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Abstract
Mean-square stability analysis of linear stochastic differential systems obtained per-
turbing ordinary systems by linear terms driven by independent Wiener processes is
investigated. The so obtained stochastic regions are contractions of the asymptotic
stability domain of the linear ordinary system. In this work, the mean-square stability
regions exact shape is provided by means of necessary and sufficient conditions in
terms of the eigenvalues of the drift and the intensities of the noises. Special attention
is paid to how different structures of the perturbation affect the mean-square stabil-
ity of systems with non-normal drifts. In each case, the obtained explicit stability
condition reveals the role played by the parameter that controls the non-normality.
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1 Introduction

Stochastic differential equations (SDEs) have been used to reproduce and design the
dynamics of evolutionary systems in many scientific areas (see [13] and the refer-
ences therein). Recent applications in physics, medicine, epidemiology, or finance
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(see, for instance, [5, 7, 10, 14–16, 21, 22]) show a rising interest in the study of
SDEs.

The linear stability theory for ordinary differential equations starts from a simple
test system, usually of the form

d Xt = AXt dt, (1)

where A is a constant matrix with different eigenvalues λ1, . . . , λd ∈ C. When all
of them lie in the negative half-plane, the solutions tend to zero as t tends to infinity
and the equilibrium position of the test system is said to be asymptotically stable. In
this case, there exists a non-singular matrix T such that T −1AT = diag[λ1, . . . , λd ],
and the transformation x = T z uncouples the test system. So, the analysis of stability
for multi-dimensional systems can be reduced to the study of scalar test equa-
tions. Unlike the deterministic case, the scalar stochastic analysis cannot be directly
extended to multi-dimensional systems because in the stochastic linear test equation

dXt = AXt dt +
m∑

k=1

Bk Xt dWk
t (2)

with B1, . . . , Bm constant matrices, come into play at least two matrices — one for
the drift and one or more for the diffusion coefficient — and hence, in general, at most
one of them can be assumed to be diagonal. In other words, only in the simultaneous
diagonalizable case does the analysis reduce to the study of a scalar SDE (see Komori
and Mitsui [12]). Since the reduction to a scalar test equation is not justified, we have
to choose test systems that reflect the essence of more general equations but simple
enough to allow its analysis and interpretation.

Stability of SDEs plays an important role in the analysis of qualitative behavior
of dynamical processes. Different types of stability have been proposed (see [1, 9]).
In this paper, we are concerned with the concept of stability in pth mean and, more
specific, the case of p = 2, called mean-square (MS) stability. Considering the
stochastic system (2) as the result of perturbing the ordinary system (1) by means
of m independent Wiener processes, we recall in Section 2 that unstable ordinary
systems cannot be stabilized in the mean-square sense. And, starting from a stable
ordinary system, one can consider the following questions:

(i) How strong can be the perturbation so that the solution remains stable (in the
mean-square sense)? Is it possible to calculate a “stability threshold”?

(ii) Is there any linear noise perturbation that does not modify the stability condition
of the ordinary system?

For the scalar case, the answers are straightforward, since the (real) ordinary equation
dXt = λXt dt is asymptotically stable when λ < 0, and the SDE

dXt = λXt dt + σXt dWt

obtained introducing a multiplicative noise of intensity σ ∈ R is MS-stable if and
only if 2λ + σ 2 < 0.

When the matrix A in (1) is non-normal, some features of the dynamic of the
system appear. The effects of non-normality in deterministic systems have been
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extensively studied (see [19, 20] and the references therein), but only few works ana-
lyze the stability behavior of stochastic systems obtained perturbing such non-normal
systems by a multiplicative noise. To be concrete, for a two-dimensional system

dXt =
(

λ b

0 λ

)
Xt dt (3)

with λ < 0, b �= 0, the considered stochastic perturbations, all of them driven
by a single multiplicative noise term, resulted in linear SDEs of the form dXt =
AXt dt + B Xt dWt . Higham and Mao [11] showed that for λ = −1, the orthogonal
perturbation given by

