
https://doi.org/10.1007/s11075-022-01473-x

ORIGINAL PAPER

Faster randomized block sparse Kaczmarz
by averaging

Lionel Tondji1 ·Dirk A. Lorenz1

© The Author(s) 2022

Abstract
The standard randomized sparse Kaczmarz (RSK) method is an algorithm to com-
pute sparse solutions of linear systems of equations and uses sequential updates, and
thus, does not take advantage of parallel computations. In this work, we introduce
a parallel (mini batch) version of RSK based on averaging several Kaczmarz steps.
Naturally, this method allows for parallelization and we show that it can also leverage
large overrelaxation. We prove linear expected convergence and show that, given that
parallel computations can be exploited, the method provably provides faster conver-
gence than the standard method. This method can also be viewed as a variant of the
linearized Bregman algorithm, a randomized dual block coordinate descent update,
a stochastic mirror descent update, or a relaxed version of RSK and we recover the
standard RSK method when the batch size is equal to one. We also provide esti-
mates for inconsistent systems and show that the iterates converges to an error in the
order of the noise level. Finally, numerical examples illustrate the benefits of the new
algorithm.

Keywords Randomized Kaczmarz · Sparse solutions · Parallel methods

Mathematics Subject Classification (2010) 65F10 · 68W20 · 68W10 · 90C25

1 Introduction

In this work, we are concerned with the fundamental problem of approximating
sparse solutions of large-scale linear systems of the form

Ax = b (1.1)

� Dirk A. Lorenz
d.lorenz@tu-braunschweig.de

Extended author information available on the last page of the article.

Numerical Algorithms (2023) 93:1417–1451

Received: 6 April 2022 / Accepted: 29 November 2022 /Published online: 28 December 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01473-x&domain=pdf
http://orcid.org/0000-0002-7419-769X
mailto: d.lorenz@tu-braunschweig.de

with matrix A ∈ R
m×n and right hand side b ∈ R

m. Linear systems like (1.1) arise
in several fields of engineering and physics problems, such as sensor networks [47],
signal processing [14], partial differential equations [36], filtering [20], computer-
ized tomography [17], optimal control [37], inverse problems [18, 40], and machine
learning. When A is too large to fit in memory, direct methods for solving (1.1) are
not feasible and iterative methods are preferred. As long as one can afford full matrix
vector products or the system matrix fits in memory, Krylov methods including the
conjugate gradient (CG) algorithms [45] are the industrial standard. On the other
hand, randomized methods such as the randomized (block) Kaczmarz [19, 46] and
coordinate descent method [35] are effective if a single matrix vector product is too
expensive and in some situations are even more efficient than CG method (see, e.g.,
[46] for an example). Linear convergence of the Kaczmarz method has been shown
in the randomized case in [46] and [39] analyzes convergence rates in the determin-
istic case. Moreover, block Kaczmarz methods [28, 29, 31, 38, 42] have received
much attention for their high efficiency for solving (1.1) and distributed implementa-
tions. In this work, we propose and analyze the randomized sparse Kaczmarz method
[43] and show that parallel computations and averaging as in [28] lead to faster
convergence.

1.1 Related work

Randomized Kaczmarz In the large data regime, the randomized Kaczmarz (RK) is
a popular iterative method for solving linear systems. In each iteration,1 a row vector
aT
i of A is chosen at random from the system (1.1) and the current iterate xk is

projected onto the solution space of that equation to obtain xk+1. Geometrically, at
each iteration

xk+1 = argmin
x∈Rn

‖x − xk‖2
2 s.t. 〈ai, x〉 = bi .

It has been observed that the convergence of RK method can be accelerated by intro-
ducing relaxation. In a relaxed variant of RK, a step is taken in the direction of this
projection with the size of the step depending on a relaxation parameter. Explicitly,
the relaxed RK update is given by

xk+1 = xk − wk,i

〈aixk〉 − bi

‖ai‖2
2

· ai , (1.2)

with initial values x0 = 0, where the wk,i, i ∈ {1, . . . , m} are relaxation parameters.
Note that this update rule requires low cost per iteration and storage of order O(n).
For consistent systems, the relaxation parameters must satisfy

0 < lim inf
k→∞ wk,i ≤ lim sup

k→∞
wk,i < 2 (1.3)

to ensure convergence [15]. Fixing the relaxation parameters wk,i = 1 for all iter-
ations k and indices i leads to the standard RK method. In [29], a block Kaczmarz

1We use subscript indices for components of a vector, columns or rows of a matrix, and also as iteration
indices. But the meaning should always be clear from the context.

1418 Numerical Algorithms (2023) 93:1417–1451

variant under the name randomized block Kaczmarz (RBK) has been analyzed. Lin-
ear convergence in expectation was shown for consistent systems of equations, with
a rate depending on the geometric properties of the matrix, its submatrices, and on
the size of the blocks. The convergence rate given in [29] depends on the block size
and the stochastic conditioning parameter of the most ill-conditioned block of the
partition when a partition is used and on the most ill-conditioned block of the entire
matrix A when the indices are sampled i.i.d. with replacement. The paper [31] con-
siders more general sampling strategies such as sampling from a partition of the
rows of the matrix. In [10], the authors investigate an extension of the randomized
averaged block Kaczmarz method that can solve least squares problems. A parallel
version of RK where a weighted average of independent updates is used was studied
in [28]. They showed that as the number of threads increases, the rate of convergence
improves and the convergence horizon for inconsistent systems decreases. Another
more general class of block methods are sketch-and-project methods [13, 42]. For a
linear system Ax = b, sketch-and-project methods iteratively project the current iter-
ate onto the solution space of a sketched subsystem ST Ax = ST b. In particular, RK
is a sketch-and-project method with S being rows of the identity matrix.

Randomized sparse Kaczmarz Recently, a new variant of the standard RK method,
namely the randomized sparse Kaczmarz method (RSK) [24, 38, 43] with almost the
same low cost and storage requirements has shown good performance in approximat-
ing sparse solutions of large consistent linear systems. It uses two variables x∗

k and
xk and the relaxed RSK update is given by

x∗
k+1 = x∗

k − wk,i

〈aixk〉 − bi

‖ai‖2
2

· ai ,

xk+1 = Sλ(x
∗
k+1)

(1.4)

with initial values x0 = x∗
0 = 0, λ > 0, and the soft shrinkage operator

Sλ(x) = max{|x| − λ, 0} · sign(x) .

Fixing the relaxation parameters wk,i = 1 for all iterations k and indices i lead
to the standard RSK method. For consistent systems, the iterates of the standard
RSK method converge in expectation to the solution of the regularized Basis Pursuit
Problem

min
x∈Rn

λ · ‖x‖1 + 1

2
· ‖x‖2

2 s.t. Ax = b . (1.5)

The advantage of (1.5) is the strong convexity property of the objective function. It is
important to note that (see [11]) for a large but finite parameter λ > 0, the solution
of (1.5) gives a solution of

min
x∈Rn

‖x‖1 s.t. Ax = b , (1.6)

which is the famous Basis Pursuit Problem [6]. The �1-norm has been used in
many applications, with the goal of obtaining sparse or even sparsest solutions of

1419Numerical Algorithms (2023) 93:1417–1451

underdetermined systems of linear equations and least-squares problems which is the
basis of the theory of compressed sensing [4, 7]. The sparsest solution is given by
minimizing the so-called zero-norm, ‖x‖0 counting the number of nonzero compo-
nents in x. However, it is computationally intractable even for the simplest instances
due to its combinatorial nature (it is even strongly NP-complete, see problem [MP5]
in the seminal reference [12]). In [5, 8], reasonable conditions are given under which
a solution of (1.6) is a sparsest solution. In [44], an extension of the RSK with linear
expected convergence has been proposed for solving sparse least squares and impul-
sive noise problems while requiring only one additional column of the system matrix
in each iteration.

Block sparse Kaczmarz methods In this setting, a subset of rows Aτk
is used at each

iteration, with τk ⊆ {1, . . . , m} and |τk| > 1 where |τk| denotes the cardinality of the
set of indices τk . We usually have two approaches. The first variant is simply a block
generalization of the basic sparse Kaczmarz and the update is given by

x∗
k+1 = x∗

k − wk,i

AT
τk

(Aτk
xk − bτk

)

‖Aτk
‖2

2

,

xk+1 = Sλ(x
∗
k+1)

(1.7)

Such block variants are considered, e.g., in [29, 31] (with λ = 0) and in [23, 38] for
λ ≥ 0 and we refer to these iterative process as block sparse Kaczmarz method. When
|τk| = m, we refer to (1.7) as the linearized Bregman method [2, 23, 48] and when
|τk| = 1 as the randomized sparse Kaczmarz method [24, 43]. The main drawback of
(1.7) is that it is not adequate for distributed implementations. The second variant of
block sparse Kaczmarz can take advantage of distributed computing: each iteration
takes η steps of the relaxed randomized sparse Kaczmarz, independently in parallel,
averages the results and applies the soft shrinkage to form the next iterate. This leads
to the following iteration:

x∗
k+1 = x∗

k − 1

η

∑

i∈τk

wi

〈aixk〉 − bi

‖ai‖2
2

· ai ,

xk+1 = Sλ(x
∗
k+1) (1.8)

with initial values x0 = x∗
0 = 0, where τk ⊆ {1, . . . , m} denotes a random set of η

row indices sampled with replacement (and the ith row is chosen with probability pi)
and wi represents the weight corresponding to the ith row. Such block variants are
considered, e.g., in [13, 27–29, 42] (with λ = 0). Method (1.8) is the main method
presented and analyzed in this paper and we refer to it as the randomized sparse
Kaczmarz with averaging (RSKA) with more details in Algorithm 1. Note that the
update (1.8) is easy to implement on distributed computing units, and it is compara-
ble in terms of cost per iteration to the basic sparse Kaczmarz update, i.e., of order
O(ηn). If τk is a set of one index, we recover the relaxed RSK method and if in addi-
tion the weights are chosen as wi = 1 for i ∈ {1, . . . , m}, we recover the standard
RSK method.

