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Abstract
In this paper,we focus ondeveloping ahigh efficient algorithm for solvingd-dimension
time-fractional diffusion equation (TFDE). For TFDE, the initial function or source
term is usually not smooth, which can lead to the low regularity of exact solution.
And such low regularity has a marked impact on the convergence rate of numerical
method. In order to improve the convergence rate of the algorithm, we introduce the
space-time sparse grid (STSG)method to solveTFDE. In our study,we employ the sine
basis and the linear element basis for spatial discretization and temporal discretization,
respectively. The sine basis can be divided into several levels, and the linear element
basis can lead to the hierarchical basis. Then, the STSG can be constructed through
a special tensor product of the spatial multilevel basis and the temporal hierarchical
basis. Under certain conditions, the function approximation on standard STSG can
achieve the accuracy order O(2−J J ) with O(2J J ) degrees of freedom (DOF) for
d = 1 and O(2Jd) DOF for d > 1, where J denotes the maximal level of sine
coefficients. However, if the solution changes very rapidly at the initial moment, the
standard STSG method may reduce accuracy or even fail to converge. To overcome
this, we integrate the full grid into the STSG, and obtain the modified STSG. Finally,
we obtain the fully discrete scheme of STSG method for solving TFDE. The great
advantage of the modified STSG method can be shown in the comparative numerical
experiment.
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1 Introduction

Consider the d-dimensional (d = 1, 2, 3) TFDE

Dα
t u = a�u + f

(
u, x, t

)
, (x, t) ∈ Ω × (0, T ] (1)

with the homogeneous boundary condition

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ] (2)

and the initial condition
u(x, 0) = u0(x), x ∈ Ω,

where T > 0 is a fixed final time, a > 0 is the diffusion coefficient,� is the Laplacian,
f
(
u, x, t

)
is the source term or reaction term, and ∂Ω denotes the boundary of the

rectangular domain Ω . Without loss of generality, we always assume

Ω = (0, 1)d

in this paper. Here the operator Dα
t denotes the Caputo fractional derivative of order

α ∈ (0, 1) in temporal direction

Dα
t u(·, t) = 1

Γ (1 − α)

∫ t

0
(t − s)−α ∂

∂s
u(·, s)ds, (3)

where Γ (z) is the Gamma function defined by

Γ (z) =
∫ +∞

0
sz−1e−sds, Re(z) > 0.

The classical diffusion model is based on the assumption of Brownian motion. In
Brownian motion, the distribution of substance has linear growth of the mean squared
particle displacement with the time t . However, a lot of physical processes [6, 28]
cannot be accurately described by Brownian motion, and they have superlinear or sub-
linear mean square particle displacements with the time t . In contrast, the fractional
diffusion equation can describe these problemsmore accurately than integer-order dif-
fusion equation, and it has great application value. In particular, for TFDE, it has been
used to describe many models of practical applications, such as the electron transport
in Xerox photocopier [28], Modeling the epidemic control measures in overcoming
COVID-19 outbreaks [34], simulating the viscoelastic liquid [16], the dynamics of
latent liquidity in financial markets [2], and so on.
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In recent years, there many researches about the numerical methods for fractional
problem. The key for solving TFDE is how to discretize the time-fractional derivative.
A classical discrete method is L1 difference method [17]. Kopteva [14] gave a com-
plete convergence analysis of L1 difference method for standard TFDE. Mehandiratta
et al. [19–22] extended the method to TFDE on metric star graph. Ali et al. [1] con-
sider the variable-order fractional modified sub-diffusion equation. Moreover, other
discretization of time-fractional derivative such as generalized Jacobi spectral method
[4, 18] has also been used for solving TFDE. The time memory property of TFDE
imply that it requires a lot of computational cost to approximate the time-fractional
derivative, and so the research of fast algorithm is important. Jiang et al. [11] used the
sum of exponentials approximation to obtain the fast convolution algorithm. Salama
et al. [24–27] used hybrid Laplace transform-finite difference method to obtain the
high efficient scheme.

In this paper, we mainly consider the TFDE with nonsmooth data, and there are
two considerable problems. One problem is thememory of time-fractional derivatives,
which means that the nonsmooth data will affect the spatial regularity of solutions for
a long time. Thus, some spatial discrete methods, such as spectral method, high-order
finite element method, etc, will be difficult to give full play to their high-accuracy
advantages. Theother problem is that the solutionhas singularity at the initial time if the
source term f

(
u, x, t

)
is not compatiblewith the initial function [31]. For general cases,

the direct difference discretization cannot exceed the first-order accuracy in temporal
direction, even if the higher-order temporal basis function is selected. Therefore, many
researches are interested in the improved method of temporal discretization. A famous
method is to use the graded meshes instead of uniform meshes [14, 32, 37], and such
method can effectively deal with the initial singularity by using the non-equidistant
time stepsize. More recently, Yan et al. [35] developed the corrected L1 difference
method, and this method corrects the first step of the standard L1 difference scheme
and effectively overcomes the influence of initial singularity on the accuracy of the
algorithm. Based on such idea, the high-order BDF method can also be obtained [12].
These corrected schemes are also introduce in [13]. However, the algorithmwith high-
order accuracy requires that the solution of the equation satisfy the corresponding
regularity. For some cases, for example, if the source term f (u, x, t) is singular in
the temporal direction, the advantages of the higher-order algorithm may be greatly
weakened.

For the conventional time-stepping algorithm, which is called the full grid (FG)
method in this paper, the total DOF is equal to the spatial DOF multiplied by the
temporal DOF. When the convergence rate of the algorithm in spatial direction and
temporal direction is seriously limited, the high-accuracy computation of FG method
implies the expensive computational cost. In order to reduce the total DOF of high-
accuracy computation, we introduce the STSG method.

The sparse grid method is presented by Smolyak [30], and it has been used to
break “the curse of dimensionality” [3]. For sparse grid method, the selection of mul-
tilevel basis is necessary. The difference among different levels can be represented
by hierarchical basis [36], which can lead to the hierarchical transform and hierarchi-
cal coefficients. The hierarchical coefficients are generally decay from level to level,
and the decaying rate depends on the regularity of function and on the selection of
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basis functions. The numerical approximation requires a proper truncation of hier-
archical coefficients indices. If the decaying rate of hierarchical coefficients is slow
and anisotropic, the hyperbolic-type truncation may achieve nice results, and such
hyperbolic-type approximation can lead to the construction of sparse grid. In partic-
ular, for time-dependent problems, if the decaying rate of hierarchical coefficient is
anisotropic between spatial direction and temporal direction, then the STSG method
can be considered in approximating these problems [8, 9]. The STSGmethod does not
directly improve the convergence order in spatial or temporal direction. It only makes
an appropriate choice for the basis functions of tensor product type (the product of
spatial basis function and time basis function), so as to reduce the total DOF of the
fully discrete scheme.

As far as we know, although there are a few researches about sparse grid method
for space-fractional problems [10], there is no literature about STSGmethod for time-
fractional problems or other time memory problems. Therefore, our purpose is to
introduce the STSG method into the evolution equations with time memory property,
and the TFDE considered in this paper is an important class of these equations. In the
work of this paper, we combine the STSG method with the conventional algorithm of
TFDE, and obtain a new scheme for solving TFDE. When the regularity of TFDE in
the spatial direction is relatively weak, the STSG method has great advantages over
the FG method. Compared with some temporal higher-order algorithms for solving
TFDE, such as corrected L1 difference method, the comparative advantages of STSG
are reflected when the value of α is relatively large or the source term has strong
singularity in temporal direction. Moreover, if the solution changes very rapidly at
the initial moment, the standard STSG method may reduce accuracy or even fail
to converge. Therefore, we constructed the modified STSG. The numerical results
show that the modified STSG method has wider applicability than the standard STSG
method.