B =
(

0 σ

−σ 0

)

destabilizes the system for b sufficiently large. Later Buckwar and Kelly [3] pre-
sented an inequality relating the parameters as the necessary and sufficient condition
to hold MS-stability. Finally, Tocino and Senosiaı́n [18] gave an equivalent but
notably simpler condition. On the other hand, in [3], the diagonal perturbation given
by

B =
(

σ 0
0 σ

)

was used to carry on a similar analysis. The obtained result was slighted generalized
in [18], where the terms λ in the diagonal of A were replaced by different values
λ1, λ2. Finally, in [18], the lateral noise given by

B =
(

0 0
σ 0

)

was considered to complete a MS-stability analysis. In the present paper (Section 3),
we will use our former results in [17] to extend the MS-stability analysis to two-
dimensional stochastic test systems of the form (2) obtained perturbing (3) by
multiplicative noise terms driven by independent Wiener processes. We shall see how
the different structures of the perturbations interact and affect to the MS-stability of
the solution. The analysis is completed in Section 4, where a necessary and suffi-
cient condition for the MS-stability of a three dimensional non-normal test system is
presented.

2 Preliminaries

In this section, we will introduce some notation and basic definitions for a later use.
Consider the d-dimensional Itô stochastic differential equation

dXt = f (t, Xt ) dt +
m∑

k=1

gk(t, Xt ) dWk
t ,

Xt0 = x0,

(4)

where x0 is a constant vector; W 1
t . . . Wm

t are the components of an m-dimensional
standard Wiener process, and the coefficients f and gk, k = 1, 2, . . . , m , are R

d
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valued functions defined for (t, x) ∈ [t0, T ] × R
d , continuous with respect to t and

satisfy the assumptions of the existence and uniqueness theorem (see Arnold [1]). Let
us also assume that f (t, 0) = 0 and gk(t, 0) = 0 for t ≥ t0. Notice that this implies
that the process Xt ≡ 0, called the equilibrium position, is the (unique) solution of
(4) with x0 = 0.

Definition 1 [1, 9] The equilibrium position is said to be stable in pth mean (where
p > 0) if for every ε > 0, there exists a δ > 0 such that

sup
t0≤t<∞

E‖Xt(x0)‖p ≤ ε

for ‖x0‖ ≤ δ.
The equilibrium position is said to be asymptotically stable in pth mean if it is

stable in pth mean and if for all x0 in a neighborhood of x = 0

lim
t→∞ E‖Xt(x0)‖p = 0.

The equilibrium position possess a stable expectation value mt = E[Xt(x0)] if for
every ε > 0, there exists a δ > 0 such that for ‖x0‖ ≤ δ

sup
t0≤t<∞

‖E Xt(x0)‖ ≤ ε.

The equilibrium position possess a stable second moment P(t) =
E[Xt(x0)Xt (x0)

′] if, for every ε > 0, there exists a δ > 0 such that for ‖x0‖ ≤ δ

sup
t0≤t<∞

‖E Xt(x0)Xt (x0)
′‖ ≤ ε.

Stability in pth mean with p = 1 is named stability in mean and with p = 2
is called stability in mean square or MS-stability. The relations between the above
stability concepts can be summarized as:

Proposition 1 [1] (a) Stability in mean square is equivalent to stability of the second
moment. (b) Stability in mean square implies stability in mean. (c) Stability in mean
implies stability of the expectation value.