1420 Numerical Algorithms (2023) 93:1417–1451

Algorithm 1 Randomized sparse Kaczmarz with averaging (RSKA).

1.2 Contribution and organization

To the best of our knowledge, the proposed block variant (1.8) has not yet been
proposed and analyzed for the randomized sparse Kaczmarz method. In this work,
we make the following contributions:

– We propose a mini batch version termed RSKA of the randomized sparse
Kaczmarz method, a general algorithm that unifies a variety of other meth-
ods such as the randomized Kaczmarz and the randomized sparse Kaczmarz
with their relaxed variants. It is theoretically well-motivated, can exploit parallel
computation, and converges linearly in expectation.

– We prove that our proposal leads to faster convergence than its standard coun-
terpart. We also validate this empirically and we provide implementations of our
algorithm in Python.

The remainder of the paper is organized as follows. Section 2 provides a brief
overview on convexity and Bregman distances. In Section 3, we give several interpre-
tations of our method. Section 4 provides convergence guarantees for our proposed
method. In Section 5, numerical experiments demonstrate the effectiveness of RSKA
and provides several insights regarding its behavior and its hyper-parameters. Finally,
Section 6 draws some conclusions.

1.3 Notation

In this section, we introduce notation that will be used throughout. The first m inte-

gers are denoted by [m] def= {1, 2, . . . , m}. Given a symmetric positive definite matrix
B, we equip the space R

n with the Euclidean inner product defined by

〈x, y〉B def= 〈x,By〉 =
∑

i,j∈[n]
xiBij yj , x, y ∈ R

n

1421Numerical Algorithms (2023) 93:1417–1451

We also define the induced norm: ‖.‖2
B

def= 〈·, ·〉B and use the short-hand notation ‖.‖
to mean ‖.‖I to denote the standard 2-norm.

Let A ∈ R
m×n be a real matrix. By Range(A), ‖A‖F , and aT

i , we denote its
range space, Frobenius norm, and ith row respectively, and by A†, we denote the
(Moore-Penrose) pseudo-inverse. The indicator function of a set C is denoted by

δC(x)
def=

{
0, if x ∈ C

+∞, if x �∈ C

By ei , we denote the ith column of the identity matrix In ∈ R
n×n. For a random vec-

tor xi that depends on a random index i ∈ [q] (where i is chosen with probability pi),

we denote Ei∼p[xi] def= ∑
i∈[q]pixi and we will just write E[xi] when the probability

distribution is clear from the context. Let σi(A) be the ith singular value of A (when
ordered decreasingly) and σmin(A) and σmax(A) be the smallest and largest singular
values of A, respectively. They are given by

σmin(A)
def= min

x∈Rn, x �=0

‖Ax‖2

‖x‖2
and σmax(A)

def= σ1(A)
def= max

x∈Rn, x �=0

‖Ax‖2

‖x‖2
(1.9)

Finally, a result we will need, if A is a symmetric positive semi-definite matrix, the
largest singular value of A (the L2 induced matrix norm or the spectral norm) can be
defined instead as

‖A‖2
def= σmax(A) = max

x∈Rn, x �=0

|〈Ax, x〉|
‖x‖2

2

= max
x∈Rn, x �=0

‖Ax‖2

‖x‖2
. (1.10)

Thus clearly
|〈x, x〉A|

‖x‖2
2

≤ σmax(A).

Let σ̃min(A)
def= min{σmin(AJ) | J ⊆ [n],AJ �= 0} where AJ denotes the subma-

trix of A that is built up by the columns indexed by J and |x|min
def= min{|xj | | xj �=

0}.

2 Basic notions

At first we recall some well-known concepts and properties of convex functions and
Bregman distances and later give upper-bounds of singular values of sum of matrices.
Let f : Rn → R be convex (note that we assume that f is finite everywhere, hence
also continuous). The subdifferential of f is defined by

∂f (x)
def= {

x∗ ∈ R
n|f (y) ≥ f (x) + 〈x∗y − x〉 for all y ∈ R

n
}

at any x ∈ R
n is nonempty, compact and convex.

The function f : Rn → R is said to be α-strongly convex, if for all x, y ∈ R
n and

subgradients x∗ ∈ ∂f (x), we have

f (y) ≥ f (x) + 〈x∗y − x〉 + α

2
· ‖y − x‖2

2 .

1422 Numerical Algorithms (2023) 93:1417–1451

If f is α-strongly convex, then f is coercive, i.e.,

lim‖x‖2→∞ f (x) = ∞ ,

and its Fenchel conjugate f ∗ : Rn → R given by

f ∗(x∗) def= sup
y∈Rn

〈x∗, y〉 − f (y)

is also convex, finite everywhere, and coercive.
Additionally, f ∗ is differentiable with a Lipschitz-continuous gradient with

constant Lf ∗ = 1
α

, i.e., for all x∗, y∗ ∈ R
n, we have

‖∇f ∗(x∗) − ∇f ∗(y∗)‖2 ≤ Lf ∗ · ‖x∗ − y∗‖2 ,

which implies the estimate

f ∗(y∗) ≤ f ∗(x∗) − 〈∇f ∗(x∗), y∗ − x∗〉 + Lf ∗

2
· ‖x∗ − y∗‖2

2 . (2.1)

Example 2.1 The objective function

f (x)
def= λ · ‖x‖1 + 1

2
· ‖[2]|x|22 (2.2)

is strongly convex with constant α = 1 and its conjugate function can be computed
with the soft shrinkage operator as

f ∗(x∗) = 1

2
· ‖Sλ(x

∗)‖2
2 with ∇f ∗(x∗) = Sλ(x

∗) .

Definition 2.2 The Bregman distance Dx∗
f (x, y) between x, y ∈ R

n with respect to
f and a subgradient x∗ ∈ ∂f (x) is defined as

Dx∗
f (x, y)

def= f (y) − f (x) − 〈x∗, y − x〉 .

Fenchel’s equality states that f (x) + f ∗(x∗) = 〈x, x∗〉 if x∗ ∈ ∂f (x) and implies
that the Bregman distance can be written as

Dx∗
f (x, y) = f ∗(x∗) − 〈x∗, y〉 + f (y).

Example 2.3 (cf. [43]) For f (x) = 1
2 · ‖x‖2

2, we just have ∂f (x) = {x} and
Dx∗

f (x, y) = 1
2‖x − y‖2

2. For f (x) = λ · ‖x‖1 + 1
2 · ‖x‖2

2 and any x∗ = x + λ · s ∈
∂f (x), we have

Dx∗
f (x, y) = 1

2
· ‖x − y‖2

2 + λ · (‖y‖1 − 〈s, y)〉 .

The following properties are crucial for the convergence analysis of the ran-
domized algorithms. They immediately follow from the definition of the Bregman

1423Numerical Algorithms (2023) 93:1417–1451

distance and the assumption of strong convexity of f , cf. [23]. For all x, y, z ∈ R
n

and x∗ ∈ ∂f (x), y∗ ∈ ∂f (y), z∗ ∈ ∂f (z), we have
α

2
‖x − y‖2

2 ≤ Dx∗
f (x, y) ≤ 〈x∗ − y∗, x − y〉 ≤ ‖x∗ − y∗‖2 · ‖x − y‖2 (2.3)

Dx∗
f (x, y) + D

y∗
f (y, z) − Dx∗

f (x, z) = 〈x∗ − y∗, z − y〉 (2.4)

Note that if f is differentiable with a Lipschitz-continuous gradient, then we also
have the (better) upper estimate Dx∗

f (x, y) ≤ Lf ·‖x − y‖2
2, but in general, this needs

not be the case.
The following Theorem will be use in the convergence analysis more precisely in

Lemma (4.7).

Theorem 2.4 ([16, Theorem 3.3.16(c)]) Let A,B ∈ R
m×n be given and let p =

min{m, n}. Then it holds for the decreasingly ordered singular values of A,B,A + B
that

|σi(A + B) − σi(A)| ≤ σ1(B), for i ∈ [p].
In particular, we have

σi(A + B) ≥ σi(A) − σ1(B), for i ∈ [p].

3 Interpretations

We can view the randomized sparse Kaczmarz with averaging algorithm as an opti-
mization method for solving a specific primal or dual optimization problem. More
precisely, the RSKA algorithm is a particular case of the following.

