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Abstract
We consider piecewise-smooth dynamical systems, i.e., systems of ordinary differ-
ential equations switching between different sets of equations on distinct domains,
separated by hyper-surfaces. As is well-known, when the solution approaches a dis-
continuity manifold, a classical solution may cease to exist. For this reason, starting
with the pioneering work of Filippov, a concept of weak solution (also known as
sliding mode) has been introduced and studied. Nowadays, the solution of piecewise-
smooth dynamical systems in and close to discontinuity manifolds is well understood,
if the manifold consists locally of a single discontinuity hyper-surface or of the inter-
section of two discontinuity hyper-surfaces. The present work presents partial results
on the solution in and close to discontinuity manifolds of codimension 3 and higher.

Keywords Piecewise-smooth systems · Filippov solution · Sliding modes in high
codimension · Regularization · Hidden dynamics
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1 Introduction

In this article, we consider piecewise-smooth dynamical systems, i.e., systems of
ODEs which are characterized by a vector field that has jump discontinuities along
certain hyper-surfaces of the Euclidean space. As general references, we address
the reader to [2, 13, 15] and—from a more computational perspective—to [1].
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There are several examples of this kind of systems in the scientific literature. E.g.,
many biological systems are represented in terms of switching functions (see, e.g.,
[20, Section 6]), which describe the effect of a certain variable on another, based
on the fact that a certain threshold is reached and activates the coupling. Switching
functions are frequently described by sigmoid (continuous) functions, but in many
cases it is convenient to consider them as step functions (i.e., discontinuous ones).
Gene regulatory networks (see, e.g., [16, 19]), which are sets of genes (or parts of
genes) that interact with each other to control a specific cell function, are also typi-
cally modeled by step functions that describe the switching interaction of this class
of complex biological networks. Moreover, a strong interest in sliding mode control
(see, e.g., [18]) has been shown in recent years, where the finite-time reaching of a
certain discontinuity (sliding) manifold is the goal of a control system. Finally, when
considering models based on state-dependent differential-algebraic delay equations,
the manifolds are induced by the breaking points which characterize the solution [7].
The presence of discontinuities in all these models may give rise to termination or
bifurcation phenomena. The lack of smoothness when the solution reaches one of the
discontinuity hyper-surfaces leads to difficulties in dealing with its analysis, because
the classical theory does not apply.

To circumvent this problem, the concept of weak solution (sliding mode) has
been introduced [6, 23]. Two methods have been proposed to analyze this situa-
tion: the regularization framework based on singular perturbation techniques (see,
e.g., [22]) and the Filippov-like theory of differential inclusions. The theory devel-
oped by Filippov covers successfully the codimension-1 case, which is determined
when a classical solution meets a single discontinuity hyper-surface. In such a case,
it provides a concept of weak solution (a codimension-1 motion called sliding mode)
in those cases where a classical solution ceases to exist. However, Filippov theory
is not able to treat the higher codimension case, where the analysis is increasingly
more difficult when the solution approaches the intersection of 2 or more discontinu-
ity hyper-surfaces, which—even less common—can likely happen in the dynamical
systems described above.

In some recent articles, the case has been considered, where a solution approaches
the intersection of a pair of such discontinuity hyper-surfaces, with the possible
occurrence of codimension-2 sliding modes. Due to the lack of uniqueness in classi-
cal Filippov theory, the analysis of the dynamics is non-trivial. It is based either on the
analysis of regularizations of the piecewise-smooth dynamical system by a suitable
singular perturbation or on the application of some specific selection principles. In
[4] and [3], several possibilities have been proposed, based on some suitable criteria
decided a priori, on how to select a Filippov sliding vector field on a codimension-
2 discontinuity surface. Differently, a complete taxonomy has been obtained in [8],
based on the analysis of a natural regularization which replaces step functions by con-
tinuous functions. A common feature of regularization techniques (e.g., [8, 12, 14])
is that of obtaining two time-scales for the dynamics, the faster of which describes
the so-called hidden dynamics of the system and in many cases allows—passing
to the limit with respect to the regularization parameter—to select a proper slid-
ing mode. Based on the analysis of [8], a complete algorithm for the integration of
piecewise-smooth dynamical systems with sliding modes of codimension at most 2
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has been proposed in [10]. This algorithm is, up to our knowledge, the only one avail-
able to compute codimension-1 and 2 sliding modes in the numerical integration of
a piecewise-smooth dynamical system. This is preferrable to the direct integration
of the regularized system, because the stiffness of the singularly perturbed prob-
lem and the possible presence of high oscillations make the numerical integration
very challenging.