Besides, the sine pseudospectral method is used for spatial discretization in our
research. For low regularity problem, although the high-accuracy advantage is greatly
weakened, the sine pseudospectral method still has its value, because the obtained
algebraic equations are more convenient for computation. Moreover, we use the hier-
archical basis of linear element for temporal discretization. Such selection of spatial
basis and temporal basis is very common in FGmethod, but it is very rare in the existing
literatures about STSG researches. Therefore, the algorithm of function approximation
is also a research point of this paper.

The rest of the paper is organized as follows. In Section 2, we illustrate why it
is necessary to use STSG method for solving TFDE. In Section 3, by introducing
the temporal hierarchical basis and the spatial multilevel basis, the standard STSG
is constructed. Then, we obtain the discrete sine transform (DST) algorithm and the
function approximation error estimate on STSG. In Section 4, we obtain the modified
STSG, and the L1 difference method is used to obtain the algorithm for computing
the Caputo derivative. In Section 5, by using the L1 difference/sine pseudospectral
method on modified STSG, we obtain the fully discrete scheme for solving TFDE.
In Section 6, several numerical experiments are given to show the great advantage of
STSG method.
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2 Motivation

Let v(x) be a periodic odd function with a period of 2, and v ∈ L2
0(0, 1). Then, the

sine coefficients are defined as

v̂k = 2
∫ 1

0
v(x) sin kπxdx, k ∈ N+,

where N+ denotes the set of positive integer numbers. Here the absolute value of
the k-th coefficient | v̂k | is also called the k-th frequency spectrum for k ∈ N+. It
is well-known that the decaying rate of the frequency spectrum is directly related to
the regularity of the function in periodic domain. Then, we consider the following
problem.

Example 1 Consider the one-dimensional TFDE

Dα
t u = 0.1

∂2

∂x2
u, (x, t) ∈ (0, 1) × (0, 1],

with the homogeneous boundary condition (2) and the initial function

u0(x) = δ(x − 0.5), x ∈ (0, 1),

where δ(x) denotes the Dirac δ function.

The diffusion equation with Dirac δ initial function is very common in practical
problems, and it means that the diffusing substance is concentrated in one point at
the initial time. From the mathematical point of view, the Dirac δ function can be
defined as an element of dual space. According to Theorem 2.1 of [13], the weak
solution of Example 1 satisfies a certain regularity. For integer-order diffusion equation
(α = 1), the solution becomes a smooth function (infinitely differentiable function)
after a short moment. But for fractional problem (0 < α < 1), because the Caputo
fractional derivative (3) has the property of time memory, the singularity of the initial
function will have a lasting effect on the regularity of the solution. Figure 1 clearly
shows that the solution of equation in the case α = 0.5 is not smooth. Here we are
very concerned about the decaying property of frequency spectrum. Figure 2 shows
the decaying property of frequency spectrum at t = 0.1. For integer-order diffusion
equation, the frequency spectrum has exponentially decaying rate, and it implies that
we can achieve very high spatial approximation accuracy with only a few spatial basis
functions. But for TFDE, the decaying rate of frequency spectrum is greatly affected
by the low regularity of solution. Therefore, if the conventional algorithm is used
to solve such problem, the high-accuracy approximation requires a large number of
spatial basis functions, which may bring an expensive computational cost.

However, the algebraically decaying rate of frequency spectrum also implies that
the high-frequency coefficients are relatively small. For high-accuracy approxima-
tion, although the high-frequency coefficients cannot be ignored, their computation
can allow larger relative error. The main idea of STSG method is to discretize the
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Fig. 1 The solution at different time in Example 1 with α = 1 and α = 0.5

lower-frequency coefficients with smaller time stepsize and to discretize the higher-
frequency coefficientswith larger time stepsize,whereas the accuracy is close to that by
discretizing all coefficients with smallest time stepsize. In this way, the computational
cost of high-accuracy computation can be greatly reduced.

3 Standard space-time sparse grid

Without loss of generality, we only consider the function defined on time interval [0, 1]
in this section. Let θs,τ (t) be a linear element with center point s and width 2τ , i.e.,

θs,τ (t) =
{
1 − 1

τ
|t − s|, for t ∈ (

s − τ, s + τ
)
,

0, for else,
s ∈ R, τ ∈ R+.

For any level J ∈ N0 (N0 denotes the natural number including zero), let {θs,2−J }s∈TJ

be temporal basis of level J , where

TJ = {n2−J }2Jn=0.

Fig. 2 The frequency spectrum at t = 0.1 in Example 1
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Obviously, the basis functions of adjacent levels satisfy the relation

θs,21−J (t) = θs,2−J (t) + 1

2
θs−2−J ,2−J (t) + 1

2
θs+2−J ,2−J (t), s ∈ TJ−1. (4)

Then, we can define the temporal linear element spaces WJ and their hierarchical
increment spaces W̌J as

WJ = span
{
θs,2−J

}
s∈TJ

, W̌J = span
{
θs,2−J

}
s∈ŤJ

, J ∈ N0,

where

ŤJ =
{
T0, for J = 0,
TJ\TJ−1, for J > 0.

Here {θs,2−J }s∈ŤJ
is the temporal hierarchical basis of level J . For any function W ∈

WJ , we have
W (t) =

∑

s∈TJ

W (s)θs,2−J (t).

Then, using the relation (4), we can easily prove that the functionW (t) can be written
as the linear combination of multilevel hierarchical basis

W (t) =
J∑

j=0

∑

s∈Ť j

W̌sθs,2− j (t), (5)

where the hierarchical coefficients are given by the hierarchical transform

W̌s =
{
W (s), for s ∈ T0,
W (s) − 1

2

(
W (s − 2− j ) + W (s + 2− j )

)
, for s ∈ Ť j , j > 0.

(6)

Let {ϕk}k∈Nd+ be the d-dimensional sine basis, i.e.,

ϕk(x) =
d∏

j=1

sin πk j x j , k ∈ N
d+, x ∈ Ω,

where N+ denotes the set of positive integers. Then, any function v ∈ L2
0 = L2

0(Ω)

can be expanded as
v(x) =

∑

k∈Nd+

v̂kϕk(x), x ∈ Ω,

where the multi-dimensional sine coefficients are given by

v̂k = 2d
∫

Ω

v(x)ϕk(x)dx, k ∈ N
d+. (7)
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For any level J ∈ N0, we can define the index set

KJ =
{
1, 2, · · · , 2J − 1

}d
,

the spatial grid points

XJ =
{
2−J , 2 · 2−J , · · · , (2J − 1)2−J

}d
,

and the spatial function space

VJ = span{ϕk}k∈KJ .

In particular, we assume that

K0 = ∅, X0 = ∅, V0 = {0}.

Then, the projection operator and the interpolation operator are defined as

PJ : L2
0Ω → VJ

: v(x) �→ PJv(x) =
∑

k∈KJ

v̂kϕk(x), (8)

and

IJ : L2
0Ω → VJ

: v(x) �→ V (x) = IJv(x) =
∑

k∈KJ

V̂kϕk(x), (9)

respectively, where {v̂k}k∈KJ is given by (7), and the discrete sine coefficients
{V̂k}k∈KJ are given by the DST

V̂k = 2−Jd
∑

ξ∈XJ

v(ξ)ϕk(ξ).

