by ιC (x) := 0 if x ∈ C , and
ιC (x) := +∞ if x /∈ C . If f + ιC is weakly convex with modulus α, then f is said to
be weakly convex on C with modulus α. Some examples of weakly convex functions
are quadratic functions, convex functions, and differentiable functions with Lipschitz
continuous gradient.

Let x ∈ H with | f (x)| < +∞. The Fréchet subdifferential of f at x is defined by

̂∂ f (x) :=
{

x∗ ∈ H : lim inf
y→x

f (y) − f (x) − 〈x∗, y − x〉
‖y − x‖ ≥ 0

}

and the limiting subdifferential of f at x is defined by

∂L f (x) :=
{

x∗ ∈ H : ∃xn
f→ x, x∗

n → x∗ with x∗
n ∈ ̂∂ f (xn)

}

,

where the notation y
f→ x means y → x with f (y) → f (x). In the case where

| f (x)| = +∞, both Fréchet subdifferential and limiting subdifferential of f at x
are defined to be the empty set. The domain of ∂L f is given by dom ∂L f := {x ∈
H : ∂L f (x) 	= ∅}. It can be directly verified from the definition that the limiting
subdifferential has the robustness property

∂L f (x) =
{

x∗ ∈ H : ∃xn
f→ x, x∗

n → x∗ with x∗
n ∈ ∂L f (xn)

}

.

Next, we revisit some important properties of the limiting subdifferential.

Lemma 2.1 (Sum rule) Let x ∈ H and let f , g : H → (−∞,+∞] be proper lower
semicontinuous functions. Suppose that f is finite at x and g is locally Lipschitz around
x. Then ∂L(f + g)(x) ⊆ ∂L f (x) + ∂L g(x). Moreover, if g is strictly differentiable at
x, then ∂L(f + g)(x) = ∂L f (x) + ∇g(x).

Proof This follows from [24, Proposition 1.107(ii) and Theorem 3.36]. ��
The following result, whose proof is included for completeness, is similar to

[25, Lemma 2.9].

123

Numerical Algorithms (2023) 94:1763–1795 1767

Lemma 2.2 (Upper semicontinuity of subdifferential) Let f : H → [−∞,+∞] be
Lipschitz continuous around x ∈ H, let (xn)n∈N be a sequence in H converging to
x, and let, for each n ∈ N, x∗

n ∈ ∂L f (xn). Then (x∗
n)n∈N is bounded with all cluster

points contained in ∂L f (x).

Proof By the Lipschitz continuity of f around x , there are a neighborhood V of x
and a constant �V ∈ R+ such that f is Lipschitz continuous on V with modulus �V .
Then, by [24, Corollary 1.81], for all v ∈ V and v∗ ∈ ∂L f (v), one has ‖v∗‖ ≤ �V .
Since xn → x as n → +∞, there is n0 ∈ N such that, for all n ≥ n0, xn ∈ V , which
implies that ‖x∗

n‖ ≤ �V . This means (x∗
n)n∈N is bounded.

Now, let x∗ be a cluster point of (x∗
n)n∈N, i.e., there exists a subsequence (x∗

kn
)n∈N

such that x∗
kn

→ x∗ as n → +∞. On the other hand, we have from the convergence

of (xn)n∈N and the Lipschitz continuity of f around x that xkn

f→ x . Therefore,
x∗ ∈ ∂L f (x) due to the robustness property of the limiting subdifferential. ��

We end this section with the definitions of stationary points for the problem (P). A
point x ∈ C is said to be a

• stationary point of (P) if 0 ∈ ∂L(f + ιC + h ◦ A − g)(x),
• lifted stationary point of (P) if 0 ∈ ∂L(f + ιC)(x) + A∗∇h(Ax) − ∂L g(x).

Here A∗ is the adjoint mapping of the linear mapping A.

3 Proximal subgradient algorithmwith extrapolation

We now propose our extrapolated proximal subgradient algorithm for solving problem
(P) with guaranteed convergence to stationary points.

Algorithm 1 Proximal subgradient algorithm with extrapolation
� Step 1. Let x−1 = x0 ∈ C and set n = 0. Let λ ∈ R+, μ ∈ R+, and δ ∈ R++.
� Step 2. Let gn ∈ ∂L g(xn), un = xn + λn(xn − xn−1) with λn ∈ [0, λ], and vn = xn + μn(xn − xn−1)

with μn ∈ [0, μτn]. Choose τn ∈
(

0, 1/(β + 2δ + �‖A‖2 (

2λ + 1
) + 2μ)

]

and compute

xn+1 ∈ argmin
x∈C

(

f (x) + 1
2τn

‖x − vn + τn A∗∇h(Aun) − τn gn‖2
)

.

� Step 3. If a termination criterion is not met, set n = n + 1 and go to Step 2.

Remark 3.1 (Discussion of the algorithm structure and extrapolation parameters)
Some comments on Algorithm 1 are in order.

(i) Recalling that the proximal operator of a proper function φ : H → (−∞,+∞]
is defined by

proxφ(x) = argmin
y∈H

(

φ(y) + 1

2
‖y − x‖2

)

,

123

1768 Numerical Algorithms (2023) 94:1763–1795

we see that the update of xn+1 in Step 2 can be written as

xn+1 ∈ proxτn(f +ιC)(vn − τn A∗∇h(Aun) + τngn).

Therefore, Step 2 essentially boils down to the computation of the proximal
operator of τn(f +ιC). This can be done efficiently for various specific structures
of f and C .

• First, in the casewhere f ≡ 0, computing the proximal operator of τn(f +ιC) is
equivalent to computing the projection onto the set C . This can be efficiently
computed in many applications or even admits a closed form solution, for
example, when C is a ball, a sphere, or takes the form {x ∈ H : ‖x‖0 ≤ r}
with r > 0. Here, ‖x‖0 denotes the cardinality of the vector x .

• Second, in the case where C = H = R
d , this task reduces to computing

the proximal operator of τn f , which can also have closed form solution for
several nonconvex/nonsmooth functions f . These include various popular reg-
ularization functions in the literature, such as the L1/2 regularization f (x) =
∑d

i=1|xi | 12 [26, Theorem 1], the L1 − L2 regularization f (x) = ‖x‖1 −α‖x‖
(α ∈ R+) [2, Lemma 1], and the sum entropy and sparsity regularization terms
[27, Section 3].

• In addition, when f is a convex quadratic function and C is a polyhedral
set, computing the proximal operator of τn(f + ιC) is equivalent to solving
a convex quadratic programming problem. When f is a nonconvex quadratic
function and C is the unit ball, this reduces to a trust region problemwhich can
be solved as a generalized eigenvalue problem or a semi-definite programming
problem. For further tractable cases, see, e.g., [23, Remark 4.1].

(ii) Let us consider the case when A is the identity mapping and C = H. We fix an
arbitrary τ ∈ (0, 1/�) and choose λ = μ = 0 (which yields λn = μn = 0),
δ ∈ (0, 1/(2τ) − �/2), and τn = τ . Then the update of xn+1 in Step 2 becomes

xn+1 ∈ proxτ f (xn − τ∇h(xn) + τgn),

which is the so-called generalized proximal point algorithm (GPPA) in [11],
where g is assumed to be convex (In this case, β = 0 and 1/τn = 1/τ >

2δ + � = β + 2δ + �‖A‖2 (

2λ + 1
) + 2μ).

(iii) In the case where h ≡ 0, the objective function F reduces to f −g and the update
of xn+1 in Step 2 reduces to

xn+1 ∈ proxτn(f +ιC)(vn + τngn).

In turn, if C = H and μn = 0, Algorithm 1 reduces to the proximal linearized
algorithm proposed in [28] which requires that f and g are convex.

123

Numerical Algorithms (2023) 94:1763–1795 1769

(iv) When g ≡ 0, A is the identity mapping, and C = H, the objective function
reduces to f + h. By choosing λn = μn , we have

xn+1 ∈ proxτn f (un − τn∇h(un))

and Algorithm 1 reduces to the inertial forward-backward algorithm studied in
[22], in which an additional requirement of the convexity of h is imposed.

(v) Motivated by the popular parameter used in FISTA and also its variants (such as
the restarted FISTA scheme) [17, Chapter 10], a plausible option for extrapolation
parameters λn and μn (which will be used in our computation later) is that

λn = λ
κn−1 − 1

κn
and μn = μτn

κn−1 − 1

κn
,

where κ−1 = κ0 = 1 and κn+1 = 1+√
1+4κ2n
2 . It can be seen that, for all n ∈ N,

1 ≤ κn−1 < κn + 1, and so λn ∈ [0, λ] and μn ∈ [0, μτn]. We can also reset
κn−1 = κn = 1 whenever n is a multiple of some fix integer n0.

From now on, let (xn)n∈N be a sequence generated by Algorithm 1. Under suitable
assumptions, we show in the next theorem that (xn)n∈N is bounded and any of its
cluster points is a stationary point of problem (P).

Theorem 3.2 (Subsequential convergence) For problem (P), suppose that the function
F is bounded from below on C and that the set C0 := {x ∈ C : F(x) ≤ F(x0)} is
bounded. Set c := 1

2 (�‖A‖2λ + μ). Then the following statements hold:

(i) For all n ∈ N,

(F(xn+1) + c‖xn+1 − xn‖2) + δ‖xn+1 − xn‖2 ≤ F(xn) + c‖xn − xn−1‖2 (3)

and the sequence (F(xn))n∈N is convergent.
(ii) The sequence (xn)n∈N is bounded and xn+1 − xn → 0 as n → +∞.