This article is devoted to the case of higher dimensional intersections and
related higher codimension sliding modes. Unfortunately, the analysis of the hidden
dynamics is much more complicated and a complete classification is not possi-
ble. Nevertheless, we are able to prove some interesting results and to analyze
to some detail special cases which are important in applications. E.g., situations
where the vector fields have specific geometric properties (like the so-called nodal
attractivity [3]) and where the systems are characterized by certain properties (like
cooperativity [11]).

Organization of the article. In Section 2, we introduce the main concepts (sliding
modes, regularization, and hidden dynamics). The main part of the paper is devoted to
the study of the hidden dynamics in codimension 3 and higher. The maximal number
of stationary points (which corresponds to sliding modes of maximal codimension)
is studied in Section 3 and an example with six stationary points in codimension 3 is
presented. This is obtained by applying Bezout’s theory. Section 4 discusses the case
of centrally symmetric vector fields and Section 5 the case of nodally attractive vec-
tor fields. An interesting class of examples shows that a vector field that is centrally
symmetric and nodally attractive can have more than one stationary point. The study
of the limit behaviour for τ → ∞ of the solution of the hidden dynamics is very
challenging for d ≥ 3, because geometric arguments (e.g., Poincaré–Bendixson the-
orem) are not available or difficult to apply. A positive convergence result for nodally
attractive vector fields with a hidden dynamics that is strictly cooperative is given in
the final Section 6.

2 Main concepts

We closely follow the notation of [10].

• Piecewise-smooth dynamical systems.

We consider discontinuity hyper-surfaces

�j = {y ∈ R
n | αj (y) = 0}, j = 1, . . . , d, (1)

where α : Rn → R
d (with d < n) is sufficiently differentiable and the hyper-surfaces

intersect transversally. They divide the phase space into 2d open regions

Rk = {
y ∈ R

n
∣∣ kjαj (y) > 0 for j = 1, . . . , d

}
, (2)

where k = (k1, . . . , kd) is a multi-index with kj ∈ {−1, 1}. The piecewise-smooth
dynamical system is then given by

ẏ = F k(y) for y ∈ Rk. (3)
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The smooth functions F k(y) are assumed to be defined in a neighbourhood of the
closure of Rk. In the discontinuity set

⋃d
j=1 �j , the right-hand side of (3) is thus

multi-valued with values from the neighbouring domains.

• Sliding modes.

We extend the concept of solution to the discontinuity set in the spirit of
Filippov [5]. For an index vector k = (k1, . . . , kd) with kj ∈ {−1, 0, 1}, we consider

Rk =
{
y ∈ R

n
∣∣αj (y) = 0 if kj = 0, kjαj (y) > 0 if kj �= 0

}
(4)

which is a discontinuity set, if at least one component kj vanishes. It reduces to (2)
if all components are non-zero. For k = (k1, . . . , kd), we define Ik = {j | kj = 0},
and we let

N k =
{
� ∈ {−1, 1}d

∣∣∣ �j ∈ {−1, 1} if kj = 0, �j = kj if kj �= 0
}

which collects the index vectors � such that R� touches Rk. With this notation, we
consider the differential-algebraic equation (DAE)

ẏ =
∑

�∈N k

( ∏

j∈Ik

(1 + �jλj )

2

)
F �(y)

0 = αj (y), j ∈ Ik (5)

with algebraic variables λj , j ∈ Ik. For λj ∈ [−1, 1] the vector field in (5) is a
convex combination of the vector fields F �(y) (with � ∈ N k). The solution of (5) is
therefore a Filippov solution of (3).

• Regularization.

On the ε-neighbourhood

Rk
ε =

{
y ∈ R

n
∣∣ |αj (y)| ≤ ε if kj = 0, kjαj (y) > 0 if kj �= 0

}
(6)

of the discontinuity set (4), we consider the differential equation

ẏ =
∑

�∈N k

( ∏

j∈Ik

(1 + �jπ(uj ))

2

)
F �(y) with uj = αj (y)

ε
, (7)

where the transition function π(u) is continuous, piecewise-smooth, and satisfies
π(u) = −1 for u ≤ −1 and π(u) = 1 for u ≥ 1. For ease of presentation, we assume
in the following that π(u) = u for |u| ≤ 1. This ordinary differential equation is on
the setRε a regularization of the discontinuous problem (3).