Consider now the linear stochastic differential (2) with A, Bk real constant matri-
ces. Recall that if Xt is the solution of (2), then its expectation mt = E[Xt ] is the
unique solution of ṁt = Amt . Then the stability of the expectation value for the
SDE (2) reduces to the asymptotic stability of the ordinary system (1), i.e., see, e.g.,
[6], to the condition that all the eigenvalues of A lie in the left half-plane or, in sym-
bols, ν(A) < 0 where ν(A) stands for the spectral abscissa of A. The set of matrices
A that provide asymptotically stable ordinary systems

DDE = {A ∈ R
d×d : ν(A) < 0}

constitute the domain of stability of the (1).
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Following Arnold [1], the second moment P(t) = E[Xt X′
t ] = (pij (t)) of the

solution of (2) satisfies the equation

dP (t)

dt
= AP(t) + P(t)A′ +

m∑

k=1

BkP (t)B ′
k . (5)

Since P(t) is symmetric, (5) has superfluous equations and can be reduced to a linear
system of d(d + 1)/2 differential equations of the form

dY

dt
= MY, (6)

where the components of the vector Y are the different pij = E[Xi
t X

j
t ]. From Propo-

sition 1, the MS-stability of the equilibrium position of (2) is identical to the stability
of the second moment P(t), i.e., to the stability of the trivial solution of the ordinary
differential system (5) or its equivalent (6). We conclude that the stochastic test sys-
tem (2) is asymptotically MS-stable if and only if ν(M) < 0. If A, Bk are the set of
matrices that provide MS-asymptotically stable systems, then

DSDE = {A, Bk ∈ R
d×d : ν(M) < 0}

will be called the domain of MS-stability of the test SDE (2).
From Proposition 1, the asymptotic stability of the ordinary system (1), equivalent

to the stability of the expectation value of (2), is a necessary condition for the MS-
stability of the stochastic linear system (2):

ν(M) < 0 =⇒ ν(A) < 0.

Then, only linear systems (2) with ν(A) < 0 can be MS-stable.

Remark 1 Since M is a real matrix, using the Routh-Hurwitz criterion (see [8]),
the condition ν(M) < 0 can be verified in terms of the coefficients of M, without
an explicit computation of its eigenvalues. For example, for a linear bi-dimensional
system

d

(
X1(t)

X2(t)

)
=

(
a11 a12
a21 a22

) (
X1(t)

X2(t)

)
dt +

m∑

k=1

(
bk

11 bk
12

bk
21 bk

22

)(
X1(t)

X2(t)

)
dWk

t ,

the differential equation in (6) can be written

⎛

⎜⎝

dp11(t)
dt

dp22(t)
dt

dp12(t)
dt

⎞

⎟⎠ = M

⎛

⎝
p11(t)

p22(t)

p12(t)

⎞

⎠ ,
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where

M =

⎛

⎜⎜⎜⎜⎜⎜⎝

2a11 +
m∑

k=1

(
bk

11

)2 m∑
k=1

(
bk

12

)2
2

(
a12 +

m∑
k=1

bk
11b

k
12

)

m∑
k=1

(
bk

21

)2
2a22 +

m∑
k=1

(
bk

22

)2
2

(
a21 +

m∑
k=1

bk
21b

k
22

)

a21 +
m∑

k=1
bk

11b
k
21 a12 +

m∑
k=1

bk
12b

k
22 a11 + a22 +

m∑
k=1

bk
12b

k
21 + bk

11b
k
22

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(7)
In this case, if

P(x) = det (xI − M) = x3 + a1x
2 + a2x + a3 (8)

is the characteristic polynomial of the matrix M, the Routh-Hurwitz criterion reduces
to the fulfilling of the conditions

a1a2 − a3 > 0, a1 > 0, a3 > 0. (9)

3 MS-stability analysis of two-dimensional test equations

We start with the two-dimensional linear system (3), asymptotically stable when λ <

0. The parameter b determines the non-normality degree of the system. In this section,
we shall add to the system stochastic perturbations with different structures by means
of independent Wiener processes. The analysis of each considered SDE leads to a
single inequality (in terms of λ, b and the intensity of the noises) as the necessary
and sufficient condition for its MS-stability.

