Skip to main content
Log in

Lattice Boltzmann Method Analysis Tool (LBMAT)

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A general computational tool for the derivation of equivalent partial differential equations (EPDEs) is presented for the lattice Boltzmann method (LBM) with general collision operators that include single relaxation time (SRT-LBM), multiple relaxation time (MRT-LBM), central LBM (CLBM), or cumulant LBM (CuLBM). The method can be used to recover the advection–diffusion equations (ADEs), Navier–Stokes equations (NSEs), and other problems that could be solved by LBM in all dimensions. The derivation of EPDEs starts with the discrete (lattice) Boltzmann equation for raw moments and uses spatio-temporal Taylor expansion of these moments to obtain a system of partial differential equations. Then, to recover the desired ADEs or NSEs with additional partial differential terms up to a given order, a computationally feasible algorithm is proposed to eliminate higher order moments. The algorithm for the derivation of EPDEs, under the name of LBMAT (Lattice Boltzmann Method Analysis Tool), is implemented in C++ using the GiNaC library for symbolic algebraic computations. In order to optimize memory demands for higher dimension LBM models such as D3Q27, a custom-tailored data structure for storing the terms of partial differential expressions is proposed. The implementation of LBMAT is available to the community as open-source software under the terms and conditions of the GNU general public license (GPL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2

Similar content being viewed by others

References

  1. Wolf-Gladrow, D.A.: Lattice-gas Cellular Automata and Lattice Boltzmann Models: An Introduction, vol. 1725. Springer, Berlin (2000). https://doi.org/10.1007/b72010

    Book  MATH  Google Scholar 

  2. Succi, S.: The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  3. Sukop, M.C. Jr, D.T.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer, Berlin (2006). https://doi.org/10.1007/3-540-27982-2

    Book  Google Scholar 

  4. Guo, Z., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering, vol. 3. World Scientific, Singapore (2013). https://doi.org/10.1142/8806

    Book  MATH  Google Scholar 

  5. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The lattice boltzmann method springer. https://doi.org/10.1007/978-3-319-44649-3 (2017)

  6. Sharma, K.V., Straka, R., Tavares, F.W.: Current status of lattice boltzmann methods applied to aerodynamic, aeroacoustic, and thermal flows. Prog. Aerosp. Sci. 100616, 115 (2020). https://doi.org/10.1016/j.paerosci.2020.100616

    Google Scholar 

  7. Geier, M., Fakhari, A., Lee, T.: Conservative phase-field lattice boltzmann model for interface tracking equation. Phys. Rev. E 91(6), 063309 (2015). https://doi.org/10.1103/PhysRevE.91.063309

    Article  MathSciNet  Google Scholar 

  8. Chen, S., Doolen, G.: Lattice Boltzmann Method for fluid flows. Ann. Rev. Fluid Mech. 30(1), 329–364 (1998). https://doi.org/10.1146/annurev.fluid.30.1.329

    Article  MathSciNet  MATH  Google Scholar 

  9. Hosseini, S.A., Darabiha, N., Thévenin, D.: Theoretical and numerical analysis of the lattice kinetic scheme for complex-flow simulations. Phys. Rev. E 99(2), 023305 (2019). https://doi.org/10.1103/PhysRevE.99.023305

    Article  MathSciNet  Google Scholar 

  10. Fučík, R., Straka, R.: Equivalent finite difference and partial differential equations for the lattice Boltzmann method. Comput. Math. Appl. 90 (1), 96–103 (2021). https://doi.org/10.1016/j.camwa.2021.03.014

    Article  MathSciNet  MATH  Google Scholar 

  11. Farag, G., Zhao, S., Chiavassa, G., Boivin, P.: Consistency study of lattice-boltzmann schemes macroscopic limit. Phys. Fluids 33, 037101 (2021). https://doi.org/10.1063/5.0039490

    Article  Google Scholar 

  12. Dubois, F., Lallemand, P.: On single distribution lattice boltzmann schemes for the approximation of navier stokes equations. arXiv:2206.13261. https://doi.org/10.48550/arXiv.2206.13261 (2022)

  13. Chai, Z., Shi, B.: Multiple-relaxation-time lattice boltzmann method for the navier-stokes and nonlinear convection-diffusion equations: modeling, analysis, and elements. Phys. Rev. E 102, 023306 (2020). https://doi.org/10.1103/PhysRevE.102.023306

    Article  MathSciNet  Google Scholar 

  14. Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for symbolic computation within the C++ programming language. J. Symb. Comput. 33(1), 1–12 (2002). https://doi.org/10.1006/jsco.2001.0494

    Article  MathSciNet  MATH  Google Scholar 

  15. Geier, M., Greiner, A., Korvink, J.G.: Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys. Rev. E 73(6), 066705 (2006). https://doi.org/10.1103/PhysRevE.73.066705

    Article  Google Scholar 

  16. Geier, M., Schönherr, M., Pasquali, A., Krafczyk, M.: The cumulant lattice Boltzmann equation in three dimensions: Theory and validation. Computers & Mathematics with Applications 70(4), 507–547 (2015). https://doi.org/10.1016/j.camwa.2015.05.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Geier, M., Pasquali, A., Schönherr, M.: Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion Part II: Application to flow around a sphere at drag crisis. J. Comput. Phys. 348, 889–898 (2017). https://doi.org/10.1016/j.jcp.2017.05.040

    Article  MathSciNet  MATH  Google Scholar 

  18. Kremer, G.M.: An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-11696-4

    Book  MATH  Google Scholar 

  19. Drozdek, A.: Data structures and algorithms in c++ cengage learning (2012)

  20. Chopard, B., Falcone, J.L., Latt, J.: The lattice boltzmann advection-diffusion model revisited. The European Physical Journal Special Topics 171(1), 245–249 (2009). https://doi.org/10.1140/epjst/e2009-01035-5

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Education, Youth and Sports of the Czech Republic under OP RDE grants no. CZ.02.1.01/0.0/0.0/16_019/0000765 and no. CZ.02.1.01/0.0/0.0/16_019/0000753, by the Ministry of Health of the Czech Republic project No. NV19-08-00071, by the Czech Science Foundation project no. 21-09093S, and by the National Science Center, Poland grant number UMO2018/31/B/ST8/00622.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Fučík.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

Implementations of the algorithms used can be found at https://mmg-gitlab.fjfi.cvut.cz/gitlab/lbm/lbmat.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 281 KB)

(PDF 470 KB)

(PDF 989 KB)

(PDF 281 KB)

(PDF 939 KB)

(PDF 4.43 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fučík, R., Eichler, P., Klinkovský, J. et al. Lattice Boltzmann Method Analysis Tool (LBMAT). Numer Algor 93, 1509–1525 (2023). https://doi.org/10.1007/s11075-022-01476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01476-8

Keywords

Navigation