3.1 Randomized block/parallel coordinate descent

Considering the regularized Basis Pursuit Problem as primal problem

min
x∈Rn

λ · ‖x‖1 + 1

2
· ‖x‖2

2 s.t. Ax = b . (3.1)

The dual of optimization problem (3.1) takes the form of a quadratic program:

min
y∈Rm

1

2
· ‖Sλ(AT y)‖2

2 − 〈b, y〉 . (3.2)

where the primal variable x and the dual variable y are related through the relation
x = Sλ(AT y). Let us define the primal and dual objective functions

f (x) = λ · ‖x‖1 + 1

2
· ‖x‖2

2 + δ{0}(b − Ax)

and

g(y) = 1

2
· ‖Sλ(AT y)‖2

2 − 〈b, y〉,
respectively. One iteration of the RSKA algorithm can be viewed as one step of the
randomized block coordinate descent (RBCD) applied to the dual problem (3.2) when
the weights wi are chosen in a particular form [38]. More formally a negative gradient

1424 Numerical Algorithms (2023) 93:1417–1451

step in the random ith component of y having ∇ik g(y) = aT
ik
Sλ(AT y)−bik with step

size tk = 1
‖aik

‖2
2

yields

yk+1 = yk − 1
‖aik

‖2
2
∇ik g(yk)eik

We easily recover (1.4) by simply multiplying this update with AT and using the
relation between the primal and dual variables given by x = Sλ(AT y). Consider the

dual problem (3.2). If we choose the particular weights wk,i = ‖ai‖2
2∑

i∈τk
‖ai‖2

2
, the block

coordinate descent method applied to g from (3.2) reads

x∗
k+1 = x∗

k − 1

η
∑

i∈τk
‖ai‖2

2

∑

i∈τk

(〈ai, xk〉 − bi) · ai ,

xk+1 = Sλ(x
∗
k+1)

Parallel coordinate descent [41] applied to the dual problem (3.2) with learning rate
tk = 1

η‖ai‖2
2

yields

yk+1 = yk −
∑

i∈τk

1

η‖ai‖2
2

∇ig(yk)ei (3.3)

In Update (3.3), only coordinate i ∈ τk are updated in yk+1 and the remaining coordi-
nate are unchanged. Multiplying this update with AT and using the relation between
the primal and dual variables, we recover (1.4) with particular weights wi = 1. How-
ever, for general weights wk , the RSKA algorithm cannot be interpreted in these
ways, and thus our scheme is more general. It is important to note that in [38] for
the randomized block sparse Kaczmarz method of type (1.7), sublinear convergence
rates have been obtained by identifying the iteration as a randomized block coordi-
nate gradient descent method applied to the objective function g of the unconstrained
dual of f . However, the rates given in [38] are in terms of the dual objective function
g, and not of the primal iterates only, although, as mentioned there in the conclusions,
the experimental results indicate that such rates also hold for the primal iterates.

3.2 Stochastic mirror descent with stochastic Polyak stepsize

The stochastic mirror descent (SMD) method and its variants [1, 21, 32] is one
of the most widely used family of algorithms in stochastic optimization for non-
smooth, Lipschitz continuous—convex and non-convex functions. Starting with the
orginal work of [34], SMD has been studied in the context of convex programming
[33], saddle-point problems [25], and monotone variational inequalities [26]. Now
we draw a connection of Algorithm 1 to the stochastic mirror descent method using
stochastic Polyak stepsizes. We consider a set of sketching matrices Si ∈ R

m×s

(i ∈ [m]), define Zi
def= Si (ST

i AA
T Si)

†ST
i and consider the stochastic convex

quadratic hSi

hSi
(x)

def= 1

2
‖Ax − b‖2

Zi
= 1

2
(Ax − b)T Zi(Ax − b), (3.4)

1425Numerical Algorithms (2023) 93:1417–1451

(recall that A ∈ R
m×n, b ∈ R

m).
The general sketched mirror descent update with learning rate tk and a mirror map

f works as follows: For a given iterate xk draw a sketching matrix Sik (actually, one
draws an index ik) at random and update

xk+1 = arg min
x∈Rn

{
〈∇hSik

(xk), x − xk〉 + 1

tk
D

x∗
k

f (xk, x)

}
, x∗

k ∈ ∂f (xk), (3.5)

which yields to the following update:

x∗
k+1 = x∗

k − tk∇hSik
(xk) ,

xk+1 = ∇f ∗(x∗
k+1).

(3.6)

where f ∗ denotes the Fenchel conjugate of f .
One can show that

D
x∗
k+1

f (xk+1, x̂) ≤ D
x∗
k

f (xk, x̂) − tk〈∇hSik
(xk), xk − x̂〉 + t2

k

2
‖∇hSik

(xk)‖2 (3.7)

(actually, this also follows from Lemma 4.3 below with Φ(x) = 〈∇hSik
(xk), x −xk〉,

and a strongly convex function f). If we select tk such that the RHS of inequality
(3.7) is minimized, we obtain

tk = 〈∇hSik
(xk), xk − x̂〉

‖∇hSik
(xk)‖2

. (3.8)

Since ∇hS(x) = AT Z(Ax − b), we get (cf. [42])

hSik
(x) − hSik

(x̂)
hSik

(x̂)=0
= hSik

(x) = 1

2
‖∇hSik

(x)‖2 = 1
2 〈∇hSik

(xk), x − x̂〉 (3.9)

we get that the optimal step size is in fact simply

tk = 2
[
hSik

(xk) − hSik
(x̂)

]

‖∇hSik
(xk)‖2

. (3.10)

This quotient is known as stochastic mirror Polyak stepsize [9] (note that in this
particular case, we always get tk = 1). The randomized Kaczmarz (1.4) is equivalent
to one step of the stochastic mirror descent (3.5) with the mirror Polyak stepsize tk
given in (3.8), whereas the mirror Polyak stepsize in it general form [9, 22] is given

by tk = hSik
(xk)−hSik

(x̂)

c‖∇hS(xk)‖2
2

. The parameter 0 < c ∈ R in the step size is an important

quantity which can be set theoretically based on the properties of the function under
study. In [22], it is suggested that, for optimal convergence, one should select c = 1/2
for strongly convex functions and c = 0.2 for non-convex functions. Moreover, the
general RSKA method (see Algorithm 1) falls into the general sketched-and-project

framework in the context of mirror descent with Z def= 1
η

∑
j∈τwjSj (ST

j AA
T Sj)

†ST
j

with Sj = ej , tk = 1, and f (x) = λ · ‖x‖1 + 1
2 · ‖x‖2

2. In fact, the sketch-and-project
form of updates (1.8) (resp. 3.6) is given by:

x∗
k+1 = x∗

k − AT Z(Axk − b),

xk+1 = ∇f ∗(x∗
k+1),

(3.11)

1426 Numerical Algorithms (2023) 93:1417–1451

with some random τi ⊂ [m] with cardinality η.

4 Convergence analysis

In this section, we show expected linear convergence for the randomized sparse Kacz-
marz with averaging method. Before that, we give the update satisfy by the iterate x∗

k

in Algorithm 1. From line 5 of Algorithm 1, it holds that:

x∗
k+1 = x∗

k − 1

η

∑

i∈τk

wi

〈ai, xk〉 − bi

‖ai‖2
2

· ai

= x∗
k − 1

η

∑

i∈τk

wi(e
T
i A)T · eT

i (Axk − b)

‖ai‖2
2

= x∗
k − AT 1

η

∑

i∈τk

wi · ei, e
T
i

‖ai‖2
2

(Axk − b)

To simplify notation, we define the following matrices.

Definition 4.1 Let Diag(d1, d2, . . . , dm) denote the diagonal matrix with d1, d2,

. . . , dm on the diagonal. We define the following matrices:

– Weighted sampling matrix:

Mk = 1

η

∑

i∈τk

wi

eie
T
i

‖ai‖2
2

– Normalization matrix:

D = Diag(‖a1‖, ‖a2‖, . . . , ‖am‖)
so that the matrix D−1A has rows with unit norm.

– Probability matrix:

P = Diag(p1, p2, . . . , pm)

where pj = P(i = j).

– Weight matrix:

W = Diag(w1, w2, . . . , wm)

where wi represents the weight corresponding to the i th row.

The following lemma and proof are taken from [28, Lemma 1] and we include
the full proof for completeness. The lemma gives the first and second moment of the
random matrices Mk , AT Mk respectively and will be use in our convergence analysis.

1427Numerical Algorithms (2023) 93:1417–1451

Lemma 4.2 LetMk,P,W, and D be defined as in Definition 4.1. Then

Ek [Mk] = PWD−2 and

Ek

[
(AT Mk)

T · (AT Mk)
]

= 1

η
PW2D−2 + (1 − 1

η
)PWD−2AAT PWD−2.

Proof Let Ei[·] denote Ei∼p[·]. From the definition of the weighted sampling matrix

Mk as the weighted average of the i.i.d. sampling matrices
eie

T
i

‖ai‖2
2
, we see that

Ek [Mk] = Ek

⎡

⎣1

η

∑

i∈τk

wi

eie
T
i

‖ai‖2
2

⎤

⎦ = Ei

[
wi

eie
T
i

‖ai‖2
2

]
=

m∑

i=1

piwi

eie
T
i

‖ai‖2
2

= PWD−2.

In the same way, we have

Ek

[
(AT Mk)

T · (AT Mk)
]

= Ek

⎡

⎣(
1

η

∑

i∈τk

wi

eie
T
i

‖ai‖2
2

)A · AT · (
1

η

∑

j∈τk

wj

ej e
T
j

‖aj‖2
2

)

⎤

⎦

= Ek

⎡

⎣(
1

η

∑

i∈τk

wi

eia
T
i

‖ai‖2
2

) · (
1

η

∑

j∈τk

wj

aj e
T
j

‖aj‖2
2

)

⎤

⎦

= 1

η
Ei

[
(wi

eia
T
i

‖ai‖2
2

) · (wi

aie
T
i

‖ai‖2
2

)

]
+ (1 − 1

η
)Ei

[
wi

eia
T
i

‖ai‖2
2

]
Ei

[
wi

aie
T
i

‖ai‖2
2

]

= 1

η
Ei

[
w2

i

eie
T
i

‖ai‖2
2

]
+ (1 − 1

η
)Ei

[
wi

eie
T
i

‖ai‖2
2

]
AAT

Ei

[
wi

eie
T
i

‖ai‖2
2

]

= 1

η
PW2D−2 + (1 − 1

η
)PWD−2AAT PWD−2,

by separating the cases where i = j from those where i �= j and utilizing the
independence of the indices sampled in τk .

We now present convergence results for the proposed method. We start our analy-
sis by characterizing the error bound between two consecutive iterates and the error
bound between the Bregman distance of the iterates, the solution, and the residual in
the following lemma.

Lemma 4.3 Let f, Φ : R
n → R ∪ {+∞} be convex, where dom(f) = R

n and
dom(Φ) �= ∅. Let X ⊆ dom(Φ) be nonempty and convex, xk ∈ R

n, x∗
k ∈ ∂f (xk).

Assume that

xk+1 ∈ arg min
x∈X

{
Φ(x) + D

x∗
k

f (xk, x)

}
.

