On computing the symplectic $L L^{T}$ factorization

Maksymilian Bujok ${ }^{1}$. Alicja Smoktunowicz ${ }^{2}$. Grzegorz Borowik ${ }^{1}$

Received: 5 July 2022 / Accepted: 27 November 2022 / Published online: 11 December 2022
© The Author(s) 2022

Abstract

We analyze two algorithms for computing the symplectic factorization $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{\boldsymbol{T}}$ of a given symmetric positive definite symplectic matrix \boldsymbol{A}. The first algorithm $\boldsymbol{W}_{\mathbf{1}}$ is an implementation of the $\boldsymbol{H} \boldsymbol{H}^{T}$ factorization from Dopico and Johnson (SIAM J. Matrix Anal. Appl. 31(2):650-673, 2009), see Theorem 5.2. The second one is a new algorithm $\boldsymbol{W}_{\mathbf{2}}$ that uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrices. We present a comparison of these algorithms and illustrate their properties by numerical experiments in MATLAB. A particular emphasis is given on symplecticity properties of the computed matrices in floatingpoint arithmetic.

Keywords Symplectic matrix • Orthogonal matrix • Cholesky factorization • Condition number

Mathematics Subject Classification (2010) 35A01 • 65L10 • 65L12 • 65L20 • 65L70

1 Introduction

We study numerical properties of two algorithms for computing symplectic $L L^{T}$ factorization of a given symmetric positive definite symplectic matrix $A \in \mathbb{R}^{2 n \times 2 n}$.

Maksymilian Bujok
mbujok@swps.edu.pl
Alicja Smoktunowicz
alicja.smoktunowicz@pw.edu.pl
Grzegorz Borowik
borowik.grzegorz@gmail.com

1 Faculty of Design, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, Warsaw, 03-815, Poland
2 Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, Warsaw, 00-662, Poland

A symplectic factorization is the factorization $A=L L^{T}$, where $L \in \mathbb{R}^{2 n \times 2 n}$ is block lower triangular and is symplectic.

Let

$$
J_{n}=\left(\begin{array}{cc}
0 & I_{n} \tag{1}\\
-I_{n} & 0
\end{array}\right)
$$

where I_{n} denotes the $n \times n$ identity matrix.
We will write J and I instead of J_{n} and I_{n} when the sizes are clear from the context.

Definition 1 A matrix $A \in \mathbb{R}^{2 n \times 2 n}$ is symplectic if and only if $A^{T} J A=J$.
We can use the symplectic $L L^{T}$ factorization to compute the symplectic $Q R$ factorization and the Iwasawa decomposition of a given symplectic matrix via Cholesky decomposition. We can modify Tam's method, see [1, 7]. Symplectic matrices arise in several applications, among which symplectic formulation of classical mechanics and quantum mechanic, quantum optics, various aspects of mathematical physics, including the application of symplectic block matrices to special relativity, optimal control theory. For more details we refer the reader to [1, 3], and [8].

Partition $A \in \mathbb{R}^{2 n \times 2 n}$ conformally with J_{n} defined by (1) as

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \tag{2}\\
A_{21} & A_{22}
\end{array}\right)
$$

in which $A_{i j} \in \mathbb{R}^{n \times n}$ for $i, j=1,2$.
An immediate consequence of Definition 1 is that the matrix A, partitioned as in (2), is symplectic if and only if $A_{11}^{T} A_{21}$ and $A_{12}^{T} A_{22}$ are symmetric and $A_{11}^{T} A_{22}-$ $A_{21}^{T} A_{12}=I$.

Symplectic matrices form a Lie group under matrix multiplications. The product $A_{1} A_{2}$ of two symplectic matrices $A_{1}, A_{2} \in \mathbb{R}^{2 n \times 2 n}$ is also a symplectic matrix. The symplectic group is closed under transposition. If A is symplectic then the inverse of A equals $A^{-1}=J^{T} A^{T} J$, and A^{-1} is also symplectic.

Lemmas $1-5$ will be helpful in the construction and for testing of some herein proposed algorithms.

Lemma 1 A nonsingular block lower triangular matrix $L \in \mathbb{R}^{2 n \times 2 n}$, partitioned as

$$
L=\left(\begin{array}{cc}
L_{11} & 0 \tag{3}\\
L_{21} & L_{22}
\end{array}\right)
$$

is symplectic if and only if $L_{22}=L_{11}^{-T}$ and $L_{21}^{T} L_{11}=L_{11}^{T} L_{21}$.
Lemma 2 A matrix $Q \in \mathbb{R}^{2 n \times 2 n}$ is orthogonal symplectic (i.e., Q is both symplectic and orthogonal) if and only if Q has a form

$$
Q=\left(\begin{array}{cc}
C & S \tag{4}\\
-S & C
\end{array}\right)
$$

where $C, S \in \mathbb{R}^{n \times n}$ and $U=C+i S$ is unitary.

Next, we use the following result from [9], Theorem 2.
Lemma 3 Every symmetric positive definite symplectic matrix $A \in \mathbb{R}^{2 n \times 2 n}$ has a spectral decomposition $A=Q \operatorname{diag}\left(D, D^{-1}\right) Q^{T}$, where $Q \in \mathbb{R}^{2 n \times 2 n}$ is orthogonal symplectic, and $D=\operatorname{diag}\left(d_{i}\right)$, with $d_{1} \geq d_{2} \geq \ldots \geq d_{n} \geq 1$.

