
Numerical Algorithms (2023) 93:1759–1794
https://doi.org/10.1007/s11075-022-01488-4

ORIGINAL PAPER

A fault detection method based on partition of unity
and kernel approximation

DavoudMirzaei1,2 ·Navid Soodbakhsh1

© The Author(s) 2023

Abstract
In this paper, we present a scattered data approximation method for detecting and
approximating the discontinuities of a bivariate function and its gradient. The new
algorithm is based on partition of unity, polyharmonic kernel interpolation, and prin-
cipal component analysis. Localized polyharmonic interpolation in partition of unity
setting is applied for detecting a set of fault points on or close to discontinuity curves.
Then a combination of partition of unity and principal component regression is used
to thinning the detected points by moving them approximately on the fault curves.
Finally, an ordered subset of these narrowed points is extracted and a parametric
spline interpolation is applied to reconstruct the fault curves. A selection of numerical
examples with different behaviors and an application for solving scalar conservation
law equations illustrate the performance of the algorithm.

Keywords Partition of unity · Radial basis functions · Polyharmonic splines ·
Fault curves · Fault points · Principal component regression

Mathematics Subject Classification (2010) 65Nxx · 41Axx

1 Introduction

Fault detection or approximation of curves across which a function is discontinuous
is one of the useful and interesting problems with applications in different areas such

� Davoud Mirzaei
davoud.mirzaei@it.uu.se; d.mirzaei@sci.ui.ac.ir

Navid Soodbakhsh
n.soodbakhsh@sci.ui.ac.ir

1 Department of Applied Mathematics and Computer Science, Faculty of Mathematics
and Statistics, University of Isfahan, 81746-73441, Isfahan, Iran

2 Division of Scientific Computing, Department of Information Technology, Uppsala University,
Uppsala, Sweden

Received: 24 January 2022 / Accepted: 8 December 2022 /Published online: 18 January 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01488-4&domain=pdf
http://orcid.org/0000-0002-0166-4760
mailto: davoud.mirzaei@it.uu.se
mailto: d.mirzaei@sci.ui.ac.ir
mailto: n.soodbakhsh@sci.ui.ac.ir

Numerical Algorithms (2023) 93:1759–1794

as edge detection in image processing, geophysical science, oil industry, and tomog-
raphy [3–5, 9, 27, 44, 49, 55]. In all cases, a segmentation of an enclosed area that
is related to a particular phenomenon is needed. In addition, in some approximation
methods, the discontinuity curves and regions should be known in advance in order
to obtain accurate solutions [6, 8].

For a given bivariate function, the curves on which the function itself and gradient
of the function are discontinuous are called ordinary and gradient faults, respec-
tively. Most of fault detection methods cannot distinguish between these two kinds
of faults. However, recently some algorithms have been developed for determining
both ordinary and gradient faults of an underlying function [11–13].

The basis of all fault detection methods includes the use of a derivative operator to
indicate a cloud of points near the discontinuity curve. Some algorithms use a pure
interpolation operator and Gibbs phenomenon measurements near discontinuity [2,
28, 36, 37, 44], and some others use gradient and Laplacian operators to define an
indicator [12]. In [11], a central difference operator and a statistical procedure are
applied and in [5], a local Taylor expansion and a polynomial annihilation criterion
are used to indicate the fault clouds.

Assume that a set of scattered points with corresponding function values are avail-
able. In this paper, to deal with the non-uniform nature of scattered data set, we
employ a localized meshfree approximation based on polyharmonic kernels in com-
bination with partition of unity (PU) method for detecting a non-organized set of
points on or close to the (unknown) faults of a function for which the data may have
originated. A gradient- and a Laplacian-based indicators are defined for identifying
a cloud of fault points from an original data set. In each PU patch, we apply the
polyharmonic interpolation on scaled data points to prevent the instability of ker-
nel matrices. Noting that, interpolation by polyharmonic kernels is the only scalable
approximation among all radial basis function (RBF) approximations [20, 31].

At the first step, our algorithm results in an unorganized cloud of points near
the discontinuity curve. To get an accurate reconstruction of the fault, we employ a
principal component regression (PCR) [34, 35, 39] in combination with PU approxi-
mation to generate a second set of points which are supposed to be closer to the fault
curve than the primary detected set. We apply PCR instead of linear least-squares
approximation for better curve fittings especially in subregions on which the fault
curve has a near vertical direction.

At the final step, an ordered subset of the previous narrowed fault points is
extracted and a smooth parametric spline interpolation is employed to reconstruct the
fault curve.

We also address the situations with multiple fault curves and special cases with
intersections and multi-branch configurations.

Sufficient number of numerical examples illustrates the performance and effi-
ciency of the method, including the detection and reconstruction of multi-branch and
closed faults, and an application for solving a conservation law problem via the finite
volume method (FVM).

1760

Numerical Algorithms (2023) 93:1759–1794

2 Polyharmonic spline interpolation

Polyharmonic spline (PHS) interpolation is a particular case of interpolation with
conditionally positive definite RBFs [24, 31, 53]. Assume that φ : R

d → R is a
conditionally positive definite function of orderm+1, i.e., with respect to polynomial
space Pm(Rd). LetΩ ⊂ R

d be a bounded region. The RBF interpolation of a function
f : Ω → R on a discrete set X = {x1, . . . , xN } ⊂ Ω is given by

sf,X(x) =
N∑

j=1

αjφ(x − xj) +
Q∑

n=1

anpn(x) (1)

where {p1, . . . , pQ} is a basis for Pm(Rd), and α = (α1, . . . , αN)T and a =
(a1, . . . , aQ)T satisfy

[
K P

P T 0

] [
α

a

]
=

[
f

0

]
(2)

where K ∈ R
N×N with Kjk = φ(xj − xk), k, j = 1, . . . , N , P ∈ R

N×Q with
Pjn = pn(xj), j = 1, . . . , N , n = 1, . . . , Q, and f = (f (x1), . . . , f (xN))T . We
also need to assume N � Q and X is Pd

m-unisolvent to have a full rank matrix P . On
the other hand, since φ is conditionally positive definite of orderm+1, the symmetric
matrix K is positive definite on ker(P T) as a subspace of RN . These all guarantee
that the interpolation system is uniquely solvable. The interpolant sf,X can also be
written in the Lagrange form as

sf,X(x) =
N∑

j=1

uj (x)f (xj), (3)

where (u1(x), . . . , uN(x))T =: u(x) satisfies
[

K P

P T 0

] [
u(x)

λ(x)

]
=

[
φ(x)

p(x)

]
, (4)

for φ(x) = (φ(x − x1), . . . , φ(x − xN))T and p(x) = (p1(x), . . . , pQ(x))T . The
Lagrange functions possess the property uj (xk) = δkj .

In the case of PHS interpolation, the function φ is defined as φ(x) = ϕ(‖x‖2) for
all x ∈ R

d where

ϕ(r) :=
{

rβ log r, β even
rβ, otherwise

(5)

for real number β > 0. The PHS function ϕ is (up to a sign) conditionally positive
definite of order m + 1 = �β/2� + 1.

Derivatives of f are approximated by corresponding derivatives of sf,X, i.e.,

Lsf,X(x) =
N∑

j=1

Luj (x)f (xj),

1761

Numerical Algorithms (2023) 93:1759–1794

where [Lu1(x), . . . , LuN(x)]T =: Lu(x) is solution of the same system (4) with the

new right-hand side
[
LφT (x) LpT (x)

]T
, i.e.,

[
K P

P T 0

] [
Lu(x)

Lλ(x)

]
=

[
Lφ(x)

Lp(x)

]
. (6)

Tackling the ill-conditioned system (4) is one the important issues in RBF approx-
imation methods. As it is proved in [53, Chap. 12], for polyharmonic kernels, the
condition number of this system grows algebraically with respect to the minimum
spacing distance between interpolation points. To overcome this problem, the poly-
harmonic interpolation matrix can be formed and solved on scaled data points with
a spacing distance of O(1). This is motivated by the 5-point star classical FD for-
mula for Δu(0, 0) on points X = {(0, 0), (h, 0), (−h, 0), (0, h), (0, −h)}. If points
are scaled to

X

h
= {(0, 0), (1, 0), (−1, 0), (0, 1), (0, −1)}

then the stencil weights are obtained as [4, −1, −1, −1, −1], and the original weights
are scaled as h−2[4, −1, −1, −1, −1]. Here, 2 on the power of h is the scaling order
of Δ. In the RBF context and on scattered points, this approach is applicable only
for PHS and excludes all other well-known kernels. For more details, see [20, 31,
32]. In a more general case, assume that X is a set of points in a local domain D
with fill distance h. Assume further that the polyharmonic approximation of Lu(x)

for a fixed x ∈ D is sought. Assume that L is a homogeneous operator with scaling
order (homogeneity) s. For example, the scaling order of L = Δ is s = 2 and the
scaling order of L = Dα is s = |α|. If X is blown up (scaled) to points X

h
of average

fill distance 1 and Lagrange functions Luj are calculated for the blown-up situation,
then the Lagrange functions of the original situation are scaled as h−sLuj . When
polynomials of degree m are appended and monomials {xα}|α|�m are used as a basis
for Pm(Rd), it is recommended to shift the points by the center ofD and then scale by
h to benefit from the local behavior of monomial basis functions around the origin.
See [23, 24, 33, 43] for some applications of this strategy in localized RBF methods
for numerical solution of PDEs and rational interpolation of singular functions.