• Hidden dynamics

After entering an intersection of discontinuity hyper-surfaces (say at y∗ ∈ Rk),
there are typically more than one Filippov solutions, and it is of interest to study
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which solution can be interpreted as the limit ε → 0 of the regularized differential
equation. In the regionRk

ε , it follows from (7) that ui = αi(y)/ε satisfies

ε u̇i =
∑

�∈N k

( ∏

j∈Ik

(1 + �jπ(uj ))

2

)
α′

i (y)F �(y), i ∈ Ik, (8)

which is a singularly perturbed problem. For its study, we introduce the fast time
τ = t/ε, we denote the derivative with respect to τ by a prime, and we substitute the
constant vector y∗ for y. This yields

u′
i =

∑

�∈N k

( ∏

j∈Ik

(1 + �jπ(uj ))

2

)
α′

i (y
∗)F �(y∗), i ∈ Ik, (9)

which is a regular dynamical system for ui, i ∈ Ik. It is called hidden dynamics (a
term coined in [12]). We note that this definition and all results of the present work
are of local nature, because they depend on the fixed vector y∗.

The initial value for (9) is determined by the incoming solution at y∗ ∈ Rk. Let k−
be an index vector corresponding to a manifold of codimension one less, i.e., there is
i∗ ∈ Ik, such that k−

j = kj for j ∈ {1, . . . , d} \ {i∗}, and k−
i∗ ∈ {−1, 1}. Assuming

that the solution lies inRk−
before enteringRk at y∗, then the initial value for (9) is

given by ui∗(0) = ki∗ , and the remaining ui(0) are such that the right-hand side of
(9) vanishes for i �= i∗.

The hidden dynamics gives us much insight into the kind of solution leaving y∗
(cf. [8, Section 5.2]). We have:

- sliding in Rk, if the solution of (9) converges, for τ → ∞, to a stationary point
with all components inside (−1, 1);

- sliding in Rk+
, where k+

i = ki for all i ∈ {1, . . . , d} with the exception of those
i ∈ Ik for which ui(τ ) either tends to −∞ (then k+

i = −1) or to +∞ (then k+
i = 1).

For the remaining i ∈ Ik the solution ui(τ ) has a limit in (−1, 1);

- classical solution in Rk+
, where k+

i = ki for i �∈ Ik and, for i ∈ Ik, we have
k+
i = −1 or +1, if ui(τ ) tends to −∞ or +∞, respectively.
If all expressions α′

i (y)F �(y) are constant in a neighbourhood of y∗, then the dif-
ferential equations (9) are exact, and the above statements are obvious. The general
case is less trivial, but we expect that the system (9) credibly describes the transient
behaviour of the solution of the regularized differential equation. A rigorous treat-
ment of the limit behaviour ε → 0 of the regularized solution is challenging, and
even for the codimension 2 case it is still an open problem (see [9]).

• Special case: codimension 3
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Most of the present article deals with sliding modes of codimension 3. With the
transition function π(u) = u for u ∈ [−1, 1] and for d = 3 the differential equations
of the hidden dynamics (9) becomes (for i = 1, 2, 3 and ui ∈ [−1, 1])

u′
i =

((
1 + u1

)(
1 + u2

) ((
1 + u3

)
f +++

i + (
1 − u3

)
f ++−

i

)

+ . . . + (
1 − u1

)(
1 − u2

)(
1 − u3

)
f −−−

i

)/
8. (10)

We use the notation f k
i = α′

i (y
∗)F k(y∗), and for the index vector k = (k1, k2, k3)

we only write the sign of kj . The hidden dynamics is completely described by the
eight 3-dimensional vectors

f −−−, f −−+, f −+−, f −++, f +−−, f +−+, f ++−, f +++. (11)

Sometimes, it is convenient to write (10) as

u′
i = gi(u1, u2, u3) (12)

with the multilinear polynomial

gi(u1, u2, u3) = ai u1u2u3 + bi1 u2u3 + bi2 u1u3 + bi3 u1u2

+ci1 u1 + ci2 u2 + ci3 u3 + di . (13)

