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Abstract
Algorithmic differentiation is a tool used in several branches of computational science,
both in conjunction with the interval calculus, and apart of it. This paper presents the
ADHC library [14] developed by the author, and identified as package “na60” by
Numerical Algorithms journal. This library makes intensive use of the C++ template
meta-programming, and it has several unique features. ADHC seems particularly use-
ful for interval-related applications. The library has been used by some solvers, also
developed by the author, including HIBA_USNE. The paper describes the library, pre-
senting its features, focusing on the new ones, added in version 2.0; in particular, we
describe bounding subdifferentials of non-smooth functions and computing deriva-
tives over various datatypes. Efficiency comparison with respect to other packages is
also presented. Then some examples of ADHC applications are given, involving the
use of HIBA_USNE and standard benchmark problems for solving nonlinear systems.
A particular emphasis is put on examples related to modern machine learning, but not
limited to them. Planned extensions and possible directions for future development of
ADHC are also outlined and discussed.

Keywords Algorithmic differentiation · Hull-consistency ·
C++ template meta-programming · Interval calculus

1 Introduction

While solving many problems, like constraint satisfaction, nonlinear equations sys-
tems, or optimization, our programs need to analyze complicated mathematical
formulae. This is the case, when we want to compute the derivative of a function
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(for instance in Newton operators), or enforce some kind of consistency, like, e.g., the
so-called hull-consistency (HC) [19].

To name a few examples:

– When solving nonlinear equations systems,weneed the Jacobimatrix (or its analog
[38]) for the Newton operator.

– When solving an unconstrained optimization problem, we need gradients and
Hesse matrices — also for the Newton method.

– When solving a constrained optimization problem, we often need to solve some
necessary conditions system, like the Kuhn-Tucker or Fritz John system; this
requires gradients and Hesse matrices not only of the objective function, but also
of the constraints.

– A similar situation can be obtained for seeking Pareto-optimal points of a multi-
criteria problem (see, e.g., [50]).

In all above cases (and many others), we need to process mathematical formulae,
to obtain the desired derivatives (or enforce consistency).

A particular area, when we encounter sophisticated expressions to differentiate (or
process in another manner), is modern machine learning (ML), using many kinds of
artificial neural networks, in particular — deep neural networks, described in [28] (or,
in a more popular manner, in [27]).

There are a few approaches to perform computing of the derivatives, but a very
promising one is the so-called algorithmic differentiation (AD), also known as auto-
matic differentiation. This technique is based on the following observation: each
function evaluated by a computer is described by a computer program that consists of
several elementary operations (arithmetic operations, transcendental functions, etc.).
As it is known, how to compute derivatives of such elementary operations, we can
enhance this program, so that it computed derivative(s) together with the original
function.

There are many packages and tools to perform it. One of the oldest is ADOL-C
[6], written in C++. There are also several other packages for C++, as well (e.g., [5,
7]); also Python has its TensorFlow [13], very popular nowadays. A good survey of
several approaches is [34].

In this paper, we are going to focus on the ADHC library [14], written by the author,
and identified as “na60” byNumerical Algorithms journal. It is a free library, available
under the GPLv2 license. As we shall see, it has some unique features:

– it allows creation of procedures to enforce hull-consistency, as well as differenti-
ation,

– the same (template) class is used for all kinds of computations,
– it allows both sparse and dense gradient and Hesse matrix representations,
– it allows not only computing gradients of smooth functions, but also bounding
subdifferentials of non-smooth ones,

– since ADHC version 2.0, computations can be done not only using the
cxsc::interval datatype, but also other types: pointwise and interval-valued
ones, double- and extended precision ones, real-valued and complex ones, tradi-
tional floating-point and multiple-precision ones, etc. (cf. Section 3.2).
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While other libraries (e.g., [1, 3, 5–7]) often have some of the above features, this
set seems to be unique (but often with some gaps, as we shall see). In particular, using
interval-valued types will be especially beneficial for bounding the subdifferentials of
non-smooth functions. Details will be given in Section 3.1.2)

ADHC, has been used in a few programs of the author, in particular in the
HIBA_USNE publicly available solver [15], since its version Beta2.0. For details
of this solver, the reader can consult [44, 47–49], and the references therein.

The paper is organized as follows. After the introduction in Section 1, Section2
recapitulates the basic ideas of the interval calculus, algorithmic differentiation, hull-
consistency, and template meta-programming. Section3 is the most important: it
describes the ADHC library, its features and potential. In Section4, the provided
library is compared to some alternatives: the old AD code from the original C-XSC
[3], PROFIL/BIAS [1], and IBEX [8]. Next, in Section5, we get a few examples of
ADHC’s applications: some (but not all) of them related to machine learning and neu-
ral networks. Section6 describes the possibilities of further research, and Section7
presents the summary and conclusions of the paper. In the Appendix, we describe the
Survive-CXSC library.

2 Recapitulation of basic ideas

2.1 Interval methods

Although the interval calculus is not directly linked to AD, many interval algorithms
and solvers make use of AD techniques. A good introduction can be found in many
classical textbooks, including, i.a., [33, 35, 38, 55, 56, 58] (or a most recent one [50]).
Hence, examples of interval software using AD are: the MATLAB package INTLAB
[10], and a few C++ libraries, like PROFIL/BIAS [1] or C-XSC [3], which the author
has been using (see the Appendix).

What is the interval calculus? It is a branch of numerical analysis and mathematics
that operates on intervals rather than numbers.

Arithmetic (and other) operations on intervals are designed, so that the following
condition was fulfilled:

� ∈ {+,−, ·, /}, a ∈ a, b ∈ b implies a � b ∈ a � b. (1)

In other words, the result of an operation on numbers will be contained in the result
of an analogous operation on intervals, containing these numbers.

This results in the following formulae for arithmetic operations (cf., e.g., the afore-
mentioned textbooks):

[a, a] + [b, b] = [a + b, a + b],
[a, a] − [b, b] = [a − b, a − b],
[a, a] · [b, b] = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)],
[a, a] / [b, b] = [a, a] · [1 / b, 1 / b

]
, 0 /∈ [b, b].

(2)
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It is worth noting that the above formulae are not the only possible ones. Alternative
(and even more general) formulations are possible as well. Details can be found, i.a.,
in Chapter 2 of [50]. Also, please note that the division by an interval containing zero
is also possible — in the extended Kahan-Novoa-Ratz arithmetic [38]:

a/b =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a · [1/b, 1/b] for 0 /∈ b
[−∞,+∞] for 0 ∈ a and 0 ∈ b
[a/b,+∞] for a < 0 and b < b = 0

[−∞, a/b] ∪ [a/b,+∞] for a < 0 and b < 0 < b
[−∞, a/b] for a < 0 and 0 = b < b
[−∞, a/b] for 0 < a and b < b = 0

[−∞, a/b] ∪ [a/b,+∞] for 0 < a and b < 0 < b
[a/b,+∞] for a < 0 and 0 = b < b

∅ for 0 /∈ a and 0 = b

. (3)

This formula will turn out very useful to us, as we shall see.
Similarly to the arithmetic operations, we can define the power of an interval:

[a, a]n =
⎧
⎨

⎩

[an, an] for odd n
[min{an, an},max{an, an}] for even n and 0 /∈ [a, a]

[0,max{an, an}] for even n and 0 ∈ [a, a]
, (4)

and other functions (cf., e.g., Section 2.3 of [50]).
Dependency problem The arithmetic defined by formulae (2) has properties very

different than the arithmetic of real numbers.
Let us consider the simplest example: what is the value of x− x? According to (2),

we obtain [x − x, x − x], which is not necessarily zero; it would be zero only for the
degenerate case of x = x .

Also the distributivity of multiplication with respect to addition is not directly
fulfilled for intervals. Instead, we have the so-called subdistributivity principle:

a · (b + c) ⊆ ab + ac.