It is well-know that the algorithm of fast Fourier transform can be used in the compu-
tation of DST, so the computational cost of DST is of order O(2Jd J ).
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Using the tensor product construction of the multilevel basis in space and the hier-
archical basis in time, we can construct the standard STSG as

index set: CJ =
J−1⋃

j=0

KJ− j × Ť j ,

grid points: GJ =
J−1⋃

j=0

XJ− j × Ť j ,

function space: UJ =
J−1⊕

j=0

VJ− j × W̌ j , (10)

with the level J . Figure 3 gives an example of STSG.
Any function U ∈ UJ can be written as the form

U (x, t) =
J−1∑

j=0

∑

s∈Ť j

θs,2− j (t)
∑

k∈KJ− j

ϕk(x)
ˇ̂Uk,s, (11)

where
{ ˇ̂Uk,s

}
k∈KJ− j ,s∈Ť j

are the sine coefficients ofU (x, t) on the space VJ− j × W̌ j

for j = 0, 1, · · · , J − 1. Let

Ǩ j = K j\K j−1, j = 1, 2, · · · , J ,

Fig. 3 Grid points (left) and index set (right) of STSG with d = 1 and J = 5
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then

U (x, t) =
J−1∑

j=0

∑

s∈Ť j

θs,2− j (t)
J− j∑

j ′=1

∑

k∈Ǩ j ′

ϕk(x)
ˇ̂Uk,s

=
J∑

j ′=1

∑

k∈Ǩ j ′

ϕk(x)
J− j ′∑

j=0

∑

s∈Ť j

θs,2− j (t) ˇ̂Uk,s

=
∑

k∈KJ

ϕk(x)Ûk(t). (12)

Therefore, the sine coefficients of U (x, t) satisfy

Ûk(t) =
J− j ′∑

j=0

∑

s∈Ť j

θs,2− j (t) ˇ̂Uk,s, k ∈ Ǩ j ′ , j ′ = 1, 2, · · · , J .

From (5) and (6), it follows from (12) that

ˇ̂Uk,s =
{
Ûk(s), for s ∈ T0,
Ûk(s) − 1

2

(
Ûk(s − 2− j ) + Ûk(s + 2− j )

)
, for s ∈ Ť j , j > 0.

(13)

Moreover, let

Ǔs(x) =
∑

k∈KJ− j

ϕk(x)
ˇ̂Uk,s, s ∈ Ť j , j = 0, 1, · · · , J − 1.

Then, (11) yields

U (x, t) =
J−1∑

j=0

∑

s∈Ť j

Ǔs(x)θs,2− j (t) =
∑

s∈TJ−1

U (x, s)θs,21−J (t), (14)

and it is easy to obtain the hierarchical transform on grid function as

Ǔs(x) =
{
U (x, s), for s ∈ T0,
U (x, s) − 1

2

(
U (x, s − 2− j ) +U (x, s + 2− j )

)
, for s ∈ Ť j , j > 0,

(15)
For simplicity, we use the form of vector to represent the relevant data. Let

U = (U (ξ , s))(ξ ,s)∈GJ , Û = (Ûk(s))(k,s)∈CJ .

Then, the derivations (11), (12) and (14) show a way to compute the coefficients Û
from the grid function U. Such process is called the DST on standard STSG, and it is
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specifically described by Algorithm 1. Here we use the following linear operators to
represent the DST on standard STSG

F : R
GJ → R

CJ

: U �→ Û = FU. (16)

Algorithm 1 is obviously reversible, and so there exists an operator F−1 such that

U = F−1Û.

Algorithm 1 Discrete sine transform (16) on standard STSG.

1: Compute the hierarchical grid function (Ǔs (ξ))(ξ ,s)∈GJ
via the hierarchical transform (15);

2: Compute the hierarchical sine coefficients { ˆ̌Uk,s }k∈KJ− j
from (Ǔs (ξ))ξ∈XJ− j

via spatial

DST for s ∈ Ť j , j = 0, 1, · · · , J − 1.
3: Compute the sine coefficients via the inverse of hierarchical transform (13) as

Ûk(s) =
⎧
⎨

⎩

ˆ̌Uk,s , for s ∈ T0,ˆ̌Uk,s + 1
2

(
Ûk(s − 2− j ) + Ûk(s + 2− j )

)
, for s ∈ Ť j , j > 0.

Thanks to Lemma 2.5 in [9], the DOF of STSG is of orderO(2J J ) andO(2Jd) for
d = 1 and d > 1, respectively. Moreover, the computational cost of Algorithm 1 can
be estimated by the following theorem.

Theorem 1 The computational cost of Algorithm 1 is of orderO(2J J 2) for d = 1 and
O(2Jd J ) for d > 1.

Proof For Algorithm 1, the computational costs of step 1 and step 3 have the same
order as the number of grid points, and sowe just need to care about step 2. The number
of elements in Ť j is 2 and 2 j−1 for j = 0 and j = 1, 2, · · · , J − 1, respectively. The
computational cost of spatial DST in grid XJ− j is less than C2(J− j)d(J − j), where
C is a constant independent of J and j .

Then, for one-dimensional case, the computational cost is less than

C2J+1 J + C
J−1∑

j=1

2 j−12J− j (J − j) = C2J+1 J + C2J−1
J−1∑

j=1

(J − j),

and for multi-dimensional case, the computational cost is less than

C2Jd+1 J + C
J−1∑

j=1

2 j−12(J− j)d(J − j) ≤ C2Jd+1 J + C2Jd−1 J
J−1∑

j=1

2 j(1−d).
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Note that
∑J−1

j=1 (J − j) = O(J 2) and
∑J−1

j=1 2
j(1−d) = O(1), and we can obtain the

result of original proposition. �	
Define the Hilbert space

Hβ
0 = {v : ‖v‖β < ∞}, where ‖v‖β =

( ∑

k∈Nd+

| k |2β | v̂k |2
) 1

2

. (17)

Especially, it is obvious that H0
0 = L2

0 since

‖v‖0 =
∑

k∈Nd+

| v̂k |2=
∫

Ω

| v(x) |2 dx = ‖v‖L2 .

Then, the function approximation on STSG is defined as

ĨJ : L2([0, 1],H0
0) → UJ

: u(x, t) �→ U (x, t) = ĨJ u(x, t) =
J−1∑

j=0

∑

s∈Ť j

θs,2− j (t)IJ− j ǔs(x), (18)

where the notation ǔs(x) is given by (15). For (18), it is easy to prove

U (ξ , s) = u(ξ , s), ∀(ξ , s) ∈ GJ .

Theorem 2 Suppose that u ∈ L2([0, 1],Hβ
0 ) for a fixed real number β > d

2 , and the
approximation U = ĨJ u is shown in (18). Then,

|||u −U |||0 � 2−J min{β,1} J
∣∣∣∣

∣∣∣∣

∣∣∣∣
∂

∂t
u

∣∣∣∣

∣∣∣∣

∣∣∣∣
β

+ 2−Jβ
(‖u(·, 0)‖β + ‖u(·, 1)‖β

)
(19)

if ∂
∂t u ∈ L2([0, 1],Hβ

0 ), and

|||u −U |||0 � 2−J min{β,2} J
∣∣
∣∣

∣∣
∣∣

∣∣
∣∣
∂2

∂t2
u

∣∣
∣∣

∣∣
∣∣

∣∣
∣∣
β

+ 2−Jβ
(‖u(·, 0)‖β + ‖u(·, 1)‖β

)
(20)

if ∂2

∂t2
u ∈ L2([0, 1],Hβ

0 ), where

|||u|||β =
( ∫ 1

0
‖u(·, t)‖2βdt

) 1
2

,

and the notation A � B means that there exists a number C independent of u(x, t)
and J , such that A ≤ CB.
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Proof Here we only prove (20), because the proof of (19) is similar.
At first, the conditions u ∈ L2([0, 1],Hβ

0 ) and ∂2

∂t2
u ∈ L2([0, 1],Hβ

0 ) can easily
yield

max
0≤t≤1

‖u(·, t)‖β < ∞, max
0≤t≤1

∥∥∥∥
∂

∂t
u(·, t)

∥∥∥∥
β

< ∞.