The coefficients of this polynomial representation are given by

a = 1

8

(
f +++ − f ++− − f +−+ + f +−− − f −++ + f −+− + f −−+ − f −−−)

b1 = 1

8

(
f +++ − f ++− − f +−+ + f +−− + f −++ − f −+− − f −−+ + f −−−)

b2 = 1

8

(
f +++ − f ++− + f +−+ − f +−− − f −++ + f −+− − f −−+ + f −−−)

b3 = 1

8

(
f +++ + f ++− − f +−+ − f +−− − f −++ − f −+− + f −−+ + f −−−)

c1 = 1

8

(
f +++ + f ++− + f +−+ + f +−− − f −++ − f −+− − f −−+ − f −−−)

c2 = 1

8

(
f +++ + f ++− − f +−+ − f +−− + f −++ + f −+− − f −−+ − f −−−)

c3 = 1

8

(
f +++ − f ++− + f +−+ − f +−− + f −++ − f −+− + f −−+ − f −−−)

d = 1

8

(
f +++ + f ++− + f +−+ + f +−− + f −++ + f −+− + f −−+ + f −−−)

In the following, we also consider the surfaces

	i = {
(u1, u2, u3)

∣∣ gi(u1, u2, u3) = 0
}
, i = 1, 2, 3, (14)

on which the flow (12) is orthogonal to the ui-axis. The set of stationary points is
S = 	1 ∩ 	2 ∩ 	3.
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3 Maximal number of slidingmodes

In codimension 2 (intersection of two discontinuity hyper-surfaces), there are at most
two stationary points in the hidden dynamics—one unstable and the other stable.
Here, we are interested in the maximal number of stationary points (i.e., sliding
modes) in codimension three and higher. Without loss of generality we consider the
transition function π(u) = u for |u| ≤ 1. We also assume that the index set in (9)
is Ik = {1, . . . , d}.

Theorem 1 Without any assumptions on the vector fields, the hidden dynamics (9)
in codimension d can have at most d! isolated stationary points in R

d .

Proof This bound is a consequence of Bézout’s Theorem (see [17], where a proof
based on basic results in algebraic geometry [21] is indicated). Introducing addi-
tional variables u10, . . . , ud0, substituting in the polynomial system (9) the variables
π(uj ) = uj by uj/uj0, and multiplying each equation by the product u10 · . . . · ud0
yields homogeneous polynomials of degree 1 in the variables (uj , uj0). Bézout’s
Theorem as formulated in [17] states that there are at most d! isolated solutions of
the polynomial system.

For convenience of the reader, we give an elementary proof in codimension d = 3
which is also useful for the construction of the stationary points. We consider the
product u1u2 as an independent variable, and we write the condition for a stationary
point of (13) as

⎛

⎝
b13 + a1u3 c11 + b12u3 c12 + b11u3
b23 + a2u3 c21 + b22u3 c22 + b21u3
b33 + a3u3 c31 + b32u3 c32 + b31u3

⎞

⎠

⎛

⎝
u1u2
u1
u2

⎞

⎠ = −
⎛

⎝
d1 + c13u3
d2 + c23u3
d3 + c33u3

⎞

⎠ .

Solving this linear system by Cramer’s rule shows that

u1 = p(u3)

d(u3)
, u2 = q(u3)

d(u3)
, u1u2 = r(u3)

d(u3)
, (15)

where p(u3), q(u3), r(u3), d(u3) are polynomials of degree 3. The necessary condi-
tion u1 · u2 = u1u2 then yields the polynomial equation

p(u3)q(u3) − r(u3)d(u3) = 0 (16)

of degree 6, which has at most 6 solutions. The stationary points of (13) are then
(u1, u2, u3), where u3 is a root of (16) and u1, u2 are given by (15).

The following example shows that there exist problems having 6 stationary points
in the unit cube.

Example 1 We let �j = {y ∈ R
3 | yj = 0} (for i = 1, 2, 3), so that f k = F k(y∗).

With y∗ at the origin, we assume that the eight vector fields (in the ordering of (11))
are given by
⎛

⎝
3.8

−4.9
3.5

⎞

⎠

⎛

⎝
−1.0
0.8

−0.3

⎞

⎠

⎛

⎝
−1.5
−0.5
0.9

⎞

⎠

⎛

⎝
2.2
1.0

−3.7

⎞

⎠

⎛

⎝
−1.3
−4.0
−4.5

⎞

⎠

⎛

⎝
−2.6
3.1
4.9

⎞

⎠

⎛

⎝
2.3
3.0

−0.4

⎞

⎠

⎛

⎝
−1.3
−1.6
0.8

⎞

⎠ .
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The corresponding hidden dynamics (12) has 6 stationary points, which are given by
(rounded to 3 digits)

⎛

⎝
0.076
0.263
0.203

⎞

⎠

⎛

⎝
0.3917
0.274

−0.056

⎞

⎠

⎛

⎝
−0.928
−0.713
0.653

⎞

⎠

⎛

⎝
0.640
0.934
0.363

⎞

⎠

⎛

⎝
−0.543
0.822

−0.542

⎞

⎠

⎛

⎝
−0.029
0.191
0.276

⎞

⎠ . (17)

By checking the eigenvalues of the Jacobian matrix of (12), we find that only the last
stationary point in this list is asymptotically stable (one real and a complex pair of
eigenvalues in the left complex half-plane), all others are unstable.