3 Partition of unity approximation

The partition of unity (PU) approximation will be used twice in our detection algo-
rithm. In approximation theory, the PU method is an efficient technique to obtain
a sparse global approximation by joining a set of localized and well-conditioned
approximations. The first combination of partition of unity with RBF interpolations
goes back to [52] and [53] by Holger Wendland (see also [24]). Then, this approach
has been extensively used for numerical solution of partial differential equations [14–
18, 40, 43, 45]. A recent application to implicit surface reconstruction is provided in
[21].

In PU methods, the global domain Ω is covered by a set of open, bounded, and
overlapped subdomains Ω	, 	 = 1, 2, . . . , Nc, where Ω ⊂ ∪	Ω	, and a set of PU
weights is defined on this covering. The nonnegative and compact support functions

1762

Numerical Algorithms (2023) 93:1759–1794

w	 : Rd → R, 	 = 1, 2, . . . , Nc, with supports Ω	 are called PU with respect to
covering {Ω	} if

Nc∑

	=1

w	(x) = 1, ∀ x ∈ Ω .

If we start with an overlapping covering {Ω	} of Ω and we assume V	 is an approx-
imation space on Ω	 and s	 ∈ V	 is a local approximation of a function f on Ω	,
then

s =
Nc∑

	=1

w	s	

is a global PU approximation of f on Ω . This global approximation is formed by
joining the local approximants s	 via PU weights w	. A possible choice for w	 is
given by Shepard’s weights

w	(x) = ψ	(x)
∑Nc

j=1ψj(x)
, 1 � 	 � Nc,

where ψ	 are nonnegative, nonvanishing, and compactly supported functions on Ω	.
In a usual way, derivatives of f are approximated by derivatives of s, i.e.,

Dαf ≈ Dαs =
Nc∑

	=1

Dα(w	s),

or in a general form, for a linear differential operator L with constant coefficients,
we have

Lf ≈ Ls =
Nc∑

	=1

L(w	s).

So, the Leibniz’s rule should be applied to compute the derivatives of products w	s	.
This standard technique is complicated, somewhat, and requires smooth PU weight
functions. In [43], an alternative approach is suggested:

Dαf ≈
Nc∑

	=1

w	 Dαs	 =: sα,

where Dαf is directly approximated without any detour via the approximant s of f

itself. Analogously, for a general case with operator L, we may write

Lf ≈
Nc∑

	=1

w	 Ls	 =: sL.

Theoretical results show the same convergence properties for both standard and direct
approaches [43], while the second approach is simpler and allows discontinuous PU
weights to develop some faster algorithms for approximating the derivatives and
solving partial differential equations.

1763

Numerical Algorithms (2023) 93:1759–1794

The RBF-PU is a special case in which the local approximants Ls	 are obtained
by the RBF approximation on trial sets X	 = X ∩ Ω	 in local domains Ω	 ∩ Ω with
global index family J	 := {j ∈ {1, . . . , N} : xj ∈ X	}. In this case, we have

Ls(x) =
Nc∑

	=1

∑

j∈J	

L(w	(x)uj (; x))f (xj)

for the standard approach, and

sL(x) =
Nc∑

	=1

∑

j∈J	

w	(x)Luj (; x)f (xj) (7)

for the direct approach. Here, uj (; x) are Lagrange RBF functions on patches Ω	.
A simple covering for Ω can be constructed via a set of overlapping balls Ω	 =
B(y	, ρ) where y	 ∈ R

d are patch centers and ρ	 are patch radii. To have a fixed
patch radius ρ	 ≡ ρ, we can use the following setup for points, parameters, and
domain sizes. We assume the set X has fill distance

h = hX,Ω = max
x∈Ω

min
xk∈X

‖x − xk‖2.

The fill distance indicates how well the points in the set X fill out the domain Ω .
Geometrically, h is the radius of the largest possible empty ball that can be placed
among the data locations X inside Ω . A data set {y1, . . . , yNc} with space distance

hcov = Ccovh, Ccov > 1

is used for patch centers. The constant Ccov controls the number of patches, Nc, com-
pared with the number of interpolation points in X. The radius ρ should be large
enough to guarantee the inclusion Ω ⊂ ∪	B(y	, ρ), and to allow enough interpola-
tion points in each patch for a well-defined and accurate local approximation. Thus,
we assume

ρ	 = ρ = Covlphcov,

and we let the overlap constant Covlp be large enough to ensure the above require-
ments. It is also possible to assign variable patch sizes ρ	 per any patch center y	. For
example, we can obtain ρ	 is such way that there exists a certain number of interpo-
lation points in each patch Ω	. In this case, we must sure that the inclusion property
Ω ⊂ ∪	Ω	 is still satisfied. In numerical examples of Section 7, we use both fixed
and variable patch radius strategies.

Smooth Shepard weight functions are frequently used in PU approximations (see,
for example, [40, 45, 52]). A discontinuous PU weight is also suggested in [43] that
highly simplifies the RBF-PU algorithms for solving partial differential equations.
Assume the PU weight w	(x) takes the constant value 1 if y	 is the closest center to
x and the constant value 0, otherwise. For definition, let

Imin(x) = argmin
	∈I (x)

‖x − y	‖2

1764

Numerical Algorithms (2023) 93:1759–1794

and Imin,1(x) be the first component of Imin(x), as Imin(x) may contain more than
one index 	. The weight function is then defined by

w	(x) :=
{
1, 	 = Imin,1(x)

0, otherwise.
(8)

With this definition, we give the total weight 1 to the closest patch and null weights
to other patches. In fact, a local set X	 = Ω	 ∩ X is a common interpolation set
for all evaluation points xk with ‖xk − y	‖2 ≤ ‖xk − yj‖2 for j = 1, . . . , Nc and
j �= 	. In another view in a 2D domain, by drawing the Voronoi tiles of centers
{y1, . . . , yNc}, this means that all evaluation points in tile 	 use the same local set X	

as their interpolation set [43].

4 Principal component regression

Assume that X ∈ R
d×n is a data matrix containing n points (n columns) in the d

dimensional space. PCR finds the best k rank approximation to d dimensional data
matrix X for 0 < k < d . It is known that a low rank approximation can be solved
by the singular value decomposition (SVD). Let μX ∈ R

d×1 be the vector of sample
means along each row of X. Subtract each columns of X (each point) by μX and
denote the resulted mean zero data matrix by X0. The SVD of X0 is given by

X0 = UΣV T

whereU ∈ R
d×d and V ∈ R

n×n are orthogonal matrices andΣ ∈ R
d×n is a diagonal

matrix carrying the singular values σj ofX decreasingly on its diagonal. Equivalently

X0 =
d∑

j=1

σjujv
T
j

where principal components uj and vj are columns of U and V , respectively. Then
for k � d

X0
k =

k∑

j=1

σjujv
T
j = UkΣkV

T
k

is the closest rank k matrix to X0 (with respect to 2, Frobenius and any matrix norm
that depends only on singular values) where Uk and Vk consist of first k columns of
U and V , respectively, and Σk = diag{σ1, . . . , σk} [51]. Clearly, the data matrix Xk

which is obtained by adding the mean vector μX to all columns of X0
k is the closest

rank k matrix to X. Columns of Xk (as points in R
d) are located on a k dimensional

subspace of Rd .
In this paper, we need the special case d = 2 and k = 1 for narrowing a cloud

of fault points around a discontinuity curve in a two-dimensional domain Ω (see
Section 5.2).