In general, formulae that are equivalent for real numbers do not have to be (and
usually are not) equivalent in the space of intervals; whenever the same quantity is
encountered in an expression more than once, the result is likely to be overestimated.
This property is often called the dependency problem, and it will be also significant
for ADHC, as we shall see (in Section 3.3).

2.2 Algorithmic differentiation

Algorithmic differentiation is a useful alternative to usingfinite differences or symbolic
methods for computing derivatives of the function’s implementation.As already stated,
its essence is to enhance the procedure computing a function, so that it computes its
derivative(s), as well.

In his classical book [31], Griewank states that AD has been “rediscovered and
implemented many times, yet its application still has not reached the full potential”.

123



Numerical Algorithms (2023) 94:1673–1704 1677

AD is based on the chain rule:

∂

∂x
f
(
g(x)

) = ∂ f

∂w
· ∂w

∂x
, (5)

where w = g(x).
There are several approaches to AD, andmany libraries are available. A nice survey

can be found in [34]; also Chapter 3 of [50], Chapter 9 of [35], or Appendix D of [27]
list several methods.

The most notable distinction is whether accumulation in Formula (5) is performed
forwards or backwards. Both versions — the forward and backward mode of AD —
have their applications, but the reversemode (usually based on using so-calledWengert
tapes — see, e.g., [50]) has a lower performance bound for functions f : Rn → R

m ,
where m is significantly smaller than n [31]. However, it is also much more difficult
to implement, and hence less frequently used.

Aswe shall see, theADHC library [14], onwhichwe focus in this paper, while using
the forward mode, will provide its very efficient implementation thanks, in particular,
to using sparse data types. Details will be explained in Example 3.

Specifically, ADHC uses the forward mode of AD, based on operator overloading.
There are objects (of type adhc_ari), representing expressions.

Using (5), expressions can be decomposed to “atoms’’ that can be differentiated,
and we can “assemble” the derivative from these “building blocks”.

For instance, for basic arithmetic operations, we have the following formulae:

〈u,u′〉 + 〈v, v′〉 = 〈u + v, u′ + v′〉,
〈u,u′〉 − 〈v, v′〉 = 〈u − v, u′ − v′〉,
〈u,u′〉 · 〈v, v′〉 = 〈u · v, u · v′ + u′ · v〉,
〈u,u′〉 / 〈v, v′〉 = 〈u/v, (u′ · v − u · v′)/v2〉.

Other operations, e.g., power or transcendental functions, can be extended in an anal-
ogous manner, e.g.:

〈u,u′〉n = 〈
un, nun−1u′〉,

or the exponens function:

exp〈u,u′〉 = 〈
exp(u),u′ · exp(u)

〉
.

Let us consider a simple example, to make the things more explicit.
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Example 1

f (x) = x3 − 7x2 + 2,

x = [−1, 2],
〈
x, x′〉 = 〈[−1, 2], [1, 1]〉,
〈y, y′〉 = f

(
〈x, x′〉

)
,

f
(
〈x, x′〉

)
= 〈

x, x′〉3 − 7 · 〈
x, x′〉2 + 〈

2, 0
〉
,

〈y, y′〉 = 〈[−1, 2], [1, 1]〉3 − 7 · 〈[−1, 2], [1, 1]〉2 + 〈
2, 0

〉
,

〈y, y′〉 = 〈[−1, 8], 3 · [0, 4] · [1, 1] − 7 · 〈[0, 4], 2 · [−1, 2] · [1, 1]〉 + 〈
2, 0

〉
,

〈y, y′〉 = 〈[−1, 8], [0, 12]〉 + 〈[−28, 0], [−28, 14]〉 + 〈[2, 2], [0, 0]〉,
〈y, y′〉 = 〈[−27, 10], [−28, 26]〉.

We can consider also computing higher derivatives — then the record has more
fields, e.g., 〈u,u′,u′′,u′′′〉; the formulae are analogous (they may become quite com-
plicated for higher derivatives, though).

The differentiated function may be multivariate — then higher derivatives are rep-
resented by some containers: vectors, matrices, etc., instead of singleton values.

An earlier version of ADHC has been briefly described in [52], but the library has
evolved since, and significant extensions have been added.

2.3 Hull-consistency

Enforcing so-called partial consistency (or local consistency) is a concept derived from
constraint logic programming. To solve a system of several constraints (e.g., equations,
inequalities, quantified relations), we try to filter the search domain by discarding
points (or subdomains) that cannot satisfy a relaxed version of the original problem. For
instance, such a partial consistencymay just require that, taken individually (“locally”),
the constraints are consistent [23].

For discrete finite domains, a common form of such partial consistency is the so-
called arc-consistency (AC). In case of finite sets, the domain of each variable can be
represented as the set of all possible values. AC demands that values inconsistent with
any of the relations between variables (“arcs”) are removed from these sets.

Let us consider a simple example: we have two integer-valued variables: i and j ,
bothwith initial domains {1, 2, . . . , 10}. There is a constraint c(i, j) on these variables:
i − 2 j − 1 = 0.

It is easy to verify that, for instance, the value i = 1 is impossible: there is no
corresponding value of j to satisfy c; similarly the value j = 10 is inconsistent, as
well.

Precisely, only the following domain would result from applying AC to this con-
straint: i ∈ {3, 5, 7, 9}, j ∈ {1, 2, 3, 4}.

For continuous domains, the admissible sets cannot be enumerated; we can only
store intervals, their unions, or other (more cumbersome to represent) sets of real
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numbers. Hence, AC is usually not directly applicable to continuous domains; a further
relaxation is required. Benhamou et al. [19] propose a few such notions: interval-
consistency, box-consistency, and hull-consistency.

Hull-consistency (also known under the name of 2B-consistency) has been used in
several interval programs over the years (cf. [18, 19, 23, 29, 30, 49]). It can be defined
as follows.

Definition 1 A box x = (x1, . . . , xn)T is hull-consistent with respect to a constraint
c(x1, . . . , xn), iff:

∀i xi = �{s ∈ xi | ∃x1 ∈ x1, · · · ∃xi−1 ∈ xi−1, ∃xi+1 ∈ xi+1 · · · ∃xn ∈ xn
c(x1, . . . , xi−1, s, xi+1, . . . , xn)} .

Following [41], the symbol “�” denotes the interval hull.
For simple constraints, checking and/or enforcing hull-consistency is relatively

simple.
As a simple example, let us consider an equation x1 + x2 − 4 = 0. By obvious

symbolic transformations, we obtain formulae for both variables that can be used to
obtain their consistent domains:

x1 = 4 − x2 and

x2 = 4 − x1.

Using the above consistency operators,we can simply check consistency for any box
or compute its sub-box containing all consistent values. For instance, a box [−4, 2] ×
[−2, 4] is not hull-consistent, but it can be reduced to the hull-consistent one, by
applying:

x1 = x1 ∩ (4 − x2) = [−4, 2] ∩ [0, 6] = [0, 2],
x2 = x2 ∩ (4 − x1) = [−2, 4] ∩ [2, 8] = [2, 4].

This box is hull-consistent indeed, as points (0, 4) and (2, 2) are solutions of the
initial constraint x1 + x2 − 4 = 0.

However, for a more sophisticated constraint, obtaining a consistent box is not as
straightforward. Let us consider the constraint (Fig. 1):

x21 + exp(x1) − x32 = 0. (6)

Again, by relatively simple symbolic transformations we can extract x2 from equa-
tion (6), but not x1. The solution is to decompose such an equation into primitive ones,
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Fig. 1 Expression tree of constraint (6)

by adding additional variables and apply HC to such a decomposed system. For the
constraint (6), we could obtain:

t1 − x21 = 0,

t2 − exp(x1) = 0,

t3 − t1 − t2 = 0,

t4 − x32 = 0,

t3 − t4 = 0.

The algorithm HC4 [18] (cf. also [30]) performs such a decomposition, creating a
tree of the initial constraint, where a variable corresponds to each node:

By traversing the tree forward and backward, we enforce hull-consistency on sub-
sequent variables.