1428 Numerical Algorithms (2023) 93:1417–1451

Then there exist subgradient x∗
k+1 ∈ ∂f (xk+1) such that it holds

Φ(y) + D
x∗
k

f (xk, y) ≥ Φ(xk+1) + D
x∗
k

f (xk, xk+1) + D
x∗
k+1

f (xk+1, y)

for any y ∈ X .

Proof Let denote by J (x) = Φ(x) + D
x∗
k

f (xk, x). Since J and X are convex and
xk+1 minimizes J over X , there exists a subgradient d ∈ ∂J (xk+1) such that

〈d, y − xk+1〉 ≥ 0 ∀ y ∈ X .

Since f is finite everywhere, we have dom(Df (·, u)) = R
n for all u ∈ R

n.
Since dom(Φ) is nonempty and convex, Φ has nonempty relative interior. So the
subgradient sum rule applies and we obtain that

∂J (xk+1) = ∂Φ(xk+1) + (∂f (xk+1) − x∗
k).

Hence, there exist subgradients g ∈ ∂Φ(xk+1), x∗
k+1 ∈ ∂f (xk+1) such that

〈g + (x∗
k+1 − x∗

k), y − xk+1〉 ≥ 0 ∀ y ∈ X .

Therefore, using the property of the subgradient and (2.4), we have for all y ∈ X

Φ(y) ≥ Φ(xk+1) + 〈g, y − xk+1〉
≥ Φ(xk+1) + 〈x∗

k − x∗
k+1, y − xk+1〉

(2.4)= Φ(xk+1) + D
x∗
k

f (xk, xk+1) − D
x∗
k

f (xk, y) + D
x∗
k+1

f (xk+1, y).

The following lemma provides an error bound for the Bregman distance.

Lemma 4.4 ([43]) Let σ̃min(A) and |x̂|min be defined as in Section 1.3. Then for any
x ∈ R

n with ∂f (x) ∩ Range(AT) �= 0 and for all x̂ = AT y ∈ ∂f (x) ∩ Range(AT),
we have

D
x∗
k

f (xk, x̂) ≤ γ · ‖Axk − b‖2
2 (4.1)

where

γ = 1

σ̃ 2
min(A)

|x̂|min + 2λ

|x̂|min
(4.2)

To effectively use Lemma 4.4, we need the following assumption which charac-
terize the coupling between the weight matrix and the probability matrix.

Assumption 1 The weight matrix W and the probability matrix P are linked by the
following coupling

PWD−2 = α

‖A‖2
F

I

some scalar relaxation parameter α > 0.

1429Numerical Algorithms (2023) 93:1417–1451

Assumption (1) has been used in [28] for the inconsistent case (i.e., b − Ax̂ �= 0)
and for λ = 0. We include a motivation for completeness. As the batch size η goes to
∞ (recall that we sample with replacement), we have

lim
η→∞Mk = Ei∼p

[
wi

eie
T
i

‖ai‖2
2

]
= PWD−2

Therefore, the averaged RSK update of (1.8) approaches the deterministic update:

xk+1 = (I − AT PWD−2A)xk + AT PWD−2b

xk+1 − x̂ = (I − AT PWD−2A)(xk − x̂) + AT PWD−2(b − Ax̂)

In order to have that (xk+1 − x̂) goes to zero in the limit, we should require that this
limiting error update has the zero vector as a fixed point, i.e.,

0 = AT PWD−2(b − Ax̂)

This is guaranteed if PWD−2 = βI. But for λ �= 0, we do not have a bound of the

form D
x∗
k

f (xk, x̂) ≤ γ · ‖Axk − b‖2
PWD−2 that is the reason why for that case we need

to assume PWD−2 = βI.
Since in this case PW2D−2 = PWD−2W, Lemma 4.2 becomes:

Lemma 4.5 LetMk,P,W andD be defined as in Definition 4.1 and let Assumption 1
hold. Then

Ek [Mk] = αI

‖A‖2
F

and

Ek

[
Mk

T AAT Mk

]
= 1

η

αW

‖A‖2
F

+ α2(1 − 1

η
)
AAT

‖A‖4
F

Lemma 4.6 Under Assumption 1, for the iterates xk of Algorithm 1, it holds that:

Ek

[
D

x∗
k+1

f (xk+1, x̂)
]

≤ D
x∗
k

f (xk, x̂) − α

‖A‖2
F

(1 − σmax(T))‖Axk − b‖2
2.

with

T = 1

2η
W + α

2
(1 − 1

η
)
AAT

‖A‖2
F

1430 Numerical Algorithms (2023) 93:1417–1451

Proof Using Lemma 4.3 with f (x) = λ‖x‖1 + 1
2‖x‖2

2 and Φ(x) = 〈AT Mk(Axk −
b), x − xk〉, y = x̂, it holds that:

D
x∗
k+1

f (xk+1, x̂)

≤ D
x∗
k

f (xk, x̂) + Φ(x̂) − Φ(xk+1) − D
x∗
k

f (xk, xk+1)

= D
x∗
k

f (xk, x̂) − 〈AT Mk(Axk − b), xk − x̂〉
+〈AT Mk(Axk − b), xk − xk+1〉 − D

x∗
k

f (xk, xk+1)

≤ D
x∗
k

f (xk, x̂) − 〈AT Mk(Axk − b), xk − x̂〉
+‖AT Mk(Axk − b)‖ · ‖xk − xk+1‖ − 1

2
‖xk − xk+1‖2

≤ D
x∗
k

f (xk, x̂) − 〈AT Mk(Axk − b), xk − x̂〉 + 1

2
‖AT Mk(Axk − b)‖2

We have:

Ek

[〈
AT Mk(Axk − b), xk − x̂

〉]
= Ek

[〈
Mk · (Axk − b),Axk − b

〉]

Lemma 4.2=
〈
Axk − b,Axk − b

〉

PWD−2

Lemma 4.5= α

‖A‖2
F

‖Axk − b‖2
2

and with T = 1
2η
W + α

2 (1 − 1
η
) AAT

‖A‖2
F

, we get

Ek

[∥∥∥AT · Mk · (Axk − b)

∥∥∥
2

2

]
=

〈
Axk − b,Ek

[
MT

k AA
T Mk

]
· (Axk − b)

〉

Lemma 4.5=
〈
Axk − b,

(
1

η

αW

‖A‖2
F

+ α2(1 − 1

η
)
AAT

‖A‖4
F

)

·(Axk − b)
〉

= 2α

‖A‖2
F

〈
Axk − b,Axk − b

〉

T

≤ 2α

‖A‖2
F

σmax(T)‖Axk − b‖2
2.

1431Numerical Algorithms (2023) 93:1417–1451

Thus, combining everything together gives us

Ek

[
D

x∗
k+1

f (xk+1, x̂)
]

≤ D
x∗
k

f (xk, x̂) − Ek

[〈
AT Mk(Axk − b), xk − x̂

〉]
+ 1

2
Ek

[∥∥∥AT Mk(Axk − b)

∥∥∥
2

2

]

≤ D
x∗
k

f (xk, x̂) − α

‖A‖2
F

‖Axk − b‖2
2 + 1

2

2α

‖A‖2
F

σmax(T)‖Axk − b‖2
2

≤ D
x∗
k

f (xk, x̂) − α

‖A‖2
F

(1 − σmax(T))‖Axk − b‖2
2.

The following lemma gives an upper and a lower bound for the largest singular
value of T which will be use in the convergence of RSKA iterates.

Lemma 4.7 Let

T = 1

2η
W + α

2
(1 − 1

η
)
AAT

‖A‖2
F

Then the largest singular value of T satisfies:

1

2η

(
σmax(W)− α

‖A‖2
F

(η−1)σ 2
max(A)

)
≤ σmax(T)

≤ 1

2η

(
σmax(W) + α

‖A‖2
F

(η − 1)σ 2
max(A)

)

In addition, IfW = αI, then T is positive semi-definite and

σmax(T) = 1

2η

(
α + α

‖A‖2
F

(η − 1)σ 2
max(A)

)

Proof The first part of the proof follows easily from Theorem 2.2. If W = αI, we
have: If λ is an eigenvalue of AAT , then α

η
+ α

2 (1 − 1
η
) λ

‖A‖2
F

is an eigenvalue of T.

From this, we deduce the last equality as well as that T is positive semi-definite.

4.1 General convergence result

In this part, we present general convergence results for the iterates from RSKA
method.

Theorem 4.8 (Noiseless case) Consider η > 1, γ as defined in (4.2) (Lemma (4.4)),
let Assumption 1 hold and assume that

0 < α < 2
(η − 1

2σmax(W))‖A‖2
F

σmax(A)2(η − 1)
. (4.3)

1432 Numerical Algorithms (2023) 93:1417–1451

Then the random iterates xk produced by Algorithm 1 converge in expectation with a
linear rate to the unique solution x̂ of minAx=b λ‖x‖1 + 1

2‖x‖2
2, more precisely, with

q = 1 − 1

γ
· L(α)

‖A‖2
F

∈ (0, 1), (4.4)

and

L(α) = α − α

2η

(
α

‖A‖2
F

(η − 1)σ 2
max(A) + σmax(W)

)
,

it holds that

E

[
D

x∗
k+1

f (xk+1, x̂)
]

≤ q · E
[
D

x∗
k

f (xk, x̂)
]

E

[
‖xk − x̂‖2

2

]
≤ 2 · qk · f (x̂).

Proof Combining Lemma 4.6 with (4.1) gives

Ek

[
D

x∗
k+1

f (xk+1, x̂)
]

≤ D
x∗
k

f (xk, x̂) − α

‖A‖2
F γ

(1 − σmax(T))D
x∗
k

f (xk, x̂)

≤
(

1 − α

‖A‖2
F γ

(1 − σmax(T))

)
D

x∗
k

f (xk, x̂).