3.1 Independent diagonal noises

Consider the test system (3) perturbed by m independent linear terms determined by
diagonal matrices with different intensities:

d

(
X1(t)

X2(t)

)
=

(
λ b

0 λ

)(
X1(t)

X2(t)

)
dt +

m∑

k=1

(
σk 0
0 σk

)(
X1(t)

X2(t)

)
dWk

t t > 0,

(10)
with λ, σk, b ∈ R. In this case, the matrix in (7) is

Md =

⎛

⎜⎜⎜⎜⎜⎜⎝

2λ +
m∑

k=0
σ 2

k 0 2b

0 2λ +
m∑

k=0
σ 2

k 0

0 b 2λ +
m∑

k=0
σ 2

k

⎞

⎟⎟⎟⎟⎟⎟⎠

Since the spectrum of Md reduces to the point 2λ +
m∑

k=0
σ 2

k , we have

1548



Numerical Algorithms (2023) 93:1543–1559

Proposition 2 The two-dimensional test system (10) is asymptotically MS-stable if
and only if 2λ + σ 2 < 0, where σ 2 = ∑m

k=0 σ 2
k .

Remark 2 This statement generalizes some results in the literature: the particular
selection σk = ±σ/

√
m, k = 1, 2, . . . , m, for a given σ was considered in [2] for

diagonal drift coefficient (b = 0) and in [3] for a single noise (m = 1).

3.2 Independent orthogonal noises

Consider now the stochastic test system obtained adding to (3) independent linear
noises with different intensities determined by matrices whose structure is orthogonal
to the flow:

d

(
X1(t)

X2(t)

)
=

(
λ b

0 λ

)(
X1(t)

X2(t)

)
dt +

m∑

k=1

(
0 σk

−σk 0

)(
X1(t)

X2(t)

)
dWk

t t > 0,

(11)
with λ, σk, b ∈ R. In this case, the matrix in (7) is

Mo =

⎛

⎜⎜⎜⎜⎜⎜⎝

2λ
m∑

k=0
σ 2

k 2b

m∑
k=0

σ 2
k 2λ 0

0 b 2λ −
m∑

k=0
σ 2

k

⎞

⎟⎟⎟⎟⎟⎟⎠

with characteristic polynomial as in (8) with

a1 =
m∑

k=1

σ 2
k − 6λ,

a2 =
(

2λ −
m∑

k=1

σ 2
k

)(
6λ +

m∑

k=1

σ 2
k

)
,

a3 = −2b2
m∑

k=1

σ 2
k −

(
m∑

k=1

σ 2
k − 2λ

)2 (
m∑

k=1

σ 2
k + 2λ

)
,

and the Routh-Hurwitz conditions (9) for its stability become

32λ3 − (b2 + 16λ2)

m∑

k=1

σ 2
k < 0, (12)

m∑

k=1

σ 2
k − 6λ > 0, (13)

2b2
m∑

k=1

σ 2
k +

(
m∑

k=1

σ 2
k − 2λ

)2 (
m∑

k=1

σ 2
k + 2λ

)
< 0. (14)

Notice that (14) implies λ < 0 and from here (12) and (13) hold. We have:
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Theorem 3 The two-dimensional test system (11) is asymptotically MS-stable if and
only if

2b2σ 2 + (σ 2 − 2λ)2(σ 2 + 2λ) < 0

where σ 2 = ∑m
k=1 σ 2

k .

Remark 3 This statement generalizes some results in the literature: If b = 0, the
stability condition reduces to σ 2 + 2λ < 0 (see [2] for the particular case σk =
±σ/

√
m, k = 1, 2, . . . , m). On the other hand, for m = 1, the condition of the

theorem was obtained in [17] (see also [3]).

Using the condition in Theorem 3, a graphical representation of the domain of
MS-stability of the SDE (11) can be given in R

3
(λ,b,σ 2)

(see Fig. 1).