Details of the approach used in ADHCwill be described in Section3 (cf. also [49]).

2.4 Template meta-programming

Templatemeta-programming (see, e.g., [16, 26, 59]) is a powerful C++ technique (also
present in a few other programming languages — interesting, but rarely encountered,
like D, Curl, or XL). It is worth noting that in Java and C# we have a concept similar
to C++ templates — the so-called generic classes — but its capabilities are way more
limited than their C++ counterparts.
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What is the template meta-programming, actually? Its essence is processing infor-
mation at compile-time, instead of runtime.What kind of information can be processed
in thismanner?Actually, almost arbitrary information, as templatemeta-programming
is proven to be Turing-complete. Thanks to moving some computations from runtime
to compile-time, the actual program becomes more efficient.

The C++ templates are, to some extent, “classes” of classes (or functions), param-
eterized either by a type or by an enumerable value. The information is processed at
compile-time.

The most common application of C++ meta-programming is to process the type-
related data. In the simplest case, templates behave identically for various datatypes;
more sophisticated templates adapt their behavior to the value of template parameters.
The classical book [17] describes several examples and techniques.

3 The ADHC library

Now, let us describe the library itself.

3.1 What is the ADHC library?

Since 2016, the author has been providing a novel algorithmic differentiation library,
based on C++ templates. The package is named ADHC, which stands for Algorithmic
Differentiation and Hull-Consistency enforcing [14]. Just lately (in July 2021), the
version 2.0 of this library has been released, featuring a few important innovations.

3.1.1 Basic features of ADHC

Virtues of templatemeta-programming allowed obtaining several useful features of the
ADHC library. This includes efficiency and versatility. The same source code can be
used to generate distinct procedures for computing function values, gradients, Hesse
matrices and— potentially— higher derivatives. There is no runtime penalty for their
generation (obviously, there will be one for computing the gradient or Hesse matrix).

Also, we can use the same source code to differentiate uni- and multivariate func-
tions and to use sparse or dense representations of vectors and matrices of partial
derivatives. And C-XSC library provides us efficient and relatively easy to use imple-
mentations of sparse vectors andmatrices (cf. [43]) that can directly be used in ADHC.

Proper types are generated, using the so-called typelist (see, e.g., [17]). They are
specializations of the following template:

template<int level,
sparsity_t sparse_mode,
int num_vars,
typename T = cxsc::interval>

struct adhc_ari {
// ...

};
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The four template parameters are:

– level— information on what should be computed; number of computed deriva-
tives (for nonnegative values) or construction of the syntactic tree (for value -1),

– sparse_mode — should sparse or dense matrix/vector representation be used,
– num_vars — the number of variables,
– T — the basic type of represented “numbers”: cxsc::real,
cxsc::interval, cxsc::l_interval, etc.

Please note, num_vars is the template parameter of class, so expressions using
potentially different numbers of variables are of inherently different types. Hence,
naïvely performing an operation on such incompatible objects will be detected at
compile-time, already. For instance, the following code:

adhc::adhc_ari<2, sparse, 2, cxsc::interval> x;
adhc::adhc_ari<2, sparse, 3, cxsc::interval> y;
//...
z = x + y;

will not compile. In contrast to that, the old AD code from C-XSC library had to
use a dedicated function TestSize() while performing virtually any arithmetic
operation, which resulted in a certain overhead at runtime.

The type of the second template parameter, sparse_mode, is an instance of
enumerable class type sparsity_t and can have the following values:

enum class sparsity_t {dense, sparse, highly_sparse,
another_sparse};

Their meaning is as follows:

– dense — both, the gradient and Hesse matrix are represented using dense
datatypes,

– sparse— the gradient is represented as a dense vector, and the Hesse matrix as
a sparse matrix,

– highly_sparse — both, the gradient and Hesse matrix are represented using
sparse datatypes,

– another_sparse — the gradient is represented as a sparse vector, and the
Hesse matrix as a dense matrix,

As it has already been stated, the C-XSC library contains usefvul classes for
sparse matricevs and vectors (cf. [43]): cxsc::srvector, cxsc::scvector,
cxsc::sivector, cxsc::scivector, cxsc::srmatrix, cxsc::scma
trix, cxsc::simatrix, cxsc::scimatrix. More about them will be
described in Section 3.2.3.

It is worth noting that in virtually all experiments, the best sparsity mode turned
out to be the highly_sparse one, i.e., both the gradient and the Hesse matrix are
represented by sparse types. The author had even considered removing this template
parameter, but decided against it, to keep the backward compatibility of the pack-
age. Also, the other sparsity modes can (at least in theory) turn out to outperform
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highly_sparse, for some applications. But the author’s recommendation at the
moment is to always use the “highly sparse” mode.

Let us illustrate using ADHC, by presenting the code to compute the function from
Example 3:

const int lev = 2; // we compute the function value,
// the gradient and the Hesse matrix

const int n = 1;

adhc_ari<lev, sparse_mode, n, T>
f(const adhc_ari<lev, sparse_mode, n, T> &x) {

adhc_ari<lev, sparse_mode, n, T> result;
result = power(x, 3) - 7.0*sqr(x) + 2.0;
return result;

}

3.1.2 Using non-smooth functions

ADHC is the package for differentiation, so it might seem obvious that it should
handle smooth functions. As it might sound peculiar, many non-smooth functions can
be handled as well, by algorithmic differentiation.

Non-smooth functions do not have gradients in strict sense, but they do have
so-called subgradients. The set of all possible subgradients at point x is called the
subdifferential of the function at x . We shall not give precise definitions of these
notions here, referring the interested reader to [22].

What is important to us is that subdifferentials can be bounded using the interval
calculus (cf. [57]). Needless to say that non-interval packages, like ADOL-C [6] or
Adept [5], even if they have (like these two libraries) a possibility to differentiate
non-smooth functions, they cannot bound the subdifferential in the points of non-
differentiability. On the other hand, popular interval packages for AD (like the codes
in the old C-XSC [3] or PROFIL/BIAS [1]) do not take non-smooth functions into
account (an exception is the IBEX library [8], but it does not allow computation of
the Hesse matrix, only of the gradient).

ADHC attempts to fill this gap, which seems particularly useful, as the interval
algorithms require no (or very minor) changes to process non-smooth functions. Suc-
cinctly, they are agnostic to whether the bounded quantity is the “proper” gradient or
a subdifferential.

In the current version of ADHC, only one non-smooth function is defined: the
max function. It seems the most prominent, and most important of all the non-smooth
functions; it is also used in someneural networks, aswe shall see inSection5. Functions
like min or abs can be implemented using the max function; specific implementations
are likely to be added in future versions of ADHC.

Example 2 Consider the function f (x) = max(0, x − 1).

123



1684 Numerical Algorithms (2023) 94:1673–1704

What is its subdifferential? Clearly, it is:

Df

Dx
=

⎧
⎨

⎩

0, for x < 1,
1, for x > 1,
[0, 1], for x = 1.

Now, let us present formulae for the inclusion functions of max() and its subdiffer-
ential. Obviously, the inclusion of maximum of two functions cannot be smaller than
any of these functions, so we get:

max
(
f1(x), f2(x)

) = [max( f
1
(x), f

2
(x)),max( f 1(x), f 2(x))]. (7)

And the “derivative” (i.e., subdifferential) is:

Dmax
(
f1(x), f2(x)

)

Dx
=

⎧
⎪⎪⎨

⎪⎪⎩

Df1(x)
Dx , for f

1
(x) > f 2(x),

Df2(x)
Dx , for f 1(x) < f

2
(x),

�
(
Df1(x)
Dx ∪ Df2(x)

Dx

)
, otherwise.