(iii) Suppose that lim infn→+∞ τn = τ > 0 and let x be a cluster point of (xn)n∈N.
Then x ∈ C ∩ dom f , F(xn) → F(x), and x is a lifted stationary point of (P).
Moreover, x is a stationary point of (P) provided that g is strictly differentiable
on an open set containing C ∩ dom f .

123

1770 Numerical Algorithms (2023) 94:1763–1795

Proof (i) & (ii): We see from Step 2 of Algorithm 1 that, for all n ∈ N, xn ∈ C and

xn+1 ∈ argmin
x∈C

(

f (x) + 1

2τn
‖x − vn + τn A∗∇h(Aun) − τngn‖2

)

= argmin
x∈C

(

f (x) + 1

2τn
‖x − vn‖2 + 〈A∗∇h(Aun) − gn, x − vn〉

)

= argmin
x∈C

(

f (x) + 〈A∗∇h(Aun), x − un〉 − 〈gn, x − vn〉

+〈A∗∇h(Aun), un − vn〉 + 1

2τn
‖x − vn‖2

)

= argmin
x∈C

(

f (x)+〈∇h(Aun), Ax − Aun〉 − 〈gn, x − vn〉+ 1

2τn
‖x − vn‖2

)

.

Therefore, for all n ∈ N and all x ∈ C ,

f (x) + 〈∇h(Aun), Ax − Aun〉 − 〈gn, x − vn〉 + 1

2τn
‖x − vn‖2

≥ f (xn+1) + 〈∇h(Aun), Axn+1 − Aun〉 − 〈gn, xn+1 − vn〉 + 1

2τn
‖xn+1 − vn‖2,

or equivalently,

f (x) ≥ f (xn+1) + 〈∇h(Aun), Axn+1 − Ax〉 − 〈gn, xn+1 − x〉
+ 1

2τn
(‖xn+1 − vn‖2 − ‖x − vn‖2). (4)

By the Lipschitz continuity of ∇h, we derive from [20, Lemma 1.2.3] that

〈∇h(Aun), Axn+1 − Axn〉
= 〈∇h(Axn), Axn+1 − Axn〉 + 〈∇h(Aun) − ∇h(Axn), Axn+1 − Axn〉
≥ h(Axn+1) − h(Axn) − �

2
‖Axn+1 − Axn‖2

− ‖∇h(Aun) − ∇h(Axn)‖‖Axn+1 − Axn‖

≥ h(Axn+1) − h(Axn) − �‖A‖2
2

‖xn+1 − xn‖2 − �‖A‖2‖un − xn‖‖xn+1 − xn‖.

As gn ∈ ∂L g(xn) and xn, xn+1 ∈ C , it follows from the weak convexity of g and
[23, Lemma 4.1] that

〈gn, xn+1 − xn〉 ≤ g(xn+1) − g(xn) + β

2
‖xn+1 − xn‖2.

123

Numerical Algorithms (2023) 94:1763–1795 1771

Letting x = xn ∈ C in (4) and combining with the last two inequalities, we obtain
that

f (xn) + h(Axn) − g(xn)

≥ f (xn+1) + h(Axn+1) − g(xn+1) −
(

�‖A‖2
2

+ β

2

)

‖xn+1 − xn‖2

− �‖A‖2‖un − xn‖‖xn+1 − xn‖ + 1

2τn
(‖xn+1 − vn‖2 − ‖xn − vn‖2).

By the definition of un and vn , we have xn − un = −λn(xn − xn−1), xn+1 − vn =
(xn+1 − xn) − μn(xn − xn−1), xn − vn = −μn(xn − xn−1), and so

F(xn) ≥ F(xn+1)−
(

�‖A‖2
2

+ β

2

)

‖xn+1−xn‖2−�‖A‖2λn‖xn −xn−1‖‖xn+1−xn‖

+ 1

2τn
(‖xn+1 − xn‖2 − 2μn〈xn+1 − xn, xn − xn−1〉)

≥ F(xn+1) +
(

1

2τn
− �‖A‖2

2
− β

2

)

‖xn+1 − xn‖2

−
(

�‖A‖2λn + μn

τn

)

‖xn+1 − xn‖‖xn − xn−1‖

≥ F(xn+1) −
(

�‖A‖2λn

2
+ μn

2τn

)

‖xn − xn−1‖2

+
(

1

2τn
− �‖A‖2

2
− β

2
− �‖A‖2λn

2
− μn

2τn

)

‖xn+1 − xn‖2,

where we have used 〈xn+1− xn, xn − xn−1〉 ≤ ‖xn+1− xn‖‖xn − xn−1‖ ≤ 1
2 (‖xn+1−

xn‖2 + ‖xn − xn−1‖2). Rearranging terms yields

F(xn) +
(

�‖A‖2λn

2
+ μn

2τn

)

‖xn − xn−1‖2

≥ F(xn+1) +
(

1

2τn
− �‖A‖2

2
− β

2
− �‖A‖2λn

2
− μn

2τn

)

‖xn+1 − xn‖2.

Since λn ∈ [0, λ], μn ∈ [0, μτn], and 1/τn ≥ β + 2δ + �‖A‖2 (

2λ + 1
) + 2μ, it

follows that

F(xn) + 1

2
(�‖A‖2λ + μ)‖xn − xn−1‖2 ≥ F(xn+1)

+ 1

2
(2δ + �‖A‖2λ + μ)‖xn+1 − xn‖2,

which proves (3).

123

1772 Numerical Algorithms (2023) 94:1763–1795

Recalling c = 1
2 (�‖A‖2λ+μ) and settingFn := F(xn)+ c‖xn − xn−1‖2, we have

Fn ≥ Fn+1 + δ‖xn+1 − xn‖2. (5)

Since δ > 0, the sequence (Fn)n∈N is nonincreasing. Since F is bounded below
on C , the sequence (Fn)n∈N is bounded below, and it is therefore convergent. After
rearranging (5) and performing telescoping, we obtain that, for all m ∈ N,

δ

m
∑

n=0

‖xn+1 − xn‖2 ≤
m

∑

n=0

(Fn − Fn+1) = F0 − Fm+1.

Denoting F := limn→+∞ Fn and letting m → +∞, we obtain that

+∞
∑

n=0

‖xn+1 − xn‖2 ≤ 1

δ
(F0 − F) < +∞.

Therefore, as n → +∞, xn+1 − xn → 0, and so F(xn) = Fn − c‖xn − xn−1‖2 → F ,
which means that the sequence (F(xn))n∈N is convergent.

Now, we observe that

F(xn) = Fn − c‖xn − xn−1‖2 ≤ Fn ≤ F0 = F(x0),

which implies xn ∈ C0 = {x ∈ C : F(x) ≤ F(x0)}. Hence, (xn)n∈N is bounded due
to the boundedness of C0.

(iii): As x is a cluster point of the sequence (xn)n∈N, there exists a subsequence
(xkn)n∈N of (xn)n∈N such that xkn → x as n → +∞. Then x ∈ C and, since
xn+1 − xn → 0, one has xkn−1 → x , so as ukn−1 and vkn−1. Since g + β

2 ‖ · ‖2
is a continuous convex function on an open set O containing C , we obtain from
[29, Example 9.14] that g is locally Lipschitz continuous on O . In view of Lemma 2.2,
since xkn → x as n → +∞, passing to a subsequence if necessary, we can assume
that gkn → g ∈ ∂L g(x) as n → +∞.

Replacing n in (4) with kn − 1, we have for all n ∈ N and all x ∈ C that

f (x) ≥ f (xkn) + 〈∇h(Aukn−1), Axkn − Ax〉 − 〈gkn−1, xkn − x〉
+ 1

2τkn−1
(‖xkn − vkn−1‖2 − ‖x − vkn−1‖2). (6)

As lim infn→+∞ τn = τ > 0, letting x = x and n → ∞, we obtain
that f (x) ≥ lim supn→+∞ f (xkn). Since f is lower semicontinuous, it follows
that limn→+∞ f (xkn) = f (x). On the other hand, limn→+∞ g(xkn) = g(x) and
limn→+∞ h(Axkn) = h(Ax) due to the continuity of g and h. Therefore,

lim
n→+∞ F(xn) = lim

n→+∞ F(xkn) = lim
n→+∞(f (xkn) + h(Axkn) − g(xkn))

= f (x) + h(Ax) − g(x) = F(x).

123

Numerical Algorithms (2023) 94:1763–1795 1773

Next, by letting n → +∞ in (6), for all x ∈ C ,

f (x) ≥ f (x) + 〈∇h(Ax), Ax − Ax〉 − 〈g, x − x〉 − 1

2τ
‖x − x‖2,

which can be rewritten as

f (x) + 〈∇h(Ax), Ax − Ax〉 − 〈g, x − x〉 + 1

2τ
‖x − x‖2

≥ f (x) + 〈∇h(Ax), Ax − Ax〉 − 〈g, x − x〉 + 1

2τ
‖x − x‖2.