Using the rule of total expectation, we get

E

[
D

x∗
k+1

f (xk+1, x̂)
]

≤
(

1 − 1
γ

· α·(1−σmax(T))

‖A‖2
F

)
E

[
D

x∗
k

f (xk, x̂)
]

.

To get a rate q ∈ (0, 1), we need that (1 − σmax(T)) > 0, i.e., σmax(T) < 1 which
holds true from (4.3). From Lemma 4.7, it follows that L(α) ≤ α(1 − σmax(T)) and

thus we get E
[
D

x∗
k+1

f (xk+1, x̂)
]

≤ q · E
[
D

x∗
k

f (xk, x̂)
]
, with q = 1 − 1

γ
· L(α)

‖A‖2
F

. The

inequality in terms of ‖xk − x̂‖2
2 is obtained by using the first inequality of (2.3) since

f is 1-strongly convex.

From (4.4), we see that we want to choose α such that L(α) is as large as possible:

Corollary 4.9 Let Assumption 1 hold true. Then the relaxation parameter α and the
constant L which yields the fastest convergence rate guarantee in Theorem 4.8 are
as follows:

(a) General Weights: If η > max(1, σmax(W)/2) then

α∗ = ‖A‖2
F

σ 2
max(A)(η − 1)

(η − σmax(W)

2
),

and

L(α∗) = ‖A‖2
F

8σ 2
max(A)

· (2η − σmax(W))2

η(η − 1)
.

1433Numerical Algorithms (2023) 93:1417–1451

(b) Uniform Weights, i.e.,W = αI:

α∗ = η

1 + (η − 1)
σ 2

max(A)

‖A‖2
F

and
L(α∗) = η

2 + 2(η − 1)
σ 2

max(A)

‖A‖2
F

.

Proof In the case (a) of general weights, in order to get the tightest lower bound, we
maximized the concave function L(α) and obtain

α = ‖A‖2
F (η − σmax(W)/2)/((η − 1)σmax(A)2

which fulfills (4.3) and thus gives the best q is Theorem 4.8. Since we need α ≥ 0,
we have to assume η ≥ σmax(W)/2. This gives α∗ and plugging this into L(α) give
us L(α∗). In the case (b) of uniform weights, we maximized L(α) for all η with
W = αI.

A few remarks about the interpretation of the above theorem are in order:

Remark 4.10 (Overrelaxation)

– When a single thread η = 1 is used in the case (b) of uniform weight, we see
that our optimal relaxation parameter is α∗ = 1. Whereas, when multiple threads
η > 1 are used, we see

1 < α∗ ≤ η,

i.e., the method allows for large overrelaxation when the number of threads
is high and we will see in Section 5.2 that this does indeed lead to faster
convergence.

– Our relaxation parameter α∗ in the case of uniform weights is the same as the
relaxation parameter αRT suggested in [42] although they do not treat the sparse
case and only consider uniform weights.

– Finally, for η = 1 in the case of general weights, we have, due to the cou-

pling in Assumption 1, that the weights fulfill wi = α‖ai‖2

pi‖A‖2
F

. We could estimate

σmax(W) ≤ α
mini pi

but this would be a quite crude estimate. By choosing the

classical probabilities pi = ‖ai‖2/‖A‖2
F , we would get σmax(W) = α and get

that the relaxation parameter needs to fulfill α ∈ (0, 2) and that α∗ = 1 is the
optimal relaxation parameter.

Remark 4.11 (Relation to standard randomized sparse Kaczmarz) In the case W =
I, η = 1, α = 1, we have T = 1

2 I and we recover the rate of the standard RSK. It
holds

Ek

[
D

x∗
k+1

f (xk+1, x̂)
]

≤ D
x∗
k

f (xk, x̂) − 1

2‖A‖2
F

‖Axk − b‖2
2

1434 Numerical Algorithms (2023) 93:1417–1451

which is obtained in [43] and it is shown that this leads to a linear convergence rate
in expectation,

E

[
‖xk − x̂‖2

2

]
≤ 2 ·

(
1 − 1

2γ ‖A‖2
F

)k

· f (x̂). (4.5)

which implies that we reach accuracy E

[
‖xk − x̂‖2

2

]
≤ 2 · ε · f (x̂) in at most k ≥

2γ ‖A‖2
F log(1

ε
) iterations.

Remark 4.12 (Convergence rate for the linearized Bregman method) Similarly to
Lemma 4.6, we can show that the linearized Bregman algorithm [3, 23, 48]

x∗
k+1 = x∗

k − AT (Axk − b)

‖A‖2
2

,

xk+1 = Sλ(x
∗
k+1) (4.6)

has linear convergence rate given by

∥∥xk − x̂
∥∥2

2 ≤ 2 ·
(

1 − 1

2γ ‖A‖2
2

)k

· f (x̂). (4.7)

Although we suspect that this result (4.7) is not new, we could not find it in the
literature.

Inspired by [42], the following remarks apply to the uniform weight case.

Remark 4.13 (Mini-batch vs. full-batch) Let H(η) = 1
L(α∗) = 2

η
+2(1− 1

η
)
σ 2

max(A)

‖A‖2
F

be

the inverse of L(α∗). Recall from Theorem 4.8 that L(α∗) influences the convergence
rate: The larger L(α∗), the faster the convergence.

Since
‖A‖2

F

σ 2
max(A)

≥ 1, H is a nonincreasing function of η and we have H(1) = 2,

H(∞)
def= limη→∞ H(η) = 2σ 2

max(A)

‖A‖2
F

. In the asymptotic regime η → ∞, Algorithm 1

becomes linearized Bregman algorithm for minimizing (3.1), and H(∞) is the rate
of linearized Bregman cf. (4.7). This shows that the averaging method interpolates
between the basic method and the linearized Bregman. By increasing η, the quan-

tity H(1)
H(∞)

= ‖A‖2
F

σ 2
max(A)

controls the maximum (guaranteed) speedup in the iteration

complexity achievable. Comparing (4.4) with the convergence rate (4.5) of the basic
sparse Kaczmarz method, we get an improvement of 2L(α∗) > 1 which shows that

for the RSKA algorithm, we can get a speed-up even of order approximately
‖A‖2

F

σ 2
max(A)

compared to the rate of the basic sparse Kaczmarz algorithm (see also the comparison
in Table 1).

For η ≥ ‖A‖2
F

σ 2
max(A)

, we get H(η) ≤ 2H(∞), which is the performance of the full

batch (up to a factor of 2). This means that it does not make sense to use a minibatch

size larger than
‖A‖2

F

σ 2
max(A)

. Moreover, notice that H(η) ≥ 1
η
H(1) for all η, show that the

1435Numerical Algorithms (2023) 93:1417–1451

number of iterations does not decrease linearly in the minibatch size η. From a total
complexity perspective cf. Table 1, this also means that in a computational regime
where processing η basic method updates costs η times as much as processing a
single update, the decrease in iteration complexity cannot compensate for the increase
in cost per iteration, which means that the choice η = 1 is optimal. On the other
hand, if a parallel processor is available, a larger η will be better.

4.2 Noisy right hand sides

In the noisy case, we consider a consistent linear system Ax = b, but assume that
instead of b we only have access to some vector bδ with |b − bδ|2 ≤ δ. In the context
if Kaczmarz methods, such errors in the right hand side have been considered in [30,
49]. Since the system Ax = bδ is most likely inconsistent, RSKA will not solve the
optimization problem (1.5) but hopefully the iterates still come close to the solution.
If we assume a bound ‖b − bδ‖2 ≤ δ for b with Ax̂ = b, we get the following result
on the convergence of the method:

Theorem 4.14 (Noisy case) Assume that instead of exact data b ∈ Range(A) only a
noisy right hand side bδ ∈ R

m with ‖bδ − b‖2 ≤ δ is given. Consider η > 1, ε > 0,
γ as defined in (4.2) (Lemma (4.4)), let Assumption 1 hold and assume that

0 < α < 2
((1 − ε)η − 1

2σmax(W))‖A‖2
F

σmax(A)2(η − 1)
. (4.8)

If the iterates xk of the RSKA method from Algorithm 1 are computed with b replaced
by bδ , then, with the contraction factor a, we have :

a = 1 − α

γ
· (1 − ε − σmax(T))

‖A‖2
F

∈ (0, 1), (4.9)

and the expected rate of convergence is

E

[
D

x∗
k+1

f (xk+1, x̂)
]

≤ a · E
[
D

x∗
k

f (xk, x̂)
]

+cδ2
E

[
‖xk − x̂‖2

2

]
≤ 2 · ak · f (x̂) + c

1 − a
δ2.

where c = α

‖A‖2
F

(
σmax(T) + 1

ε
σ 2

max(T
′)
)

, T′ = T − 1
2 I

Table 1 Complexity of different methods

RSK RSKA linBreg

Iteration complexity O

(
2γ ‖A‖2

F log(1
ε
)

)
O

(
γ

‖A‖2
F

L(α∗)
log(1

ε
)

)
O

(
2γ ‖A‖2

2 log(1
ε
)

)

Cost per iteration O(n) O(ηn) O(mn)

1436 Numerical Algorithms (2023) 93:1417–1451

Proof Assuming that a noisy observed data bδ ∈ R
m instead of b with ‖bδ −b‖2 ≤ δ

is given, where b = Ax̂. The update in this case is given by:

x∗
k+1 = x∗

k − 1

η

∑

i∈τk

wi

〈ai, xk〉 − bδ
i

‖ai‖2
2

· ai,

xk+1 = Sλ(x
∗
k+1) (4.10)

where η = |τk|,which in terms of matrix multiplication is equal to:

x∗
k+1 = x∗

k − AT · Mk · (Axk − bδ),

xk+1 = Sλ(x
∗
k+1) (4.11)