(8)

What about the “second derivative”? Surprisingly, this notionmakes a perfect sense!
As the author has already proposed in [45], we can consider the functions not in the
space of “proper” functions, but “generalized functions”, also known as distributions.
The most well-known example of such a generalized function is the Dirac’s delta
function:

δ(x) =
{+∞, for x = 0,
0, otherwise

To be precise, also the condition
∫ +∞
−∞ δ(x)dx = 1 should be fulfilled, but in our

considerations, it will not be used.
The interval extension of the “function” δ(x) is easy to obtain:

δ(x) =
{ [0,+∞], for 0 ∈ x,
[0, 0] , otherwise

(9)

And now, the “second derivative” of function f fromExample 2 is: D2 f
Dx2

= δ(x−1),
with the obvious interval inclusion function. These kinds of derivatives are also called
weak derivatives.

Details are beyond the scope of this paper; a separate one is planned on this —
interesting and important — topic. Fortunately, for solving equations systems, the
first derivative is crucial (as it is used in the Newton operator [35, 38, 50]), and the
delta function does not appear there.

Comment It is worth noting that a similar approach has been proposed by Kearfott
[39, 40]. However, in his papers no relationship to weak derivatives calculus was
realized. Consequently, the obtained formulae were less elegant, and their justification
was weaker.

It will be very interesting to compare using weak derivatives to using so-called
slopes (see, e.g., [33, 37, 38]), in terms of the efficiency. In the aforementioned paper
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of Kearfott [37], such a comparison has even been suggested, but no numerical results
seem to be available.

It should be noted that, in the present version of ADHC, the max() function can be
used over interval-valued domains only.Using it over, e.g., thecxsc::real datatype
would require several changes: we would need to choose a single subgradient, instead
of bounding the whole subdifferential. This is another extension that may be added
to ADHC in future versions; however the focus of the author is on interval-related
applications.

3.1.3 Constructing the expression tree

What would happen, if lev = -1 was used in the above program? Then, instead of
computing the function’s or its derivatives’ values, the codewould create a dynamically
linked tree data structure, representing the expression.

Such expression trees are represented using the type adhc_node. This kind of
objects stores the interval of possible values of the expression, and a union with the
data, specific to the kind of expression: a constant, a variable, a dyadic operation
(+, −, ×, ÷, max, etc.), or an unary function. The specialization of the template
class adhc_ari, for the first template parameter equal to -1, inherits from the class
adhc_node. Specializations for nonnegative values of this parameter, obviously do
not.

How to enforce HC on the tree nodes? As already indicated in Section2.3, we have
to traverse the tree forwards, and then backwards. Firstly, we compute the intervals of
possible values, for each of the nodes. In the second step, the domains are narrowed.

For instance, when we have a sum of two expressions: t3 = t1 + t2, we can narrow
the domains of variables t1 and t2, using the obvious expressions:

t1 ←− t1 ∩ (t3 − t2),

t2 ←− t2 ∩ (t3 − t1).

Enforcing HC on arguments of transcendental functions can be more tedious; it is
trivial only for monotonic functions. But let us consider the square function: t2 = t21 .
What are the feasible points of t1? Please note, they can belong to one of the two
intervals:

t1 ∩ [√t2,
√
t2] or t1 ∩ [−

√
t2,−

√
t2]. (10)

Using the formula:

t1 ← t1 ∩ �
(
[−

√
t2,−

√
t2] ∪ [√t2,

√
t2]

)
,

would not be efficient, as it may severely overestimate some domains (if only one of
the intervals (10) coincides with the domain). A better alternative (used in the current
version of ADHC) is:

t1 ← �
((
t1 ∩ [−

√
t2,−

√
t2]

) ∪ (
t1 ∩ [√t2,

√
t2]

))
, (11)
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but even this formula can overestimate the result. Assume, for instance, we have the
domain t1 = [−4, 4] and t2 = [9, 16].

The box t1 × t2 is hull-consistent, and cannot be reduced any further, as both
endpoints of t1: −4 and +4 are feasible. Nevertheless, not all values from the domain
t1 = [−4, 4] are feasible; actually, these are only values from [−4,−3] ∪ [3, 4]. But
to obtain such narrowing, we would need to use interval-consistency [19], instead of
hull-consistency.

Using the interval-consistency is another possible addition for future versions of
ADHC. It may be useful not only for the square functions, but also for many other
non-monotonic functions, including trigonometric ones. The current version ofADHC
implements a similar formula, to the given above, for functions sin and cos.

3.2 Computations over various types

The most significant innovation in ADHC 2.0 is the fourth template parameter T ,
not present in earlier versions of the library. This parameter allows us to generate
functions operating on various argument types: interval-valued or pointwise, real-
valued or complex, and having various precision.

3.2.1 Pointwise types vs interval types

It is a well-known fact that interval arithmetic operations are significantly more expen-
sive than pointwise ones. Addition and subtraction require only twice more arithmetic
operations than pointwise ones, but multiplication, division, and other operations are
even more expensive — cf. the formulae in (2). What is more, all of these operations
require changing the rounding mode, which can also be costly.

Needless to say that whenever we do not need either to bound the function on
an area, or to obtain a verified result, replacing interval operations with pointwise
floating-point ones can be very worthwhile.

An important application, when we may need it, is hybrid algorithms, combining
interval and non-interval approaches. For instance, in [21], a global optimization algo-
rithm is presented, where we first obtain an approximation of the global minimum,
using non-verified methods (and we can use fast, highly efficient today solvers for this
purpose), and then, using constraint propagation, suboptimal areas are removed in the
branch-and-bound-type process.

An analogous approach can be applied to seeking Pareto sets of a multicriteria
problem (cf. Chapter 6 of [50]), as many non-interval algorithms for covering Pareto
sets (SPEA, SPEA2, NSGA, NSGA-II, etc.; cf., e.g., [24, 61] and the references
therein) have been developed.

3.2.2 Higher precision types

The C++ language standards define three floating-point types:

– single-precision numbers (float), i.e., 32-bits numbers,
– double-precision numbers (double): 64-bits numbers — most commonly used,

123



Numerical Algorithms (2023) 94:1673–1704 1687

– extended-precision numbers (long double): they are usually 80-bits numbers,
but some compilers might have another size of these variables (the C++ standards
do not give the precise size of the long double type).

Lately, some devices (mostly GPUs) started implementing half-precision numbers,
as well. These 16-bits floating-point numbers allow even faster computations, and it
turned out that they are quite sufficient in many important applications [32]. Nowa-
days, they are only implemented in CUDA for Nvidia GPUs, but some libraries allow
emulating them on CPU, as well.

And what types do we have in C-XSC? There are no single-precision types, yet we
get very interesting multiple-precision types, based on various kinds of the so-called
staggered-precision arithmetic [20, 42, 43, 55].

The high-precision types we use are: cxsc::l_real, cxsc::l_complex,
cxsc::l_interval, and cxsc::l_cinterval. All of them have correspond-
ing vector and matrix types (although, unfortunately, only dense ones).

The new types cxsc::lx_real, cxsc::lx_complex, cxsc::lx_in,
terval, and cxsc::lx_cinterval, representing the extended staggered types,
with the “extremely wide exponent range” [20] do not have corresponding matrix
types. Such types are one of the planned additions to subsequent versions of the
survive-CXSC library [12]. That would allow using them in ADHC, as well.

3.2.3 Using sparse data types

Since version 2.4.0, the C-XSC library has been providing us with the eight
aforementioned sparse data types — four for real numbers: cxsc::srvector,
cxsc::srmatrix, cxsc::sivector, cxsc::simatrix (cf. [43, 60]), and
four analogous for complex ones. They represent sparse pointwise vector, pointwise
matrix, interval vector, and interval matrix, respectively.

Sparse vectors are represented as a pair of std::vector objects: one storing
values and the other one — indices of non-zero elements. Sparse matrices are stored
in a compressed column storage format (CCS). Details can be found, e.g., in [60].

Unfortunately, there are no sparse representations for the multiple-precision vectors
and matrices. Dense representations (cxsc::l_ivector, cxsc::l_imatrix,
etc.) have to be used, instead. Hopefully, during the future development of survive-
CXSC, such types will get implemented.