In order to create examples of symmetric positive definite symplectic matrices we can use the following result from [3], Theorem 5.2.

Lemma 4 Every symmetric positive definite symplectic matrix $A \in \mathbb{R}^{2 n \times 2 n}$ can be written as

$$
A=\left(\begin{array}{cc}
I_{n} & 0 \tag{5}\\
C & I_{n}
\end{array}\right) \quad\left(\begin{array}{cc}
G & 0 \\
0 & G^{-1}
\end{array}\right) \quad\left(\begin{array}{cc}
I_{n} & C \\
0 & I_{n}
\end{array}\right)
$$

where G is symmetric positive definite and C is symmetric.
Lemma 5 Let $A \in \mathbb{R}^{2 n \times 2 n}$ be a symmetric positive definite symplectic matrix, partitioned as in (2). Let S be the Schur complement of A_{11} in A :

$$
\begin{equation*}
S=A_{22}-A_{12}^{T} A_{11}^{-1} A_{12} \tag{6}
\end{equation*}
$$

Then S is symmetric positive definite and we have

$$
\begin{equation*}
S=A_{11}^{-1} \tag{7}
\end{equation*}
$$

Proof The property (7) was proved in a more general setting in [3], see Corollary 2.3. We propose an alternative proof for completeness.

It is well known that if A is a symmetric positive definite matrix then the Schur complement S is also symmetric positive definite. We only need to prove (7). Let A be a symmetric positive definite matrix. Then A is symplectic if and only if $A J A=$ J, which is equivalent to the three following conditions:

$$
\begin{align*}
& A_{11} A_{22}-A_{12}^{2}=I \tag{8}\\
& A_{11} A_{12}^{T}=A_{12} A_{11} \tag{9}\\
& A_{12}^{T} A_{22}=A_{22} A_{12} \tag{10}
\end{align*}
$$

From (8) we get $A_{22}=A_{11}^{-1}+\left(A_{11}^{-1} A_{12}\right) A_{12}$. We can rewrite (9) as $A_{12}^{T} A_{11}^{-1}=$ $A_{11}^{-1} A_{12}$. Thus, we have $A_{22}=A_{11}^{-1}+A_{12}^{T} A_{11}^{-1} A_{12}$, which together with (6) leads to (7).

We propose methods for computing symplectic $L L^{T}$ factorization of a given symmetric positive definite symplectic matrix A, where L is symplectic and partitioned as in (3). We apply the Cholesky and the Reverse Cholesky decompositions. Practical algorithm for the Reverse Cholesky decomposition is described in Section 2, see Remark 1.

Theorem 6 Let $M \in \mathbb{R}^{m \times m}$ be a symmetric positive definite matrix.
(i) Then there exists a unique lower triangular matrix $L \in \mathbb{R}^{m \times m}$ with positive diagonal entries such that $M=L L^{T}$ (Cholesky decomposition).
(ii) Then there exists a unique upper triangular matrix $U \in \mathbb{R}^{m \times m}$ with positive diagonal entries such that $M=U U^{T}$ (Reverse Cholesky decomposition).

Proof We only need to prove (ii). Using the fact (i) for the inverse of M, we get $M^{-1}=\hat{L} \hat{L}^{T}$, where \hat{L} is a lower triangular matrix with positive diagonal entries. Then $M=\left(\hat{L} \hat{L}^{T}\right)^{-1}=U U^{T}$ where $U=\hat{L}^{-T}$. Clearly, U is upper triangular with positive entries, and U is unique.

Based on Theorem 6, we prove the following result on symplectic $L L^{T}$ factorization (see [3], Theorem 5.2).

Theorem 7 Let $A \in \mathbb{R}^{2 n \times 2 n}$ be a symmetric positive definite symplectic matrix of the form

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \tag{11}\\
A_{12}^{T} & A_{22}
\end{array}\right)
$$

If $A_{11}=L_{11} L_{11}^{T}$ is the Cholesky decomposition of A_{11}, then $A=L L^{T}$, in which

$$
L=\left(\begin{array}{cc}
L_{11} & 0 \tag{12}\\
L_{21} & L_{22}
\end{array}\right)=\left(\begin{array}{cc}
L_{11} & 0 \\
\left(L_{11}^{-1} A_{12}\right)^{T} & L_{11}^{-T}
\end{array}\right)
$$

is symplectic.
If S is the Schur complement of A_{11} in A, defined in (6), and $S=U U^{T}$ is the Reverse Cholesky decomposition of S, then $L_{22}=L_{11}^{-T}=U$.