For an illustration of the dynamics of (12), we consider the surfaces 	i of (14),
and we note that the set of stationary points is S = 	1 ∩ 	2 ∩ 	3. Figure 1 shows for
20 different values of u3 cross sections of the surfaces 	1 (red), 	2 (blue), 	3 (black)
with horizontal planes (constant u3). They appear as hyperbolas with horizontal and
vertical asymptotes. The projection of the stationary points to these planes is plotted
as small circles. If a stationary point lies on such a horizontal plane, it is highlighted
by a larger circle. Therefore, we have included the values u3 from (17) in the figure.
The sign pattern of the vector field at the corners of the square in the (u1, u2)-space
with fixed u3 is included. Note that for some value of u3 close to −0.7 (between
the 3rd and 4th pictures if Fig. 1), the hyperbola corresponding to 	3 (black curve)
degenerates to the union of the two lines (its two asymptotes).

We are curious to see the behaviour of the solution of the regularized differential
equation, when it enters the intersection of all three discontinuity surfaces. We use
ε = 10−3, but due to the relative scaling any other value would give the same pictures
in Fig. 2. With the initial value y(0) = (1, 1, 1)�, the solution approaches �2 at
(0.1875, 0, 0.5) for t = 0.625. It remainsO(ε)-close to it (which, in the limit ε → 0,
is a codimension 1 sliding on �2) until t ≈ 0.733. Then, the solution approaches
�1 ∩ �2 and remainsO(ε)-close to it (i.e., a codimension 2 sliding in the limit) until
it approaches the intersection �1 ∩�2 ∩�3 slightly after t = 3, as can be seen in the
left picture of Fig. 2. From there on, the solution stays O(ε)-close to �1 ∩ �2 ∩ �3
(i.e., a codimension 3 sliding in the limit ε → 0).

The right pictures show the dynamics of the regularized problem close to the
codimension 3 sliding. The scaled solution ui = yi/ε does not approach the stable
stationary point (as could be expected), but it remains close to a periodic solu-
tion around the 4th stationary point of (17), which is unstable (one negative real
eigenvalue and a complex pair of eigenvalues with positive real part).

4 Centrally symmetric vector fields

Sharper bounds on the maximal number of sliding modes (stationary points of the
hidden dynamics) can be obtained, when the class of vector fields is restricted. A
vector field is called centrally symmetric at y∗ ∈ Rk, if

f −�
i = −f �

i for i ∈ Ik, � ∈ N k (18)

(as in (10) we use the notation f �
i = α′

i (y
∗)F �(y∗)). This means that close to y∗ ∈

Rk opposite vectors among {f � | � ∈ N k} differ only in its sign. For the equations
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Fig. 1 Cross sections with the horizontal planes u3 = const for the problem with 6 stationary points, 	1
(red), 	2 (blue), 	3 (black)

of the hidden dynamics, this implies that a substitution � ↔ −� is equivalent to
substituting uj ↔ −uj and multiplying the right-hand side by −1, so that only
products with an odd number of factors can appear in a polynomial representation.

In codimension 3, the hidden dynamics thus becomes (12) with

gi(u1, u2, u3) = ai u1u2u3 + ci1 u1 + ci2 u2 + ci3 u3 (19)
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Fig. 2 The first (red), second (blue), and third (black) component of the solution of the problem of
Example 1 as a function of time. The 3 pictures to the right show the solution in the phase space

with vectors a = (a1, a2, a3)
� and cj = (c1j , c2j , c3j )

� given by the formulas after
(13). For the statement of the following results, we consider the expression

D = det(a, c1, c2) det(c1, c2, c3)

det(a, c2, c3) det(a, c1, c3)
. (20)

Theorem 2 Let D be the expression of (20).

• If D < 0, the origin is the only (real) stationary point of (19).
• If D > 0, we have three stationary points, one is at the origin, and the other two

are

u3 = ±√
D, u1 = u3

det(a, c2, c3)

det(a, c1, c2)
, u2 = −u3

det(a, c1, c3)

det(a, c1, c2)
. (21)

The non-zero stationary points can be in or outside the unit cube.