But why is using sparse datatypes so worthwhile? At the first glance, it might seem
that their use will be beneficial for sparse problems only, but it is not so. Let us explain
it on a specific example.

Example 3 Suppose, we intend to compute the gradient of:

f (x1, . . . , xn) =
∑n

i=1
x2i . (12)

Obviously, neither the function nor its gradient are sparse.
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But consider, how the derivatives are going to be computed. By augmenting the
(overloaded) operations + and sqr() with the expression’s gradient evaluation, we
obtain:

∇ f (x1, . . . , xn) = ∇
(
x21 + x22 + · · · + x2n

)
=

= 2 · x1 · ∇x1 + 2 · x2 · ∇x2 + · · · + 2 · xn · ∇xn,

which results in:

∇ f (x1, . . . , xn) = 2 · x1 ·

⎛

⎜⎜⎜
⎝

1
0
...

0

⎞

⎟⎟⎟
⎠

+ 2 · x2 ·

⎛

⎜⎜⎜
⎝

0
1
...

0

⎞

⎟⎟⎟
⎠

+ · · · + 2 · xn ·

⎛

⎜⎜⎜
⎝

0
...

0
1

⎞

⎟⎟⎟
⎠

Consequently, it is necessary tomultiply n vectors by scalars and then perform n−1
vector additions. For a dense representation, it results in n2 interval multiplications
and n · (n − 1) interval additions.

But if vectors are represented in a sparse manner, the complexity is quite different!
For each of the vectors, only a single component has a non-zero value, which decreases
the number of interval multiplications from n2 to n. As for the additions, each vector
has its non-zero component at a different index. So: virtually no additions are needed,
only some non-floating-point (and hence cheap) index checking operations.

This is a more than very significant reduction of the computational effort. It is worth
noting that this problem may be considered better suited for the reverse-mode AD.
Using sparse data types allowed us to reduce the difference. And let us remind once
more that interval operations require several floating-point ones, including switching
of the rounding mode (cf., e.g., [38]).

To sum up: contrary to his initial assumptions, the author observed that it is almost
always worthwhile to use sparse representations — especially for gradients.

For the sake of completeness, let us present the C++ function, based on ADHC,
computing the function from Example 3:

template<int lev, sparsity_t sparse_mode, int n,
class T>

adhc_ari<lev, sparse_mode, n, T>
f_example(const adhc_vector<lev, sparse_mode, n, T> &x)
{

adhc_ari<lev, sparse_mode, n, T> result;
result = sqr(x[1]);
for (int i = 2; i <= n; ++i) result += sqr(x[i]);
return result;

}

Ranging in the vector indices from 1 to n, instead of more typical in C++ from 0
to n − 1, is inherited from the C-XSC library. The use of the above function, might
look, e.g., like the following:
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//...
const int N = 8;
cxsc::ivector x(N);
//...
adhc_vector<1, SPARSITY, N, T> x_(x);
adhc_ari<1, SPARSITY, N, T> y_ = f_example(x_);
std::cout << y_ << "\n";
//...

More code snippets are given in the documentation of the ADHC [14] (see file
doc/manual.tex).

3.3 Intersection of two expressions

It has already been stated that interval expressions tend to generate overestimated
values due to the dependency problem. If we are able to provide a formula, where all
variables and parameters occur only once, we can bound the results precisely (up to
the numerical precision). Yet, in many situations, there is no such possibility,

Example 4 Consider the function:

f (x, y) = x + x · y + y . (13)

Both variables: x and y occur twice in it. We can provide interval extensions, like:
f1(x, y) = x · (1 + y) + y, or f2(x, y) = x + (x + 1) · y, but in both cases one of
the variables occurs twice in the expression. There is no simple way to overcome the
dependency problem, in this case.

Yet, while it cannot be fully overcome, it can still be mitigated. We can compute
the intersection of inclusion functions f1 and f2.

For instance, for x = [−1, 2], y = [−5,−1], we obtain:

f1(x, y) = [−1, 2] · (1 + [−5,−1]) + [−5,−1] = [−13, 3],
f2(x, y) = [−1, 2] + ([−1, 2] + 1) · [−5,−1] = [−16, 2],

f1(x, y) ∩ f2(x, y) = [−13, 3] ∩ [−16, 2] = [−13, 2],

which is narrower than both “partial” results!

The ADHC library, provides the function intersection() that allows to pro-
videmore thanone expression for the samequantity.During the computational process,
the computed interval for the expression value (and, of course, for all its available
derivatives) will be intersected. Also, the procedure enforcing HC, narrows the terms
in all “branches” of the intersection.

To the best knowledge of the author, no other libraries provide such a feature.
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4 Comparison of ADHC to its main competitors

As indicated in Section1, it is difficult to compare ADHC to other libraries, as its
features are pretty unique.Nevertheless, let us compare the efficiencyof differentiation,
with respect to major interval libraries.1

4.1 Competitors

C-XSC This was the “starting point” of the author’s consideration: the code provided
by the C-XSC library, in the file hess_ari.cpp [3]. The forward AD mode is
implemented there, using operator overloading. The decision whether to compute the
function value only, the gradient or the Hesse matrix is done at runtime, using a static
variable HessOrder.

In its original version, the code is not thread-safe, but it can be fixed relatively easily
(cf. Section 6 of [54]).

PROFIL/BIAS It is another interval library, or more precisely, a pair of libraries:
PROFIL (Programmer’s Runtime Optimized Fast Interval Library), and its underlying
BIAS (Basic Interval Arithmetic Subroutines). The page [1] provides the tarball to be
downloaded, as well, as the documentation in Gzipped PostScript. PROFIL/BIAS has
been pretty popular, at least at some time (it has not been updated since 2009). The
book [35] describes some code of this package. AD is one of its features.

The author was able to find little information about AD in the PROFIL
library, but the code suggests, the forward mode is used there. It seems, always
both the gradient and the Hesse matrix get computed, even if we do not need
them both. The aforementioned documentation at [1] states that the variable
INTERVAL_AUTODIFF::ComputeHessian should allow to change it, but the
author was not able to obtain such a behavior. Also examples, attached to the library,
do not use such switching: the Hesse matrix gets computed always.

IBEX The name stands for Interval-Based Explorer [8]. This is the most modern
of the considered pieces of software. IBEX is feature-rich: it contains not only basic
interval functions, but also, i.a., several contractor operators (using various consis-
tency enforcing methods, and linear programming), and two stand-alone solvers for
constraint systems and global optimization.

IBEX does not have its own implementation of the interval type or its arithmetic.
Instead, it can use one of the three interval libraries as its base: GAOL [4] (which is the
default one), the aforementioned BIAS [1], or Filib++ [2]. All of them are considered
in the presented comparison.

According to its online documentation [8], IBEX can use both AD and symbolic
differentiation. Very little is written about algorithms used in both cases, yet it seems
that the reverse mode is used for the AD.

It is the only of presented AD codes (except my own ADHC), which allows to
bound the “gradient” of some non-smooth terms, like the max function. Yet, it allows
computing first derivatives only: gradients, Jacobi matrices, or Hansen slope matrices.

1 The codes used in this section are available at https://gitlab.com/bkubica/ad-comparison.
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The author has found no way to obtain the Hesse matrix — neither using AD, nor
symbolic differentiation.

4.2 Benchmark problems

The author has investigated three problems. For each of them we compute either the
function value, the gradient, or the Hesse matrix. The computation is repeated one
million times for random intervals belonging to the domain.

The first benchmark is a simple smooth function of two variables:

f (x1, x2) = x21 + sin(x2), x1, x2 ∈ [−10, 10]. (14)

The second one is also smooth, but it can have arbitrary many variables. We con-
sidered n = 10:

f (x1, . . . , xn) =
n∑

i=1

x2i +
n∏

i=1

cos(xi ), xi ∈ [−10, 10] for i = 1, . . . , 10. (15)

The third function is non-smooth, as it uses the max operation:

f (x1, . . . , xn) =
n∑

i=1

max(xi , 0) + max
( n∑

i=1

xi ,
n∏

i=1

xi
)
,

xi ∈ [−10, 10] for i = 1, . . . , 10.