Let u∗ be the temporal discretization of u, i.e.,

u∗(x, t) =
∑

s∈TJ−1

θs,21−J (t)u(x, s).

Through the error estimate of linear element approximation [15], we can obtain

∣
∣
∣
∣
∣
∣u − u∗∣∣∣∣∣∣

0 � 2−2J
∣∣
∣∣

∣∣
∣∣

∣∣
∣∣
∂2u

∂t2

∣∣
∣∣

∣∣
∣∣

∣∣
∣∣
0
. (21)

Using the similar proof of Theorem 2.3 in [29], we can obtain the error estimate of
sine interpolation

‖v − I jv‖0 � 2− jβ‖v‖β, ∀ j > 0, β >
d

2
.

Thus,

∣∣∣∣∣∣u∗ −U
∣∣∣∣∣∣
0 ≤

J−1∑

j=0

∣∣∣∣

∣∣∣∣

∣∣∣∣
∑

s∈Ť j

θs,2− j (ǔs − IJ− j ǔs)

∣∣∣∣

∣∣∣∣

∣∣∣∣
0

=
J−1∑

j=0

( ∑

s∈Ť j

∫ s+2− j

s−2− j

∥∥θs,2− j (t)
(
ǔs − IJ− j ǔs

)∥∥2
0dt

) 1
2

=
J−1∑

j=0

( ∑

s∈Ť j

∥∥ǔs − IJ− j ǔs
∥∥2
0

∫ s+2− j

s−2− j
| θs,2− j (t) |2 dt

) 1
2

≤
J−1∑

j=0

2− j
2

( ∑

s∈Ť j

∥
∥ǔs − IJ− j ǔs

∥
∥2
0

) 1
2

�
J−1∑

j=0

2− j
2−2(J− j)β

( ∑

s∈Ť j

∥∥ǔs
∥∥2

β

) 1
2

. (22)
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For j ≥ 1, from the Taylor expansion of integral remainder, we have

ǔs(x) =1

2

∫ s+2− j

s−2− j

(|s − t | − 2− j ) ∂2

∂t2
u(x, t)dt

=1

2

∑

k∈Nd+

ϕk(x)
∫ s+2− j

s−2− j

(|s − t | − 2− j )û′′
k(t)dt,

and so

∥∥ǔs
∥∥

β
=1

2

( ∑

k∈Nd+

| k |2β
∣∣∣∣

∫ s+2− j

s−2− j

(|s − t | − 2− j )û′′
k(t)dt

∣∣∣∣

2) 1
2

≤1

2

( ∑

k∈Nd+

| k |2β
∫ s+2− j

s−2− j

∣∣ | s − t | −2− j
∣∣2dt

∫ s+2− j

s−2− j

∣∣û′′
k(t)

∣∣2dt
) 1

2

≤1

2

(
2−3 j

∑

k∈Nd+

|k|2m
∫ s+2− j

s−2− j

∣
∣û′′

k(t)
∣
∣2dt

) 1
2

.

Substituting the above inequality into (22), it follows that

∣∣∣∣∣∣u∗ −U
∣∣∣∣∣∣
0 �

J−1∑

j=1

2−2 j−(J− j)β
( ∑

s∈Ť j

∑

k∈Nd+

|k|2β
∫ s+2− j

s−2− j

∣∣û′′
k(t)

∣∣2dt
) 1

2

+ 2−Jβ
(‖u(·, 0)‖β + ‖u(·, 1)‖β

)

=2−Jβ

∣∣∣
∣

∣∣∣
∣

∣∣∣
∣
∂2u

∂t2

∣∣∣
∣

∣∣∣
∣

∣∣∣
∣
β

J−1∑

j=1

2 j(β−2) + 2−Jβ
(‖u(·, 0)‖β + ‖u(·, 1)‖β

)

≤2−J min{β,2} J
∣∣∣∣

∣∣∣∣

∣∣∣∣
∂2u

∂t2

∣∣∣∣

∣∣∣∣

∣∣∣∣
β

+ 2−Jβ
(‖u(·, 0)‖β + ‖u(·, 1)‖β

)
. (23)

From (21), (23) and the norm inequality

|||u −U |||0 ≤ ∣
∣
∣
∣
∣
∣u − u∗∣∣∣∣∣∣

0 + ∣
∣
∣
∣
∣
∣u∗ −U

∣
∣
∣
∣
∣
∣
0 ,

the conclusion of the original proposition can be obtained. �	
Compare the discretization (18) with the FG discretization

U∗(x, t) =
M∑

m=0

θ m
M , 1

M
(t)IJ u

(
x,

m

M

)
.
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The FG approximation requires O(2JdM) DOF, and it is easy to prove the error
estimate

∣∣∣∣∣∣u −U∗∣∣∣∣∣∣
0 � 1

M2

∣∣∣∣

∣∣∣∣

∣∣∣∣
∂2u

∂t2

∣∣∣∣

∣∣∣∣

∣∣∣∣
0
+ 2−Jβ max

0≤t≤1
‖u(·, t)‖β. (24)

If the function u(x, t) has low regularity in spatial direction, the constant β shown
in Theorem 2 or in inequality (24) cannot be too large. In particular, if β is equal to
2 and M is chosen to be proportional to 2J , then the accuracy order in (24) is the
same to that in (20). But the FG approximation requires O(2J (d+1)) DOF, whereas
the STSG approximation only requires O(2J J ) DOF for d = 1 and O(2Jd) DOF
for d > 1. When β is not equal to 2, the approximation effects for such two kinds of
grids need to be discussed in detail. In general, the advantages of STSG method in
saving DOF are very significant if β is not too far from 2. However, it should be noted
that the additional condition ∂

∂t u ∈ L2([0, 1],Hβ
0 ) or ∂2

∂t2
u ∈ L2([0, 1],Hβ

0 ) shown in
Theorem 2 is necessary. Such condition implies that the spatial regularity is not very
related to the temporal derivative, and it is an important factor for STSG method to
reflect its advantages.

4 Approximating Caputo derivative onmodified space-time sparse
grid

Unfortunately, for TFDE (1), the condition ∂
∂t u ∈ L2([0, T ],Hβ

0 ) or ∂2

∂t2
u ∈

L2([0, T ],Hβ
0 ) in Theorem 2 is usually not satisfied, because the solution u(x, t)

usually has the singularity at the initial time [31]. From another point of view, the high-
frequency coefficients of the exact solution may change rapidly at the initial moment.
In the construction of standard STSG (10), the large time stepsizes are employed to
approximate the high-frequency coefficients, and the computation of large time step-
sizes is not suitable to simulate the rapid change. In fact, the advantage of the standard
STSG is reflected in simulating the spatial low regularity, but it is worse than FG in
dealing with the singularity of initial time. Therefore, for some cases of TFDE, the
standard STSG method may bring bad results.

For this problem, our approach is to compute the TFDE through the FG method in
the first time step, and then the standard STSG is used to compute the equation in the
remaining time intervals. And such approach can lead to the modified STSG, which
will be introduced later.

The time interval [0, T ] can be divided as

0 ≤ T0 < T1 < · · · < TL = T , (25)

where L is a given positive integer. For the approach of modified STSG, we select T0
as the minimum time stepsize in STSG. Then, for any given maximal level J , we have

Tn − Tn−1 = �T , n = 1, 2, · · · , L,

T0 = �T

2J−1 . (26)
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Then, T0 and �T can be solved as

T0 = T

2J−1L + 1
, �T = 2J−1T

2J−1L + 1
.