1765

Numerical Algorithms (2023) 93:1759–1794

5 Detection algorithm

Assume that f is a piecewise smooth real valued function with finite jump discon-
tinuity across some curves on a two-dimensional domain Ω . If the union of such
curves is denoted by F , we assume that the measure of F is zero and f is smooth in
Ω \ F . Assume further that a set of scattered points X ⊂ Ω and associated function
values f (x), x ∈ X, are given. The algorithm consists of three steps: (1) picking out
a set of points, called fault points as a subset of X, on or close to discontinuity curves
using a partition of unity polyharmonic-based approximation, (2) narrowing the fault
points using a partition of unity and PCR algorithm, and (3) constructing the fault
curve using a parametric interpolation. In the following subsections, we will describe
these steps.

5.1 Fault point detection

We aim to detect a small subset F of X consisting of points close to F by consider-
ing a procedure based on local kernel interpolation. The points in F are called fault
points. In [12], a minimal numerical differentiation formula (MNDF) based on local
multivariate polynomial reproduction is given to approximate the function deriva-
tives. This approach is a generalized finite difference (FD) method and the stencil
weights are uniquely determined by minimizing their weighted 	1 or 	2 norm in a
suitable way [19].

In this paper, we use the direct PU approximation for localization and PHS kernels
for local approximations. We measure and compare the approximate gradient and
Laplacian values with some threshold parameters to find a set of fault points F close
to the fault curve F .

In each patch Ω	, we apply the discontinuous PU weight (8) and PHS kernels
ϕ1(r) := r and ϕ3(r) := r3 to approximate gradient and Laplacian functions, respec-
tively. Note that, ϕ1 and ϕ3 are conditionally positive definite of orders 1 and 2,
respectively, and thus polynomials of orders at least 1 and 2 need to be appended
to their corresponding RBF expansions to obtain well-defined interpolations on
unisolvent sets.

According to the PU procedure, each point xk is subjected to a local set X	 =
Ω	 ∩ X for an index 	 ∈ {1, . . . , Nc} in which 	 = Imin,1(xk) =: 	(k). The dif-
ference between this approach and the RBF-FD method is that in the new method
a set X	 may be shared with many points xk while in the RBF-FD, each stencil Xk

is associated with a unique evaluation point xk . This special type of the direct RBF-
PU (D-RBF-PU) method [43] is similar to (but not identical with) the overlapped
RBF-FD method of [46]. From (7) and (8), we have

Lf (xk) ≈ sL(xk) =
Nc∑

	=1

∑

j∈J	

w	(xk)Lu∗
j (; xk)f (xj)

=
∑

j∈J	(k)

Lu∗
j ((k); xk)f (xj) =:

∑

j∈J	(k)

ξL
j,kf (xj),

1766

Numerical Algorithms (2023) 93:1759–1794

where ξL
j,k = Lu∗

j ((k); x)|x=xk
are generalized (related to operator L) Lagrange

function values on set X	 = {xj : j ∈ J	} evaluated at xk . In programming, we loop
over patches and look for indices of points xk in which a prescribed patch 	 is their
closest patch. Such index family will be denoted by k().

Usually, the gradient and the Laplacian operators (∇ and Δ) are used in fault curve
detection algorithms. An ordinary fault indicator is defined as

I∇(xk) := ‖s∇(xk)‖2, k = 1, . . . , N, (9)

and a gradient fault indicator is defined as

IΔ(xk) := |sΔ(xk)|, k = 1, . . . , N . (10)

A large value of I∇(xk) shows that the smoothness of f is deficient at or near xk , and
the large value of IΔ(xk) indicates the same behavior for both f and its gradient. For
quantification, we define

F(X, L, δ) := {xk ∈ X : IL(xk) > δ},
where L stands for either ∇ or Δ, and δ is a proper threshold parameter. Thus, we
mark F(X, ∇, δ1) and F(X, Δ, δ2) as points which are close to ordinary and gradi-
ent faults, respectively, where δ1 and δ2 should be set appropriately to get accurate
detections. In [12], a marking method based on the median values of the computed
indicators is applied. Since for functions with constant (linear) values in large areas
of the domain, the indicator I∇ (IΔ) is close to zero at points belonging to those
areas, the medians fall around the zero, and thus many points are indicated as fault
points even if they are not close to a fault curve. To overcome this possible problem,
a doubly nested marking strategy is used in [12]. Here, we still use medians but with
a different strategy. Using notations I∇(X) and IΔ(X) for {I∇(xk) : xk ∈ X} and
{IΔ(xk) : xk ∈ X}, respectively, we set

δ2 = CMmedian(IΔ(F (X, Δ, α2))), α2 = CL/h (11)

δ1 = CMmedian(I∇(F (F (X, Δ, δ2),∇, α1))), α1 = CG/
√

h (12)

where h is the fill-distance of X, and CM , CG, and CL are proper constants that
should be set by the user manually. In the above process, we first obtain the threshold
parameter δ2 by (11) to form the set F(X, Δ, δ2) containing points close to both
ordinary and gradient discontinuities. Then the points close to ordinary faults can be
extracted from this set instead of the initial large set X. Thus, the threshold parameter
δ1 is obtained by (12) and ordinary fault points F∇ are obtained as

F∇ = F(F(X, Δ, δ2),∇, δ1). (13)

Obviously the set of points close to gradient discontinuities, FΔ, is

FΔ = F(X, Δ, δ2) \ F∇ . (14)

Experiments show that FΔ still contains some points in the neighborhoods of
ordinary discontinuities. Following [12], we modify FΔ as follows:

FΔ = {x ∈ FΔ : |B(x, η) ∩ F∇| <
1

5
|B(x, η)|} (15)

1767

Numerical Algorithms (2023) 93:1759–1794

where B(x, η) is a ball with center x and radius η on set F(X, Δ, δ2), and |B| denotes
the cardinality of set B. Parameter η is set proportional to fill-distance of the initial
data set such that B(x, η) contains a sufficient number of points.

Algorithm 1 presents the fault point detection procedure step by step. Algorithm 2
is called in Algorithms 1, and 3 is called in Algorithm 2.

Algorithm 1 Fault points generation.

We note that steps 1 and 2 of Algorithm 1 can be run simultaneously using a proper
nearest search algorithm.

Algorithm 2 The RBF-PU subroutine with constant generated PU weight.

1768

Numerical Algorithms (2023) 93:1759–1794

Algorithm 3 PHS Lagrange functions.

5.2 Narrowing step

In this subsection, we give a narrowing procedure to move a cloud of points approxi-
mately on a fault curve that may be of either ordinary or gradient type. Let us denote
the set of detected fault points by

F = {x1, . . . , xM}

as a small subset of the initial set X. To approximate the fault curve, the set F needs
to be narrowed more.

In [12], an orthogonal distance least squares regression is used in this step to
handle the cases in which the points near a parametric curve are distributed almost
vertically. In fact, the least-squares approximation is used twice: for a coordinates
rotation at first and for a curve fitting then (see also [50]). One of advantages of this
method is that it can be used to obtain regressions of arbitrary orders. In this paper,
we use the standard PCR method to obtain a linear regression using SVD, which
seems enough for our algorithm. First, we consider the set F as a 2 × M matrix
where each column stands for a point in R

2. Then we compute the centered data
matrix F 0 = F − μF and its reduced SVD F 0 = UΣV T . Here μF is the sam-
ple mean of rows of F . Finally, we accept the best first rank matrix approximation
F1 = U1Σ1V

T
1 + μF as narrowing points (see Fig. 1).

But since the fault curves are usually nonlinear, we apply this procedure on local
subdomains and blend the local approximants in a proper way to obtain a global
nonlinear configuration. For this purpose, we employ a new PU approximation based
on a new set of patches {Ω ′

	} for 	 = 1, . . . , N ′
c. In this step, we use a constant

radius ρ = Covlphcov for all patches, i.e., Ω ′
	 = B(y′

	, ρ) for 	 = 1, . . . , N ′
c. The

set of patch centers {y′
	} is a coarsened subset of detected fault points F which is

obtained by Algorithm 5 (below) for H1 = H2 = ρ and F̃ = F . Note that, the
size of the PU problem in this step is considerably less than that of the first PU
approximation because now we are working on a much smaller set of points around
a one-dimensional fault curve.