(16)

4.3 Comparison

The AD codes to be compared are as follows:

– ADHC — the presented ADHC library,
– CXSC — the AD code from the old C-XSC (hess_ari.cpp),
– PROFIL — the AD code from PROFIL/BIAS,
– IBEX+GAOL — the gradient evaluation for IBEX using GAOL,
– IBEX+BIAS — the gradient evaluation for IBEX using BIAS,
– IBEX+FILIB — the gradient evaluation for IBEX using Filib++.

As the IBEX library requires to use the WAF build system, based on the obsolete
Python 2.7 (and incompatible with the modern Python versions), the last three codes
have been built in Docker containers based on the python:2.7 image.

For each AD code, three levels of evaluation are considered:

– 0 — function evaluations,
– 1 — gradient evaluations,
– 2 — Hesse matrix evaluations (if available).
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Table 1 Computational times (in seconds) of AD codes for function (14)

level ADHC CXSC PROFIL IBEX+GAOL IBEX+BIAS IBEX+FILIB

0 0.15 0.69 2 0.28 0.34 0.20

1 0.50 0.67 2 0.56 0.85 0.66

2 1.62 0.71 2 —- —- —-

4.4 Comments

The above comparison has clearly shown that the feature set of ADHC is pretty unique.
It was the only of compared packages that was able to perform computations of both
gradient and Hesse matrix (or their analogs for non-smooth functions) for all three
functions.

Its efficiency seems also quite satisfactory. It outperformed the old C-XSC AD
code and PROFIL/BIAS in virtually all cases; only for bounding the Hesse matrix of
function (14) — a dense 2 × 2 matrix — it was marginally slower (see Table 1). For
larger systems (cf. Table 2), the benefits of using sparse vector and matrix types turned
out to be obvious (Table 3).

The IBEX AD code outperformed ADHC in some cases; particularly when GAOL
was used as the interval library. It is worth noting that results of IBEX varied to the
high extent, depending on the interval library it was using. In particular, when using
BIAS, results did not really outperform ADHC. Hence, it seems that the efficiency
of interval operations is crucial, and can have more impact on the efficiency of the
software than further improvement of the AD code.

Also, it is worth noting, that IBEX was not able to compute Hesse matrices; this is
a serious drawback with respect to ADHC.

It turns out that, thanks to using the sparse formats and its other features, ADHC,
based on forward-mode AD, can compete with reverse-mode AD systems, being only
marginally slower than them.

5 Examples and applications

In the previous section (and earlier, in [52]), ADHC has already been compared to the
older AD code from C-XSC (now also to a few other libraries). In this section, let us
focus on the new features of ADHC 2.0.

Table 2 Computational times (in seconds) of AD codes for function (15)

level ADHC CXSC PROFIL IBEX+GAOL IBEX+BIAS IBEX+FILIB

0 1 3 226 2 3 2

1 11 15 219 5 12 8

2 67 195 220 — — —
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Table 3 Computational times (in seconds) of AD codes for function (16)

level ADHC CXSC PROFIL IBEX+GAOL IBEX+BIAS IBEX+FILIB

0 1 — — 1 2 2

1 8 — — 2 7 7

2 61 — — — — —

All experiments have been performed on the author’s laptop computer, with AMD
Ryzen 5-4600H CPU (6 cores, 12 hardware threads; 3GHz). The machine ran under
control of a 64-bit Manjaro 21.07 GNU/Linux operating system with glibc 2.33 and
the Linux kernel 5.10.42-1-MANJARO (with SMP and PREEMPT options).

The software was written in C++ and compiled using the GCC compiler (GCC
11.1.0). The parallelization (8 threads) was done with TBB 2020.3-1 [9]. OpenBLAS
0.3.17 [11] was linked for BLAS operations.

As for the the author’s libraries, the following versions have been used:

– ADHC 2.2.2,
– survive-CXSC 2.6.1,
– HIBA_USNE 2.8.9-1.

Let us start the presentation of experiments with the multiple-precision Gauss-
Seidel operator.

5.1 Multiple-precision Newton operator

New versions of ADHC allow us to use the same expression to generate functions
computing the expression (and its derivatives) for various datatypes. Thanks to this,
the authorwas able to incorporate to theHIBA_USNE solver (in the version 2.8) a code
generating multiple-precision version of the equations system under consideration.

Also, a multiple-precision version of the Newton operator has been implemented.
It is based on the staggered-precision type cxsc::l_interval; cxsc::lx_in-
terval cannot be used yet, because of the reasons described in Section 3.2.2.

Unlike the version for the double-precisioncxsc::interval type, themultiple-
precision Newton cannot handle components of the Jacobi matrix that contain zeros.
The reason is that the extended division (3) is not implemented for multiple-precision
types. This is another feature that will hopefully be added in future versions of survive-
CXSC.

To show the impact of the new operator, we shall solve a few benchmark equations
systems, using HIBA_USNE. We shall choose such problems, where without the
multiple-precisionNewton,we get relativelymany boxes non-verified either to contain
or not to contain a solution. Hence, we shall consider five equations systems (twowell-
determined and three underdetermined), and we shall apply HIBA_USNE for them
in two configurations: with or without the aforementioned contractor. All of the test
problems have been considered in [47–49].
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Let the first of them be the Puma problem — eight equations in eight variables:

x21 + x22 − 1 = 0, x23 + x24 − 1 = 0,

x25 + x26 − 1 = 0, x27 + x28 − 1 = 0,

0.004731x1x3 − 0.3578x2x3 − 0.1238x1 − 0.001637x2 − 0.9338x4 + x7 = 0,

0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − 0.07745x2 − 0.6734x4 − 0.6022 = 0,

x6x8 + 0.3578x1 + 0.004731x2 = 0,

− 0.7623x1 + 0.2238x2 + 0.3461 = 0,

x1, . . . , x8 ∈ [−1, 1].
(17)

The problem is related to the kinematics of a 3R robot, and it is often used as a
benchmark for nonlinear systems solvers. Accuracy ε = 10−6 was set.

The second problem is the Brent problem — it is a well-determined algebraic
problem, supposed to be “difficult” (cf. [47]):

3x1 · (
x2 − 2x1

) + x22
4

= 0,

3xi · (
xi+1 − 2xi + xi−1

) +
(
xi+1 − xi−1

)2

4
= 0, i = 2, . . . , N − 1,

3xN · (
20 − 2xN + xN−1

) +
(
20 − xN−1

)2

4
= 0,

xi ∈ [−108, 108], i = 1, . . . , N .

(18)

Presented results have been obtained for N = 10; accuracy was set to ε = 10−7.
The third problem, first of the underdetermined ones is the Hippopede problem —

two equations in three variables:

x21 + x22 − x3 = 0,

x22 + x23 − 1.1x3 = 0.

x1 ∈ [−1.5, 1.5], x2 ∈ [−1, 1], x3 ∈ [0, 4].
(19)

Accuracy ε = 10−7 was set.
The fourth and fifth problems are (as was the Puma problem) related to robotics,

specifically the inverse kinematics of a planar nR manipulator with 5 joints. We shall
use two formulations of this problem: the one based on trigonometric functions, used
in [47] and [48], and the algebraic formulation, like in Chapter 9 of [50].
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Hence, the fourth problem is the system of the following three equations in N
variables:

N∑

i=1

li ·
i∏

j=1

cos
( j∑

k=1

xk
)

− 1 = 0,

N∑

i=1

li ·
i∏

j=1

sin
( j∑

k=1

xk
)

− 1 = 0,

N∑

i=1

xi − π

2
= 0 ,

xi ∈ [ − π

2
,
π

2

]
, i = 1, . . . , N .