We introduce the abbreviation

xδ
k

def= x̂ + AT · Mk · (b − bδ)

and use Lemma 4.3 with f (x) = λ‖x‖1+ 1
2‖x‖2

2 and Φ(x) = 〈AT Mk(Axk−bδ), x−
xk〉, and y = xδ

k and get

D
x∗
k+1

f (xk+1, x
δ
k) ≤ D

x∗
k

f (xk, x
δ
k) + Φ(xδ

k) − Φ(xk+1) − D
x∗
k

f (xk, xk+1)

= D
x∗
k

f (xk, x
δ
k) − 〈AT Mk(Axk − bδ), xk − xδ

k 〉
+〈AT Mk(Axk − bδ), xk − xk+1〉 − D

x∗
k

f (xk, xk+1)

≤ D
x∗
k

f (xk, x
δ
k) − 〈AT Mk(Axk − bδ), xk − xδ

k 〉
+‖AT Mk(Axk − bδ)‖ · ‖xk − xk+1‖ − 1

2
‖xk − xk+1‖2

≤ D
x∗
k

f (xk, x
δ
k) − 〈AT Mk(Axk − bδ), xk − xδ

k 〉
+1

2
‖AT Mk(Axk − bδ)‖2

so that

D
x∗
k+1

f (xk+1, x
δ
k) ≤D

x∗
k

f (xk, x
δ
k) − 〈AT Mk(Axk−bδ), xk−xδ

k 〉+ 1
2

∥∥∥AT Mk(Axk − bδ)

∥∥∥
2

2
(4.12)

Unfolding the expression of D
x∗
k+1

f (xk+1, x
δ
k) and D

x∗
k

f (xk, x
δ
k), we get:

D
x∗
k+1

f (xk+1, x̂) ≤D
x∗
k

f (xk, x̂)−〈AT Mk(Axk−bδ), xk−x̂〉+ 1
2

∥∥∥AT Mk(Axk − bδ)

∥∥∥
2

2

On the other hand,

Ek

[〈Mk · (Axk − bδ),Axk − b〉] = α

‖A‖2
F

‖Axk − b‖2
2 + α

‖A‖2
F

〈b − bδ,Axk − b〉
and

Ek

[∥∥∥AT · Mk · (Axk − bδ)

∥∥∥
2

2

]
= 〈Axk − b,Ek

[
MT

k AA
T Mk

]
· (Axk − b)〉

+ 〈b − bδ,Ek

[
MT

k AA
T Mk

]
· (b − bδ)〉

+ 2〈Axk − b,Ek

[
MT

k AA
T Mk

]
· (b − bδ)〉

1437Numerical Algorithms (2023) 93:1417–1451

In summary, we have:

− Ek

[
〈AT · Mk · (Axk − bδ), xk − x̂〉

]
+ 1

2
Ek

[∥∥∥AT · Mk · (Axk − bδ)

∥∥∥
2

2

]

= − α

‖A‖2
F

‖Axk − b‖2
2 − α

‖A‖2
F

〈b − bδ,Axk − b〉

+1

2
〈b − bδ,Ek

[
MT

k AA
T Mk

]
(b − bδ)〉

+1

2
〈Axk − b,Ek

[
MT

k AA
T Mk

]
(Axk − b)〉

+〈Axk − b,Ek

[
MT

k AA
T Mk

]
· (b − bδ)〉

≤ − α

‖A‖2
F

‖Axk − b‖2
2 + α

‖A‖2
F

σmax(T)‖Axk − b‖2
2 + α

‖A‖2
F

σmax(T)‖b − bδ‖2
2

+ 2α

‖A‖2
F

〈Axk − b,

(
1

2η
W − 1

2
I + α

2
(1 − 1

η
)
AAT

‖A‖2
F

)
· (b − bδ)〉

≤ − α

‖A‖2
F

‖Axk − b‖2
2 + α

‖A‖2
F

σmax(T)‖Axk − b‖2
2 + α

‖A‖2
F

σmax(T)‖b − bδ‖2
2

+ αε

‖A‖2
F

‖Axk − b‖2
2 + α

ε‖A‖2
F

∥∥∥∥

(
1

2η
W − 1

2
I + α

2
(1 − 1

η
)
AAT

‖A‖2
F

)
· (b − bδ)

∥∥∥∥
2

2

= − α

‖A‖2
F

(1 − ε − σmax(T))‖Axk − b‖2
2

+ α

‖A‖2
F

(σmax(T) + 1

ε
σ 2

max(T
′))‖b − bδ‖2

2. (4.13)

To get an improvement after each iteration, we need (1 − ε − σmax(T)) > 0, i.e.,
σmax(T) < 1 − ε which hold true because of (4.8). Combining (4.12) and (4.13) and
using the error bound from Lemma 4.4, we arrive at

Ek

[
D

x∗
k+1

f (xk+1, x̂)
]

≤
(

1 − α

γ ‖A‖2
F

(1 − ε − σmax(T))

)
D

x∗
k

f (xk, x̂)

+ α

‖A‖2
F

(σmax(T) + 1
ε
σ 2

max(T
′))δ2,

which concludes the proof. The inequality in terms of the norm is obtained by using
the first inequality of (2.3) since f is 1-strongly convex.

Remark 4.15 Note that for W = I, η = 1, α = 1, we have T = 1
2 I meaning T′ = 0

and sending ε to zero give us c
1−a

= γ which recover the rate of the standard RSK
in the noisy case showed in [43].

1438 Numerical Algorithms (2023) 93:1417–1451

5 Numerical experiments

We present several experiments to demonstrate the effectiveness of Algorithm 1
under various conditions. In particular, we study the effects of the relaxation parame-
ter α, the number of threads η, the sparsity parameter λ, the weight matrix W, and the
probability matrix P. The simulations were performed in Python on an Intel Core i7
computer with 16GB RAM. We start by comparing several variants of RSKA algo-
rithms with randomized Kaczmarz (RK) and randomized sparse Kaczmarz (RSK).
We consider the following RSKA variants:

(a) v1: RSKA with W = I, i.e., α = 1, with a coupling such that PWD−2 = αI
‖A‖2

F

i.e., pi = ‖ai‖2
2

‖A‖2
F

.

(b) v2: RSKA with a uniform weight matrix W = α∗I, i.e., pi = ‖ai‖2
2

‖A‖2
F

, where α∗

is from Corollary 4.9.
(c) v3: RSKA with a general diagonal weight matrix W with diagonal entries wi

sample i.i.d. from the uniform distribution on [0, 1] and pi = ‖ai‖2
2

‖A‖2
F

.

(d) v4: RSKA with a general diagonal weight matrix W with diagonal entries wi

sample i.i.d. from the uniform distribution on [0, 1] and set pi proportional to
‖ai‖2

wi
, i.e., we have PWD−2 = αI with α = (∑

j

‖aj ‖2

wj

)−1.

The rationale behind these choices are as follows: Version v1 just chooses no weight
and standard probabilities. In v2, we still choose standard probabilities but use a
coupling of weights and probabilities with the uniform weight α∗ of which we have
seen in Corollary 4.9 that is has a certain optimality property. In v3, we still use
standard probabilities but do not use a coupling of probabilities and weights. Since
we do not have any indications on how to choose weights in any optimal way, we just
used random weights here. In contrast to v3, we do use a coupling of weights and
probabilities in v4, but again, since we do not have results on how to choose optimal
weights, we choose random ones.

Note that RSK and RK are both special cases of RSKA, namely

(a) RSKA with W = I, i.e., α = 1, with a coupling such that PWD−2 = αI
‖A‖2

F

, i.e.,

pi = ‖ai‖2
2

‖A‖2
F

and η = 1,

(b) RSKA with W = I, i.e., α = 1, with a coupling such that PWD−2 = αI
‖A‖2

F

, i.e.,

pi = ‖ai‖2
2

‖A‖2
F

, η = 1 and λ = 0.

Synthetic data for the experiments is generated as follows: All elements of the
data matrix A ∈ R

m×n are chosen independent and identically distributed from the
standard normal distribution N (0, 1). We constructed overdetermined, square, and
underdetermined linear systems. To construct sparse solutions x̂ ∈ R

n, we choose s

indices from {1, . . . , n} at random and placed zeros at these positions, and the cor-
responding right hand sides are b = Ax̂ ∈ R

m while the respective noisy right hand

1439Numerical Algorithms (2023) 93:1417–1451

sides are bδ and are obtained by adding Gaussian noise (see Section 5.4 below). We
generally chose η = 1 + 1

10 min(m, n) for RSKA, unless something else is indicated.
Note that in the overdetermined case with no noise, there will be a unique solution
x̂ since with probability 1, the matrices A have full rank, and so all methods are
expected to converge to the same solution x̂ in this case.

For each experiment, we run independent trials each starting with the initial iterate
x0 = 0. We measure performance by plotting the relative residual error ‖Ax−b‖/‖b‖
and the error ‖xk − x̂‖/‖x̂‖ against the number of full iterations. Thick line shows
mean over the total number of trials and shaded area which represent the standard
deviation over the trials are plotted when appropriate.

Figure 1 shows the result for a five times overdetermined and consistent sys-
tem without noise where the value λ = 1 was used for RSK and RSKA. Note
that the usual RK and RSKA variants perform consistently well over all tri-
als, while the performance of RSK differs drastically between different instances.
Moreover, we observe experimentally that choosing the theoretically optimal overre-
laxation parameter α∗ from Corollary 4.9 for the RSKA v2 method gives us faster
convergence.