According to the related definitions of standard STSG (10), we can define the index
set and the grid points of the modified STSG as

index set: C(J ,L) =
L⋃

n=0

CnJ ,

grid points: G(J ,L) =
L⋃

n=0

Gn
J , (27)

where

C0J = {
(k, s) : k ∈ KJ , s = 0 or T0

}
,

G0
J = {

(ξ , s) : ξ ∈ XJ , s = 0 or T0
}
,

and
CnJ = {(

k, s�T + Tn−1
) : (k, s) ∈ CJ

}
,

Gn
J = {(

ξ , s�T + Tn−1
) : (ξ , s) ∈ GJ

}
,

n = 1, 2, · · · , L.

It is obvious that G0
J is the FG with only one time step, and Gn

J (n = 1, 2, · · · , L) are
a group of standard STSG. Figure 4 proposes an example of the modified STSG.

To ensure the feasibility of the modified STSG (27), we need to assume that the
exact solution u(x, t) is singular only at the initial time, and so the norm

∥∥ ∂
∂t u(·, t)∥∥

β

or
∥∥∥ ∂2

∂t2
u(·, t)

∥∥∥
β
is boundedwith respect to t ∈ [T0, T ]. For the computation of interval

[0, T0], we employ the FG method with maximal spatial level. And the FG method

Fig. 4 Grid points (left) and index set (right) of the modified STSG with d = 1, J = 5, L = 2 and T = 1
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only needs to be used in the computation of the first time step, because the solution is
no longer singular after the first time step.

Let
U (0)
J = span

{
ϕk(x)θs,T0(t) : (k, s) ∈ C0J

}
.

Then, we say
U ∈ U (J ,L),

if there exists U 0 ∈ U (0)
J and U 1,U 2, · · · ,UL ∈ UJ such that

Un−1(x, 1) = Un(x, 0), n = 1, 2, · · · , L

and

U (x, t) =
⎧
⎨

⎩

U 0(x, t), for t ∈ [0, T0],
Un

(
x, t−Tn−1

�T

)
, for t ∈ [Tn−1, Tn], n = 1, 2, · · · , L.

Any function U ∈ U (J ,L) can be written as the form

U (x, t) =
∑

k∈KJ

Ûk(t)ϕk(x).

Let
Un = (

U (ξ , s)
)
(ξ ,s)∈Gn

J
,

Ûn = (
Ûk(s)

)
(k,s)∈Cn

J
,

n = 0, 1, · · · , L. (28)

Similar to Algorithm 1, we can also obtain the DST on general STSG

Ûn = FUn, n = 1, 2, · · · , L.

Then, we will discuss the solution of the Caputo derivative Dα
t Ûk(t) for k ∈ KJ in

this paragraph. Let

τ j = �T

2 j
, j = 0, 1, · · · , J − 1.

According to the index set in (27), Ûk(t) can be expanded as

Ûk(t) =

⎧
⎪⎨

⎪⎩

Ûk(0)θ0,T0(t) + Ûk(T0)θT0,T0(t), for t ∈ [0, T0],
2J− j L∑

m=0
Ûk(T0 + mτJ− j )θT0+mτJ− j ,τJ− j (t), for t ∈ [T0, T ],

for k ∈ Ǩ j . Note that
d

dt
Ûk(t) = Ûk(T0)

T0
− Ûk(0)

T0
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for t ∈ (0, T0), and

d

dt
Ûk(t) = Ûk(T0 + mτJ− j )

τJ− j
− Ûk(T0 + (m − 1)τJ− j )

τJ− j

for t ∈ (T0 + (m − 1)τJ− j , T0 + mτJ− j ), m = 1, 2, · · · , 2J− j L and k ∈ Ǩ j . Thus,
by substituting the expression of d

dt Ûk(t) into the Caputo fractional derivative (3), we
can obtain

Dα
t Ûk(t)

∣
∣∣
t=T0+MτJ− j

= 1

Γ (1 − α)

∫ T0

0
(T0 + MτJ− j − r)−α d

dr
Ûk(r)dr

+
M∑

m=1

1

Γ (1 − α)

∫ T0+mτJ− j

T0+(m−1)τJ− j

(T0 + MτJ− j − r)−α d

dr
Ûk(r)dr

= (T0 + MτJ− j )
1−α − (MτJ− j )

1−α

Γ (2 − α)T0

(
Ûk(T0) − Ûk(0)

)

+
M∑

m=1

bM−m

τα
J− j

(
Ûk(T0 + mτJ− j ) − Ûk(T0 + (m − 1)τJ− j )

)

= (T0 + MτJ− j )
1−α − (MτJ− j )

1−α

Γ (2 − α)T0

(
Ûk(T0) − Ûk(0)

) − bM−1

τα
J− j

Ûk(T0)

+
M−1∑

m=1

bM−m − bM−m−1

τα
J− j

Ûk(T0 + mτJ− j ) + b0
τα
J− j

Ûk(T0 + MτJ− j ) (29)

for M = 1, 2, · · · , 2J− j L , where

bl = (l + 1)1−α − l1−α

Γ (2 − α)
, l ∈ N0.

The formula (29) is called the L1 difference method [17]. For convenience of compu-
tation, we assume that 2J− j (n − 1) ≤ M ≤ 2J− j n for n = 1, 2, · · · , L , and (29) can
be written as

Dα
t Ûk(t)

∣∣∣
t=s=T0+MτJ− j

= LαÛk(s) + R̂k,s, (30)
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where

LαÛk(s) =
M−1∑

m=2J− j n

bM−m − bM−m−1

τα
J− j

Ûk(T0 + mτJ− j ) + b0
τα
J− j

Ûk(T0 + MτJ− j )

R̂k,s = (T0 + MτJ− j )
1−α − (MτJ− j )

1−α

Γ (2 − α)T0

(
Ûk(T0) − Ûk(0)

) − bM−1

τα
J− j

Ûk(T0)

+
2J− j n−1∑

m=1

bM−m − bM−m−1

τα
J− j

Ûk(T0 + mτJ− j ).

Using the definition of the vector (28), the discretization of the Caputo derivative (30)
in the function space U (J ,L) can be written in the form of vector as

Dα
t Û

n = LαÛn + R̂n,

where

Dα
t Û

n = (
Dα
t Ûk(s)

)
(k,s)∈Cn

J
, LαÛn = (

LαÛk(s)
)
(k,s)∈Cn

J
, R̂n = (

R̂k,s
)
(k,s)∈Cn

J
,

for n = 1, 2, · · · , L . And it is obvious that R̂n is independent of Ûn .

5 Fully discrete algorithm

In this section, the fully discrete algorithm of TFDE (1) is obtained. As described in
the previous section, the time interval [0, T ] can be divided as (25). We construct a
FG with only one time step on [0, T0] if T0 > 0, and we construct several standard
STSGs on [T0, T ]. Therefore, the numerical solution U ∈ U (J ,L) of TFDE (1) can be
obtained via the following three steps:

1. Compute Ûk(0) for k ∈ KJ ;
2. Compute Ûk(T0) for k ∈ KJ , if T0 > 0;
3. Compute Ûk(s) for (k, s) ∈ CnJ , n = 1, 2, · · · , L .