(20)

Accuracy ε = 0.02 was used.
And the fifth problem is:

n−1∑

i=1

li · ci − 1 = 0,

n−1∑

i=1

li · si + ln − 1 = 0,

s2i + c2i − 1 = 0, i = 1, . . . , n − 1,

si , ci ∈ [−1, 1], i = 1, . . . , n − 1.

(21)

In both cases, all li ’s are equal to 1. For n = 5 joints, we get n + 1 = 6 equations
in 2 · n − 2 = 8 variables.

The accuracy is set to ε = 1
64 = 0.015625.

Results are given in Tables 4 and 5.
The following notation is used in all of the tables:

– fun.evals, grad.evals, Hesse evals — numbers of functions evaluations, functions’
gradients andHessematrices evaluations (in the interval algorithmic differentiation
arithmetic),

– bisecs — the number of boxes bisections,
– preconds — the number of preconditioning matrix computations (i.e., performed
Gauss-Seidel steps),

– bis.Newt, del.Newt — numbers of boxes bisected/deleted by the Newton step,
– high.Newt.— the number of performedmultiple-precisionGauss-Seidel steps, i.e.,
the ones using the staggered arithmetic of the cxsc:l_interval datatype,

– ver.high.Newt, del.high.Newt — numbers of boxes verified/deleted by the afore-
mentioned multiple-precision Newton step,

– Sobol excl.— the number of boxes to be excluded generated by the initial exclusion
phase,
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Table 4 Computational results for well-determined problems

no multiple-prec multiple-prec. GS
problem (17) (18) (17) (18)

fun. evals 10,719 9,372,689 10,734 9,576,346

grad.evals 10,013 5,997,647 10,009 6,104,334

Hesse evals 40 260,376 40 260,997

bisections 45 48,650 45 48,902

preconds 93 76,191 119 77,161

bis.Newt. 12 11,041 12 11,127

del.Newt. 6 14,664 6 14,897

high.Newt. — — 26 413

ver.high.Newt. — — 0 0

del.high.Newt. — — 14 179

Sobol excl. 64 100 64 100

Sobol resul. 1,045 1,276 1,045 1,107

pos.boxes 26 413 12 234

verif.boxes 4 815 4 815

Leb.poss. 2e-100 1e-81 1e-127 9e-91

Leb.verif. 2e-105 2e-78 3e-103 7e-47

time (sec.) < 1 6 < 1 6

– Sobol resul. — the number of boxes resulting from the exclusion phase (cf. [46],
[47]),

– pos.boxes, verif.boxes — number of elements in the computed lists of boxes con-
taining possible and verified solutions,

– Leb.pos., Leb.verif. — total Lebesgue measures of both sets,
– time — computation time in seconds.

Comments It turns out that the multiple-precision version of the Newton operator is
costly (which is not surprising), but it allows to discard some of the boxes. In no case,
it was able to verify any new box: normal floating-point precision seems sufficient for
this purpose. For boxes that cannot be verified using the Newton operator, we have
yet other verification tools (based, e.g., on the theorem of Karol Borsuk or computing
the topological degree; cf., e.g., [25, 36, 53] or the survey in Section 5.4 of [50]).

Is it worthwhile to use the staggered-precision Newton? For the Puma problem,
14 out of 26 of the possible boxes have been discarded. For the Brent problem, the
improvement is even more significant (discarding 170 out of 420 boxes), but for the
underdetermined problems, the result is less impressive. While for the nR problem in
version (20), the additional test, while time-consuming, at least had discarded over 100
thousands of boxes (out of 1.8 millions), for problems (19) and (21), the results were
discarding 1.5 thousand boxes out of over 170 thousands, or less than 5 thousands
out of 1.7 millions, respectively. Provided the increase of the computation time, this
would rarely be worthwhile.
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Table 5 Computational results for underdetermined problems

no multiple-prec multiple-prec. GS
problem (19) (20) (21) (19) (20) (21)

fun. evals 1,323,947 174,162,828 29,921,974 1,323,947 174,162,828 29,921,974

grad.evals 1,520,372 47,644,353 32,624,082 1,520,372 47,644,353 32,624,082

Hesse evals 498 334,994 18,372 498 334,994 18,372

bisections 369,359 5,472,732 2,715,977 369,359 5,472,732 2,715,977

preconds 659,902 10,088,496 4,967,088 830,314 11,956,950 6,689,002

bis.Newt. 45 7,484 38 45 7,484 38

del.Newt. 79,285 2,816,973 532,702 79,285 2,816,973 532,702

high.Newt. — — — 170,412 1,868,454 1,721,914

ver.high.Newt. — — — 0 0 0

del.high.Newt. — — — 1,568 116,304 7,771

Sobol excl. 9 25 64 9 25 64

Sobol resul. 68 473 1,077 68 473 1,077

pos.boxes 170,412 1,868,454 1,721,914 168,844 1,752,150 1,714,143

verif.boxes 20,494 3,429 2,699 20,494 3,429 2,699

Leb.poss. 8e-18 0.000334 9e-12 8e-18 0.000294 9e-12

Leb.verif. 0.001195 1e-6 2e-11 0.001195 1e-6 2e-11

time (sec.) 1 41 11 3 1186 158

Obviously, implementing theKahan’s extended division (3) for staggered-precision
types, may improve these results.

5.2 Neural networks

Many important applications of numerical algorithms, in particular of AD, are related
to machine learning, a very hot and timely research field. In particular, we can use
them in investigating neural networks.

In [51], we have presented localizing all stationary points of a Hopfield-like net-
work. In these experiments, a well-known activation function has been used: the
sigmoid:

σ(t) = 1

1 + exp(−β · t) . (22)

This function is obviously smooth, as are many other activation functions: the
hyperbolic tangent, the arctan or ELU (Exponential-Linear Unit) [27].

Nevertheless, nowadays, non-smooth activation functions get more and more pop-
ular. We shall check how efficient ADHC will be, for problems using such functions.
Two such activation functions — ReLU (Rectified Linear Unit) and “Leaky ReLU”
— are going to be considered.
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Both ReLU and Leaky ReLU are significantly less expensive to compute, than ELU
or arctan. Formulae for these activation functions are:

ReLU (t) = max(t, 0) . (23)

and:
LeakyReLU (t) = max(t, α · t) , (24)

where α shows the amount of “leaking”. A typical value for α is 0.01.
Both functions can easily be implemented in ADHC, thanks to the existence of the

max() function, as described in Subsubsection 3.1.2.
The problem we are solving, as in [51] is to find all stationary points of a recurrent

Hopfield-like network (see Fig. 2).
It can be formulated as follows:

Find xi , i = 1, . . . , n, such that :

xi − σ
( n∑

j=1

wi j x j
)

= 0, for i = 1, . . . , n,
(25)

where σ(·.) is the activation function.
We consider the network with n = 8 neurons, storing 3 vectors. The first vector to

remember is (1, 1, . . . , 1). The second one consists of n
2 values +1 and n

2 values −1.
The third one consists of n − 2 values +1 and 2 values −1.

The neurons were trained (i.e., the weights wi j set), using the Hebb’s rule [27,
28]. The accuracy ε = 10−6 was used, when solving (25). Results can be found in
Table 6.