Figures 2 and 3 show the results respectively for a two times resp. five times
underdetermined and consistent system without noise where the values λ = 1, resp.
λ = 3 was used for RSK and RSKA. Methods like RSK and RSKA take advantage
of the fact that the vectors x̂ are very sparse. Moreover, in Fig. 2, the RSK and RK
methods do not reduce the residual as fast as the RSKA method. However, since the
problem is underdetermined, the RK method does not converge to a sparse solution

(a) Relative Residual (b) Error

Fig. 1 A comparison of randomized Kaczmarz (blue), randomized sparse Kaczmarz (green),
and RSKA method (black), m = 100, n = 20, sparsity s = 10, η = 11, λ = 1, no noise, and
20 runs. Thick line shows mean over all trials

1440 Numerical Algorithms (2023) 93:1417–1451

(a) Relative Residual (b) Error

Fig. 2 A comparison of randomized Kaczmarz (blue), randomized sparse Kaczmarz (green),
and RSKA method (black), m = 100, n = 200, sparsity s = 10, η = 11, λ = 1, no noise,
and 10 runs. Thick line shows mean over all trials, and shaded area represents the standard
deviation

and hence, the error does not converge to zero. Figures 4 and 5 show results for
further values of m and n and show similar behavior as Fig. 2.

5.1 The effect of the number of threads η

In Figs. 6, 7, 8, and 9, we see the effects of the number of threads η in the error
of Algorithm 1 for the variant v2. We used underdetermined and overdetermined
and consistent system, with λ ∈ {0.01, 3}. For the small λ = 0.01, the RSKA

(a) Relative Residual (b) Error

Fig. 3 A comparison of randomized Kaczmarz (blue), randomized sparse Kaczmarz (green),
and RSKA method (black), m = 100, n = 500, sparsity s = 10, η = 11, λ = 3, no noise,
and 10 runs. Thick line shows mean over all trials, and shaded area represents the standard
deviation

1441Numerical Algorithms (2023) 93:1417–1451

(a) Relative Residual (b) Error

Fig. 4 A comparison of randomized Kaczmarz (blue), randomized sparse Kaczmarz (green),
and RSKA method (black), m = 200, n = 600, sparsity s = 10, η = 21, λ = 3, no noise, and
5 runs. Thick line shows mean over all trials, and shaded area represents the standard deviation

behaves almost like the standard randomized Kaczmarz with averaging from [28],
while for the larger value λ = 3, we see the typical behavior for the sparse Kaczmarz
method which stagnates from time to time and switches to faster improvement in
between [23]. As the number of threads η increases, we see a corresponding decrease
in the number of iterations needed to reach a certain accuracy; however, at some
point, increasing η does not improve the method in accordance with Remark 4.10.
For smaller values of η, we roughly see an η-times speedup in the number of itera-
tions. Thus, it is clear that the averaging will pay off as soon as the updates in RSKA
can be done in parallel.

(a) Relative Residual (b) Error

Fig. 5 A comparison of randomized Kaczmarz (blue), randomized sparse Kaczmarz (green),
and RSKA method (black), m = 300, n = 300, sparsity s = 10, η = 31, λ = 3, no noise, and
5 runs. Thick line shows mean over all trials, and shaded area represents the standard deviation

1442 Numerical Algorithms (2023) 93:1417–1451

(a) Relative Residual (b) Error

Fig. 6 The effect of the number of threads η on the error and relative residual versus iteration
for Algorithm 1 on the variant v2. m = 200, n = 600, sparsity s = 10, λ = 0.01, no noise

5.2 The effect of the relaxation parameter α

In Fig. 10, we observe the effect on the convergence rate as we vary the relaxation
parameter α. We used an underdetermined and consistent system with λ = 0.1, η = 8
with variant v2. In fact, increasing α allows us to get smaller error; however, the
method can ultimately diverge for some larger values of the relaxation parameter α.
This is observed in Fig. 11 which plot the relative residual and the error after 100

(a) Relative Residual (b) Error

Fig. 7 The effect of the number of threads η on the error and relative residual versus iteration
for Algorithm 1 on the variant v2. m = 200, n = 600, sparsity s = 10, λ = 3, no noise

1443Numerical Algorithms (2023) 93:1417–1451

(a) Relative Residual (b) Error

Fig. 8 The effect of the number of threads η on the error and relative residual versus iteration
for Algorithm 1 on the variant v2. m = 100, n = 10, sparsity s = 10, λ = 0.01, no noise

iterations on a smaller example for various relaxation parameters α and batch sizes
η. The theoretically optimal parameter α∗ from Corollary 4.9 is indicated as a dot.
We used an overdetermined and consistent system with λ = 1 with variant v2. The
plots confirm that α cannot be chosen too large, i.e., there exists an η-depended upper
bound for α which leads to convergence (cf. Theorem 4.8). However, we also observe
that a larger relaxation parameter than α∗ from Corollary 4.9 leads to even faster
convergence.

(a) Relative Residual (b) Error

Fig. 9 The effect of the number of threads η on the error and relative residual versus iteration for Algorithm
1 on the variant v2. m = 100, n = 10, sparsity s = 10, λ = 3, no noise

1444 Numerical Algorithms (2023) 93:1417–1451

(a) Relative Residual (b) Error

Fig. 10 The effect of the relaxation parameter α on the error and relative residual versus iteration for
Algorithm 1 on the variant v2. m = 200, n = 600, sparsity s = 10, η = 8, λ = 0.1, no noise

Fig. 11 The effect of the relaxation parameter α for various values of η on the relative residual
after 100 iterations of Algorithm 1 with the variant v2. m = 100, n = 10, sparsity s = 10, λ =
6, no noise. Circle markers are estimates of the optimal relaxation parameter using Corollary
4.9

1445Numerical Algorithms (2023) 93:1417–1451

5.3 The effect of the sparsity parameter λ

In Fig. 12, we see the effects of the sparsity parameter λ on the approximation error
of Algorithm 1 and the randomized Kaczmarz method (RK). We used an underde-
termined and consistent system with η = 21 with variant v2 of RSKA. We observed
that as you increase the sparsity parameter λ, the relative residual and the recon-
struction error get worse and RSK is more affected by this behavior whereas RSKA
keep it performance along different λ. The first row of Fig. 12 corresponds to exper-
iment where we run 1000 iterations and in the second row, the methods are run for
(1 + λ)1000 iterations for all λ.

(a) Relative Residual (b) Error

(c) Relative Residual (d) Error

Fig. 12 A comparison of randomized sparse Kaczmarz (blue) and RSKA-v2 method (orange)
in terms of the sparsity parameter λ. m = 200, n = 600, sparsity s = 10, η = 21, no noise. In
the first row (a, b), methods are run for 1000 iterations for all λ whereas in the second row (c,
d), methods are run for (1 + λ)1000 iterations for all λ

1446 Numerical Algorithms (2023) 93:1417–1451

(a) Relative Residual (b) Error

Fig. 13 A comparison of randomized Kaczmarz (blue), randomized sparse Kaczmarz (green),
and RSKA method (black), m = 100, n = 100, sparsity s = 10, η = 11, λ = 1, noise level
l = 0.1, and 5 runs. Thick line shows mean over all trials, and shaded area represents the
standard deviation

5.4 Noisy case

In this part, we are interested in the effectiveness of the RSKA method on inconsistent
systems. We construct a sparse x̂ with normally distributed non-zero entries and set
b = Ax̂, bε = b + ε where ε is a random vector uniformly distributed on a sphere
with radius � that correspond to the relative noise level such that ‖b − bε‖2 ≤ �.

(a) Relative Residual (b) Error

Fig. 14 A comparison of randomized Kaczmarz (blue), randomized sparse Kaczmarz (green),
and RSKA method (black), m = 500, n = 100, sparsity s = 10, η = 11, λ = 1, noise level
l = 0.1, and 5 runs. Thick line shows mean over all trials, and shaded area represents the
standard deviation

1447Numerical Algorithms (2023) 93:1417–1451

(a) Relative Residual (b) Error

Fig. 15 A comparison of randomized Kaczmarz (blue), randomized sparse Kaczmarz (green),
and RSKA method (black), m = 100, n = 500, sparsity s = 10, η = 11, λ = 1, noise level
l = 0.1, and 5 runs. Thick line shows mean over all trials, and shaded area represents the
standard deviation

Figures 13, 14, and 15 show the results for noisy right hand sides, all with λ = 1
for RSK and RSKA. Figure 14 uses a five times overdetermined system with 10%
relative noise, and Fig. 15 has the same noise level and a five times underdetermined
system. In the underdetermined case, all methods consistently stagnate at a residual
level which is comparable to the noise level; however, in all settings, RSKA variants
achieve faster convergence than RSK which in turn is faster than RK. Regarding the
reconstruction error, RSKA and RSK achieve reconstructions with an error in the size
of the noise level, while RSKA achieves an even lower reconstruction error.

6 Conclusion

We proved that the iterates of the randomized sparse Kaczmarz with averaging
method (Algorithm 1) are expected to converge linearly for consistent linear sys-
tems. Moreover, we show that the iterates reach an error threshold in the order of the
noise-level in the noisy case. We gave a general error bound in terms of the spar-
sity parameter λ, the number of threads η, and a relaxation parameter α. Numerical
experiments show that the method performs consistently well over a range of values
of λ (which is different for the version without averaging), very good reconstruction
quality as λ increases, confirm the theoretical results, and demonstrate the benefit of
using Algorithm 1 to recover sparse solutions of linear systems, even in the noisy
case. We demonstrate that the rate of convergence for Algorithm 1 improves both
in theory and practice as the number of threads η increases. Moreover, we derive
an optimal value for the relaxation parameter α which gives the fastest convergence
speed and our numerical experiments indicate that this optimal value for α (in v2 and
v4 of the algorithms in Section 5) does indeed provide fast convergence.

1448 Numerical Algorithms (2023) 93:1417–1451

Funding Open Access funding enabled and organized by Projekt DEAL. The work of the authors has
been supported by the ITN-ETN project TraDE-OPT funded by the European Union’s Horizon 2020
research and innovation programme under the Marie Skłstrokodowska-Curie grant agreement No 861137.

Availability of data and materials The data for the numerical example are randomly generated matrices.

Code availability The computational code is only prototypal, but it is available from the authors upon
request.