We assume F ′
	 = F ∩ Ω ′

	 and J ′
	 = {j : xj ∈ F ′

	} with |J ′
	| = n	. Now, the PCR

algorithm is applied on each cloud F ′
	 for 	 = 1, . . . , N ′

c to get a new narrowing set

1769

Numerical Algorithms (2023) 93:1759–1794

Fig. 1 Data set
F = UΣV T + μF (blue and
filled circles) and narrowing
points F1 = U1Σ1V

T
1 + μF

(red circles)

F	. As described above, if F ′
	 and F	 are considered as 2× n	 matrices and the SVD

of F ′
	 − μF ′

	
is denoted by UΣV T then F	 = U1Σ1V

T
1 + μF ′

	
.

Up to here, we have N ′
c number of fault sets F	 which are supposed to be closer

than the set F to the (unknown) fault curve. Depending on the amount of overlap
between patches, the cardinality of ∪	F	 is larger than that of the original set F . This
means that a fault point xk which belongs to more than one patches, say n patches,
has n different approximation points from n different sets F	. To obtain a unique
approximation for any fault point, we apply the PU approximation on covering {Ω ′

	}.
If we use the smooth PU weights (3), then a smooth combination of these n approxi-
mations gives a unique approximation x̃k for xk . We prefer to apply the discontinuous
weight (8) due to its simplicity. In this case, depending on which center y′

	 is closer
to xk , the approximation point in its corresponding set F	 is marked as the unique
solution x̃k for xk . Using this approach, we end with a new set

F̃ = {x̃1, . . . , x̃M}
which is obtained by thinning the cloud of detected set F by moving the points close
to the fault curve. To further narrow the set of obtained points, we can apply the
narrowing procedure once again by replacing F by F̃ .

In programming, we apply this procedure by looping over patch centers rather
than looping over fault points (see Algorithm 4).

Note that, we obtain local regressions per any patch and move several points xk ,
k ∈ k(), close to the fault curve, simultaneously.

5.3 Fault curve reconstruction

Usually, the narrowed set F̃ includes lots of points giving us an opportunity to
select an ordered subset of F̃ to reconstruct the fault curve using a parametric
approximation method. We use a method similar to that is given in [12, 41].

1770

Numerical Algorithms (2023) 93:1759–1794

Algorithm 4 Narrowing step using PU with weight function. (8) and PCR.

A point z from F̃ is selected randomly and a new ordered set Ford is introduced
which contains the only point z at the beginning but will be enlarged based on the
following procedure.

First, we find the set of fault points Fz in H1-neighborhood of z, i.e.,

Fz = {x ∈ F̃ : ‖x − z‖2 < H1}.
Then we obtain the direction uz for which the variance of points in Fz is maximized.
It is well known that this direction is the first column of the U factor in the reduced
SVD F 0

z = UΣV T where F 0
z is the mean zero data matrix. Now, two subsets F+

z

and F−
z of Fz are formed as

F+
z = {x ∈ Fz : (x − z) · uz > 0}

F−
z = {x ∈ Fz : (x − z) · uz � 0}.

Then points z+ ∈ F+
z and z− ∈ F−

z , if any, are chosen such that

(z+ − z) · uz = max
x∈F+

z

{(x − z) · uz}

(z− − z) · uz = min
x∈F−

z

{(x − z) · uz}

and are added to set Ford . In fact, z+ and z− have maximum distances from z along
the directions uz and −uz, respectively. This process is repeated from two points z+
and z− in both directions until no point is found in their neighborhood (see Fig. 2)
or the distance between one of the newly selected points and one of the previously
selected points in Ford (or in all previously sets Ford for cases with multiple fault
curves (see Section 5.4)) is less than H1/2. Using the last condition and checking the
newly found points in the last iteration, it can be checked whether the fault intersects
itself (see the left-hand side of Fig. 3) or whether it may approach another fault (see
the right-hand side of Fig. 3) (see Algorithm 5 for a more general case).

Finally, we end with a sequence of ordered points allowing to reconstruct the fault
curve using a parametric approximation method. We will apply the parametric cubic

1771

Numerical Algorithms (2023) 93:1759–1794

Fig. 2 Green dots are narrowed points and the black star is the first point where the algorithm starts. Red
and blue circles are detected ordered points on positive and negative sides of the stating point

spline interpolation by adding a small smoothing parameter. Alternatively, one can
simply connect the points successively by line segments to form a polygonal instead
of a smooth spline curve.

5.4 Cases withmultiple fault curves

There may be more than one fault (of either ordinary or gradient type) in the domain.
So we continue the above algorithm to find other faults as follows. Consider a new
set that includes all points from F̃ whose distance to points in Ford is greater than a
parameter H2. If this new set is empty, the algorithm is finished and we have no other
fault. Otherwise, we select a new random point z from the points in this new set and
continue the previous procedure to obtain a new ordered set Ford for the next fault
(see right hand side of Fig. 3). Again the parametric spline interpolation is applied to
reconstruct the new curve. This algorithm is repeated until none of points in F̃ has
distance greater than H2 to points in all previous sets Ford .

Fig. 3 Detected ordered points on a close curve (left) and starting to detect another set of ordered points
on another fault (right)

1772

Numerical Algorithms (2023) 93:1759–1794

In Algorithm 5, the steps of selecting a set of ordered fault points from the larger
set F̃ are outlined. This algorithm works for cases with multiple fault curves as well.

Algorithm 5 Selecting ordered fault points on multiple fault curves.

5.5 Cases with intersections

There may be some faults that intersect each other. Suppose that the described algo-
rithm yields m different sequences of ordered points corresponding to m different
faults. By construction, the sequences do not share the common points on different
faults; thus, the reconstructed curves may not intersect even if their corresponding
exact faults do intersect. To resolve this problem, we apply the following procedure
which is similar to that is given in [12]:

1. The head and the tail of each fault is reconstructed by linear interpolation (line
segments) based on the first two and the last two points, respectively (see upper
panels of Fig. 4).

2. The line segments are extended out within Ω with length at most H3 and new
end points (if located in Ω) are determined (see upper panels of Fig. 4).

3. For each new end point e with corresponding line segment 	, its closest points zp

(on the positive side of) and zn (on the negative side of) from other sequences
are selected. If distances ‖e − zp‖2 and ‖e − zn‖2 are less than a prescribed

1773

Numerical Algorithms (2023) 93:1759–1794

Fig. 4 Treating the fault curves with intersection

threshold H4, we mark the intersection of (extension of) 	 and the line segment
between zp and zn as an intersection point (see upper panels of Fig. 4).

4. Intersection points whose distances are less than a prescribed threshold H5 are
replaced by their average (see the lower panels of Fig. 4).

5. The ordered sequences are updated either by adding one or two intersection
points or by joining to another sequence and an intersection point.

In Algorithm 6, by [[x, y]], we mean a line segment with x and y as its end points.

6 Parameter selection and themain algorithm

The parameter H1 in Algorithm 5 is the approximate distance between two consecu-
tive fault points in which the parametric interpolation is built upon. In order to have
an accurate reconstruction, H1 must be selected small enough, but on the other hand,
it should be large enough to ensure that if the narrowed points on a fault are spaced,
the fault will not split into two or more pieces. Usually, H1 is set proportional to the

1774

Numerical Algorithms (2023) 93:1759–1794

Algorithm 6 Fixing intersections.

fill-distance of the initial data set. When ordered points on one fault are obtained, the
algorithm starts again from one new point on another fault. The distance between this
new point to those of the previous faults is more than H2. Thus, H2 should be chosen
large enough so that the new point falls on another fault and avoids reconstructing a
fault twice. In our experiments, the value H2 = H1 leads to satisfactory results.

In Algorithm 6, the parameter H3 should be close to H1/2 because from
Section 5.3, the minimum distance between two disjoint faults is determined by
H1/2. We set H3 = H1/2. On the other hand, the threshold parameter H4 should
be proportional to H1 because H1 is the maximum distance between two consecu-
tive points in each ordered sequence. Here we set H4 = 2H1. Finally, H5 should
be selected small enough to unite the intersection points that are very close to each
other. The choice H5 = H1 is quite nice in all experiments.