Fig. 2 A Hopfield-type neural network
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Table 6 Computational results for Problem (25)

no multiple-prec multiple-prec. GS
activation function (22) (23) (24) (22) (23) (24)

fun. evals 366,584 3,516 15,499 366,790 3,516 15,498

grad.evals 472,893 12,840 14,590 473,165 12,840 14,538

Hesse evals 3,608 16 8 3,608 16 8

bisections 28,738 274 280 28,755 274 280

preconds 32,898 282 288 32,906 291 297

bis.Newt. 0 0 0 0 0 0

del.Newt. 5,751 0 0 5,742 0 0

high.Newt. — — — 2 9 9

ver.high.Newt. — — — 0 0 0

del.high.Newt. — — — 0 8 8

Sobol excl. 62 63 63 62 63 63

Sobol resul. 1,179 1,052 1,052 1,179 1,098 1,052

pos.boxes 2 9 9 2 1 1

verif.boxes 1 0 0 1 0 0

Leb.poss. 6e-69 4e-49 3e-50 5e-128 4e-49 3e-50

Leb.verif. 6e-60 0.0 0.0 6e-60 0.0 0.0

time (sec.) 1 < 1 < 1 1 < 1 < 1

Comments The HIBA_USNE solver turned out to work very well with both the
ReLU and LeakyReLU functions. It is worth noting that the staggered-precision ver-
sion of the Newton operator (cf. the next subsection) has dealt perfectly with the
“clusters” of small boxes, close to the solution. In both cases, all of them one have
been deleted, resulting in a single narrow box.

Obviously, the above experiments were only a pure exemplification of using these
functions, and they have no practical meaning. In practice, themain advantage of using
activation functions like ReLU or LeakyReLU is that they do not saturate, which is
important for deep, multi-layered networks, but not for a single-layer network, as in
the presented examples.

As problems presented in this subsection were well-determined, we could conclude
that the multiple-precision GS operator turned out to be efficient for well-determined
problems, and inefficient for underdetermined ones. But such a statement would def-
initely be premature. It seems, this operator is powerful at reducing clusters of boxes
close to the solution (or to the approximate solution), but it is too computationally
intensive for large sets of boxes to verify. Would some randomization be helpful?

In general, proper heuristics need to be developed to decide whether to use the
staggered-precision Newton operator, or not; this will also be an interesting topic for
the further investigations.
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It is also worth noting that changing the length of the staggered-precision record
(the variable stagprec) did not seem to have any influence on the result. This
phenomenon should be investigated in the future as well.

6 Further work

During the development of the ADHC library, several interesting and important new
issues emerged. Many of them have already been mentioned throughout the paper, and
at least some of them are going to be investigated in the near future. Let us summarize
them briefly:

– adding more types that can be used in adhc_ari template class,
– providing interval and non-interval datatypes for other precision levels — in par-
ticular, for the half-precision floating-point types,

– providing sparse vectors and matrices for the staggered-precision arithmetic types
— this would allow efficient high-precision computations of derivatives,

– other investigations related to using the staggered-precision Newton operator,
– comparing of the efficiency of using weak derivatives and slopes,
– improving the procedure of hull-consistency enforcing, and possibly adding pro-
cedures for other consistencies (interval-consistency).

There is also another topic, related to using ADHC in solvers for optimization
or multicriteria analysis. In this case, it would be very worthwhile to enforce HC on
conditions related to the gradients of some functions, and not the functions themselves.
A good example is solving the F. John’s conditions [33, 38, 50] not only using the
interval Newton method, but also HC (or kB [23]) enforcing procedures.

The current version of ADHC allows to construct the expression tree of a function,
but not of its derivatives. This is another feature the author is going to add in future
versions, but it has not been decided yet on how it should be implemented.

7 Summary and conclusions

The paper has presented the ADHC C++ template library for Algorithmic Differenti-
ation and Hull-Consistency enforcing. Its efficiency has been compared with respect
to other AD libraries, supporting interval data types.

New possibilities provided by the aforementioned package have been described;
among them bounding subdifferentials of non-smooth functions, and computing the
derivatives’ values over various datatypes: interval and non-interval ones. Plans and
prospects of further research have also been presented. Particular focus has been put
on applications related to machine learning — one of the most timely and important
areas, where AD can be applied.
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Appendix: Survive-CXSC library

All of the author’s codes have been using C-XSC libraries [3] for years. The C-XSC
libraries have been developed at the University of Wuppertal (Germany), under the
leadership ofWalter Krämer. Unfortunately, since his passing away in 2014, the further
development of these tools have been stalled (the last version of this great software
piece is 2.5.4, released on 28th of February 2014).

Over the years, it has become a serious issue, as the C++ language is still evolving,
breaking the backward compatibility on occasion. In particular, the old-style exception
throwing declarations have become invalidated by the C++17 standard. Also, some of
the C-XSC classes turned out not to be thread-safe.

As the migration to another interval library would be cumbersome, and, what is
even more important, other interval libraries lack several useful features of C-XSC
(sparse matrix and vector classes, or collaboration with BLAS libraries), the author
was willing to stick to using C-XSC.

Hence, it was decided to fork the library, starting a new one: “survive-CXSC
library”. It is currently hosted on GitLab [12]. Its current number is 2.6.1, as the
author decided to keep consistent versioning with the original C-XSC.

Three kinds of changes have been done, up to now.
Exceptions throwing.No functions declare to throw any exceptions, now. If a func-

tion is to inform that it throws no exceptions, it is done using the modern noexcept,
and not the old-style throw() declaration.

Minor bug-fixes. The sqr() function was not correctly called for the
cxsc::complex class, due to inconsistent inline declarations. The typo has
been corrected.

The staggered-precision classes are now thread-safe. This is one of the most impor-
tant innovations with respect to C-XSC 2.5.4. It required changing several variable
declarations in the l_imath.cpp file (70 of them, to be precise) from static to
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thread-specific (a C++11thread_local keyword is used, now), and a single global
variable stagprec in file l_real.cpp.

Details can be found in the changelog or in the Git log files, of Survive-CXSC.
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54. Kubica, B.J., Woźniak, A.: A multi-threaded interval algorithm for the Pareto-front computation in a
multi-core environment. Lecture Notes in Computer Science 6126/6127 (2010). Accepted for publi-
cation. PARA 2008 Proceedings

55. Kulisch,U.: ComputerArithmetic andValidity - Theory. Implementation andApplications.DeGruyter,
Berlin, New York (2008)

56. Moore, R.E., Kearfott, R.B., Cloud,M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)
57. Ratschek, H., Voller, R.L.: What can interval analysis do for global optimization? Journal of Global

Optimization 1(2), 111–130 (1991)
58. Shary, S.P.: Finite-dimensional Interval Analysis. Institute of Computational Technologies, Sibirian

Branch of Russian Academy of Science, Novosibirsk (2013)
59. Vandevoorde, D., Josuttis, N.M.: C++ Templates: The Complete Guide. Addison-Wesley (2010)

123

http://dx.doi.org/10.1007/s11075-015-9980-y
http://dx.doi.org/10.1007/s11075-015-9980-y
https://doi.org/10.1016/j.jpdc.2017.03.009
https://doi.org/10.1016/j.jpdc.2017.03.009
https://doi.org/10.1007/978-3-030-13795-3


1704 Numerical Algorithms (2023) 94:1673–1704

60. Zimmer,M., Krämer,W., Hofschuster,W.: Sparse matrices and vectors in C-XSC. Reliable Computing
14, 138–160 (2010)

61. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm.
TIK-report 103 (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Algorithmic differentiation and hull-consistency enforcing using C++ template meta-programming
	Abstract
	1 Introduction
	2 Recapitulation of basic ideas
	2.1 Interval methods
	2.2 Algorithmic differentiation
	2.3 Hull-consistency
	2.4 Template meta-programming

	3 The ADHC library
	3.1 What is the ADHC library?
	3.1.1 Basic features of ADHC
	3.1.2 Using non-smooth functions
	3.1.3 Constructing the expression tree

	3.2 Computations over various types
	3.2.1 Pointwise types vs interval types
	3.2.2 Higher precision types
	3.2.3 Using sparse data types

	3.3 Intersection of two expressions

	4 Comparison of ADHC to its main competitors
	4.1 Competitors
	4.2 Benchmark problems
	4.3 Comparison
	4.4 Comments

	5 Examples and applications
	5.1 Multiple-precision Newton operator
	5.2 Neural networks

	6 Further work
	7 Summary and conclusions
	Acknowledgements
	Appendix: Survive-CXSC library
	References