Step 1 can be obtained by the projection (8) or the interpolation (9) of initial function
u0(x). Step 2 can be obtained by L1 difference method with only one time step, and
the scheme is

Ûk(T0) − Ûk(0)

T α
0 Γ (2 − α)

+ aπ2|k|22Ûk(T0) = f̂k(T0),

where { f̂k(t)}k∈KJ are the discrete sine coefficients of function f (u(x, t), x, t).
Thus wemainly discuss step 3. the negative Laplacian−� corresponds to the linear

operator � as

�Ûn = (
π2|k|22Ûk(s)

)
(k,s)∈Cn

J
, n = 1, 2, · · · , L,
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where |k|2 = (
k21 + k22 + · · · + k2d

) 1
2 , and Ûn is defined in (28). Let

fn(Un) = (
f (U (ξ , s), ξ , s)

)
(ξ ,s)∈Cn

J
,

then the numerical scheme of STSG method for TFDE (1) is

LαÛn + a�Ûn = Ffn(F−1Ûn) − R̂n, n = 1, 2, · · · , L, (31)

where Lα and R̂n are given by (30). The algebraic equations of the scheme (31) can
be solved by the iteration method

(
Lα + a� + cn,p

opt I
)
Ûn,p = Ff̃n,p(F−1Ûn,p−1) − R̂n, p = 1, 2, · · · , (32)

where Ûn,p = (
Û p
k,s

)
(k,s)∈Cn

J
is the approximation ofUn obtained by the p-th iteration,

cn,p
opt is an optimal factor given by

cn,p
opt = max

{
0, max

ξ∈XJ

{
− ∂

∂u
f
(
u, ξ , Tn

)∣∣∣
u=U p(ξ ,Tn)

}}
,

and
f̃n,p(F−1Ûn,p−1) = fn

(
F−1Ûn,p−1) + cn,p

opt F
−1Ûn,p−1.

The initial vector Ûn,0 of the iteration (32) is computed by

LαÛn,0 + a�Ûn,0 = −R̂n,

and the termination condition is given by

( ∑

k∈KJ

∣∣Û p
k,Tn

− Û p−1
k,Tn

∣∣2
) 1

2 ≤ ε (33)

with a fixed threshold ε.
For the numerical scheme (31), the corresponding stability analysis and conver-

gence analysis can be carried out in three cases. These three cases correspond to the
three forms of the source term f (u, x, t), and that is the form without u, the general
linear form and the nonlinear form. For the first case, the analysis is relatively simple
since the basis function in the equation is separable. For the second case, the stability of
the numerical solution can be obtained by proving the positive definiteness of the fully
discrete matrix, and then the convergence can be proved by using the results obtained
in the first case. For the third case, we mainly focus on several special problems, and
the analysis strategy depends on the specific form of each problem. By using such
analysis method, we can prove that the scheme (31) is stable and convergent of order
O(2−J J ). The detailed proving process is relatively complicated, and it will be given
elsewhere. In the present paper, we only concentrate on the algorithm design and the
numerical tests of the STSG method.
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6 Numerical experiment

In this section, we present several numerical examples to show the advantage of
modified STSGmethod in solvingTFDE (1).All simulations of this section are accom-
plished with C++ programming language (Microsoft Visual Studio 2010 development
environment), and run on the computer with an Intel (R) Core (TM) i5-4590 CPU
and 8.00 GB of RAM. We both consider the standard STSG method and the modified
STSG method, which are characterized as T0 = 0 and T0 satisfies (26) in the division
of time interval (25). For comparison, we also consider the results computed by the
standard L1 difference [13, 35]/sine pseudospectral method and the corrected L1 dif-
ference/sine pseudospectral method on FG, and these two methods are referred to as
standard FG method and corrected FG method respectively in the following content.
For FG method, we select the index set

(1, 2, · · · , K )d

for spatial discretization and the grid points

{0, T /M, · · · , T (M − 1)/M, T }
for temporal discretization, where K and M are given positive integers. Moreover, for
the iterative termination condition (33) of algebraic equations, we apply the thresh-
old ε = 10−10 in all numerical experiments, and this threshold is also used for the
corresponding FG method.

For the error results, we mainly consider the relative error at the final time T , which
is computed by

ET = ‖uref(·, T ) − u∗(·, T )‖0
‖uref(·, T )‖0 ,

where the norm ‖·‖0 is defined in (17), u∗ is test solution, and uref is the reference solu-
tion solved by the numerical method with enough accuracy. We also concerned about
the convergence order. For an algorithm with two sets of computational parameters,
suppose that E1, E2 and N1, N2 are the relative errors and the total DOFs, respectively.
Then, the convergence order is calculated by

Order = ln E1 − ln E2

ln N2 − ln N1
.

Example 2 Consider the one-dimensional TFDE

Dα
t u = 0.1

∂2

∂x2
u + (1− tγ )(1− u)(1− cos 2πx), γ > 0, (x, t) ∈ (0, 1)× (0, 1]

with the homogeneous boundary condition (2) and the linear element initial function

u0(x) =
{
2x, for 0 ≤ x ≤ 0.5,
2(1 − x), for 0.5 < x ≤ 1.
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We firstly consider the case of γ = 1. Figure 5 shows that the solutions at t = 1 are
similar in the case of α = 0.5 and α = 0.2. From Fig. 6, their frequency spectrum is
about fourth-power decaying rate, and this implies that the solutions are not infinitely
smooth.

In this example, we test the error of the numerical method through the reference
solutions obtained by modified STSG method with J = 17, L = 16. Figure 7 shows
the convergence behavior. For the standard FG method, the convergence rate is very
slow for M/K = 1, whereas the starting accuracy is too low for M/K = 16. On
the whole, the accuracy of modified STSG method is significantly higher than that
of standard FG method for similar DOF. Figure 8 shows the relationship between the
DOF and the CPU time cost.When the DOF are similar, the CPU time cost of modified
STSG method may be more. This is because the algebraic system obtained modified
STSG method is more complex than that obtained by standard FG method, and such
algebraic system requires more iterative steps to compute.

We subjectively select some “optimized” computational parameters in the numer-
ical method. Tables 1 and 2 give the representative results in the case of α = 0.2 and
α = 0.8, respectively. From the whole convergence process, the convergence order of
STSG method is close to first order, and such order is similar to that of L1 difference
approximation. In contrast, the convergence order of standard FG method is signif-
icantly lower than first order. In this example, we give the comparison of the STSG
method and the corrected FG method. For the case of α = 0.2, the STSG method
requires fewer DOF to achieve similar accuracy, but the corrected FGmethod requires
less CPU time cost, so the advantages of STSG method are not significant. But for
the case of α = 0.8, the advantage of corrected FG method is greatly weakened, this
is because the corrected L1 difference scheme is of order O(τ 2−α), which decrease
with the increase of α. By comparison, the convergence behavior of STSG method
is basically not affected by the value of α. Moreover, the convergence behavior of
the standard STSG method and the modified STSG method is very similar for both
α = 0.2 and α = 0.8.

Fig. 5 The solution at t = 1 in Example 2 (γ = 1)
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Fig. 6 The frequency spectrum at t = 1 in Example 2 (γ = 1)

Fig. 7 Convergence behavior of modified STSG method and standard FG method in Example 2 (γ = 1)
with α = 0.2 (left) and α = 0.8 (right)

Fig. 8 The CPU time cost of modified STSG method and standard FG method in Example 2 (γ = 1) with
α = 0.2 (left) and α = 0.8 (right)
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Table 1 Representative numerical results in Example 2 with α = 0.2, γ = 1