This means x is a minimizer of the function (f + 〈∇h(Ax), A · −Ax〉 − 〈g, · − x〉 +
1
2τ ‖ · −x‖2)(x) over C . Hence, 0 ∈ ∂L(f + 〈∇h(Ax), A · −Ax〉 − 〈g, · − x〉 + 1

2τ ‖ ·
−x‖2+ ιC)(x) = ∂L(f + ιC)(x)+ A∗∇h(Ax)−g, and wemust have x ∈ C ∩dom f .
Since g ∈ ∂L g(x), we deduce that 0 ∈ ∂L(f + ιC)(x) + A∗∇h(Ax) − ∂L g(x), i.e.,
x is a lifted stationary point of (P). In addition, if we further require that g is strictly
differentiable, then Lemma 2.1 implies that x is a stationary point of (P). ��

Next, we establish the convergence of the full sequence generated by Algorithm 1.
In order to do this, we recall that a proper lower semicontinuous function G : H →
(−∞,+∞] satisfies theKurdyka–Łojasiewicz (KL) property [30, 31] at x ∈ dom ∂L G
if there exist η ∈ (0,+∞], a neighborhood V of x , and a continuous concave function
φ : [0, η) → R+ such that φ is continuously differentiable with φ′ > 0 on (0, η),
φ(0) = 0, and, for all x ∈ V with G(x) < G(x) < G(x) + η,

φ′(G(x) − G(x)) dist(0, ∂L G(x)) ≥ 1.

We say that G is a KL function if it satisfies the KL property at any point in dom ∂L G.
If G satisfies the KL property at x ∈ dom ∂L G, in which the corresponding function
φ can be chosen as φ(t) = ct1−θ for some c ∈ R++ and θ ∈ [0, 1), then G is
said to satisfy the KL property at x with exponent θ . The function G is called a KL
function with exponent θ if it is a KL function and has the same exponent θ at any
x ∈ dom ∂L G.

Theorem 3.3 (Full sequential convergence) For problem (P), suppose that F is
bounded from below on C, that the set C0 := {x ∈ C : F(x) ≤ F(x0)} is bounded,
that g is differentiable on an open set containing C ∩dom f whose gradient ∇g is Lip-
schitz continuous with modulus �g on C ∩ dom f , and that lim infn→+∞ τn = τ > 0.
Define

G(x, y) := F(x) + ιC (x) + c‖x − y‖2,
where c = 1

2 (�‖A‖2λ+μ), and suppose that G satisfies the KL property at (x, x) for
every x ∈ C ∩ dom f . Then

(i) The sequence (xn)n∈N converges to a stationary point x∗ of (P)and
∑+∞

n=0 ‖xn+1−
xn‖ < +∞.

(ii) Suppose further that G satisfies the KL property with exponent θ ∈ [0, 1) at (x, x)

for every x ∈ C ∩ dom f . The following statements hold:

123

1774 Numerical Algorithms (2023) 94:1763–1795

(a) If θ = 0, then (xn)n∈N converges to x∗ in a finite number of steps.
(b) If θ ∈ (0, 1

2], then there exist γ ∈ R++ and ρ ∈ (0, 1) such that, for all n ∈ N,

‖xn − x∗‖ ≤ γρ
n
2 and |F(xn) − F(x∗)| ≤ γρn.

(c) If θ ∈ (12 , 1), then there exists γ ∈ R++ such that, for all n ∈ N, ‖xn − x∗‖ ≤
γ n− 1−θ

2θ−1 and |F(xn) − F(x∗)| ≤ γ n− 2−2θ
2θ−1 .

Proof For each n ∈ N, let zn = (xn+1, xn). According to Theorem 3.2, we have that,
for all n ∈ N,

G(zn+1) + δ‖xn+2 − xn+1‖2 ≤ G(zn),

that the sequence (zn)n∈N is bounded, that zn+1 − zn → 0 as n → +∞, and that for
every cluster point z of (zn)n∈N, z = (x, x), where x ∈ C ∩ dom f is a stationary
point of (P) and G(zn) = F(xn+1) + c‖xn+1 − xn‖2 → F(x) = G(z) as n → +∞.

Let n ∈ N. It follows from the update of xn+1 in Step 2 of Algorithm 1 that

0 ∈ ∂L(f + ιC)(xn+1) + 1

τn
(xn+1 − vn + τn A∗∇h(Aun) − τn∇g(xn)),

which implies that

∇g(xn) − A∗∇h(Aun) − 1

τn
(xn+1 − vn) ∈ ∂L(f + ιC)(xn+1).

Noting that G(zn) = (f + ιC)(xn+1) + h(Axn+1) − g(xn+1) + c‖xn+1 − xn‖2 and
that

∂L G(zn) = {∂L(f + ιC)(xn+1) + A∗∇h(Axn+1) − ∇g(xn+1) + 2c(xn+1 − xn)}
× {2c(xn − xn+1)},

we obtain

dist(0, ∂L G(zn)) ≤ ‖∇g(xn) − A∗∇h(Aun) − 1

τn
(xn+1 − vn) + A∗∇h(Axn+1)

− ∇g(xn+1) + 2c(xn+1 − xn)‖ + 2c‖xn − xn+1‖
≤ �g‖xn+1 − xn‖ + �‖A‖‖xn+1 − un‖ + 1

τn
‖xn+1 − vn‖

+ 4c‖xn+1 − xn‖.

Since ‖xn+1 − un‖ ≤ ‖xn+1 − xn‖ + λn‖xn − xn−1‖ and ‖xn+1 − vn‖ ≤ ‖xn+1 −
xn‖ + μn‖xn − xn−1‖, we derive that

dist(0, ∂L G(zn)) ≤
(

�g + �‖A‖ + 1

τn
+ 4c

)

‖xn+1 − xn‖

+
(

�‖A‖λn + μn

τn

)

‖xn − xn−1‖.

123

Numerical Algorithms (2023) 94:1763–1795 1775

Since lim infn→+∞ τn = τ > 0, there exists n0 ∈ N such that, for all n ≥ n0,
τn ≥ τ/2. Recalling that λn ≤ λ and μn

τn
≤ μ, we have for all n ≥ n0 that

dist(0, ∂L G(zn)) ≤ η1‖xn+1 − xn‖ + η2‖xn − xn−1‖,

where η1 = �g+�‖A‖+ 2
τ
+4c and η2 = �‖A‖λ+μ. Now, the first conclusion follows

by applying [23, Theorem 5.1] with I = {1, 2}, λ1 = η1
η1+η2

, λ2 = η2
η1+η2

, �n =
‖xn+2 − xn+1‖, αn ≡ δ, βn ≡ 1

η1+η2
, and εn ≡ 0. The remaining conclusions follow a

rather standard line of argument as used in [23, 32, 33], see also [34, Theorem 3.11].��

Remark 3.4 (KL property and KL exponents) In the preceding theorem, the conver-
gence of the full sequence generated by Algorithm 1 requires the KL property of the
function G with the form that G(x, y) := F(x) + ιC (x) + c‖x − y‖2, where F is the
objective function of the model problem (P), C is the feasible region of problem (P)
and c > 0. We note that this assumption holds for a broad class of model problem
(P) where F is a semi-algebraic function and C is a semi-algebraic set. More gen-
erally, it continues to hold when F is a definable function and C is a definable set
(see [30, 35]).

As simple illustrations, in our case study in the next section, we will consider the
following two classes of functions:

(i) F(x) = ϕ(Ax) + γ (‖x‖1 − α‖x‖), where ϕ(z) = 1
2‖z − b‖2 (least square loss)

or ϕ(z) = ‖z − b‖L L2,1 = ∑m
i=1 log

(

1 + |zi − bi |2
)

(Lorentzian norm loss [6]),
A ∈ R

m×d , b ∈ R
m , α ∈ R+, and γ ∈ R++.

(ii) F(x) = 1
2 xT Mx + uT x + r , where M is an (d × d) symmetric matrix, u ∈ R

d ,
and r ∈ R.

Let G(x, y) := F(x) + ιC (x) + c‖x − y‖2, where c > 0 and C is a semi-algebraic
set in R

d . Then, in both cases, G is definable, and so, it satisfies the KL property at
(x, x) for all x ∈ C ∩ dom F . Moreover, for case (ii), if C is further assumed to be a
polyhedral set, then as shown in [33] the KL exponent for G is 1

2 , and by Theorem 3.3,
the proposed algorithm exhibits a linear convergence rate.

4 Case studies

In this section, we provide the numerical results of our proposed algorithm for two
case studies: compressed sensing with L1− L2 regularization, and optimal power flow
problem which considers photovoltaic systems placement for a low voltage network.
All of the experiments are performed in MATLAB R2021b on a 64-bit laptop with
Intel(R) Core(TM) i7-1165G7 CPU (2.80GHz) and 16GB of RAM.

123

1776 Numerical Algorithms (2023) 94:1763–1795

4.1 Compressed sensing with L1 − L2 regularization

We consider the compressed sensing problem

min
x∈Rd

(ϕ(Ax) + γ (‖x‖1 − α‖x‖)) , (7)

where A ∈ R
m×d is an underdetermined sensing matrix of full row rank, γ ∈ R++,

and α ∈ R++. Here, ϕ can be the least square loss function and the Lorentzian norm
loss function mentioned in Remark 3.4.