3.3 Diagonal and orthogonal noises

Consider now a linear test system with two independent noises with structures
orthogonal to each other (see [4]) with respective intensities σ and ε,

d

(
X1(t)

X2(t)

)
=

(
λ b

0 λ

)(
X1(t)

X2(t)

)
dt+

(
σ 0
0 σ

)(
X1(t)

X2(t)

)
dW 1

t +
(

0 ε

−ε 0

)(
X1(t)

X2(t)

)
dW 2

t

(15)

Fig. 1 MS-stability region of the system (11) with σk = σ/
√

m
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where λ, σ, ε, b ∈ R. In this case, the matrix in (7) is

Mdo =
⎛

⎝
2λ + σ 2 ε2 2b

ε2 2λ + ε2 0
0 b 2λ + σ 2 + ε2

⎞

⎠ ,

with characteristic polynomial (8) with

a1 = ε2 − 3(2λ + σ 2),

a2 = (
σ 2 − ε2 + 2λ

) (
3σ 2 + ε2 + 6λ

)
,

a3 = −2b2ε2 − (
σ 2 + ε2 + 2λ

) (
σ 2 − ε2 + 2λ

)2
.

Then the Routh-Hurwitz conditions (9) for the stability of Mdo become

b2ε2 + 4(ε2 − 2λ − σ 2)(2λ + σ 2)2 > 0, (16)

3(2λ + σ 2) − ε2 < 0, (17)

2b2ε2 +
(
σ 2 + ε2 + 2λ

) (
σ 2 − ε2 + 2λ

)2
< 0. (18)

Notice that (18) implies σ 2 +ε2 +2λ < 0. From here, a straightforward computation
leads to ε2 − 3(2λ + σ 2) > 0 and ε2 − 2λ − σ 2 > 0. Then condition (18) implies
(16)–(17). This proves

Theorem 4 The two-dimensional test system (15) is asymptotically MS-stable if and
only if

2b2ε2 +
(
σ 2 + ε2 + 2λ

) (
σ 2 − ε2 + 2λ

)2
< 0.

Remark 4 This result is new. Notice that λ < 0, 2λ + σ 2 < 0, and 2λ + ε2 < 0 are
necessary conditions for the MS-stability of (15). In [2], the particular test system
(15) with b = 0 was discussed and the condition 2λ+σ 2+ε2 < 0 was shown. Notice
that in this case for equal normalized intensities σ/

√
2 for both noises, the condition

becomes 2λ + σ 2 < 0.

Using the condition obtained in Theorem 4, a geometrical representation of the
MS-stability domain of the system (15) with λ = −1 can be plotted in R

3
(b,σ 2,ε2)

(see
Fig. 2).

3.4 Two lateral noises

Consider the stochastic test system obtained adding two non commutative lateral
noise terms

d

(
X1(t)

X2(t)

)
=

(
λ b

0 λ

)(
X1(t)

X2(t)

)
dt+

(
0 0
σ 0

)(
X1(t)

X2(t)

)
dW 1

t +
(

0 ε

0 0

)(
X1(t)

X2(t)

)
dW 2

t

(19)
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Fig. 2 MS-stability region of the system (15) with λ = −1

with λ, σ, ε, b ∈ R. In this case, the matrix in (7) is

Mll =
⎛

⎝
2λ ε2 2b

σ 2 2λ 0
0 b 2λ

⎞

⎠

with characteristic polynomial (8) with

a1 = −6λ,

a2 = 12λ2 − ε2σ 2,

a3 = −4λ3 − b2σ 2 + ε2σ 2λ,

and the Routh-Hurwitz conditions (9) for its stability become

32λ3 − (b2 + 2ε2λ)σ 2 < 0, (20)

λ < 0, (21)

4λ3 + b2σ 2 − ε2σ 2λ < 0. (22)

Since (21)–(22) imply (20), we conclude:
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Theorem 5 The two-dimensional test system (19) with λ < 0 is asymptotically MS-
stable if and only if:

b2σ 2 + λ
(

4λ2 − ε2σ 2
)

< 0.