Note that all parameters Hk , k = 1, . . . , 5 are explicitly related to the approximate
fill-distance h of the initial data setX viaH5 = H4/2 = 2H3 = H2 = H1 = CH h. In
our experiments, we use CH = 6. The fill distance h is approximated by h = 1/

√
N

where N is the number of initial points in X.
To approximate s∇ and sΔ for indicators, in the first PU algorithm, we use vari-

able patch radius ρ	 per any patch center y	. Using a nearest search algorithm, we
select n = 12 nearest points to y	 and then adjust the radius ρ	 as the maximum

1775

Numerical Algorithms (2023) 93:1759–1794

distance between y	 and that surrounding 12 points. In examples, Y = {y1, . . . , yNc}
is assumed to be a grid set in the domain Ω with spacing distance hcov = Ccovh =
2.5h. This parameter selection guarantees the inclusion Ω ⊂ ∪	Ω	 for both ran-
dom and Halton point sets in our numerical examples. Moreover, for the second PU
algorithm in the narrowing step, we use constant radius ρ = Covlphcov where we set
Covlp = 1.5. We also set CM = 1/4, CG = 1, CL = 1/2, and η = 4h in all examples
unless specified otherwise. Finally, the main algorithm of the fault detection method
can be written as follows.

Algorithm 7 Fault curve reconstruction.

7 Experimental results

In this section, the results of some experiments are given. The efficiency of the
method is confirmed by testing it on various kinds of problems: problems with multi-
ple faults of the same type (ordinary or gradient) and problems with faults of different
types with or without intersections. The initial set X is assumed to be a sequence of
N random points with uniform distribution on a square domain Ω ⊂ R

2. We use
N = 10000 random points (Fig. 5 left) in our test examples unless otherwise stated.
For instance, in some examples, Halton points or a set of varying density random
points are also used. The constant-generated weight function (8) is applied for both
PU subroutines.

For the final curve reconstruction, we use the csaps function of MATLAB with
smoothing parameter p = 0.9999 to obtain a cubic spline smoothing function on
ordered fault points. The case p = 1 works as well but we choose a little bit smaller
value to have smoother fits. In Example 7.7, we use p = 1 to better capture higher
curvatures of the solution at fins and flukes of the dolphin.

We suppose that the type of faults (ordinary or gradient) is not known in advance.
Thus, both gradient and Laplace indicators are used by default for all examples.

In Example 7.1, we compute the root mean distance of the detected points from a
fine set of points on the real fault to measure the closeness of detected points to the
exact fault or to measure the error of the final fault reconstruction. Assume that Z is

1776

Numerical Algorithms (2023) 93:1759–1794

10

1

10

1

10

1

Fig. 5 A set of N = 10000 random points with uniform distribution (left), Halton points (middle), and
random points with varying density (right)

a set of m points on the exact fault Γ and F is the set of detected points around Γ .
We define the root mean distance dist(F, Z) by [12]

dist(F, Z) :=
√∑

x∈F (minz∈Z ‖x − z‖22)
|F | , (16)

where |F | stands for cardinality of F . In the case of multiple faults, we measure the
error for each fault separately. In experiments, we assume that Z is a set of m = 500
points on each individual fault.

All algorithms are implemented in MATLAB and executed on a machine with an
Intel Core i7 processor, 4.00 GHz, and 16 GB RAM. The code is freely available
at GitHub via https://github.com/ddmirzaei/FaultDetection to facilitate the reproduc-
tion of the examples presented in this section. The connection between scripts in the
GitHub repository and the pseudocodes in the paper is as follows.

mfile Pseudocode

FaultDetection.m Algorithm 1
RBF PU.m Algorithm 2
LagrangeMat.m Algorithm 3
PCR PU.m Algorithm 4
OrderedSubset.m Algorithm 5
FixingIntersections.m Algorithm 6
RunExample.m Algorithm 7

Other subroutines in the repository are called in the above MATLAB functions.

7.1 Example 1

Consider the test function [12]

f (x, y) :=
{

|x − 0.4 − 0.1 sin (2πy)|, if x � 0.7 + 0.2 sin (2πy)

|x − 0.4 − 0.1 sin (2πy)| − 0.2, otherwise,

1777

https://github.com/ddmirzaei/FaultDetection

Numerical Algorithms (2023) 93:1759–1794

where (x, y) ∈ [0, 1]2 =: Ω . As is distinguishable from the upper-left side of Fig. 6,
this function has an ordinary and a gradient fault. Faults are exactly represented by

Γ1 = {(x, y) ∈ [0, 1]2 : x − 0.7 − 0.2 sin(2πy) = 0}, (ordinary fault)

Γ2 = {(x, y) ∈ [0, 1]2 : x − 0.4 − 0.1 sin(2πy) = 0}. (gradient fault)

The upper-right panel of Fig. 6 shows the clouds of faults points which are detected
by the algorithm out of N = 10000 random points in Ω . The lower-left panel shows
the narrowed points and the ordered points. Finally, at the lower-right panel, the exact
and reconstructed curves using smooth spline interpolation are depicted. We also test
the algorithm on variable density random points (Fig. 5 right). The detected fault
points and the final reconstructed curves are shown in Fig. 7. The algorithm handles

Fig. 6 Example 7.1: the test function (upper left), primary detected clouds (upper right), narrowed and
ordered points (lower left), and reconstructed and exact curves (lower right). The primary set consists of
N = 10000 uniformly distributed random points

1778

Numerical Algorithms (2023) 93:1759–1794

Fig. 7 Example 7.1: detected points out of a set of 10000 scattered points with varying density (left) and
reconstructed and exact curves (right)

this case perfectly because patch sizes are selected automatically. The only difference
is that we use more patch centers in that part of the region with a higher point density.

To verify the accuracy of the method, we first discretize the exact ordinary and
gradient faults either by Z, a set of m = 500 equidistant points. Then we compute
dist(F, Z) where F is the set of primary detected fault points around the fault curve.
In fact, dist(F, Z) measures the closeness of the detected points to the exact fault.
We also assume that Z′ is a set of m = 500 equidistant points on the final recon-
structed curve (after narrowing and curve fitting) and measure the root mean distance
dist(Z′, Z) to estimate the error of the reconstruction. Results are given in Table 1 for
both ordinary and gradient faults for N = 5000, 10000, 20000 random points with
uniform distributions on [0, 1]2. Results are comparable with [12] but seem better
than the grid-based algorithm of [11].

Finally, we note that the errors for N = 10000 varying density points (Fig. 5 right)
are dist(F, Z) = 5.2e − 3 and dist(Z′, Z) = 3.5e − 3 for the ordinary fault and
dist(F, Z) = 2.6e − 3 and dist(Z′, Z) = 1.9e − 3 for the gradient fault.

Table 1 The root mean distance between detected fault points F and points Z on the exact fault, and the
distance between Z′ and Z where Z′ is a set of fine points on the reconstructed curve

Ordinary Gradient

N dist(F,Z) dist(Z′, Z) dist(F,Z) dist(Z′, Z)

5000 7.9e − 3 4.5e − 3 7.3e − 3 3.4e − 3

10000 6.7e − 3 2.6e − 3 3.2e − 3 1.4e − 3

20000 4.1e − 3 1.8e − 3 1.5e − 3 1.4e − 3

Initial sets are random points with uniform distribution in [0, 1]2. The case N = 10000 is shown on the
left side of Fig. 5

1779

Numerical Algorithms (2023) 93:1759–1794

7.2 Example 2

Consider the test function [11]

f (x, y) :=

⎧
⎪⎨

⎪⎩

x2 + x + sin(2y), if y � (5/3)x2 − 11/3x + 2.2,

0, if y < (5/3)x2 − 11/3x + 2.2 and y � x + 0.01,

(x + y)y2 − 1.2, otherwise,

where (x, y) ∈ [0, 1]2. This function has two ordinary faults that intersect each other
at a point inside the domain (see the upper left-hand side of Fig. 8). Faults are exactly
represented as

Γ1 = {(x, y) ∈ [0, 1]2 : y − (5/3)x2 + 11/3x − 2.2 = 0},
Γ2 = {(x, y) ∈ [0, 1]2 : y − x − 0.01 = 0, y � (5/3)x2 − 11/3x + 2.2}.

Fig. 8 Example 7.2: the test function (upper left), primary detected clouds (upper right), narrowed and
ordered points (lower left), reconstructed and exact curves (lower right)

1780

Numerical Algorithms (2023) 93:1759–1794

The upper-right panel of Fig. 8 shows the clouds of fault points detected by the
algorithm. The lower-left panel shows the narrowed and the ordered points. Finally,
at the lower-right panel, the exact and reconstructed curves using smooth spline
interpolation are plotted.