Proof We can write

$$
L L^{T}=\left(\begin{array}{cc}
L_{11} L_{11}^{T} & L_{11} L_{21}^{T} \\
\left(L_{11} L_{21}^{T}\right)^{T} & L_{21} L_{21}^{T}+L_{22} L_{22}^{T}
\end{array}\right)
$$

This gives the identities

$$
A_{11}=L_{11} L_{11}^{T}, \quad A_{12}=L_{11} L_{21}^{T}, \quad A_{22}=L_{21} L_{21}^{T}+L_{22} L_{22}^{T}
$$

Clearly, $L_{21}^{T}=L_{11}^{-1} A_{12}$, and $S=A_{22}-L_{21} L_{21}^{T}$ is the Schur complement of A_{11} in A. Moreover, $S=L_{22} L_{22}^{T}$. If $S=U U^{T}$ is the Reverse Cholesky decomposition of S and L_{22} is upper triangular, then $L_{22}=U$, by Theorem 6. From Lemma 5 we have $S=A_{11}^{-1}$, hence $S=L_{11}^{-T} L_{11}^{-1}$. Notice that L_{11}^{-T} is upper triangular, so $U=L_{11}^{-T}$.

It is easy to prove that L in (12) is symplectic. It follows from Lemma 1 and (9).

The paper is organized as follows. Section 2 describes Algorithms W_{1} and W_{2}. Section 3 presents both theoretical and practical computational issues. Section 4 is devoted to numerical experiments and comparisons of the methods. Conclusions are given in Section 5.

2 Algorithms

We apply Theorem 7 to develop two algorithms for finding the symplectic $L L^{T}$ factorization. They differ only in a way of computing the matrix L_{22}. Algorithm W_{1} is based on Theorem 5.2 from [3]. We propose Algorithm W_{2}, which can be used for symmetric positive definite matrix A, not necessarily symplectic. However, if A is additionally symplectic then the factor L is also symplectic.

Algorithm W_{1}

Given a symmetric positive definite symplectic matrix $A \in \mathbb{R}^{2 n \times 2 n}$. This algorithm computes the symplectic $L L^{T}$ factorization $A=L L^{T}$, where L is symplectic and has a form

$$
L=\left(\begin{array}{cc}
L_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right)
$$

- Find the Cholesky decomposition $A_{11}=L_{11} L_{11}^{T}$.
- Solve the multiple lower triangular system $L_{11} L_{21}^{T}=A_{12}$ by forward substitution.
- Solve the lower triangular system $L_{11} X=I$ by forward substitution, i.e., computing each column of $X=L_{11}^{-1}$ independently, using forward substitution.
- Take $L_{22}=X^{T}$.

Cost: $\frac{5}{3} n^{3}$ flops.
Algorithm W_{2}
Given a symmetric positive definite symplectic matrix $A \in \mathbb{R}^{2 n \times 2 n}$. This algorithm computes the symplectic $L L^{T}$ factorization $A=L L^{T}$, where L is symplectic and has a form

$$
L=\left(\begin{array}{cc}
L_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right)
$$

- Find the Cholesky factorization $A_{11}=L_{11} L_{11}^{T}$.
- Solve the multiple lower triangular system $L_{11} L_{21}^{T}=A_{12}$ by forward substitution.
- Compute the Schur complement $S=A_{22}-L_{21} L_{21}^{T}$.
- Find the Reverse Cholesky decomposition $S=L_{22} L_{22}^{T}$, where L_{22} is upper triangular matrix with positive diagonal entries.
Cost: $\frac{8}{3} n^{3}$ flops.
Remark 1 The Reverse Cholesky decomposition $M=U U^{T}$ of a symmetric positive definite matrix $M \in \mathbb{R}^{m \times m}$ can be treated as the Cholesky decomposition of the matrix $M_{\text {new }}=P^{T} M P$, where P is the permutation matrix comprising the identity matrix with its column in reverse order. If $M_{\text {new }}=L L^{T}$, where L is lower triangular (with positive diagonal entries), then $M=U U^{T}$, with $U=P L P^{T}$ being upper triangular (with positive diagonal entries).

For example, for $m=3$ we have

$$
P=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad P^{T} M P=\left(\begin{array}{lll}
m_{33} & m_{32} & m_{31} \\
m_{23} & m_{22} & m_{21} \\
m_{13} & m_{12} & m_{11}
\end{array}\right),
$$

and

$$
L=\left(\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right), \quad U=\left(\begin{array}{ccc}
l_{33} & l_{32} & l_{31} \\
0 & l_{22} & l_{21} \\
0 & 0 & l_{11}
\end{array}\right) .
$$

We use the following MATLAB code:

```
function U = reverse chol(M)
% U = reverse chol(M)
% The Reverse Cholesky decomposition M=U U',
% where U is upper triangular with positive diagonal entries.
% Here M(mxm) is a symmetric positive definite matrix.
%
m = max(size(M)); U = zeros(m);
p = m: - 1:1;
M_new = M(p,p);
L}= chol(M_new,'lower'); % Cholesky decompositio
U = L(p,p);
end
```


3 Theoretical and practical computational issues

In this work, for any matrix $X \in \mathbb{R}^{m \times m},\|X\|_{2}$ denotes the 2-norm (the spectral norm) of A, and $\kappa_{2}(X)=\left\|X^{-1}\right\|_{2} \cdot\|X\|_{2}$ is the condition number of a nonsingular matrix X.

This section mainly addresses the problem of measuring the departure of a given matrix from symplecticity. We also touch a few aspects of numerical stability of Algorithms W_{1} and W_{2}. However, this topic exceeds the scope of this paper.