In our numerical experiments, we let α = 1 to be consistent with the setting in [2].
We first start with the least square loss function. By letting ϕ(z) = 1

2‖z − b‖2, where
b ∈ R

m \ {0}, the problem (7) now becomes

min
x∈Rd

(

1

2
‖Ax − b‖2 + γ (‖x‖1 − ‖x‖)

)

. (8)

This is known as the regularized least square problem, which has many applications
in signal and image processing [2, 36, 37]. To solve problem (8), we use Algorithm 1
with f = γ ‖ · ‖1, h = ϕ, and g = γ ‖ · ‖. Then the update of xn+1 in Step 2 of
Algorithm 1 reads as

xn+1 = argmin
x∈Rd

(γ ‖x‖1 + 1

2τn
‖x − wn‖2) = proxγ τn‖·‖1(wn),

where wn = vn − τn A∗(Aun − b) + γ τngn , and where gn ∈ ∂L‖ · ‖(xn) is given by

gn =
{

0 if xn = 0,
xn‖xn‖ if xn 	= 0.

In this case, the proximal operator is the soft shrinkage operator [21], and so, for all
i = 1, . . . , d,

(xn+1)i = sign((wn)i)max{0, |(wn)i | − γ τn}.
For this test case,we compare our proposedAlgorithm1with the following algorithms:

• Alternating direction method of multipliers (ADMM) proposed in [2];
• Generalized proximal point algorithm (GPPA) proposed in [11];
• Proximal difference-of-convex algorithm with extrapolation (pDCAe) in [14].

Note that the ADMM algorithm uses the L1 − L2 proximal operator which was first
proposed in [2]. For ADMM, we have f (x) = γ ‖x‖1 − γ ‖x‖, h(x) = ϕ(Ax),
and g ≡ 0. For GPPA and pDCAe, we let f (x) = γ ‖x‖1, h(x) = ϕ(Ax), and
g(x) = γ ‖x‖. The parameters of ADMM and pDCA are derived from [2, 14]. The
step sizes for GPPA and pDCAe are 0.8/λmax(AT A) and 1/λmax(AT A), respectively,
where λmax(M) is the maximum eigenvalue of a symmetric matrix M . We set γ = 0.1
and run all algorithms, initialized at the origin, for a maximum of 3000 iterations. Note

123

Numerical Algorithms (2023) 94:1763–1795 1777

that β = 0 (since g is convex) and � = 1 (since ∇ϕ(z) = z − b). For our proposed
algorithm, δ = 5× 10−25, λ = 0.1, μ = 0.01, τn = 1/

(

2δ + �‖A‖2 (

2λ + 1
) + 2μ

)

with ‖A‖ being spectral norm, and

λn = λ
κn−1 − 1

κn
, μn = μτn

κn−1 − 1

κn
,

whereκ−1 = κ0 = 1 andκn+1 = 1+√
1+4κ2n
2 .Here,we adopt thewell-known restarting

techniques (see, for example, [17, Chapter 10]) and reset κn−1 = κn = 1 every 50
iterations. Note that this technique has been utilized in several existing studies such as
[14, 23]. We generate the vector b based on the same method as in [2]. In generating
the matrix A, we use both randomly generated Gaussian matrices and discrete cosine
transform (DCT) matrices. For each case, we consider different matrix sizes of m × d
with sparsity level s as given in Table 1. For the ground truth sparse vector xg , a random
index set is generated and non-zero elements are drawn following the standard normal
distribution. The stopping condition for all algorithms is ‖xn+1−xn‖

‖xn‖ < 10−8.
In Table 2, we report the CPU time, the number of iteration, and the function values

at termination, the error to the ground truth at termination, averaged over 30 random
instances. It can be observed that since Step 2 involves the calculation of matrix
multiplication, the CPU time is significantly increased with the increasing dimension
of the matrices. In addition, in terms of running time, objective function values, the
number of iterations used, and the error with respect to the ground truth solution
(defined as ‖xn+1−xg‖

‖xg‖), our proposed algorithm outperforms ADMM and GPPA in
all test cases. Our algorithm also appears to be comparable to pDCAe. Note that our
algorithm can be applied to a more general framework than pDCAe (see the next
numerical experiment with the Lorentzian norm loss function for an illustration).

Next, we consider the case of Lorentzian norm loss function by letting ϕ(z) =
‖z −b‖L L2,1 . Lorentzian norm can be useful in robust sparse signal reconstruction [6].
In this case, the optimization problem (7) becomes

min
x∈Rd

(‖Ax − b‖L L2,1 + γ (‖x‖1 − ‖x‖)) . (9)

Table 1 Test cases for Case
Study 4.1

Matrix type Case m d s

1 180 640 20

Gaussian 2 360 1280 40

3 720 2560 80

4 2880 10240 320

5 180 640 20

DCT 6 360 1280 40

7 720 2560 80

8 2880 10240 320

123

1778 Numerical Algorithms (2023) 94:1763–1795

Ta
bl
e
2

R
es
ul
ts
of

30
ra
nd
om

ge
ne
ra
te
d
in
st
an
ce
s
fo
r
8
te
st
ca
se
s
-
le
as
ts
qu
ar
e
lo
ss

fu
nc
tio

n

C
PU

tim
e
(s
ec
on

ds
)

It
er
at
io
n

E
rr
or

vs
gr
ou

nd
tr
ut
h

C
as
e

A
D
M
M

G
PP

A
pD

C
A
e

Pr
op
os
ed

A
D
M
M

G
PP

A
pD

C
A
e

Pr
op
os
ed

A
D
M
M

G
PP

A
pD

C
A
e

Pr
op
os
ed

1
0.
15

0.
02

0.
02

0.
02

18
03

48
7

27
4

40
6

5.
73

9E
-0
4

3.
70

2E
-0
7

3.
50

5E
-0
7

2.
98

7E
-0
7

2
0.
42

0.
15

0.
12

0.
14

15
83

44
9

29
2

32
5

2.
26

8E
-0
4

3.
34

0E
-0
7

1.
09

5E
-0
7

2.
31

6E
-0
7

3
2.
92

1.
20

0.
87

0.
84

14
71

41
7

30
0

29
8

2.
05

9E
-0
4

3.
03

9E
-0
7

6.
74

2E
-0
8

2.
13

2E
-0
7

4
61

.0
6

17
.7
7

15
.5
4

14
.1
3

14
15

38
0

31
1

27
9

1.
89

3E
-0
4

2.
71

7E
-0
7

4.
93

7E
-0
8

1.
91

3E
-0
7

5
0.
05

0.
01

0.
01

0.
01

61
2

15
7

12
1

11
2

7.
22

2E
-0
5

9.
69

0E
-0
8

8.
40

9E
-0
8

8.
02

6E
-0
8

6
0.
17

0.
07

0.
06

0.
06

62
7

18
6

12
8

11
2

7.
09

5E
-0
5

2.
34

5E
-0
5

5.
18

0E
-0
8

6.
38

3E
-0
8

7
1.
19

0.
50

0.
36

0.
31

63
4

17
0

13
1

11
3

7.
11

6E
-0
5

1.
77

7E
-0
6

4.
24

0E
-0
8

6.
30

3E
-0
8

8
29

.9
2

8.
11

7.
49

6.
47

72
1

18
1

15
5

13
3

6.
90

8E
-0
5

3.
98

4E
-0
5

2.
74

2E
-0
8

6.
09

2E
-0
8

T
he

bo
ld

en
tr
ie
s
in
di
ca
te
th
e
be
tte
r
va
lu
es

co
m
pa
re
d
to

th
e
re
m
ai
ni
ng

va
lu
es

123

Numerical Algorithms (2023) 94:1763–1795 1779

Table 3 Results of 30 random generated instances for 8 test cases - Lorentzian norm loss function

CPU time (seconds) Iteration Error vs ground truth
Case GPPA Proposed GPPA Proposed GPPA Proposed

1 0.36 0.30 2104 1720 2.865E-03 2.863E-03

2 2.94 2.44 2282 1870 4.043E-03 3.132E-03

3 17.15 14.06 2369 1936 3.168E-03 3.166E-03

4 277.46 225.60 2438 1993 3.356E-03 3.354E-03

5 0.36 0.30 2148 1765 1.425E-03 1.416E-03

6 3.00 2.47 2347 1922 2.134E-03 1.169E-03

7 16.85 13.59 2334 1908 1.213E-03 1.205E-03

8 260.61 220.55 2440 2064 2.269E-03 2.261E-03

The bold entries indicate the better values compared to the remaining values

We note that

∇ϕ(z) =
(

2(z1 − b1)

1 + |z1 − b1|2 , . . . ,
2(zm − bm)

1 + |zm − bm |2
)T

.

is Lipschitz continuous with modulus � = 2. Since the loss function is now nonconvex
and the pDCAe algorithm in [14] requires a convex loss function, pDCAe is not
applicable in this case. Moreover, the ADMM algorithm in [2] is also not directly
applicable due to the presence of the Lorentzian norm. Therefore, we compare our
method with the GPPA only. For GPPA, we let h(x) = ϕ(Ax). The step size for GPPA
is τ = 0.8/(2λmax(AT A)). For this case, we set γ = 0.001 and run the GPPA and
our proposed algorithm, which are both initialized at the origin, for a maximum of
4000 iterations. The remaining parameters of our algorithm are set to the same values
as before. We also use 30 random instances of the previous 8 test cases. The results
are presented in Table 3. It can be seen from Table 3 that the proposed algorithm
outperforms GPPA in this case.