Proof For a stationary point (u1, u2, u3), the hidden dynamics (12) with (19) yields
(see the proof of Theorem 1)

⎛

⎝
a1u3 c11 c21
a2u3 c12 c22
a3u3 c13 c23

⎞

⎠

⎛

⎝
u1u2
u1
u2

⎞

⎠ = −
⎛

⎝
c31u3
c32u3
c33u3

⎞

⎠ . (22)

An application of Cramer’s rule gives the second and third relations of (21) and a
formula for u1u2, which leads to u23 = D.

For the study of stability of the dynamical system (12), we consider its Jacobian
matrix

J (u1, u2, u3) = (c1, c2, c3) + az�, z = (u2u3, u1u3, u1u2)
�. (23)

Theorem 3 Let (u∗
1, u

∗
2, u

∗
3) ∈ C

3 be a stationary point that is different from the
origin. We then have

det J (u∗
1, u

∗
2, u

∗
3) = −2 det J (0, 0, 0).

Proof The determinant of the rank-one perturbation (23) is given by the matrix
determinant lemma as

det J (u1, u2, u3) = det J (0, 0, 0) + z�adj(J 0) a,
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where adj(J 0) is the adjugate matrix of J 0 = J (0, 0, 0). At the non-zero stationary
points, we have from (22)

u∗
2u

∗
3 = −det(c1, c2, c3)

det(a, c2, c3)
, u∗

1u
∗
3 = det(c1, c2, c3)

det(a, c1, c3)
, u∗

1u
∗
2 = −det(c1, c2, c3)

det(a, c1, c2)
.

The formula for the adjugate matrix of J 0 yields

(u∗
2u

∗
3, u

∗
1u

∗
3, u

∗
1u

∗
2)

�adj(J 0) a = −3 det(c1, c2, c3) = −3 det J (0, 0, 0),

which proves the statement of the theorem.

As a consequence, there cannot exist three asymptotically stable stationary points
in R

3.

5 Nodally attractive vector fields

A vector field is called nodally attractive at y∗ ∈ Rk, if

sgn f �
i = − sgn �i for i ∈ Ik, � ∈ N k. (24)

This means that all neighbouring vector fields point towards y∗ (recall that f �
i =

α′
i (y

∗)F �(y∗)). It is natural to consider such vector fields, because every solution of
(3) entering such a y∗ has to continue as a sliding inRk.

Theorem 4 Consider (10) for the hidden dynamics in codimension 3. If the vector
field is nodally attractive, the hidden dynamics generically has 1, 3, or 5 stationary
points, of which 1, 2, or 3 are asymptotically stable, respectively.

Proof We consider the intersection 	1∩	2. Nodal attractivity implies that horizontal
cross sections of 	1 are parts of a hyperbola connecting the front and back faces of
the cube, and those of 	2 connect the left and right faces of the cube. Consequently,
for every fixed u3 ∈ [−1, 1] there is a unique (u1, u2, u3) ∈ 	1 ∩ 	2.

Along the curve 	1 ∩ 	2, the vector field points vertically upwards or downwards
according to g3(u1, u2, u3) > 0 or g3(u1, u2, u3) < 0, respectively. It changes the
direction when crossing the surface 	3, which happens at stationary points.1 By nodal
attractivity, we have g3(u1, u2, u3) > 0 at the bottom face u3 = −1, so that the low-
est intersection with 	3 is an asymptotically stable stationary point. Continuing along
the curve 	1 ∩	2, the stability at stationary points alternates between asymptotically
stable and unstable. Since (again by nodal attractivity) the last intersection with 	3 in
the cube is asymptotically stable, we must have an odd number of stationary points
in the cube.

1Note that “generically” the curve 	1 ∩ 	2 crosses transversally the surface 	3.
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Corollary 1 Assume nodal attractivity and central symmetry.

• If the origin is the only stationary point in the cube, then it is asymptotically
stable.

• If there are 3 stationary points in the cube, then the origin is unstable, and the
other two stationary points are asymptotically stable.

Proof This is an immediate consequence of Theorems 2 and 4.

Intuitively, it is not obvious that nodally attractive vector fields can have more than
one stationary point. The constructive examples of Section 5.1 show that there exist
nodally attractive vector fields having 3 stationary points. We are not aware of the
existence of nodally attractive vector fields with 5 stationary points in the unit cube.