First we introduce the loss of symplecticity (absolute error) of $X \in \mathbb{R}^{2 n \times 2 n}$ as

$$
\begin{equation*}
\Delta(X)=\left\|X^{T} J X-J\right\|_{2} . \tag{13}
\end{equation*}
$$

Clearly, $\Delta(X)=0$ if and only if X is symplectic. If $X \in \mathbb{R}^{2 n \times 2 n}$ is symplectic then $X^{-1}=J^{T} X^{T} J$, and the condition number of X equals $\kappa_{2}(X)=\|X\|_{2}^{2}$. However, in practice $\Delta(X)$ hardly ever equals 0 .

Lemma 8 Let $X \in \mathbb{R}^{2 n \times 2 n}$ satisfy $\Delta(X)<1$. Then X is nonsingular and we have

$$
\begin{equation*}
\kappa_{2}(X) \leq \frac{\|X\|_{2}^{2}}{1-\Delta(X)} \tag{14}
\end{equation*}
$$

Proof Assume that $\Delta(X)<1$. We first prove that $\operatorname{det} X \neq 0$.
Define $F=X^{T} J X-J$. Since $J^{T}=-J$ and $J^{2}=-I_{2 n}$, we have the identity

$$
\begin{equation*}
X^{T} J X=J\left(I_{2 n}-J F\right) . \tag{15}
\end{equation*}
$$

Since J is orthogonal, we get $\|J F\|_{2}=\|F\|_{2}=\Delta(X)<1$, hence the matrix $I_{2 n}-J F$ is nonsingular. Then (15) and the property $\operatorname{det} J=1$ leads to $(\operatorname{det} X)^{2}=$ $\operatorname{det}\left(X^{T} J X\right)=\operatorname{det}\left(I_{2 n}-J F\right) \neq 0$. Therefore, $\operatorname{det} X \neq 0$.

To estimate $\kappa_{2}(X)$, we rewrite (15) as

$$
\begin{equation*}
X^{-1}=\left(I_{2 n}-J F\right)^{-1}\left(J^{T} X^{T} J\right) . \tag{16}
\end{equation*}
$$

Taking norms we obtain

$$
\left\|X^{-1}\right\|_{2} \leq\left\|\left(I_{2 n}-J F\right)^{-1}\right\|_{2}\left\|J^{T} X^{T} J\right\|_{2} \leq \frac{\|X\|_{2}}{1-\|J F\|_{2}} .
$$

This together with $\|J F\|_{2}=\Delta(X)$ establishes the formula (14). The proof is complete.

Now we show that the assumption $\Delta(X)<1$ of Lemma 8 is crucial.
Lemma 9 For every $t \geq 1$ and every natural number n there exists a singular matrix $X \in \mathbb{R}^{2 n \times 2 n}$ such that $\Delta(X)=t$.

Proof The proof gives a construction of such matrix X.
Define

$$
X=\left(\begin{array}{cc}
D & 0 \\
0 & -D
\end{array}\right)
$$

where $D=\sqrt{t-1} \operatorname{diag}(1,0, \ldots, 0)$. Clearly, $\operatorname{det} X=\operatorname{det} D \operatorname{det}(-D)=0$.
Then we have

$$
X^{T} J X-J=\left(\begin{array}{cc}
0 & -\left(D^{2}+I_{n}\right) \\
D^{2}+I_{n} & 0
\end{array}\right) .
$$

Therefore, $\Delta(X)=\left\|D^{2}+I_{n}\right\|_{2}=\|\operatorname{diag}(t, 1, \ldots, 1)\|_{2}=t$. This completes the proof.

Lemma 10 Let $A \in \mathbb{R}^{2 n \times 2 n}$ be a symplectic matrix. Suppose that the perturbed matrix $\hat{A}=A+E$ satisfies

$$
\begin{equation*}
\|E\|_{2} \leq \epsilon\|A\|_{2}, \quad 0<\epsilon<1 \tag{17}
\end{equation*}
$$

Then $\hat{A} \neq 0$ and

$$
\begin{equation*}
\Delta(\hat{A}) \leq\|\hat{A}\|_{2}^{2}\left(2 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)\right) \tag{18}
\end{equation*}
$$

Proof We begin by proving that $\|\hat{A}\|_{2}>0$ for $0<\epsilon<1$. Note that $\|A+E\|_{2} \geq$ $\|A\|_{2}-\|E\|_{2}$. This together with (17) leads to

$$
\begin{equation*}
\|\hat{A}\|_{2} \geq(1-\epsilon)\|A\|_{2}>0 \tag{19}
\end{equation*}
$$

hence $\hat{A} \neq 0$.
It remains to estimate $\Delta(\hat{A})$. For simplicity of notation, we define

$$
F=(A+E)^{T} J(A+E)-J .
$$

Since A is symplectic, we get $A^{T} J A-J=0$, hence $F=A^{T} J E+E^{T} J A+E^{T} J E$. Taking norms we obtain

$$
\Delta(\hat{A})=\|F\|_{2} \leq 2\|A\|_{2}\|E\|_{2}+\|E\|_{2}^{2}
$$

Applying (17) yields

$$
\begin{equation*}
\Delta(\hat{A}) \leq\|A\|_{2}^{2}\left(2 \epsilon+\epsilon^{2}\right) \tag{20}
\end{equation*}
$$