4.2 Optimal power flow considering photovoltaic systems placement

Optimal power flow (OPF) is a well-known problem in power system engineering
[38]. The integration of many distributed energy resources (DERs) such as photo-
voltaic systems, has become increasingly popular in modern smart grid [39], leading
to the needs of developing more complicated OPF models considering the DERs.
Metaheuristic algorithms are popular in solving OPF, and they have also been applied
to solve the OPF with DERs integration [40, 41]. However, the drawbacks of the
metaheuristic algorithms are that the convergence proof cannot be established, and
their performances are not consistent [42]. Difference-of-convex programming has
also been successfully applied to solve the OPF problem in [43], although DERs are
not considered. Motivated by the aforementioned results, in this work we try to apply
our proposed algorithm to solve the OPF in a low voltage network, which includes
optimizing the placement of photovoltaic (PV) systems. We formulate two models

123

1780 Numerical Algorithms (2023) 94:1763–1795

which are based on the Direct Current OPF (DC OPF) [44], and Alternating Current
OPF (ACOPF) [45]. To the best of the authors’ knowledge, this is the first time a prox-
imal algorithm is used to solve an DER-integrated OPF with a difference-of-convex
formulation, considering PV systems placement. The objective function aims at min-
imizing the cost of the conventional generator, which is a diesel generator in this case
study, while maximizing the PV-penetration, which is defined as the ratio of the power
generated by the PV systems divided by the total demand. The network considered
in this case study is illustrated in Fig. 1, which consists of 14 buses. This case study
is taken from a real low voltage network in Victoria, Australia. Currently, there are
loads at buses 1, 3, 4, 6, 8, 9, 13, and 14. There are 6 PV systems at buses 1, 2, 4, 5,
7, and 8 with a capacity of 800 kW. A 5000 kW diesel generator is connected to bus
11. All of the parameters and decision variables in this case study are presented in
Table 6. The cost of the current situation (before optimization is performed) is based
on the cost of active power withdrawn from the generator, plus the installation cost of
the PV systems. To determine this initial cost, the amount of active power generated
by the generator is determined via DIgSILENT Power Factory 2021. After that, the
cost of active power is calculated by the expression

∑

i∈M (a(PG
i)2 + bPG

i + c), plus
the installation cost of the six PV systems.

We first formulate the OPF problem with PV, which is based on the DC OPF, as
follows

min

(

∑

i∈N

C Xi +
∑

i∈M

(

a(PG
i)2 + bPG

i + c
)

−
∑

i∈N P PV
i

∑

i∈N Di

)

(10a)

subject to Pi j = bi j (θi − θ j), ∀i, j ∈ N (10b)

θ11 = 0 (10c)
∑

j∈N , j 	=i

Pi j = P PV
i + PG

i − Di , ∀i ∈ M (10d)

∑

j∈N , j 	=i

Pi j = P PV
i − Di , ∀i ∈ N \ M (10e)

∑

i∈N P PV
i

∑

i∈N Di
≥ 0.5 (10f)

|Pi j | ≤ P, ∀i, j ∈ N (10g)

0 ≤ P PV
i ≤ Xi P PV , ∀i ∈ N (10h)

0 ≤ PG
i ≤ PG , θi ∈ [0, 2π], ∀i ∈ M (10i)

Xi ∈ {0, 1}, ∀i ∈ N . (10j)

We see that for any i ∈ N , if Xi ∈ [0, 1], then Xi − X2
i = Xi (1− Xi) ≥ 0. Therefore,

(∀i ∈ {1, . . . , N }, Xi ∈ {0, 1})
⇐⇒ (∀i ∈ {1, . . . , N }, Xi ∈ [0, 1] and

∑

i∈N

(

X2
i − Xi

)

≥ 0).

123

Numerical Algorithms (2023) 94:1763–1795 1781

Fig. 1 Best solution found in Case Study 4.2, together with the total cost

123

1782 Numerical Algorithms (2023) 94:1763–1795

Taking into account of the above equivalence, a plausible alternative optimization
model for the OPF problem with PV is as follows a

min

(

∑

i∈N

C Xi +
∑

i∈M

(

a(PG
i)2 + bPG

i + c
)

−
∑

i∈N P PV
i

∑

i∈N Di

−γ
∑

i∈N

(X2
i − Xi)

)

(11a)

subject to (10b) → (10i) (11b)

Xi ∈ [0, 1], ∀i ∈ N . (11c)

The objective function (11a) aims at minimizing the installation cost and the gener-
ation cost of the diesel generator and maximizing the PV penetration, which is defined

as
∑

i∈N P PV
i

∑

i∈N Di
[46], the parameter γ > 0 which serves as a Lagrangian multiplier for

the discrete constraints Xi ∈ {0, 1}.
With this reformulation, the objective function (11a) now becomes a difference-

of-convex function. Constraint (10b) describes the relationship between the power
flow from one bus to another and their corresponding phasor angles, constraint (10c)
defines the voltage angle at the slack bus, which is the bus connected to the diesel
generator, constraints (10d) and (10e) define the power flow in and out of any buses,
constraint (10f) ensures that the PV penetration rate is at least 50 percent, constraint
(10g) defines the transmission limits of the transmission lines, and constraint (10h)
makes sure that the solar power only exists at a bus when there is a PV system at
that bus. Finally, constraint (10i) defines the boundaries of the remaining decision
variables. All of the constraints form the feasible set S. This problem takes the form

of (P) with f = ιS , h = ∑

i∈N C Xi +∑

i∈M

(

a(PG
i)2 + bPG

i + c
)−

∑

i∈N P PV
i

∑

i∈N Di
, and

g = γ
∑

i∈N (X2
i − Xi). By Remark 3.4 (ii) and Theorem 3.3, in this case the proposed

algorithm converges with a linear rate. The update of xn+1 in Algorithm 1 becomes

xn+1 = argmin
x∈S

‖x − vn + τn∇h(un) − τn∇g(xn)‖2.

Here,

x = [P PV
1 , . . . , P PV

14 , PG
11, X1, . . . , X14, θ1, . . . , θ14,

P1,1, . . . , P1,14, . . . , P14,1, . . . , P14,14]T .

This step is solved by MATLAB’s quadprog command. Noting that β = 0 (since
g is convex) and � = 2a, the parameters are set as follows: δ = 5 × 10−25, λ = 0.1,
μ = 0.01, τn = 1/

(

2δ + �
(

2λ + 1
) + 2μ

)

, μn = μτn , and λn is chosen in the same
way as in Section 4.1. The performance of the proposed algorithm is compared with
the theGPPA, and the pDCAe, as illustrated in Table 4.We use the step size τn = 0.8/�
for GPPA, and τn = 1/� for pDCAe. The maximum number of iteration is 1000, and
the stopping condition is the same as the one used in Section 4.1.

We test all algorithms for 30 times, at each time we use a random starting point
between the upper bound and the lower bound of the variables. The mean objective

123

Numerical Algorithms (2023) 94:1763–1795 1783

Table 4 Comparison of GPPA, pDCAe, and the proposed algorithm on 30 runs of the DC OPF model

Algorithm GPPA pDCAe Proposed

Mean objective function value 3.724581 3.719692 3.706267

Best objective function value 1.920925 1.920924 1.920922

Mean iteration number 3 4 5

Mean CPU time (seconds) 0.08 0.11 0.12

The bold entries indicate the better values compared to the remaining values

function values, and the best objective function values found by all algorithms are
reported in Table 4. Although the proposed algorithm, on average, needs more itera-
tions than the remaining ones, it can find a better solution. Themean objective function
value found by our algorithm is also better than the ones found by the other algorithms.

Fig. 2 Directed graph representation of the network

123

1784 Numerical Algorithms (2023) 94:1763–1795

Our algorithm is also comparable to the GPPA and the pDCAe in terms of average
CPU time.

The details of the best solution found by our algorithm are shown in Fig. 1.
Now we consider the case of AC OPF model. The formulation is based on the

branch flow model given in [45]. Firstly, the network is treated as a directed graph, as
shown in Fig. 2.

We denote a directed link by (i, j) or i → j if it points from bus i to bus j , and
the set of all directed links by E . Next, the formulation is given as follows,

min

(

∑

i∈N

C Xi +
∑

i∈M

(

a(PG
i)2 + bPG

i + c
)

−
∑

i∈N P PV
i

∑

i∈N Di
− γ

∑

i∈N

(X2
i − Xi)

)

(12a)

s.t. Îi j = |Ii j |2, ∀(i, j) ∈ E (12b)

vi = |Vi |2, ∀i ∈ N (12c)

P0,11 = Q0,11 = 0 (12d)

Pi j + P PV
j + PG

j − D j =
∑

k∈N : j→k

Pjk, ∀(i, j) ∈ E, j ∈ M (12e)

Qi j + Q PV
j + QG

j − DQ
j =

∑

k∈N : j→k

Q jk, ∀(i, j) ∈ E, j ∈ M (12f)

Pi j + P PV
j − ri j Îi j − D j =

∑

k∈N : j→k

Pjk, ∀(i, j) ∈ E, j /∈ M (12g)

Qi j + Q PV
j − Xi j Îi j − DQ

j =
∑

k∈N : j→k

Q jk, ∀(i, j) ∈ E, j /∈ M (12h)

∑

j∈N P PV
j

∑

j∈N D j
≥ 0.5 (12i)

0 ≤ P PV
j ≤ X j P PV , ∀ j ∈ N (12j)

0 ≤ Q PV
j ≤ X j Q PV , ∀ j ∈ N (12k)

v j = vi − 2(ri j Pi j + Xi j Qi j) + (r2i j + X 2
i j) Îi j , ∀(i, j) ∈ E (12l)