5.1 Construction of nodally attractive vector fields with 3 equilibria

The first example of a nodally attractive vector field with 3 equilibria has been com-
municated in 2010 by Douglas Ulmer to L. Dieci and N. Guglielmi. Here, we present
a systematic way of constructing such examples. We investigate the possibility of
achieving nodal attractivity among the centrally symmetric vector fields with three
equilibria. We let

α1 = det(a, c2, c3), α2 = det(a, c1, c3),

α3 = det(a, c1, c2), β = det(c1, c2, c3),

so that the expression D of (20) becomes D = α3β/α1α2. Assuming D > 0 we have
3 equilibria by Theorem 2, which are

u1 = ±
√

α1β

α2α3
, u2 = ±

√
α2β

α1α3
, u3 = ±

√
α3β

α1α2

in addition to the origin. If β is small compared to the αj , the equilibria are inside
the unit cube. This is achieved by choosing (c1, c2, c3) close to a singular matrix. We
arbitrarily put

cij =
{ −2 + δ for i = j

1 for i �= j

so that det(c1, c2, c3) = 0 for δ = 0. Moreover, we put aj = a for all j , where a is
another parameter. For this choice of coefficients, we have

β = δ(δ − 3)2, α1 = −α2 = α3 = a(δ − 3)2.

This yields D = −δ/a, so that the problem has 3 equilibria if a and δ have opposite
sign. They are inside the unit cube if |δ| < |a|. Inspecting the values of g(u1, u2, u3)

(with components given by (13)) at the corners of the unit cube, one can see that the
corresponding vector field is nodally attractive iff −2 + δ < a < −δ.

In summary, we see that the problem is centrally symmetric and nodally attractive
with three equilibria in the unit cube iff

0 < δ < 1 and − 2 + δ < a < −δ. (25)
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E. g., for δ = 1/2 and a = −1, we have equilibria at u1 = u2 = u3 = ±1/
√
2, in

addition to the one at the origin.

6 Limit behaviour of the solution of the hidden dynamics

The behaviour of the solution u(τ) of the hidden dynamics for τ → ∞, correspond-
ing to initial values u(0) ∈ ∂C from the incoming solution, gives much insight into
the discontinuous system (3). It is of high interest to study this limit. The system of
Example 1 illustrates that in general it is very challenging or even impossible to pre-
dict the limit behaviour. We restrict the following analysis to simple (but important)
situations in codimension 3.

When a codimension 2 sliding solution along �i ∩�j enters the intersection �i ∩
�j ∩ �k , the initial value for the hidden dynamics (12) lies on the intersection of
	i ∩	j with one of the faces uk = ±1, depending on the side from where the solution
enters. We denote by E the set of all such initial values. In the case of a nodally
attractive vector field, each face of the cube has exactly one element in E .

6.1 Nodal attractivity with cooperative hidden dynamics

We consider nodally attractive vector fields and, in addition, we assume that the
system (12) of the hidden dynamics is strictly cooperative on the cube C, i.e.,

∂igj (u1, u2, u3) > 0 for i �= j and (u1, u2, u3) ∈ C. (26)

The dynamics of cooperative systems has been thoroughly studied by Hirsch [11]. It
is shown that limit sets are invariant sets of systems in one dimension lower.

Theorem 5 Assume that the dynamical system (12) is strictly cooperative and
corresponds to a nodally attractive vector field.

Then, the solution corresponding to an initial value u0 ∈ E converges to the
stationary point of (12) that is closest to the face on which the initial value lies.

The proof of this theorem is postponed to Section 6.3, because it is closely related
to the monotonicity of solutions that we shall study next.

Remark 1 The example of Section 5.1 is nodally attractive, if the parameters satisfy
(25). It is strictly cooperative on the whole cube C, if |a| < 1. Hence, for 0 <

δ < 1 and −1 < a < −δ, the solution of (12) corresponding to an initial value
u0 ∈ E converges to the stationary point that is closest to the face on which the initial
value lies.
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6.2 Monotone convergence

We let (u10, u20, u30) ∈ E be an initial value of the hidden dynamics (12). Without
loss of generality, we assume that

g1(u10, u20, u30) = g2(u10, u20, u30) = 0, u30 ∈ {+1, −1}. (27)

We define the signs σ1, σ2, σ3 ∈ {+1, −1} in such a way that
σ1∂3g1(u10, u20, u30) > 0, σ2∂3g2(u10, u20, u30) > 0, u30 = −σ3,

so that the solution of (12) with initial value (u10, u20, u30) enters the cube C in
the set

D =
{
(u1, u2, u3) ∈ C

∣∣∣ σigi(u1, u2, u3) > 0, i = 1, 2, 3
}
. (28)

We further denote by D0 the connected component of D for which (u10, u20, u30)

lies on the closure of D0. Recall that S denotes the set of stationary points in C.