7.3 Example 3

Consider the test function

f (x, y) :=
{
1 + 2�7√x2 + y2�, if (x − 0.5)2 + (y − 0.5)2 < 0.16,

0, otherwise,

where (x, y) ∈ [0, 1]2. As shown in the upper-left side of Fig. 9, this function
is discontinuous across six curves. In the upper-right side of Fig. 9, the clouds of

Fig. 9 Example 7.3: the test function (upper left), primary detected clouds (upper right), narrowed and
ordered points (lower left), reconstructed and exact curves (lower right)

1781

Numerical Algorithms (2023) 93:1759–1794

fault points detected by the algorithm are shown. Narrowed and ordered points are
depicted in the lower-left panel while exact and reconstructed curves are shown at
the lower-right panel.

7.4 Example 4

In this example, we consider the function [12]

f (x, y)=|x−0.2−0.1 sin(2π(y−0.13))|+|x2+y2−0.5|−|(x−1)2+y2−0.36|

on [0, 1]2 (see Fig. 10). This function has three gradient faults where one of them
intersects two others. The given algorithm detects all fault curves and handles the

Fig. 10 Example 7.4: the test function (upper left), primary detected clouds (upper right), narrowed points
ordered points (lower left), reconstructed and exact curves (lower right)

1782

Numerical Algorithms (2023) 93:1759–1794

intersections. For this example, we use the value CM = 1 instead of 1/4. The pri-
mary detected points, the narrowed cloud, the ordered points, and the exact and
reconstructed curves are all depicted in Fig. 10.

7.5 Example 5

Consider the test function [12]

f (x, y) :=
{

|x2 + y2 − 1/2| − x + y2, if x − 0.4 − 0.1 sin(2πy) ≥ 0

|x2 + y2 − 1/2| − x + y2 + 0.3, otherwise,

where (x, y) ∈ [0, 1]2 (see Fig. 11). This function has a gradient and an ordinary
faults which intersect to each other with a small angle. In Fig. 11, primary detected
clouds, narrowed and ordered points, and exact and reconstructed curves are shown.

Fig. 11 Example 7.5: the test function (upper left), primary detected clouds (upper right), narrowed and
ordered points (lower left), reconstructed and exact curves (lower right)

1783

Numerical Algorithms (2023) 93:1759–1794

7.6 Example 6

In this example, we have a tangential intersection. Consider the test function [12]

f (x, y) :=

⎧
⎪⎨

⎪⎩

√
4 − x2 − y2 − √

7/2, if x2 + y2 ≤ 1/2√
4 − (x − 1)2 − (y − 1)2 − √

7/2, if (x − 1)2 + (y − 1)2 ≤ 1/2

0, otherwise,

where (x, y) ∈ [0, 1]2 (see Fig. 12). This function has two gradient faults which are
tangent to each other at the middle of the square. In the upper-right side of Fig. 12,

Fig. 12 Example 7.6: the test function (upper left), primary detected clouds (upper right), narrowed and
ordered points (lower left), reconstructed and exact curves (lower right)

1784

Numerical Algorithms (2023) 93:1759–1794

the clouds of fault points detected by the algorithm are shown. The detected points
around the intersection point are not separable for each fault; thus, the algorithm
determines two intersection points and a common fault between them (see the nar-
rowed and ordered points on the lower-left panel and the exact and reconstructed
curves on the lower-right panel of Fig. 12).

7.7 Example 7

As a toy example, using closed parametric curve C(t) = x(t)i+y(t)j for t ∈ [0, 2π)

which represents a plane shape of a dolphin, we construct the test function

f (x, y) :=
{
1, if (x, y) ∈ interior of C

0, otherwise,

for (x, y) ∈ [0, 1]2. Obviously, this function is discontinuous on C. We use N =
30000 Halton points as an initial set X. Results are given in Fig. 13 where the
narrowed fault points and the exact and reconstructed curves are illustrated.

8 An application for solving conservation laws

In this section, an application of the presented fault detection method is expressed in
the process of solving conservation law equations via the weighted essentially non-
oscillatory (WENO) finite volume methods (FVM). A brief summary of solution of
conservation law equations by WENO FVM is outlined here. The reader is refereed
to [1, 10, 25, 30, 42, 47, 54] for a complete explanation.

Fig. 13 Example 7.7: narrowed points (right), reconstructed and exact curves (right)

1785

Numerical Algorithms (2023) 93:1759–1794

8.1 Spatial disctretization

Consider the following problem of scalar conservation law

∂u

∂t
+ ∇ · F(u) = 0, u (0, x) = u0(x), (17)

where u ≡ u (t, x) : I ×Ω −→ R is the solution of the problem. Ω ⊂ R
2 is an open

and bounded computational domain and I := (
0, tf

]
is a time interval with final

time tf . F (u) := (f1 (u) , f2 (u))T is called flux function. In order to discretize the
problem (17) via FVM, a conforming triangulation T = {T }T ∈T is considered on Ω

where T is a triangle (control volume) in this triangulation. The integral form of (17)
on each triangle T ∈ T at time t ∈ I is obtained as

d

dt
uT + 1

|T |
∫

∂T

F (u) · nds = 0, for T ∈ T (18)

where

uT ≡ uT (t) := 1

|T |
∫

T

u(t, x)dx for T ∈ T , t ∈ I

is the cell average value of u on triangle T at time t . Here, the boundary of T is
denoted by ∂T and consists of union of Γj for j = 1, 2, 3 where Γj are edges of
triangle T with unit outward normal vectors nj . Thus (18) can be written as

d

dt
uT + 1

|T |
3∑

j=1

∫

Γj

F (u(t, s)) · nj ds = 0.

The line integrals in the above equation can be approximated by aNG-point Gaussian
integration formula as

d

dt
uT + 1

|T |
3∑

j=1

|Γj |
NG∑

	=1

ω
(j)

	 F (u(t, x
(j)

)) · nj = 0

where ω
(j)

	 are Gaussian weights and x
(j)

	 are Gaussian points on edge Γj of triangle
T . The Lax-Friedrichs numerical flux

F(u) · n ≈ F̃ (uin, uout; n) = 1

2
(F (uin) + F(uout)) · n + σ

2
(uin − uout) (19)

is used here where uin(·, x(j)

) is the approximate solution at Gaussian point x
(j)

	 of

triangle T itself and uout(·, x(j)

) is the approximate solution at the same point but
from an adjacent triangle which shares Γj as a common edge with T . The coefficient
σ is obtained by

σ = max
min(uin,uout)≤u≤max(uin,uout)

|F ′(u) · nj |, F ′(u) =
[
df1

du
,
df2

du

]
.

1786

Numerical Algorithms (2023) 93:1759–1794

Therefore, cell average values {uT (t)}T ∈T can be updated as

d

dt
uT (t) = LT (uT (t)) for T ∈ T , (20)

where

LT (uT (t)) = − 1

|T |
3∑

j=1

|Γj |
NG∑

	=1

ω
(j)
	 F̃ (uin(t, x

(j)
), uout(t, x

(j)
); nj). (21)

It is necessary to reconstruct uin and uout from the current cell average values
{uT (t)}T ∈T . There are different methods for reconstruction that will be explained
later.

8.2 Time discretization

For hyperbolic equations, an ODE solver which maintains the stability of the problem
and avoids oscillations should be employed. Here we use a strong stability preserving
Runge-Kutta (SSPRK) methods of order 3 [7, 26, 48]. Consider the time depended
system (20). For moving from data {uT (tn)}T ∈T at time tn to data {uT (tn+1)}T ∈T
with time length Δt , the SSPRK3 method consists of three steps

u
(1)
T = uT (tn) + ΔtLT (uT (tn)),

u
(2)
T = 3

4
uT (tn) + 1

4
u

(1)
T + 1

4
ΔtLT (u

(1)
T),

uT (tn+1) = 1

3
uT (tn) + 2

3
u

(2)
T + 2

3
ΔtLT (u

(2)
T). (22)

By applying the CFL condition, Δt is restricted as

Δt ≤ min
T ∈T

rT

ηmax
t

where rT is the radius of the incircle of triangle T and ηmax
t = max |F ′(u) ·n|, where

maximum is being taken over all Gaussian points on edges of triangle T .

8.3 Reconstruction step

As discussed before, the approximation values uin and uout in (21) should be
reconstructed from the cell average values {uT (t)}T ∈T in each time step. An effi-
cient particle reconstruction scheme based on polyharmonic spline interpolation is
described [32]. For some other reconstruction methods, see, for example, [1, 42].