Declarations
Conflict of interest The authors declare no competing interests.

Disclaimer This work represents only the author’s view and the European Commission is not responsible
for any use that may be made of the information it contains.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Beck, A., Teboulle, M.: Mirror descent and nonlinear projected subgradient methods for convex
optimization. Oper. Res. Lett. 31(3), 167–175 (2003)

2. Cai, J.F., Osher, S., Shen, Z.: Convergence of the linearized Bregman iteration for �1-norm minimiza-
tion. Math. Comput. 78(268), 2127–2136 (2009)

3. Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for compressed sensing. Math. Comput.
78(267), 1515–1536 (2009)

4. Candès, E.J.: Compressive sampling. In: International Congress of Mathematiciansn, vol. III,
pp. 1433–1452. Eur. Math. Soc. Zürich (2006)

5. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from
highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

6. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci.
Comput. 20(1), 33–61 (1998). https://doi.org/10.1137/S1064827596304010

7. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006).
https://doi.org/10.1109/TIT.2006.871582

8. Donoho, D.L., Tanner, J.: Sparse nonnegative solution of underdetermined linear equations by linear
programming. Proc. Natl. Acad. Sci. 102(27), 9446–9451 (2005)

9. D’Orazio, R., Loizou, N., Laradji, I., Mitliagkas, I. (2021)
10. Du, K., Si, W.T., Sun, X.H.: Randomized extended average block Kaczmarz for solving least squares.

SIAM J. Sci. Comput. 42(6), A3541–A3559 (2020)
11. Friedlander, M.P., Tseng, P.: Exact regularization of convex programs. SIAM J. Optim. 18(4), 1326–

1350 (2008)
12. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Series of Books in the Mathemat-

ical Sciences. W. H. Freeman and Co., San Francisco, Calif. (1979). A guide to the theory of
NP-completeness

13. Gower, R.M., Molitor, D., Moorman, J., Needell, D.: On adaptive sketch-and-project for solving linear
systems. SIAM J. Matrix Anal. Appl. 42(2), 954–989 (2021). https://doi.org/10.1137/19M1285846

1449Numerical Algorithms (2023) 93:1417–1451

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/S1064827596304010
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1137/19M1285846

14. Hanke, M., Niethammer, W.: On the acceleration of Kaczmarz’s method for inconsistent linear
systems. Linear Algebra Appl. 130, 83–98 (1990)

15. Herman, G.T., Lent, A., Lutz, P.H.: Relaxation methods for image reconstruction. Commun. ACM
21(2), 152–158 (1978). https://doi.org/10.1145/359340.359351

16. Horn, R.A., Horn, R.A., Johnson, C.R.: Topics in matrix analysis. Cambridge University Press,
Cambridge (1994)

17. Hounsfield, G.N.: Computerized transverse axial scanning (tomography): part 1. description of
system. Br. J. Radiol. 46(552), 1016–1022 (1973)

18. Jiao, Y., Jin, B., Lu, X.: Preasymptotic convergence of randomized Kaczmarz method. Inverse Prob.
33(12), 125,012, 21 (2017). https://doi.org/10.1088/1361-6420/aa8e82

19. Kaczmarz, S.: Angenäherte auflösung von Systemen linearer Gleichungen. Bull. Internat. Acad.
Polon. Sci. Lettres A, 355–357 (1937)

20. Khan, U.A., Moura, J.M.: Distributed Kalman filters in sensor networks: bipartite fusion graphs. In:
2007 IEEE/SP 14th Workshop on Statistical Signal Processing, pp. 700–704.IEEE (2007)

21. Lan, G., Nemirovski, A., Shapiro, A.: Validation analysis of mirror descent stochastic approximation
method. Math. Program. 134(2), 425–458 (2012)

22. Loizou, N., Vaswani, S., Laradji, I.H., Lacoste-Julien, S.: Stochastic polyak step-size for sgd: an adap-
tive learning rate for fast convergence. In: International Conference on Artificial Intelligence and
Statistics, pp. 1306–1314. PMLR (2021)

23. Lorenz, D.A., Schöpfer, F., Wenger, S.: The linearized Bregman method via split feasibility problems:
analysis and generalizations. SIAM. J. Imaging Sci. 7(2), 1237–1262 (2014)

24. Lorenz, D.A., Wenger, S., Schöpfer, F., Magnor, M.: A sparse Kaczmarz solver and a linearized
bregman method for online compressed sensing. In: 2014 IEEE International Conference on Image
Processing (ICIP), pp. 1347–1351. IEEE (2014)

25. Mertikopoulos, P., Lecouat, B., Zenati, H., Foo, C.S., Chandrasekhar, V., Piliouras, G.: Optimistic
mirror descent in saddle-point problems: going the extra(-gradient) mile. In: International Conference
on Learning Representations (2019)

26. Mertikopoulos, P., Staudigl, M.: Stochastic mirror descent dynamics and their convergence in
monotone variational inequalities. J. Optim. Theory Appl. 179(3), 838–867 (2018)

27. Miao, C.Q., Wu, W.T.: On greedy randomized average block Kaczmarz method for solving large
linear systems. J. Comput. Appl. Math. 413, 114,372 (2022)

28. Moorman, J.D., Tu, T.K., Molitor, D., Needell, D.: Randomized Kaczmarz with averaging. BIT
Numer. Math. 61(1), 337–359 (2021)

29. Necoara, I.: Faster randomized block Kaczmarz algorithms. SIAM J. Matrix Anal. Appl. 40(4), 1425–
1452 (2019)

30. Needell, D.: Randomized Kaczmarz solver for noisy linear systems. BIT Numer. Math. 50(2), 395–
403 (2010)

31. Needell, D., Tropp, J.A.: Paved with good intentions: analysis of a randomized block Kaczmarz
method. Linear Algebra Appl. 441, 199–221 (2014)

32. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to
stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

33. Nemirovski, A.S., Juditsky, A.B., Lan, G., Shapiro, A.: Robust stochastic approxima-
tion approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009).
https://doi.org/10.1137/070704277

34. Nemirovskij, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Wiley-
Interscience (1983)

35. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
J. Optim. 22(2), 341–362 (2012)

36. Olshanskii, M.A., Tyrtyshnikov, E.E.: Iterative Methods for Linear Systems: Theory and Applications.
SIAM (2014)

37. Patrascu, A., Necoara, I.: Nonasymptotic convergence of stochastic proximal point methods for
constrained convex optimization. J. Mach. Learn. Res. 18(1), 7204–7245 (2017)

38. Petra, S.: Randomized sparse block Kaczmarz as randomized dual block-coordinate descent. Analele
Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica 23(3), 129–149 (2015)

39. Popa, C.: Convergence rates for Kaczmarz-type algorithms. Numer. Algorithms 79(1), 1–17 (2018).
https://doi.org/10.1007/s11075-017-0425-7

1450 Numerical Algorithms (2023) 93:1417–1451

https://doi.org/10.1145/359340.359351
https://doi.org/10.1088/1361-6420/aa8e82
https://doi.org/10.1137/070704277
https://doi.org/10.1007/s11075-017-0425-7

40. Rabelo, J.C., Saporito, Y.F., Leitão, A.: On stochastic Kaczmarz type methods for
solving large scale systems of ill-posed equations. Inverse Probl. 38(2), 025003 (2022).
https://doi.org/10.1088/1361-6420/ac3f80

41. Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization. Math.
Program. 156(1), 433–484 (2016)

42. Richtárik, P., Takác, M.: Stochastic reformulations of linear systems: algorithms and convergence
theory. SIAM J. Matrix Anal. Appl. 41(2), 487–524 (2020)

43. Schöpfer, F., Lorenz, D.A.: Linear convergence of the randomized sparse Kaczmarz method. Math.
Program. 173(1), 509–536 (2019). https://doi.org/10.1007/s10107-017-1229-1

44. Schöpfer, F., Lorenz, D.A., Tondji, L., Winkler, M.: Extended randomized Kaczmarz method for
sparse least squares and impulsive noise problems. Lineare Algebra Appl. 652, 132–154 (2022)

45. Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards 49,
409–435 (1952)

46. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J.
Fourier Anal. Appl. 15(2), 262–278 (2009)

47. Tropp, J.A.: Improved analysis of the subsampled randomized Hadamard transform. Advances Adapt.
Data Anal. 3(01n02), 115–126 (2011)

48. Yin, W.: Analysis and generalizations of the linearized Bregman method. SIAM J. Imaging Sci. 3(4),
856–877 (2010)

49. Zouzias, A., Freris, N.M.: Randomized extended Kaczmarz for solving least squares. SIAM J. Matrix
Anal. Appl. 34(2), 773–793 (2013)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Lionel Tondji1 ·Dirk A. Lorenz1

Lionel Tondji
l.ngoupeyou-tondji@tu-braunschweig.de

1 Institute for Analysis and Algebra, TU Braunschweig, 38092 Braunschweig, Germany

1451Numerical Algorithms (2023) 93:1417–1451

https://doi.org/10.1088/1361-6420/ac3f80
https://doi.org/10.1007/s10107-017-1229-1
http://orcid.org/0000-0002-7419-769X
mailto: l.ngoupeyou-tondji@tu-braunschweig.de

	Faster randomized block sparse Kaczmarz by averaging
	Abstract
	Introduction
	Related work
	Randomized Kaczmarz
	Randomized sparse Kaczmarz
	Block sparse Kaczmarz methods

	 Contribution and organization
	Notation

	Basic notions
	Interpretations
	Randomized block/parallel coordinate descent
	Stochastic mirror descent with stochastic Polyak stepsize

	Convergence analysis
	General convergence result
	Noisy right hand sides

	Numerical experiments
	The effect of the number of threads
	The effect of the relaxation parameter
	The effect of the sparsity parameter
	Noisy case

	Conclusion
	Declarations
	References
	Affiliations