Îi jvi = P2
i j + Q2

i j , ∀(i, j) ∈ E (12m)

V 2 ≤ vi ≤ V
2
, ∀i ∈ N (12n)

I 2 ≤ Îi j ≤ I
2
, ∀(i, j) ∈ E (12o)

|Pi j | ≤ P, ∀i, j ∈ E (12p)

|Qi j | ≤ Q, ∀i, j ∈ E (12q)

0 ≤ PG
j ≤ PG , ∀ j ∈ M (12r)

0 ≤ QG
j ≤ QG, ∀ j ∈ M (12s)

X j ∈ [0, 1], ∀ j ∈ N (12t)

123

Numerical Algorithms (2023) 94:1763–1795 1785

Table 5 Comparison of GPPA
and the proposed algorithm on
30 runs of the AC OPF model

Algorithm GPPA Proposed

Mean objective function value 3.492971 3.416897

Best objective function value 1.920924 1.920923

Mean iteration number 33 20

Mean CPU time (seconds) 152.69 109.20

The bold entries indicate the better values compared to the remaining
values

The main differences between the AC OPF model and the DC OPF model are that
the AC OPF model has a nonconvex feasible set, and that it also accounts for the loss
in the network as well as the reactive power. Consequently, AC OPF is more accurate
than DC OPF in practice [47], and due to its nonconvexity, it is also more challenging
to solve [48]. Constraints (12e) → (12h) define the power flow in any directed links.
Constraint (12i) ensures that the PV penetration rate is at least 50 percent. Constraints
(12j) and (12k) ensure that the active and reactive power from PV systems only exist
at a bus if and only if there is a PV system at that bus. Constraint (12l) describes the
relationship between the voltage of any two bus in a directed link. Constraint (12m)
is a nonconvex constraint ensuring that the solution have physical meaning. Finally,
constraints (12n) → (12t) define the boundaries of the decision variables. The update
of xn+1 is also the same as before. For this case,

x = [PG
11, QG

11, v1, . . . , v14, Î0,11, . . . , Î2,1, P0,11, . . . , P2,1, Q0,11, . . . , Q2,1,

P PV
1 , . . . , P PV

14 , Q PV
1 , . . . , Q PV

14 , X1, . . . , X14]T .

We also perform the same numerical experiment as in the DC OPF case. However,
the pDCAe is not applicable in this case, so we compare our algorithm with the GPPA
only. The parameters of GPPA and our proposed algorithm are set to the same values
as those used for the DC OPF model. Due to the nonconvex constraint, MATLAB’s
fmincon is used to solve the subproblem in Step 2 instead of quadprog. The results
are shown in Table 5.

Table 5 shows that our proposed algorithm takes less time and fewer iterations than
the GPPA to converge. The best solution found by our algorithm in this case is also
the same as the one found in the DC OPF model.

It can be seen that for both DC OPF and AC OPF, two PV systems need to be
installed at bus 7 and bus 9, the remaining demands can be supplied by the generator,
and the demands are satisfied by the power flows. Although the mathematical model
aims at maximizing the PV penetration, drawing power from the diesel generator is
still more economical due to the high installation cost of the PV systems. The solution
significantly reduces the cost by approximately 70% from the original situation. This
can serve as a proof of concept for future research.

5 Conclusion

In this paper, we proposed an extrapolated proximal subgradient algorithm for solv-
ing a broad class of structured nonconvex and nonsmooth optimization problems. Our

123

1786 Numerical Algorithms (2023) 94:1763–1795

general framework and the proposed algorithm impose less restrictions on the smooth-
ness and convexity requirements than the current literature, and allow us to tackle
problems with specific nonconvex loss functions and nonconvex constraints. In addi-
tion, our choice of the extrapolation parameters is flexible enough to cover the popular
choices used in restarted FISTA scheme. The convergence of the whole sequence gen-
erated by our algorithm was proved via the abstract convergence framework given in
[23]. We then performed numerical experiments on a least squares problem with the
nonconvex L1 − L2 regularization, and on a compressed sensing problem with the
nonconvex Lorentzian norm loss function. In the numerical experiments, the proposed
algorithm exhibited very competitive performance, and, in various instances, outper-
formed the existing algorithms in terms of time and the quality of the solutions. We
also applied this algorithm to solve an OPF problem considering PV placement, which
serves as a proof of concept for future works.

Author Contributions All authors contributed to the manuscript and approved the submitted version.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions. The research
of TNP was supported by Henry Sutton PhD Scholarship Program from Federation University Australia.
The research of MND benefited from the FMJH Program Gaspard Monge for optimization and opera-
tions research and their interactions with data science, and was supported by a public grant as part of the
Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH. The research of GL
was supported by Discovery Project 190100555 from the Australian Research Council.

Data Availability All data generated or analyzed during this study are included in this article. In particular,
the data for Case study 4.1 were generated randomly and we explained how they were explicitly generated.
The data for Case study 4.2 are available in the Appendix.

Declarations

Ethics approval Not applicable.

Conflict of interest The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: Data of Case study 4.2

In Case study 4.2, we use a base power of 100 MVA, and a base voltage of 22 kV. All
of the parameters are converted into Per Unit (pu) values in the calculation. Readers
can refer to [49, Chapter 2] for a detailed tutorial on the Per Unit system. The active
and reactive power demand are given in Table 7. The other technical parameters of
the system including susceptance, resistance, and reactance of the lines are given in
Tables 8, 9, and 10, respectively.

123

http://creativecommons.org/licenses/by/4.0/

Numerical Algorithms (2023) 94:1763–1795 1787

Ta
bl
e
6

Pa
ra
m
et
er
s
an
d
va
ri
ab
le
s
of

ca
se

st
ud

y
4.
2

Pa
ra
m
et
er
s

D
es
cr
ip
tio

n
V
al
ue
s

N
Se
to

f
bu
se
s

{1,
2,

..
.,
14

}
M

Se
to

f
bu
se
s
th
at
ar
e
co
nn
ec
te
d
to

di
es
el
ge
ne
ra
to
rs
,

M
⊆

N
{11

}
E

Se
to

f
di
re
ct
ed

lin
ks

{(0
,
11

),
(1
1,
10

),
..

.,
(2

,
1)

}
D

i
A
ct
iv
e
po
w
er

de
m
an
d
at
bu
s

i
Se
e
Ta
bl
e
7

D
Q i

R
ea
ct
iv
e
po
w
er

de
m
an
d
at
bu
s

i
Se
e
Ta
bl
e
7

b i
j

Su
sc
ep
ta
nc
e
va
lu
e
of

th
e
lin

e
co
nn

ec
tin

g
bu
s

i
an
d
bu
s

j
Se
e
Ta
bl
e
8

r i
j

R
es
is
ta
nc
e
va
lu
e
of

th
e
lin

e
co
nn

ec
tin

g
bu
s

i
an
d
bu
s

j
Se
e
Ta
bl
e
9

X i
j

R
ea
ct
an
ce

va
lu
e
of

th
e
lin

e
co
nn

ec
tin

g
bu
s

i
an
d
bu
s

j
Se
e
Ta
bl
e
10

C
U
ni
ti
ns
ta
lla
tio

n
co
st
of

a
PV

at
bu
s

i
1
(1

un
it
=
$1

,0
40

,0
00

)

a,
b,

c
C
oe
ffi
ci
en
ts
as
so
ci
at
ed

w
ith

th
e
co
st
of

di
es
el
ge
ne
ra
to
r.
T
he
se

co
ef
fic
ie
nt
s
fo
r
a
di
es
el
ge
ne
ra
to
r
ar
e
de
ri
ve
d
fr
om

[5
0,
51

]
0.
24

6,
0.
08

4,
0.
43

3

P
P

V
A
ct
iv
e
po
w
er

ca
pa
ci
ty

of
PV

s
80

0
kW

(0
.0
08

pu
)

Q
P

V
R
ea
ct
iv
e
po
w
er

ca
pa
ci
ty

of
PV

s
30

0
kW

(0
.0
03

pu
)

P
G

A
ct
iv
e
po
w
er

ca
pa
ci
ty

of
di
es
el
ge
ne
ra
to
r

50
00

kW
(0
.0
5
pu

)

Q
G

R
ea
ct
iv
e
po
w
er

ca
pa
ci
ty

of
di
es
el
ge
ne
ra
to
r

30
00

kW
(0
.0
3
pu

)

P
,

Q
T
ra
ns
m
is
si
on

lim
its

of
lin

es
30

00
kW

(0
.0
3
pu

)