Assume that {xcT
}T ∈T is the set of barycenters of triangles in T . For each refer-

ence triangle T ∈ T , consider a stencil S = {T1, . . . , Tn} ⊂ T , where T ∈ S. In
each triangle R ∈ S, the cell average value uR(t) is considered as an approximation

1787

Numerical Algorithms (2023) 93:1759–1794

for u at xcR
at time t . So we are looking for a function s that interpolates u from the

given values u(xcR
, t) ≈ uR(t) for R ∈ S, i.e.,

s(xcR
) = uR for all R ∈ S.

In polyharmonic spline interpolation, s is written as

s(x) =
∑

R∈S
αRφ(x − xcR

) +
Q∑

k=1

akpk(x),

and by imposing the interpolation condition, the same system as (2) is resulted where
f is replaced by the vector of cell average values at stencil S.

In order to avoid the nonphysical oscillations in solution, the WENO reconstruc-
tion is frequently used in literature [25, 30, 38, 54]. In WENO schemes, a weighted
average of reconstructions from a set of stencils {Sk}Kk=1 for which T ∈ Sk for all
k = 1, . . . , K is used. The weights are chosen in such way that the oscillations are
minimized. We use a WENO reconstruction with an oscillation indicator parameter
based on native space norm of the underlying polyharmonic kernel which is fully
described in [32]. Details are left and the reader is referred to original sources.

8.4 Combination with the fault detection algorithm

In a WENO reconstruction, the process of selecting stencils {Sk}Kk=1 for a T ∈ T
is an important part [22, 25, 29, 38]. In polyharmonic kernel reconstruction, the size
of each stencil Sk (the number of triangles in stencil Sk) should not be less than Q,
the dimension of polynomial space. Three types of stencils for each triangle T are
introduced in [1]; centered, forward sector, and backward sector stencils. Three size
7 stencils of each type are displayed in Fig. 14.

It was concluded in [1] that in WENO polyharmonic spline reconstruction with
φ = ‖ · ‖22 log(‖ · ‖2), the use of 7 stencils (1 centered, 3 forward, and 3 backward)
all of size 4 is sufficient for smooth solutions, while for solutions with discontinuity
or a steep gradient at least 7 stencils (1 centered, 3 forward, and 3 backward), all of
size 7 are required. For smooth solutions, we can even get rid of WENO and use a
simple central stencil approximation instead. Usually the solution of a conservation
law problem has a steep gradient or becomes discontinuous on a curve or a small
subregion of global domain Ω . Thus, it is reasonable to detect such fault curves or
regions in advance and use higher number of stencils or higher sizes in that regions
only.

To follow this strategy, at each time step, X = {xcT
}T ∈T is considered as a set

of scattered points in Ω and {uT (t)}T ∈T as an approximation for solution values
at these scattered points. Then, using the proposed fault detection algorithm with a
Laplace indicator, a set of fault barycenters F = F(X, Δ, δ2) are detected where
δ2 is defined in (11). As we discussed before, F(X, Δ, δ2) contains points close to
both ordinary and gradient discontinuities. A triangle with its barycenter belongs to
F is marked as a fault triangle. We use 7 stencils of size 7 for a fault triangle and a

1788

Numerical Algorithms (2023) 93:1759–1794

Fig. 14 Centered stencils (up), forward sector stencils (middle), and backward sector stencils (down)

central stencil of size 7 otherwise. This means that the WENO reconstruction is used
for that parts of the domain on which the solution has steep gradient and is going to
be discontinuous. Other parts are subjected to a simple central stencil reconstruction.
The algorithm of this hybrid method is as follows.

Numerical experiments show that this approach leads to an speedup of around 30%
while retains the accuracy of solution compared to the original WENO reconstruction
(see the next section for an example).

8.5 A numerical example

Consider the nonlinear Burger’s equation

ut + uux1 + uux2 = 0, x = (x1, x2) ∈ [−0.5, 0.5]2

1789

Numerical Algorithms (2023) 93:1759–1794

Algorithm 8 Combination of WENO-FVM and fault triangle detection algorithm.

where u := u(t, x) : [0, 1] × [−0.5, 0.5]2 −→ R, with initial condition

u(0, x) =
{
exp(

‖x−c0‖22
‖x−c0‖22−r20

), if ‖x − c0‖2 < r0,

0, otherwise,
(23)

where r0 = 0.15, c0 = (−0.2, −0.2) and with periodic boundary conditions. The
initial condition is shown in Fig. 15. The solution evolves into a very steep gradient
when advancing in time.

The MATLAB code of this part is also freely available at GitHub repository
https://github.com/ddmirzaei/FaultDetection Application to facilitate the reproduc-
tion of the results. All constants and parameters of the fault detection algorithm are
set as before except parameter CM which is set to be 1 in this experiment. The pre-
vious value CM = 1/4 is also works but we use CM = 1 to reduce the number of
fault triangles, slightly. Since the exact solution is not available, in Table 2, the errors
between the solution of the full WENO reconstruction and the solution of the hybrid
method for different values of triangles sizes hT = { 1

16 ,
1
32 ,

1
64 ,

1
128 } are given. We

observe a good agreement between the solutions of both methods which means that
the hybrid method retains the accuracy of the full WENO reconstruction method.
The next two columns of the table contain the total number of triangles and the
average number of fault triangles in all time steps. For this example, and for mesh-
sizes hT = 1/64, 1/128, we observe that 4–5% of all triangles are detected as fault
triangles. The total run times are given in the last two columns. We observe speedup
of about 30% with the new hybrid method.

For a better illustration, numerical solutions using the hybrid method at time levels
t = 0, 0.3, t = 0.5, and t = 1 are shown in Fig. 15, and the fault barycenters at time
t = 1 are shown in Fig. 16.

1790

https://github.com/ddmirzaei/FaultDetection_Application

Numerical Algorithms (2023) 93:1759–1794

Fig. 15 Numerical solutions of Burger’s equation at time levels t = 0, t = 0.3, t = 0.5, and t = 1 using
the hybrid method

9 Conclusion

A localized scattered data approximation method based on polyharmonic spline inter-
polation in combination with partition of unity method was proposed to define a
gradient and a Laplacian based indicators for detecting a cloud of fault points on or
close to discontinuities of a bivariate function. The polyharmonic interpolation was

Table 2 Root mean square errors (RMSE) between the full WENO and the hybrid methods, number of all
and detected triangles in the hybrid method, and the comparison of CPU times (in seconds)

hT RMSE Ntotal Nfault CPU time (WENO) CPU time (hybrid)

1
16 4.37e − 3 778 58 18 15
1
32 3.20e − 3 2334 162 132 102
1
64 1.06e − 3 9388 492 1001 717
1

128 4.05e − 4 37666 1395 7771 5576

1791

Numerical Algorithms (2023) 93:1759–1794

Fig. 16 Fault barycenters (red dots) at time levels t = 0.5 and t = 1 for hT = 1/64

done on scaled data points to prevent the instability of kernel matrices. To get an
accurate reconstruction of the fault, a localized principal component regression was
applied to generate a second set of points which are supposed to be closer to the fault
curve than the primary detected set. Then an ordered subset of these narrowed points
was extracted and a smooth parametric spline interpolation was employed to recon-
struct the fault curve. Situations with multiple fault curves and special cases with
intersections and multi-branch configurations were addressed. Finally, an application
for solving conservation law PDEs was given.

Applications to other areas such as image processing and geosciences, and
generalization to 3-variate functions are left for a future study.

Acknowledgements We wish to express our deep gratitude to anonymous reviewers for their helpful
comments which improved the quality of the paper.

Funding Open access funding provided by Uppsala University. The work of the second author (Navid
Soodbakhsh) was supported by a grant from Iranian National Science Foundation (INSF), No. 98001906.