CPU (s) DOF ET Order

Standard STSG method

J = 5, L = 1 – 38 1.614E-4 –

J = 7, L = 2 0.01 1023 1.235E-4 0.78

J = 9, L = 4 0.07 9727 1.313E-5 1.00

J = 11, L = 8 1.20 92159 1.585E-6 0.94

J = 14, L = 16 56.39 1851391 1.529E-7 0.78

Modified STSG method

J = 5, L = 1 – 142 1.136E-3 –

J = 7, L = 2 0.01 1150 1.189E-4 1.08

J = 9, L = 4 0.03 10238 1.287E-5 1.02

J = 11, L = 8 0.40 94206 1.455E-6 0.98

J = 14, L = 16 45.45 1867774 1.317E-7 0.80

Standard FG method

K = 32, M = 32 – 1023 9.084E-4 –

K = 128, M = 128 0.03 16383 1.148E-4 0.75

K = 512, M = 1024 0.96 523775 1.277E-5 0.63

K = 1024, M = 8192 63.67 8381439 1.963E-6 0.68

Corrected FG method

K = 16, M = 8 – 135 1.334E-3 –

K = 32, M = 16 – 527 2.554E-4 1.22

K = 64, M = 32 – 2079 4.382E-5 1.28

K = 512, M = 256 0.19 131327 1.334E-6 0.84

K = 2048, M = 2048 10.85 4194303 1.461E-7 0.64

Then, we consider the smaller value of γ . Many numerical experiments show that
the STSGmethod is better than the Corrected FGmethod when γ < 0.5. In particular,
the result of the case α = 0.2, γ = 0.1 can be seen in Table 3. Indeed, when the source
term is singularity at t = 0, the regularity of the solution in temporal direction becomes
very low. In this way, the high-order accuracy algorithm in temporal direction will not
give full play to its effect, and so the corrected FG method has no obvious advantages.
In contrast, the STSG method can show nice convergence behavior in the case of low
regular solution. Besides, in this case, the accuracy of the modified STSG method
is slightly better than the standard STSG method. This is because the source term
changes quickly at the initial moment, which reduces the accuracy of the standard
STSG method.
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Table 2 Representative numerical results in Example 2 with α = 0.8, γ = 1

CPU (s) DOF ET Order

Standard STSG method

J = 5, L = 4 – 351 1.631E-4 –

J = 6, L = 8 – 1599 2.574E-5 1.34

J = 8, L = 8 0.05 8447 4.913E-6 1.00

J = 12, L = 32 17.02 790527 2.858E-7 0.63

Modified STSG method

J = 5, L = 4 – 382 1.751E-4 –

J = 6, L = 8 – 1662 2.501E-5 1.32

J = 8, L = 8 0.03 8702 3.967E-6 1.11

J = 12, L = 32 7.65 794622 2.997E-7 0.57

Standard FG method

K = 16, M = 32 – 495 2.634E-4 –

K = 64, M = 256 0.03 16191 3.424E-5 0.58

K = 512, M = 1024 1.45 1048575 2.121E-6 0.67

K = 2048, M = 16384 873.04 33522687 9.240E-7 0.24

Corrected FG method

K = 16, M = 64 – 975 2.916E-4 –

K = 64, M = 512 0.05 32319 1.199E-5 0.91

K = 256, M = 4096 4.44 1044735 2.452E-6 0.46

K = 1024, M = 32768 875.08 33522687 3.577E-7 0.55

Example 3 Consider the one-dimensional homogeneous problem

Dα
t u = 0.1

∂2

∂x2
u + (1 − t)(1 − u)(1 − cos 2πx), (x, t) ∈ (0, 1) × (0, 1],

with the homogeneous boundary condition (2) and the Dirac δ initial function

u0(x) = δ(x − 0.5).

Note that the Dirac δ function cannot be interpolated, so we choose its projection
PJ u0 (8) as the initial vector of numerical solution. Figures 9 and 10 show the infor-
mation of solution at t = 1. The regularity of the solution in Example 3 is obviously
weaker than that in Example 2, and the frequency spectrum is about second-power
decaying. In contrast, the regularity of the solution in the case of α = 0.2 is slightly
lower than that in the case of α = 0.5.

In this example, we use the same reference solution as that in Example 2. At first,
we observe the relative error results of the standard STSG method, which are shown
in Fig. 11. In this example, the standard method even fails to converge. This is because
the solution changes very quickly at the initial moment, and the convergence of the
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Table 3 Representative numerical results in Example 2 with α = 0.2, γ = 0.1

CPU (s) DOF ET Order

Standard STSG method

J = 6, L = 2 – 447 1.123E-3 –

J = 8, L = 4 0.02 4351 1.071E-4 1.03

J = 10, L = 8 0.41 41983 1.079E-5 1.01

J = 12, L = 16 7.80 397311 1.115E-6 1.01

J = 13, L = 64 99.58 3416063 1.121E-7 1.07

Modified STSG method

J = 6, L = 2 – 510 6.723E-4 –

J = 8, L = 4 0.02 4606 6.510E-5 1.06

J = 10, L = 8 0.56 43006 6.743E-6 1.01

J = 12, L = 16 7.92 401406 7.209E-7 1.00

J = 13, L = 64 101.22 3424254 7.358E-8 1.06

FG method

K = 64, M = 64 – 4095 6.761E-4 –

K = 128, M = 512 0.14 65151 1.018E-4 0.68

K = 512, M = 4096 10.62 2093567 9.007E-6 0.70

K = 2048, M = 32768 1696.18 67078143 8.606E-7 0.68

Corrected FG Method

K = 64, M = 32 – 527 9.084E-4 –

K = 256, M = 256 0.14 65535 5.149E-5 0.51

K = 1024, M = 2048 6.78 2096127 4.681E-6 0.69

K = 2048, M = 16384 452.27 33540095 5.700E-7 0.76

Fig. 9 The solution at t = 1 in Example 3

123



Numerical Algorithms (2023) 94:1561–1596 1587

Fig. 10 The frequency spectrum at t = 1 in Example 3

standard STSG method will become extremely difficult. In contrast, from Fig. 12 and
Table 4, the modified STSG method can still achieve convergence of about first order,
and its convergence behavior is still significantly better than the standard FG method.
Therefore, for some special cases, modified technology of STSG can play a decisive
role. On the other hand, for general cases, the modified STSG method is not weaker
than the standard STSG method, so we can completely replace the standard STSG
method with the modified STSG method.

Example 4 Extending the problem of Example 3 to two-dimensional case, and we
have

D0.5
t u = 0.1�u + (1 − t)(1 − u)(1 − cos 2πx)(1 − cos 2π y),

u0(x, y) = δ(x − 0.5)δ(y − 0.5),

for (x, y, t) ∈ (0, 1)2 × (0, 1].

Fig. 11 Relative error of standard STSG method in Example 3 with α = 0.2 (left) and α = 0.5 (right)
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Fig. 12 Convergence behavior of modified STSG method and standard FG method in Example 3 with
α = 0.2 (left) and α = 0.5 (right)

Multi-dimensional problems with Dirac δ initial function will encounter greater
difficulties in computation. On the one hand, multi-dimensional problems require
much more DOF in spatial direction; on the other hand, the singularity of solution
caused by multi-dimensional Dirac δ function is stronger than that caused by one-
dimensional Dirac δ function. From Fig. 13, although after a time of length 1, the
solution still has a marked singularity at the point (x, y) = (0.5, 0.5).

In this example, we consider the reference solution obtained by modified STSG
method with J = 13, L = 2. From Fig. 14, the convergence behavior of modified
STSGmethod is still significantly better than that of standard FGmethod. From Table
5, the standard FGmethod needs more than 500million DOF to reach the relative error
of about 9 · 10−4, and the required storage is close to the upper limit of our computer
memory. For achieving such accuracy, The modified STSG method requires only one

Table 4 Representative numerical results in Example 3 with α = 0.2

CPU (s) DOF ET Order

Modified STSG method

J = 4, L = 1 – 62 1.325E-2 –

J = 7, L = 1 – 702 9.910E-4 1.07

J = 9, L = 2 0.02 5630 1.197E-4 1.02

J = 12, L = 4 0.50 106494 6.817E-6 0.97

J = 13, L = 4 1.69 229374 3.222E-6 0.98

J = 15, L = 16 213.01 3997694 1.465E-7 1.08

Standard FG method

K = 16, M = 16 – 255 1.184E-2 –

K = 64, M = 64 – 4095 1.641E-3 0.71

K = 512, M = 512 0.369 262143 1.185E-4 0.63

K = 2048, M = 8192 123.39 16771071 1.005E-5 0.59

K = 4096, M = 16384 916.02 67096575 4.148E-6 0.64
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Fig. 13 The solution at t = 1 in Example 4

percent of the DOF. Moreover, the convergence order obtained by computing two-
dimensional problems is about half of that in computing one-dimensional problems,
which is true for both the modified STSG method and the standard FG method.