V
,

V
V
ol
ta
ge

lim
its

1.
05

pu
,0
.9
5
pu

I,
I

C
ur
re
nt

lim
its

2
pu

,0
pu

γ
R
el
ax
at
io
n
pa
ra
m
et
er

1

123

1788 Numerical Algorithms (2023) 94:1763–1795

Ta
bl
e
6

co
nt
in
ue
d

Pa
ra
m
et
er
s

D
es
cr
ip
tio

n
V
al
ue
s

V
ar
ia
bl
es

P
P

V
i

A
ct
iv
e
po
w
er

ge
ne
ra
te
d
by

a
PV

sy
st
em

at
bu
s

i,
i
∈

N

Q
P

V
i

R
ea
ct
iv
e
po
w
er

ge
ne
ra
te
d
by

a
PV

sy
st
em

at
bu
s

i,
i
∈

N

P
G i

A
ct
iv
e
po
w
er

ge
ne
ra
te
d
by

di
es
el
ge
ne
ra
to
r
at
bu
s

i,
i
∈

M

Q
G i

R
ea
ct
iv
e
po
w
er

ge
ne
ra
te
d
by

di
es
el
ge
ne
ra
to
r
at
bu
s

i,
i
∈

M

X
i

1
if
th
er
e
is
a
PV

sy
st
em

ne
ed
ed

at
bu
s

i,
an
d
0
ot
he
rw

is
e,

i
∈

N

V
i

N
od

al
vo
lta

ge
of

bu
s

i,
i
∈

N

I i
j

C
ur
re
nt

be
tw

ee
n
bu
s

i
an
d
bu
s

j,
i,

j
∈

N
,

i
	=

j

θ i
V
ol
ta
ge

an
gl
e
of

bu
s

i,
i
∈

N

P i
j

A
ct
iv
e
po
w
er

flo
w
be
tw
ee
n
bu
s

i
an
d
bu
s

j,
i,

j
∈

N
,

i
	=

j

Q
ij

R
ea
ct
iv
e
po
w
er

flo
w
be
tw
ee
n
bu
s

i
an
d
bu
s

j,
i,

j
∈

N
,

i
	=

j

123

Numerical Algorithms (2023) 94:1763–1795 1789

Ta
bl
e
7

A
ct
iv
e
an
d
R
ea
ct
iv
e
po
w
er

de
m
an
d

B
us

1
2

3
4

5
6

7
8

9
10

11
12

13
14

D
i

7.
91

E
-0
3

0
2.
81

E
-0
3

3.
40

E
-0
3

0
3.
05

E
-0
3

0
3.
32

E
-0
3

5.
90

E
-0
3

0
0

0
2.
12

E
-0
3

2.
64

E
-0
3

D
Q i

1.
98

E
-0
3

0
7.
04

E
-0
3

8.
51

E
-0
3

0
7.
64

E
-0
4

0
8.
32

E
-0
3

1.
48

E
-0
3

0
0

0
5.
32

E
-0
3

6.
63

E
-0
4

123

1790 Numerical Algorithms (2023) 94:1763–1795

Ta
bl
e
8

Su
sc
ep
ta
nc
e

b i
j

B
us

1
2

3
4

5
6

7
8

9
10

11
12

13
14

1
-9
.9
8E

+
02

9.
98

E
+
02

0
0

0
0

0
0

0
0

0
0

0
0

2
9.
98
E
+
02

-2
.6
0E

+
03

4.
97
E
+
02

1.
11
E
+
03

0
0

0
0

0
0

0
0

0
0

3
0

4.
97

E
+
02

-4
.9
7E

+
02

0
0

0
0

0
0

0
0

0
0

0

4
0

1.
11

E
+
03

0
-4
.3
5E

+
03

3.
24

E
+
03

0
0

0
0

0
0

0
0

0

5
0

0
0

3.
24

E
+
03

-4
.7
9E

+
03

5.
72

E
+
02

9.
77

E
+
02

0
0

0
0

0
0

0

6
0

0
0

0
5.
72

E
+
02

-5
.7
2E

+
02

0
0

0
0

0
0

0
0

7
0

0
0

0
9.
77
E
+
02

0
-4
.0
0E

+
03

6.
92
E
+
02

9.
26
E
+
02

1.
41
E
+
03

0
0

0
0

8
0

0
0

0
0

0
6.
92

E
+
02

-6
.9
2E

+
02

0
0

0
0

0
0

9
0

0
0

0
0

0
9.
26

E
+
02

0
-9
.2
6E

+
02

0
0

0
0

0

10
0

0
0

0
0

0
1.
41

E
+
03

0
0

-2
.2
7E

+
03

8.
64

E
+
02

0
0

0

11
0

0
0

0
0

0
0

0
0

8.
64

E
+
02

-3
.8
5E

+
03

2.
99

E
+
03

0
0

12
0

0
0

0
0

0
0

0
0

0
2.
99

E
+
03

-7
.1
0E

+
03

2.
08

E
+
03

2.
04

E
+
03

13
0

0
0

0
0

0
0

0
0

0
0

2.
08

E
+
03

-2
.0
8E

+
03

0

14
0

0
0

0
0

0
0

0
0

0
0

2.
04

E
+
03

0
-2
.0
4E

+
03

123

Numerical Algorithms (2023) 94:1763–1795 1791

Ta
bl
e
9

R
es
is
ta
nc
e

r i
j

B
us

1
2

3
4

5
6

7
8

9
10

11
12

13
14

1
0

5.
01

E
-0
4

0
0

0
0

0
0

0
0

0
0

0
0

2
5.
01

E
-0
4

0
1.
01

E
-0
3

4.
51

E
-0
4

0
0

0
0

0
0

0
0

0
0

3
0

1.
01

E
-0
3

0
0

0
0

0
0

0
0

0
0

0
0

4
0

4.
51

E
-0
4

0
0

1.
54

E
-0
4

0
0

0
0

0
0

0
0

0

5
0

0
0

1.
54

E
-0
4

0
8.
75

E
-0
4

5.
12

E
-0
4

0
0

0
0

0
0

0

6
0

0
0

0
8.
75

E
-0
4

0
0

0
0

0
0

0
0

0

7
0

0
0

0
5.
12

E
-0
4

0
0

7.
23

E
-0
4

5.
40

E
-0
4

3.
56

E
-0
4

0
0

0
0

8
0

0
0

0
0

0
7.
23

E
-0
4

0
0

0
0

0
0

0

9
0

0
0

0
0

0
5.
40

E
-0
4

0
0

0
0

0
0

0

10
0

0
0

0
0

0
3.
56

E
-0
4

0
0

0
5.
79

E
-0
4

0
0

0

11
0

0
0

0
0

0
0

0
0

5.
79

E
-0
4

0
1.
67

E
-0
4

0
0

12
0

0
0

0
0

0
0

0
0

0
1.
67

E
-0
4

0
2.
40

E
-0
4

2.
46

E
-0
4

13
0

0
0

0
0

0
0

0
0

0
0

2.
40

E
-0
4

0
0

14
0

0
0

0
0

0
0

0
0

0
0

2.
46

E
-0
4

0
0

123

1792 Numerical Algorithms (2023) 94:1763–1795

Ta
bl
e
10

R
ea
ct
an
ce

X i
j

B
us

1
2

3
4

5
6

7
8

9
10

11
12

13
14

1
0

5.
01

E
-0
4

0
0

0
0

0
0

0
0

0
0

0
0

2
5.
01

E
-0
4

0
1.
01

E
-0
3

4.
51

E
-0
4

0
0

0
0

0
0

0
0

0
0

3
0

1.
01

E
-0
3

0
0

0
0

0
0

0
0

0
0

0
0

4
0

4.
51

E
-0
4

0
0

1.
54

E
-0
4

0
0

0
0

0
0

0
0

0

5
0

0
0

1.
54

E
-0
4

0
8.
75

E
-0
4

5.
12

E
-0
4

0
0

0
0

0
0

0

6
0

0
0

0
8.
75

E
-0
4

0
0

0
0

0
0

0
0

0

7
0

0
0

0
5.
12

E
-0
4

0
0

7.
23

E
-0
4

5.
40

E
-0
4

3.
56

E
-0
4

0
0

0
0

8
0

0
0

0
0

0
7.
23

E
-0
4

0
0

0
0

0
0

0

9
0

0
0

0
0

0
5.
40

E
-0
4

0
0

0
0

0
0

0

10
0

0
0

0
0

0
3.
56

E
-0
4

0
0

0
5.
79

E
-0
4

0
0

0

11
0

0
0

0
0

0
0

0
0

5.
79

E
-0
4

0
1.
67

E
-0
4

0
0

12
0

0
0

0
0

0
0

0
0

0
1.
67

E
-0
4

0
2.
40

E
-0
4

2.
46

E
-0
4

13
0

0
0

0
0

0
0

0
0

0
0

2.
40

E
-0
4

0
0

14
0

0
0

0
0

0
0

0
0

0
0

2.
46

E
-0
4

0
0

123

Numerical Algorithms (2023) 94:1763–1795 1793

References

1. Cheng, Y., Pesavento, M.: Joint optimization of source power allocation and distributed relay beam-
forming in multiuser peer-to-peer relay networks. IEEE Transactions on Signal Processing 60(6),
2962–2973 (2012)

2. Lou, Y., Yan, M.: Fast L1–L2 minimization via a proximal operator. Journal of Scientific Computing
74(2), 767–785 (2017)

3. Le Thi, H.A., Pham Dinh, T.: DC programming and DCA: thirty years of developments. Mathematical
Programming 169(1), 5–68 (2018)

4. Wang, H., Shao, N.X.Y.: Proximal operator and optimality conditions for ramp loss svm. Optimization
Letters 16(3), 999–1014 (2022)

5. Xiao, Y., Wang, W.X.H.: Ramp loss based robust one-class svm. Pattern Recognition Letters 85(1),
15–20 (2017)

6. Carrillo, R.E., Barner, T.C.A.K.E.: Robust sampling and reconstruction methods for sparse signals in
the presence of impulsive noise. IEEE Journal of Selected Topics in Signal Processing 4, 392–408
(2010)

7. Ahn, M., Pang, J., Xin, J.: Difference-of-convex learning: Directional stationarity, optimality, and
sparsity. SIAM Journal on Optimization 27(3), 1637–1665 (2017)