From (17) we deduce that $\|\hat{A}\|_{2}=\|A\|_{2}(1+\beta)$, where $|\beta| \leq \epsilon$. This together with (17) and (20) gives

$$
\Delta(\hat{A}) \leq\|\hat{A}\|_{2}^{2} \frac{\left(2 \epsilon+\epsilon^{2}\right)}{(1-\epsilon)^{2}}
$$

which completes the proof.
According to (18) we introduce the loss of symplecticity (relative error) of nonzero matrix $A \in \mathbb{R}^{2 n \times 2 n}$ as

$$
\begin{equation*}
\operatorname{symp} A=\frac{\left\|A^{T} J A-J\right\|_{2}}{\|A\|_{2}^{2}} \tag{21}
\end{equation*}
$$

Remark 2 Assume that A is symplectic. Then we have $A^{T} J A=J$, so taking norms we obtain

$$
1=\|J\|_{2} \leq\left\|A^{T}\right\|_{2}\|J\|_{2}\|A\|_{2}=\|A\|_{2}^{2} .
$$

We see that $\|A\|_{2} \geq 1$ for every symplectic matrix A. Therefore, under the hypotheses of Lemma 10 and applying (19) we get the inequality

$$
\begin{equation*}
\Delta(\hat{A}) \geq(1-\epsilon)^{2}\|A\|_{2}^{2} \operatorname{symp} \hat{A} . \tag{22}
\end{equation*}
$$

If $\|A\|_{2}$ is large and \hat{A} is close to A, then symp $\hat{A}<\Delta \Delta(\hat{A})$. This property is highlighted in our numerical experiments in Section 4.

Proposition 11 Let $\tilde{L} \in \mathbb{R}^{2 n \times 2 n}$ be the computed factor of the symplectic factorization $A=L L^{T}$, where $A \in \mathbb{R}^{2 n \times 2 n}$ is a symmetric positive definite symplectic matrix.

Define

$$
\begin{equation*}
F=\tilde{L}^{T} J \tilde{L}-J \tag{23}
\end{equation*}
$$

Partition \tilde{L} and F conformally with J as

$$
\tilde{L}=\left(\begin{array}{cc}
\tilde{L}_{11} & 0 \tag{24}\\
\tilde{L}_{21} & \tilde{L}_{22}
\end{array}\right), \quad F=\left(\begin{array}{ll}
F_{11} & F_{12} \\
F_{21} & F_{22}
\end{array}\right) .
$$

Then $F_{21}=-F_{12}{ }^{T}, F_{22}=0$ and

$$
\begin{equation*}
F_{11}=\tilde{L}_{11}^{T} \tilde{L}_{21}-\tilde{L}_{21}^{T} \tilde{L}_{11}, \quad F_{12}=\tilde{L}_{11}^{T} \tilde{L}_{22}-I_{n} \tag{25}
\end{equation*}
$$

Moreover, the loss of symplecticity $\Delta(\tilde{L})$ can be bounded as follows

$$
\begin{equation*}
\max \left\{\left\|F_{11}\right\|_{2},\left\|F_{12}\right\|_{2}\right\} \leq \Delta(\tilde{L}) \leq 2 \max \left\{\left\|F_{11}\right\|_{2},\left\|F_{12}\right\|_{2}\right\} . \tag{26}
\end{equation*}
$$

Proof It is easy to check that F is a skew-symmetric matrix satisfying (25), with $F_{22}=0$. Notice that $\Delta(\tilde{L})=\|F\|_{2}$. It remains to prove (26).

Write F in a form $F=F_{1}+F_{2}$, where

$$
F_{1}=\left(\begin{array}{cc}
F_{11} & 0 \\
0 & 0
\end{array}\right), \quad F_{2}=\left(\begin{array}{cc}
0 & F_{12} \\
-F_{12} T & 0
\end{array}\right) .
$$

It is obvious that $\left\|F_{1}\right\|_{2}=\left\|F_{11}\right\|_{2}$ and $\left\|F_{2}\right\|_{2}=\left\|F_{12}\right\|_{2}$, so

$$
\|F\|_{2} \leq\left\|F_{1}\right\|_{2}+\left\|F_{2}\right\|_{2} \leq 2 \max \left\{\left\|F_{1}\right\|_{2},\left\|F_{2}\right\|_{2}\right\} .
$$

By property of 2-norm, it follows that $\left\|F_{i j}\right\|_{2} \leq\|F\|_{2}$ for all $i, j=1,2$.
This completes the proof.
Remark 3 If Algorithm W_{1} runs to completion in floating-point arithmetic, then $\tilde{L}_{22}=\tilde{L}_{11}^{-T}+\mathcal{O}\left(\varepsilon_{M}\right)$, where ε_{M} is machine precision. See [5], pp. 263-264, where the detailed error analysis of methods for inverting triangular matrix was given. Notice that $\left\|F_{12}\right\|_{2}$ defined by (25) depends only on conditioning of A_{11}, the submatrix of A. Since A is symmetric positive definite it follows that $\kappa_{2}\left(A_{11}\right) \leq \kappa_{2}(A)$. However, the loss of symplecticity of \tilde{L} from Algorithm W_{2} can be much larger than for Algorithm W_{1}, see our examples presented in Section 4.