Remark 5 This result is new. The lateral noises have different effects on the MS-
stability: If ε = 0, the MS-stability condition reduces to b2σ 2 + 4λ3 < 0 (see [18]),
whereas if σ = 0, the MS-stability condition becomes λ < 0, i.e., the stability of the
(non-normal) ordinary system does not vary if only a perturbation determined by a
diffusion of the form (

0 ε

0 0

) (
X1
X2

)
dWt (23)

acts. From the theorem, when σε �= 0, both perturbations and their intensities have
an effect on the MS-stability of the stochastic system, even when b = 0. This last
case is remarkable, because the action of any single lateral noise has no effect on
the stability of the original equation (λ < 0), whereas the simultaneous action has a
“multiplicative” effect (2λ + |σε| < 0) .

Using the condition obtained in Theorem 5, a geometrical representation of the
MS-stability region of the system (19) with λ = −1 in R

3
(b,σ 2,ε2)

is shown in
Fig. 3.

4 MS-stability analysis of a non-normal three-dimensional test
equation

Following the destabilizing perturbation structures presented in [2] (see also [3]), we
consider the three-dimensional test system with non-normal drift

d

⎛

⎝
X1(t)

X2(t)

X3(t)

⎞

⎠ =
⎛

⎝
λ b 0
0 λ b

0 0 λ

⎞

⎠

⎛

⎝
X1(t)

X2(t)

X3(t)

⎞

⎠ dt +
⎛

⎝
0 σ 0
0 0 0
0 0 0

⎞

⎠

⎛

⎝
X1(t)

X2(t)

X3(t)

⎞

⎠ dW 1
t

+
⎛

⎝
0 0 0
0 0 σ

0 0 0

⎞

⎠

⎛

⎝
X1(t)

X2(t)

X3(t)

⎞

⎠ dW 2
t +

⎛

⎝
0 0 0
0 0 0
σ 0 0

⎞

⎠

⎛

⎝
X1(t)

X2(t)

X3(t)

⎞

⎠ dW 3
t ,

(24)

with parameters λ, σ, b ∈ R. In this case, the linear system in (6) can be written
⎛

⎜⎜⎜⎜⎜⎜⎜⎝

dp11(t)
dt

dp22(t)
dt

dp33(t)
dt

dp12(t)
dt

dp13(t)
dt

dp23(t)
dt

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎝

2λ σ 2 0 2b 0 0
0 2λ σ 2 0 0 2b

σ 2 0 2λ 0 0 0
0 b 0 2λ b 0
0 0 0 0 2λ b

0 0 b 0 0 2λ

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

p11(t)

p22(t)

p33(t)

p12(t)

p13(t)

p23(t)

⎞

⎟⎟⎟⎟⎟⎟⎠
(25)

1553



Numerical Algorithms (2023) 93:1543–1559

Fig. 3 MS-stability region of the system (19) with λ = −1

where pij = E
[
Xi(t)Xj (t)

]
. The characteristic polynomial of the matrix in (25) is

P(x) = (x − 2λ)Q(x) where
Q(x) = x5 + a1x

4 + a2x
3 + a3x

2 + a4x + a5 with

a1 = −10λ

a2 = 40λ2

a3 = −(σ 6 + 80λ3)

a4 = −4b2σ 4 + 4λ(σ 6 + 20λ3)

a5 = −2
(
3b4σ 2 − 4b2σ 4λ + 2λ2(σ 6 + 8λ3)

)
.

.

The MS-stability analysis of system (24) is reduced to study the sign of the spectral
abscissa of the matrix in (25). Note that 2λ is an eigenvalue of P(x). On the other
hand, the Routh-Hurwitz conditions for Q(x),

a1 > 0, a5 > 0, a3 < a1a2, a
2
3 + a2

1a4 < a1(a2a3 + a5),

a4(−a1a2a3 + a2
3 + a2

1a4) + a1(a
2
2 − 2a4)a5 + a2

5 < a2a3a5,
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become

λ < 0, (26)

3b4σ 2 − 4b2σ 4λ + 2λ2(σ 6 + 8λ3) < 0, (27)

320λ3 − σ 6 < 0, (28)