8. Antoniadis, A.: Wavelets in statistics: A review. Journal of the Italian Statistical Society 6(2), 97–130
(1997)

9. Gotoh, J., Takeda, A., Tono, K.: DC formulations and algorithms for sparse optimization problems.
Mathematical Programming 169(1), 141–176 (2017)

10. Zhang, C.: Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics
38(2) (2010)

11. An, N.T., Nam, N.M.: Convergence analysis of a proximal point algorithm for minimizing differences
of functions. Optimization 66(1), 129–147 (2016)

12. Phan, D.N., Le, M.H., Le Thi, H.A.: Accelerated difference of convex functions algorithm and its
application to sparse binary logistic regression. In: Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence (2018)

13. Liu, T., Takeda, A.: An inexact successive quadratic approximation method for a class of difference-
of-convex optimization problems. Computational Optimization and Applications 82, 141–173 (2022)

14. Wen, B., Chen, X., Pong, T.K.: A proximal difference-of-convex algorithm with extrapolation. Com-
putational Optimization and Applications 69(2), 297–324 (2017)

15. Lu, Z., Zhou, Z.: Nonmonotone enhanced proximal DC algorithms for a class of structured nonsmooth
DC programming. SIAM Journal on Optimization 29(4), 2725–2752 (2019)

16. Lu, Z., Zhou, Z., Sun, Z.: Enhanced proximal DC algorithmswith extrapolation for a class of structured
nonsmooth DC minimization. Mathematical Programming 176(1), 369–401 (2018)

17. Beck, A.: First-Order Methods in Optimization. MOS-SIAM Series on Optimization, vol. 25. Society
for Industrial and Applied Mathematics, Philadelphia, USA (2017)

18. Polyak,B.T.: Somemethods of speeding up the convergence of iterationmethods.USSRComputational
Mathematics and Mathematical Physics 4(5), 1–17 (1964)

19. Nesterov, Y.: Inexact accelerated high-order proximal-point methods. Mathematical Programming
2021, 1–26 (2021)

20. Nesterov, Y.: Lectures on Convex Optimization. Springer Optimization and Its Applications, vol. 137.
Springer, Cham, Switzerland (2018)

21. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

22. Attouch, H., Cabot, A.: Convergence rates of inertial forward-backward algorithms. SIAM Journal on
Optimization 28(1), 849–874 (2018)

23. Boţ, R.I., Dao, M.N., Li, G.: Extrapolated proximal subgradient algorithms for nonconvex and nons-
mooth fractional programs. Mathematics of Operations Research 47(3), 1707–2545 (2022)

24. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Grundlehren der mathe-
matischen Wissenschaften, vol. 330. Springer, Berlin, Heidelberg (2006)

25. Dao,M.N., Tam,M.K.: A Lyapunov-type approach to convergence of the Douglas-Rachford algorithm
for a nonconvex setting. Journal of Global Optimization 73(1), 83–112 (2019)

26. Xu, Z., Chang, X., Xu, F., Zhang, H.: L1/2 regularization: A thresholding representation theory and a
fast solver. IEEE Transactions on Neural Networks and Learning Systems 23(7), 1013–1027 (2012)

123

1794 Numerical Algorithms (2023) 94:1763–1795

27. Afef, C., Émilie, C.,Marc-André, D.: Proximity operators for a class of hybrid sparsity + entropy priors.
Application to dosy NMR signal reconstruction. In: Proceedings of the 8th International Symposium
on Signal, Image, Video and Communications (ISIVC), pp. 120–125 (2016)

28. Souza, J.C.O., Oliveira, P.R., Soubeyran, A.: Global convergence of a proximal linearized algorithm
for difference of convex functions. Optimization Letters 10(7), 1529–1539 (2015)

29. Rockafellar, R.T., J-B. Wets, R.: Variational Analysis. Grundlehren der mathematischen Wis-
senschaften, vol. 317. Springer, Berlin, Heidelberg (1998)

30. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Annales de l’institut Fourier
48(3), 769–783 (1998)

31. Lojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Les Équations aux
Dérivées Partielles, 87–89 (1963)

32. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving
analytic features. Mathematical Programming 116(1–2), 5–16 (2007)

33. Li, G., Pong, T.K.: Calculus of the exponent of Kurdyka-Łojasiewicz inequality and its applications to
linear convergence of first-order methods. Foundations of Computational Mathematics 18(5), 1199–
1232 (2017)

34. Boţ, R.I., Dao, M.N., Li, G.: Inertial proximal block coordinate method for a class of nonsmooth
sum-of-ratios optimization problems. SIAM Journal on Optimization 33(2), 361–393 (2023)

35. Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM
Journal on Optimization 18(2), 556–572 (2007)

36. Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex
regularized least-squares. Multiscale Modeling & Simulation 4(3), 960–991 (2005)

37. Kim, S., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale-
regularized least squares. IEEE Journal of Selected Topics in Signal Processing 1(4), 606–617 (2007)

38. Abdi, H., Beigvand, S.D., Scala, M.L.: A review of optimal power flow studies applied to smart grids
and microgrids. Renewable and Sustainable Energy Reviews 71, 742–766 (2017)

39. Wankhede, S.K., Paliwal, P., Kirar, M.K.: Increasing penetration of DERs in smart grid framework:
A state-of-the-art review on challenges, mitigation techniques and role of smart inverters. Journal of
Circuits, Systems and Computers 29(16), 2030014 (2020)

40. Shaheen, M.A.M., Hasanien, H.M., Mekhamer, S.F., Talaat, H.E.A.: Optimal power flow of power
systems including distributed generation units using sunflower optimization algorithm. IEEE Access
7, 109289–109300 (2019)

41. Khaled, U., Eltamaly, A.M., Beroual, A.: Optimal power flow using particle swarm optimization of
renewable hybrid distributed generation. Energies 10(7), 1013 (2017)

42. Ezugwu, A.E., Adeleke, O.J., Akinyelu, A.A., Viriri, S.: A conceptual comparison of several meta-
heuristic algorithms on continuous optimisation problems. Neural Computing andApplications 32(10),
6207–6251 (2019)

43. Merkli, S., Domahidi, A., Jerez, J.L., Morari, M., Smith, R.S.: Fast AC power flow optimization using
difference of convex functions programming. IEEE Transactions on Power Systems 33(1), 363–372
(2018)

44. Kargarian, A., Mohammadi, J., Guo, J., Chakrabarti, S., Barati, M., Hug, G., Kar, S., Baldick, R.:
Toward distributed/decentralized DC optimal power flow implementation in future electric power
systems. IEEE Transactions on Smart Grid 9(4), 2574–2594 (2018)

45. Farivar, M., Low, S.H.: Branch flow model: Relaxations and convexification-part I. IEEE Transactions
on Power Systems 28(3), 2554–2564 (2013)

46. Hoke, A., Butler, R., Hambrick, J., Kroposki, B.: Steady-state analysis of maximum photovoltaic
penetration levels on typical distribution feeders. IEEE Transactions on Sustainable Energy 4(2), 350–
357 (2013)

47. Frank, S., Rebennack, S.: An introduction to optimal power flow: Theory, formulation, and examples.
IIE Transactions 48(12), 1172–1197 (2016)

48. Low, S.H.: Convex relaxation of optimal power flow-part I: Formulations and equivalence. IEEE
Transactions on Control of Network Systems 1(1), 15–27 (2014)

49. Weedy, B.M., Cory, B.J., Jenkins, N., Ekanayake, J.B., Strbac, G.: Electric Power Systems, 5th edn.
Wiley-Blackwell, Hoboken, NJ (2012)

50. Kusakana, K.: Optimal scheduled power flow for distributed photovoltaic/wind/diesel generators with
battery storage system. IET Renewable Power Generation 9(8), 916–924 (2015)

123

Numerical Algorithms (2023) 94:1763–1795 1795

51. Fodhil, F., Hamidat, A., Nadjemi, O.: Potential, optimization and sensitivity analysis of photovoltaic-
diesel-battery hybrid energy system for rural electrification in algeria. Energy 169, 613–624 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Tan Nhat Pham1,3 ·Minh N. Dao2 · Rakibuzzaman Shah3 ·
Nargiz Sultanova1 · Guoyin Li4 · Syed Islam3

Tan Nhat Pham
pntan.iac@gmail.com

Rakibuzzaman Shah
m.shah@federation.edu.au

Nargiz Sultanova
n.sultanova@federation.edu.au

Guoyin Li
g.li@unsw.edu.au

Syed Islam
s.islam@federation.edu.au

1 Centre for Smart Analytics, Federation University Australia, Ballarat, VIC 3353, Australia

2 School of Science, RMIT University, Melbourne, VIC 3000, Australia

3 Centre for New Energy Transition Research, Federation University Australia, Ballarat,
VIC 3353, Australia

4 Department of Applied Mathematics, University of New South Wales,
Sydney, NSW 2052, Australia

123

http://orcid.org/0000-0002-8074-6675
http://orcid.org/0000-0002-2099-7974

	A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems
	Abstract
	1 Introduction
	2 Premilinaries
	3 Proximal subgradient algorithm with extrapolation
	4 Case studies
	4.1 Compressed sensing with L1-L2 regularization
	4.2 Optimal power flow considering photovoltaic systems placement

	5 Conclusion
	Appendix: Data of Case study 4.2
	References