Example 5 Consider the time-fractional Allen-Cahn equation

Dα
t u = 0.01

∂2

∂x2
u + u − u3, (x, t) ∈ (0, 1) × (0, 100],

Fig. 14 The convergence behavior (left) and the CPU time cost (right) of modified STSG method and
standard FG method in Example 4
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Table 5 Representative numerical results in Example 4

CPU (s) DOF ET Order

Modified STSG method

J = 6, L = 2 0.08 19266 1.438E-2 –

J = 8, L = 2 1.48 321794 3.548E-3 0.50

J = 10, L = 2 29.40 5215234 8.636E-4 0.51

J = 12, L = 2 607.01 83759106 1.834E-4 0.56

Standard FG method

K = 64, M = 32 0.27 130977 1.478E-2 –

K = 256, M = 128 16.13 8388225 3.667E-3 0.34

K = 1024, M = 512 1232.734 536869377 9.005E-4 0.34

with the homogeneous boundary condition (2) and the bidirectional pulse initial function

u0(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.1, for
1

8
≤ x ≤ 3

8
,

−0.1, for
5

8
≤ x ≤ 7

8
,

0, for 0 < x <
1

8
or

3

8
< x <

5

8
or

7

8
< x < 1.

The Allen-Cahn equation is an important kind of reaction-diffusion equation, and
it is also one of basic equations in phase-field theory. The numerical method of time-
fractional Allen-Cahn equation has also been studied in recent years [5, 33]. Figure 15
shows the snapshots of solutions at different times. In the beginning, the change is
faster for smaller α. However, for long time observation, the change with smaller α

is obviously slower. The solution of the integer-order case has basically arrived at
the steady state when t = 10, but the solution of the case α = 0.2 is still far from
the steady state when t = 100. Figure 16 shows the frequency spectrum at t = 100.
The frequency spectrum is exponentially decaying in the integer-order case. But in the
fractional case of α = 0.8 or α = 0.5, although their solution functions look similar to

Fig. 15 The solution at different time in Example 5

123



Numerical Algorithms (2023) 94:1561–1596 1591

Fig. 16 The frequency spectrum at t = 100 in Example 5

that in the integer-order case, their frequency spectrumsare not exponentially decaying.
Therefore, the solutions at t = 100 in the fractional case are not infinitely smooth.

Then, we consider the convergence behavior of numerical method for α = 0.5, and
the reference solution is obtained by modified STSG method with J = 19, L = 2.
FromFig. 17, themodifiedSTSGmethod can still greatly reduceDOF inhigh-accuracy
approximation. However, the CPU time costs of modified STSGmethod in this exam-
ple are obviously more than those in Examples 2 and 3. The nonlinear property brings
more difficult to solve the algebraic system, which is more obvious in the modified
STSGmethod.Nevertheless, fromTable 6, themodifiedSTSGmethod still has obvious
advantages in time efficiency and storage efficiency. In particular, when the required
relative error is not more than 3 · 10−7, the DOF and the CPU time cost saved by the
modified STSG method are about 500 times and 100 times, respectively. Therefore,
the modified STSG method is still suitable for nonlinear problems.

Example 6 Consider the TFDE

D0.5
t u = 0.1

∂2

∂x2
u + f (u, x, t), (x, t) ∈ (0, 1) × (0, 1],

Fig. 17 The convergence behavior (left) and the CPU time cost (right) of modified STSG method and
standard FG method in Example 5 with α = 0.5
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Table 6 Representative numerical results in Example 5 with α = 0.5

CPU (s) DOF ET Order

Modified STSG method

J = 6, L = 1 – 318 1.284E-4 –

J = 9, L = 1 0.05 3326 8.575E-6 1.15

J = 13, L = 2 2.33 122878 7.220E-7 0.69

J = 14, L = 2 9.42 262142 3.302E-7 1.03

J = 16, L = 2 178.74 1179646 8.361E-8 0.91

Standard FG method

K = 64, M = 16 – 1071 1.516E-4 –

K = 256, M = 64 0.10 16575 1.747E-5 0.79

K = 4096, M = 2048 25.04 8390655 1.132E-6 0.44

K = 16384, M = 8192 957.77 134225919 3.348E-7 0.44

with the homogeneous boundary condition (2) and the sine initial function u0(x) =
sin πx , where the source term is

f (u, x, t) =
{

(1 − u)(2xt)2, for 0 ≤ x ≤ 0.5,

(1 − u)
(
2(1 − x)t

)2
, for 0.5 < x ≤ 1.

Different from the previous examples, we consider smooth initial function and
nonsmooth source term in this example. Figure 18 shows that the frequency spectrums
are about fourth-power decaying rate at different time. Note that the sine coefficient of
the initial function is equal to 0 for k > 1, and it implies that the frequency spectrums
of index k > 1 have a fast growth at the initial moment.

In this example, the reference solution is obtained by the modified STSG method
with J = 17, L = 32. Figure 19 andTable 7 show the results of numerical comparison.
When the required relative error is not more than 1 ·10−6, the modified STSGmethod
saves more than 100 times of total DOF.

Fig. 18 The frequency spectrum at different time in Example 6
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Fig. 19 The convergence behavior (left) and the CPU time cost (right) of modified STSG method and
standard FG method in Example 6

7 Conclusion

In this paper, the modified STSG method is constructed for solving TFDE (1). In
numerical experiments, we give the comparison for different cases (one-dimensional
problem or multi-dimensional problem, linear problem or nonlinear problem, nons-
mooth initial function or nonsmooth source term). When the solution is not smooth
enough in spatial direction, the modified STSG method has obvious advantages over
the standard FGmethod. Furthermore, if the value of α is relatively large or the source
term has strong singularity at the initial point, the modified STSGmethod is also obvi-
ously better than the corrected FG method. In addition, compared with the standard
STSG method, the modified STSG method can well deal with the fast change at the
initial moment. To sum up, we can determine that the modified STSG method has
special advantages in solving TFDE.

Table 7 Representative numerical results in Example 6

CPU (s) DOF ET

Modified STSG method

J = 5, L = 8 – 702 1.182E-3

J = 8, L = 8 0.02 8702 1.057E-4

J = 9, L = 32 0.21 74750 1.366E-5

J = 10, L = 256 21.08 1312766 1.061E-6

J = 13, L = 128 289.70 6832126 1.488E-7

Standard FG method

K = 16, M = 128 – 1935 2.265E-3

K = 128, M = 1024 0.17 130175 1.223E-4

K = 512, M = 8192 30.78 4186623 1.366E-5

K = 1024, M = 131072 14478.26 134087679 1.061E-6
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Moreover, the STSGmethod has great promotion value. On the one hand, the idea of
STSGmethod can be extended to other evolution equationwith timememory property,
such as delay diffusion equation [7], Volterra diffusion equation [23], and so on. On the
other hand, the STSG technique is also feasible for most spatial discretization method,
such as finite difference method, finite element method and other Fourier-like spectral
method. Besides, in order to improve further the efficiency of the algorithm, the STSG
method can also be combined with other fast algorithm or high-order accuracy method
for solving TFDE.
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