σ 6(σ 6 + 120λ3) − 20λ(3b4σ 2 + 16b2σ 4λ + 896λ5) < 0, (29)

9b8σ 4 + 96b6σ 6λ + λ(σ 6 − 64λ3)(σ 6 + 64λ3)2

+88b4σ 2λ2(σ 6 + 192λ3) − b2σ 4(σ 12 + 256σ 6λ3 + 12288λ6) < 0. (30)

Let us see that (26)–(27) imply the rest of conditions. Condition (28) is obvious
from (26). On the other hand, from (26) to (27), we have

3b4σ 2 + 2λ2(σ 6 + 8λ3) < 0, (31)

and then
σ 6 + 8λ3 < 0. (32)

From (31)
9b8σ 4 − 4λ4(σ 6 + 8λ3)2 < 0, (33)

and from (32)
σ 12 − 64λ6 < 0. (34)

Writing the left part of (29) as

σ 6(σ 6 +8λ3)+152σ 6λ3 −20λ(3b4σ 2 +2λ2(σ 6 +8λ3))−λ2(320b2σ 4 +17600λ4)

and the left part of (30) as

9b8σ 4 − 4λ4(σ 6 + 8λ3)2 + λ2(σ 6 + 8λ3)(−4032λ5 + 88b4σ 2 − 256b2σ 4λ)

− b2σ 16 + 68λ4(σ 12 − 64λ6) + λσ 6(σ 12 + 96b6) + 16192b4σ 2λ5

− λ6(225280λ4 + 10240b2σ 4),

and using (26), (32)–(34), it is clear that all the addends on the left parts of (29) and
(30) are negative. Then (26)–(27) imply (29) and (30).

Theorem 6 The test system (24) with λ < 0 is asymptotically MS-stable if and only
if

3b4σ 2 − 4b2σ 4λ + 2λ2(σ 6 + 8λ3) < 0.

Up to our knowledge, the condition in Theorem 6 is new. Using it, a graphical
representation of the domain of MS-stability of the SDE (24) can be given in R

3
(λ,b,σ 2)

(see Fig. 4).

5 Conclusions

A survey of the stability effects on a linear differential system with the introduc-
tion of multiplicative noises with different structures has been presented. The chosen
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Fig. 4 MS-stability region of the system (24)

two-dimensional and three-dimensional linear test systems, found in the literature,
are especially suitable for this study due to their simplicity (the number of involved
parameters are manageable and let obtain closed-form equations) as well as due to
their variety in the representation of different structures. Table 1 presents a summary
of the obtained results. In the first column, the governing drift matrices A are shown;
in all cases, the parameter b is a measure of non-normality and b = 0 correspond
to a diagonal matrix with a single eigenvalue λ. The linear addends in the diffusion
part, shown in the second column, are driven by matrices with different structures
and contain only a single parameter representing the intensity of the noise.

Notice that, except in two cases, for systems with non-normal drift, the mean-
square stability condition depends on b: for fixed λ < 0, as the value of b increases,
the interval of intensities that give mean-square stable solutions shrinks. The excep-
tions are given (i) by perturbations with diagonal matrices, in which case the
condition reduces to

2λ + σ 2 < 0; (35)

and (ii) when a single perturbation of the form (23) acts. Note that in this case, the
MS-stability condition is λ < 0, which means that the introduction of this kind of
noise alone has no effect on the stability of the ordinary system. It is noticeable
(see Theorem 5) that when this noise acts in conjunction with the opposite lateral
noise, both perturbations and their intensities affect the MS-stability of the system.
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For systems with diagonal drift (b = 0), a similar feature is observed for both lateral
perturbations: when they act alone, the effect on the mean-square stability is null,
whereas when they act simultaneously, both intensities affect the MS-stability (see
(*) in Table 1). On the other hand, note that in (*) and (**), the condition can be
normalized to (35): in (*), take for both intensities the same value ε = σ ; for (**),
take both intensities as σ/

√
2.
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