Notice that F_{11} defined by (25) remains the same for both Algorithms W_{1} and W_{2}.
Now we explain what we mean by numerical stability of algorithms for computing $L L^{T}$ factorization.

The precise definition is the following.
Definition 2 An algorithm W for computing the $L L^{T}$ factorization of a given symmetric positive definite matrix $A \in \mathbb{R}^{2 n \times 2 n}$ is numerically stable, if the computed matrix $\tilde{L} \in \mathbb{R}^{2 n \times 2 n}$, partitioned as in (24), is the exact factor of the $L L^{T}$ factorization of a slightly perturbed matrix $A+\delta A$, with $\|\delta A\|_{2} \leq \varepsilon_{M} c\|A\|_{2}$, where c is a small constant depending upon n, and ε_{M} is machine precision.

In practice, we can compute the decomposition error

$$
\begin{equation*}
\operatorname{dec}=\frac{\left\|A-\tilde{L} \tilde{L}^{T}\right\|_{2}}{\|A\|_{2}} . \tag{27}
\end{equation*}
$$

If $d e c$ is of order ε_{M} then this is the best result we can achieve in floating-point arithmetic. We emphasize that here we apply numerically stable Cholesky decomposition of symmetric positive definite matrix A_{11} (see Theorem 10.3 in [5], p. 197), and also numerically stable Reverse Cholesky decomposition of the Schur complement S (defined by (6)) applied in Algorithm W_{2}. Notice that Lemma 5 implies that $\kappa_{2}(S)=\kappa_{2}\left(A_{11}\right)$. For general symmetric positive definite matrix A we have a weaker bound: $\kappa_{2}(S) \leq \kappa_{2}(A)$, see [2].

4 Numerical experiments

In this section we present numerical tests that show the comparison of Algorithms W_{1} and W_{2}. All tests were performed in MATLAB ver. R2021a, with machine precision $\varepsilon_{M} \approx 2.2 \cdot 10^{-16}$.

We report the following statistics:

- $\Delta(A)=\left\|A^{T} J A-J\right\|_{2}$ (loss of symplecticity (absolute error) of A),
- $\operatorname{symp} A=\frac{\left\|A^{T} J A-J\right\|_{2}}{\|A\|_{2}^{2}}$ (loss of symplecticity (relative error) of A),
- $\operatorname{dec}_{\text {Algorithm }}=\frac{\left\|A-\tilde{L} \tilde{L}^{T}\right\|_{2}}{\|A\|_{2}}$ (decomposition error),
- $\Delta L_{\text {Algorithm }}=\left\|\tilde{L}^{T} J \tilde{L}-J\right\|_{2}$ (loss of symplecticity (absolute error) of $\left.\tilde{L}\right)$,
- symp $L_{\text {Algorithm }}=\frac{\left\|\tilde{L}^{T} J \tilde{L}-J\right\|_{2}}{\|\tilde{L}\|_{2}^{2}}$ (loss of symplecticity (relative error) of \tilde{L}),
- $\left\|F_{11}\right\|_{2}$ and $\left\|F_{12}\right\|_{2}$ defined by (23)-(25).

Example 1 In the first experiment we take $A=S^{T} S$, where S is a symplectic matrix, which was also used in [1] and [7]:

$$
S=S(t)=\left(\begin{array}{cccc}
\cosh t \sinh t & 0 & \sinh t \tag{28}\\
\sinh t & \cosh t & \sinh t & 0 \\
0 & 0 & \cosh t & -\sinh t \\
0 & 0 & -\sinh t & \cosh t
\end{array}\right), \quad t \in \mathbb{R}
$$

The results are contained in Table 1. We see that Algorithm W_{1} produces unstable result \tilde{L}, opposite to Algorithm W_{2}.

Example 2 For comparison, in the second experiment we use the same matrix S and repeat the calculations for the inverse of A from Example 1. Since $\kappa_{2}\left(A^{-1}\right)=$

Table 1 The results for Example 1 and $A=S^{T} S$, where S is defined by (28)