Theorem 6 Assume that ∂D0 has an empty intersection with the faces u1 = σ1,
u2 = σ2, u3 = σ3 of the cube and that (for i = 1, 2, 3)

σig
′
i (u1, u2, u3) g(u1, u2, u3) > 0 f or (u1, u2, u3) ∈ (∂D0 \ S) ∩ 	i .

Then, the solution of (12) with initial value (27) stays in D0 and converges to a
unique stationary point in the closure of D0.

Proof By definition of σ1, σ2, σ3 the solution
(
u1(τ ), u2(τ ), u3(τ )

)
enters the set

D0. As long as it stays there, each component is a monotonic function (increasing for
σi = +1 and decreasing for σi = −1).

The border of D0 is composed of parts of the faces u1 = −σ1, u2 = −σ2, u3 =
−σ3 of the cube C, and of subsets of the surfaces 	1, 	2, 	3. We show that, with the
exception of stationary points, the vector field (12) points on ∂D0 into the interior
of D0. At the faces of the cube this follows from the definition of D. At a point
(u1, u2, u3) ∈ (∂D0 \S) ∩ 	i , this is a consequence of the fact that the inner product
of σig(u1, u2, u3) with the gradient of gi is positive. Therefore, the solution cannot
leave D0.

Moreover, the assumption that ∂D0 has an empty intersection with the faces
u1 = σ1, u2 = σ2, u3 = σ3 implies that the solution cannot leave the cube C. Due to
the monotonicity of its components, we have convergence for τ → ∞ to a stationary
point of (12) that lies on the border of D0.

We still have to prove that there is only one stationary point on ∂D0. Let u∗ be
such a stationary point. We denote by Bu∗ the subset of D0, which consists of those
points that are mapped to u∗ by the flow of (12), i.e., ϕτ (u) → u∗ for τ → ∞.
We shall show that Bu∗ is an open set. Take u ∈ Bu∗ and let T > 0 be the time
such that ϕT (u) is sufficiently close to u∗. By asymptotic stability of u∗ there is a
neighbourhood U ⊂ D0 of ϕT (u) such that ϕτ (w) → u∗ for τ → ∞ for all w ∈ U .
The set ϕ−1

T (U) ∩ D0 is a neigbourhood of u that is entirely in Bu∗ . Consequently,
Bu∗ is an open set.
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If there were more than one stationary points in D0, the set D0 could be written as
the distinct union of open sets Bu∗ , which is in contradiction with the connectedness
of D0.

6.3 Proof of Theorem 5

We shall apply Theorem 6. Strict cooperativity of the system (12) implies the assump-
tion on the gradient of gi , and nodal attractivity implies an empty intersection of ∂D0
with the faces u1 = σ1, u2 = σ2, u3 = σ3 of the cube C (see a few lines below).
An application of Theorem 6 thus yields convergence of the solution of (12) to the
unique stationary point in D0. This stationary point is the one that is closest to the
face, where the initial value lies.

It follows from the proof of Theorem 4 that 	i ∩ 	j is a curve that connects the
faces uk = −1 and uk = 1 (k is the index different from i and j ) of the cube. By
definition of D0 the segment of the curve between the initial value u0 ∈ E and the
first stationary point is entirely in ∂D0. This completes the proof of Theorem 5.

7 Further remarks

The regularization (7) depends on the transition function π(u), and so does the
differential equation (9) for the hidden dynamics which, in codimension 3 becomes

u′
i = gi

(
π(u1), π(u2), π(u3)

)

instead of (12). The results of the present article are restricted to the multilinear reg-
ularization (7), which implies that the vector field of the hidden dynamics is also
multilinear.

Assuming that π(u) is strictly monotone on [−1, 1], so that u ↔ π(u) is a bijec-
tion on [−1, 1], Theorems 1, 2, 4, and Corollary1 remain true. One only has to replace
ui by π(ui) in the proofs and in the formulas of (21) in Theorem 2. If π(u) is, in
addition, continuously differentiable on [−1, 1], also Theorems 5 and 6 remain true.
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