Data availability The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Declarations
Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

1792

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Numerical Algorithms (2023) 93:1759–1794

References

1. Aboiyar, T., Georgoulis, E.H., Iske, A.: Adaptive ADER methods using kernel-based polyharmonic
spline WENO reconstruction. SIAM J. Sci. Comput. 32, 3251–3277 (2010)

2. Allasia, G., Besenghi, R., Cavoretto, R.: Adaptive detection and approximation of unknown surface
discontinuities from scattered data. Simul. Model. Pract. Theory 17, 1059–1070 (2009)

3. Arandiga, F., Cohen, A., Donat, R., Dyn, N., Matei, B.: Approximation of piecewise smooth func-
tions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques. Appl. Comput.
Harmon. Anal. 24(2), 225–250 (2008)

4. Arandiga, F., Cohen, A., Donat, R., Matei, B.: Edge detection insensitive to changes of illumination
in the image. Image Vis. Comput. 28(4), 553–552 (2010)

5. Archibald, R., Gelb, A., Yoon, J.: Polynomial fitting for edge detection in irregularly sampled signals
and images. SIAM J. Numer. Anal. 43(1), 259–279 (2005)

6. Arge, E., Floater, M.: Approximating scattered data with discontinuities. Numer. Algoritm. 8, 149–
166 (1994)

7. Barth, T.J., Deconinck, H.: High order methods for computational physics. Springer, Berlin (1999)
8. Besenghi, R., Allasia, G.: Scattered data near-interpolation with applications to discontinuous

surfaces. In: Curve and Surface Fitting, pp. 75–84, Nashville, TN. Vanderbilt University Press (2000)
9. Bhardwaj, S., Mittal, A.: A survey on various edge detector techniques. Procedia Technol. 4, 220–226

(2012)
10. Boscheri, W.: High order direct Arbitrary-Lagrangian–Eulerian (ALE) finite volume schemes for

hyperbolic systems on unstructured meshes. SIAM J. Sci. Comput. 24, 7510–801 (2017)
11. Bozzini, M., Rossini, M.: The detection and recovery of discontinuity curves from scattered data. J.

Comput. Appl. Math. 240, 148–162 (2013)
12. Bracco, C., Davydov, O., Giannelli, C., Sestini, A.: Fault and gradient fault detection and reconstruc-

tion from scattered data. Comput. Aided Geom. Des. 75, 101786 (2019)
13. Cates, D., Gelb, A.: Detecting derivative discontinuity locations in piecewise continuous functions

from fourier spectral data. Numer. Algoritm. 46, 59–84 (2007)
14. Cavoretto, R., De Marchi, S., De Rossi, A., Santin, G.: Partition of unity interpolation using stable

kernel-based techniques. Appl. Numer. Math. 116, 95–107 (2017)
15. Cavoretto, R., De Rossi, A.: Adaptive meshless refinement schemes for RBF - PUM collocation. Appl.

Math. Lett. 90, 131–138 (2019)
16. Cavoretto, R., De Rossi, A., Perracchione, E.: Efficient computation of partition of unity interpolants

through a block-based searching technique. Comput. Math. Appl. 71, 2568–2584 (2016)
17. Cavoretto, R., De Rossi, A., Perracchione, E.: Optimal selection of local approximants in RBF-PU,

interpolation. J. Sci. Comput. 74, 1–22 (2018)
18. Ahmadi Darani, M.R.: The RBF partition of unity method for solving the Klein-Gordon equation.

Engineering with Computers, In press (2020)
19. Davydov, O., Schaback, R.: Error bounds for kernel based numerical differentiation. Numer. Math.

132, 243–269 (2016)
20. Davydov, O., Schaback, R.: Optimal stencils in Sobolev spaces. IMA J. Numer. Anal. 39, 398–422

(2019)
21. Drake, K.P., Fuselier, E.J., Wright, G.B.: Implicit surface reconstruction with a curl-free radial basis

function partition of unity method. SIAM J. Sci. Comput. 42, A3018–A3040 (2022)
22. Dumbser, M., Kaser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured

meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007)
23. Farazandeh, E., Mirzaei, D.: A rational RBF interpolation with conditionally positive kernels, 47:74.

Adv. Comput. Math. 47, 74 (2021)
24. Fasshauer, G.E.: Meshfree Approximations Methods with Matlab. World Scientific, Singapore (2007)
25. Friedrich, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on

unstructured grids. J. Comput. Phys. 144, 194–212 (1998)
26. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85

(1998)
27. Gout, C., Le Guyader, C.: Segmentation of complex geophysical structures with well data. Com-

putional Geosci. 10, 361–372 (2006)
28. Gutzmer, T., Iske, A.: Detection of discontinuities in scattered data approximation. Numer. Algoritm.

16, 155–170 (1997)

1793

Numerical Algorithms (2023) 93:1759–1794

29. Harten, A., Chakravarthy, S.R.: Multidimensional ENO schemes for general geometries. Tech. Rep.,
ICASE 221, 91–76 (1991)

30. Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput.
Phys. 150, 97–127 (1999)

31. Iske, A.: On the approximation order and numerical stability of local Lagrange interpolation by
polyharmonic splines . In: International Series of Numerical Mathematics 145, pp. 153–165. Basel,
Birkhäuser Verlag (2003)

32. Iske, A.: On the construction of kernel-based adaptive particle methods in numerical flow simulation.
In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), pp. 197–221, Berlin,
Springer (2013)

33. Jabalameli, M., Mirzaei, D.: A weak-form RBF-generated finite difference method. Comput. Math.
Appl. 79, 2624–2643 (2020)

34. Jeffers, J.: Two case studies in the application of principal component. Appl. Stat. 16, 225–236 (1967)
35. Jolliffe, I.T. Principal Component Analysis, 2nd. Springer, New York (2002)
36. Jung, J.H., Durante, V.R.: An iterative adaptive multiquadric radial basis function method for the

detection of local jump discontinuities. Appl. Numer. Math. 59(7), 1449–1466 (2009)
37. Jung, J.H., Gottlieb, S., Kim, S.O.: Iterative adaptive RBF methods for detection of edges in two-

dimensional functions. Appl. Numer. Math. 61(1), 77–91 (2011)
38. Kaser, M., Iske, A.: ADER schemes on adaptive triangular meshes for scalar conservation laws. J.

Comput. Phys. 205, 486–508 (2005)
39. Kendall, M.G.: A Course in Multivariate Analysis. Griffin, London (1957)
40. Larsson, E., Shcherbakov, V., Heryudono, A.: A least squares radial basis function partition of unity

method for solving PDEs. SIAM J. Sci. Comput. 39, A2538–A2563 (2017)
41. Lee, I.K.: Curve reconstruction from unorganized points. Comput. Aided Geom. Des. 17, 161–177

(2000)
42. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press,

Cambridge (2002)
43. Mirzaei, D.: The direct radial basis function partition of unity (d-RBF-PU) method for solving PDEs.

SIAM J. Sci. Comput. 43, A54–A83 (2021)
44. Romani, L., Rossini, M., Schenone, D.: Edge detection methods based on rbf interpolation. J. Comput.

Appl. Math. 349, 532–547 (2019)
45. Safdari-Vaighani, A., Heryudono, A., Larsson, E.: A radial basis function partition of unity collocation

method for convection–diffusion equations arising in financial applications. J. Sci. Comput. 64(2),
341–367 (2015)

46. Shankar, V.: The overlapped radial basis function-finite difference (RBF-FD) method: a generalization
of RBF-FD. J. Comput. Phys. 342, 211–228 (2017)

47. Shu, C.W.: High order ENO and WENO schemes for computational fluid dynamics. In: High Order
Methods for Computational Physics, pp. 439–852, Berlin, Springer (1991)

48. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing
schemes. J. Comput. Phys. 77, 439–471 (1998)

49. Singh, S., Singh, R.: Comparison of various edge detection techniques. In: 2nd International
Conference on Computing for Sustainable Global Development, pp. 393–396 (2015)

50. Sober, B., Levin, D.: Manifold approximation by moving least squares projection (MMLS). Constr.
Approx. 52, 433–478 (2020)

51. Strang, G.: Linear Algebra and Learning from Data. Wellesley-Cambridge Press, Cambridge (2019)
52. Wendland, H.: Fast evaluation of radial basis functions: methods based on partition of unity.

In: Approximation Theory, X: Wavelets, Splines, and Applications, pp. 473–483. Nashville, TN,
Vanderbilt University Press (2002)

53. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)
54. Wolf, W.R., Azevedo, J.L.F.: High-order ENO and WENO schemes for unstructured grids. Int. J.

Numer. Methods Fluids 55, 917–943 (2007)
55. Yi, S., Labate, D., Easley, G.R., Krim, H.: A shearlet approach to edge analysis and detection. IEEE

Trans. Image Process. 18(5), 929–941 (2009)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

1794

	A fault detection method based on partition of unity and kernel approximation
	Abstract
	Introduction
	Polyharmonic spline interpolation
	Partition of unity approximation
	Principal component regression
	Detection algorithm
	Fault point detection
	Narrowing step
	Fault curve reconstruction
	Cases with multiple fault curves
	Cases with intersections

	Parameter selection and the main algorithm
	Experimental results
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	An application for solving conservation laws
	Spatial disctretization
	Time discretization
	Reconstruction step
	Combination with the fault detection algorithm
	A numerical example

	Conclusion
	Declarations
	References