t	π	$\frac{3}{2} \pi$	2π	$\frac{5}{2} \pi$		
$\kappa_{2}(A)$	$4.4738 \mathrm{e}+05$	$2.3991 \mathrm{e}+08$	$1.2848 \mathrm{e}+11$	$6.8988 \mathrm{e}+13$		
$\kappa_{2}\left(A_{11}\right)$	$2.8675 \mathrm{e}+05$	$1.5355 \mathrm{e}+08$	$8.2227 \mathrm{e}+10$	$4.4063 \mathrm{e}+13$		
$d e c_{W_{1}}$	$1.2107 \mathrm{e}-11$	$4.5114 \mathrm{e}-09$	$1.0703 \mathrm{e}-06$	0.0012		
$d e c_{W_{2}}$	$8.4985 \mathrm{e}-17$	$1.0127 \mathrm{e}-16$	$8.1196 \mathrm{e}-17$	$5.6141 \mathrm{e}-17$		
symp^{2}	$6.3656 \mathrm{e}-17$	$5.6888 \mathrm{e}-17$	$6.9038 \mathrm{e}-17$	$4.5934 \mathrm{e}-17$		
$\operatorname{symp}_{W_{W_{1}}}$	$2.7064 \mathrm{e}-16$	$7.6363 \mathrm{e}-14$	$1.2318 \mathrm{e}-12$	$1.3975 \mathrm{e}-10$		
$\operatorname{symp}_{W_{2}}$	$5.1473 \mathrm{e}-14$	$2.2866 \mathrm{e}-13$	$8.1877 \mathrm{e}-12$	$1.8220 \mathrm{e}-10$		
$\Delta(A)$	$2.8478 \mathrm{e}-11$	$1.3648 \mathrm{e}-08$	$9.5688 \mathrm{e}-06$	0.0032		
$\Delta L_{W_{1}}$	$1.8102 \mathrm{e}-13$	$1.1828 \mathrm{e}-09$	$4.4153 \mathrm{e}-07$	0.0012		
$\Delta L_{W_{2}}$	$4.2038 \mathrm{e}-11$	$3.5417 \mathrm{e}-09$	$1.0328 \mathrm{e}-06$	0.0015		
$\left\\|F_{11}\right\\|_{2}$	$1.7186 \mathrm{e}-13$	$1.1828 \mathrm{e}-09$	$4.4153 \mathrm{e}-07$	0.0012		
$\left\\|F_{12}\right\\|_{2}$ from W_{1}	$5.6843 \mathrm{e}-14$	0	0	0		
$\left\\|F_{12}\right\\|_{2}$ from W_{2}	$4.2038 \mathrm{e}-11$	$3.1147 \mathrm{e}-09$	$8.7430 \mathrm{e}-07$	$9.5561 \mathrm{e}-04$		

Table 2 The results for Example 2 and $A=\left(S^{T} S\right)^{-1}$, where S is defined by (28)

t	π	$\frac{3}{2} \pi$	2π	$\frac{5}{2} \pi$		
$\kappa_{2}(\mathrm{~A})$	$4.4738 \mathrm{e}+05$	$2.3991 \mathrm{e}+08$	$1.2848 \mathrm{e}+11$	$6.9042 \mathrm{e}+13$		
$\kappa_{2}\left(\mathrm{~A}_{11}\right)$	5.0149	5.0006	5.0001	4.9996		
$d e c_{W_{1}}$	$1.3751 \mathrm{e}-16$	$2.7434 \mathrm{e}-16$	$4.5207 \mathrm{e}-16$	$1.1685 \mathrm{e}-16$		
$d e c_{W_{2}}$	$8.4985 \mathrm{e}-17$	$9.1095 \mathrm{e}-17$	$4.0598 \mathrm{e}-17$	$1.1892 \mathrm{e}-16$		
symp^{2}	$5.7906 \mathrm{e}-17$	$6.3647 \mathrm{e}-17$	$1.1614 \mathrm{e}-16$	$6.4968 \mathrm{e}-17$		
$\operatorname{symp}^{2} L_{W_{1}}$	0	$1.1744 \mathrm{e}-16$	$8.1196 \mathrm{e}-17$	$8.4218 \mathrm{e}-17$		
$\operatorname{symp} L_{W_{2}}$	$4.9186 \mathrm{e}-14$	$4.6509 \mathrm{e}-13$	$2.0383 \mathrm{e}-11$	$1.5995 \mathrm{e}-10$		
$\Delta(A)$	$2.8478 \mathrm{e}-11$	$1.3648 \mathrm{e}-08$	$9.5688 \mathrm{e}-06$	0.0032		
$\Delta L_{W_{1}}$	0	$1.8190 \mathrm{e}-12$	$2.9104 \mathrm{e}-11$	$6.9849 \mathrm{e}-10$		
$\Delta L_{W_{2}}$	$3.2899 \mathrm{e}-11$	$9.7380 \mathrm{e}-09$	$3.1494 \mathrm{e}-06$	0.0011		
$\left\\|F_{11}\right\\|_{2}$	0	$1.8190 \mathrm{e}-12$	$2.9104 \mathrm{e}-11$	$6.9849 \mathrm{e}-10$		
$\left\\|F_{12}\right\\|_{2}$ from W_{1}	0	$1.5701 \mathrm{e}-16$	$1.1102 \mathrm{e}-16$	$1.1102 \mathrm{e}-16$		
$\left\\|F_{12}\right\\|_{2}$ from W_{2}	$3.2899 \mathrm{e}-11$	$9.7380 \mathrm{e}-09$	$3.1494 \mathrm{e}-06$	0.0011		

$\kappa_{2}(A)$, we see that the condition numbers of A is the same in both Examples 1 and 2. However, here A_{11} is perfectly well-conditioned, opposite to the previous Example 1. The results are contained in Table 2. Now Algorithm W_{1} produces numerically stable result \tilde{L}, like Algorithm W_{2}. We observe that for large values of ΔA (in the last columns of Tables 1 and 2) the loss of symplecticity of computed \tilde{L} is significant.

Example 3 Here $A(10 \times 10)$ is generated as follows

$$
\begin{aligned}
& \text { randn }(' s t a t e, ~ 0) \\
& \mathrm{n}=5 ; \mathrm{s}=3 ; \\
& \mathrm{A}=\operatorname{gener} \operatorname{symp} 2(\mathrm{n}, \mathrm{~s})+\mathrm{t} * \operatorname{hilb}(2 * \mathrm{n})
\end{aligned}
$$

Random matrices of entries are from the distribution $N(0,1)$. They were generated by MATLAB function "randn". Before each usage the random number generator was reset to its initial state.

Here we use Lemmas 2-3 to create the following MATLAB functions:

- function for generating orthogonal symplectic matrix $Q(2 n \times 2 n)$:

```
function [Q] = orth_symp(n)
% [Q] = orth_symp(n)
%
[U,~] = qr(complex(randn(n),randn(n)));
C = real(U);
S = imag(U);
Q = [C, S;-S,C];
end
```

- and function for generating symmetric positive definite symplectic matrix $S(2 n \times$ $2 n$) with prescribed condition number $\kappa_{2}(S)=10^{2 s}$

```
function [S]=gener_symp2(n,s)
% function [S]=gener_symp2(n,s)
% S=U G U', where U is
% orthogonal symplectic matrix.
% G=diag(D,inv(D)), D=diag(d), d=(d_1,\ldots, d_n).
% Here cond(S)=cond (G)=10^(2s).
%
d = flip(logspace(0,s,n));
g = [d,1./d]; G=diag(g);
U = orth_symp(n);
S = U*G*U'; S=(S+S'')/2;
end
```

The results are contained in Table 3. However, the results of $\left\|F_{12}\right\|_{2}$ from Algorithm W_{2} are catastrophic in comparison with the values received from Algorithm W_{1}. Here A_{11} is quite well-conditioned, but the departure of A from symplecticity conditions is very large.

Example 4 Now we apply Lemma 4 for creating our test matrices. We take $A=$ $P D P^{T}$, where

$$
P=\left(\begin{array}{cc}
I_{n} & 0 \\
C & I_{n}
\end{array}\right), \quad D=\left(\begin{array}{cc}
\mathcal{B} & 0 \\
0 & \mathcal{B}^{-1}
\end{array}\right)
$$

Table 3 The results for Example 3

t	0	10^{-6}	$\frac{1}{2}$	1		
$\kappa_{2}(A)$	$1.0000 \mathrm{e}+06$	$9.9990 \mathrm{e}+05$	$1.0215 \mathrm{e}+05$	$8.6253 \mathrm{e}+04$		
$\kappa_{2}\left(A_{11}\right)$	620.6887	620.6885	534.9257	470.6434		
$d e c_{W_{1}}$	$9.0334 \mathrm{e}-17$	$3.9861 \mathrm{e}-09$	0.0019	0.0037		
$d e c_{W_{2}}$	$6.8325 \mathrm{e}-17$	$6.4834 \mathrm{e}-17$	$7.7533 \mathrm{e}-17$	$5.9520 \mathrm{e}-17$		
symp^{2}	$3.7658 \mathrm{e}-17$	$2.2200 \mathrm{e}-10$	$1.1103 \mathrm{e}-04$	$2.2211 \mathrm{e}-04$		
$\operatorname{symp}_{W_{1}}$	$6.3637 \mathrm{e}-16$	$4.9454 \mathrm{e}-09$	0.0023	0.0043		
$\operatorname{symp}_{W_{2}}$	$7.5755 \mathrm{e}-15$	$7.9023 \mathrm{e}-08$	0.0081	0.0118		
$\Delta(A)$	$3.7658 \mathrm{e}-11$	$2.2200 \mathrm{e}-04$	111.0506	222.2034		
$\Delta L_{W_{1}}$	$6.3637 \mathrm{e}-13$	$4.9454 \mathrm{e}-06$	2.2976	4.3139		
$\Delta L_{W_{2}}$	$4.8860 \mathrm{e}-12$	$7.9023 \mathrm{e}-05$	8.1264	11.7686		
$\left\\|F_{11}\right\\|_{2}$	$6.2070 \mathrm{e}-13$	$4.9454 \mathrm{e}-06$	2.2976	4.3139		
$\left\\|F_{12}\right\\|_{2}$ from W_{1}	$1.7850 \mathrm{e}-15$	$7.8830 \mathrm{e}-16$	$4.6245 \mathrm{e}-16$	$5.4574 \mathrm{e}-16$		
$\left\\|F_{12}\right\\|_{2}$ from W_{2}	$4.8426 \mathrm{e}-12$	$7.8922 \mathrm{e}-05$	7.8910	11.1795		

where C is the Hilbert matrix and \mathcal{B} is beta matrix.
Here $\mathcal{B}=\left(\frac{1}{\beta(i, j)}\right)$, where $\beta(\cdot, \cdot)$ is the β function.
By definition,

$$
\beta(i, j)=\frac{\Gamma(i) \Gamma(j)}{\Gamma(i+j)},
$$

where $\Gamma(\cdot)$ is the Gamma function.
\mathcal{B} is symmetric totally positive matrix of integer. More detailed information related to beta matrix can be found in [4] and [6].

Note that generating A requires computing the inverse of the ill-conditioned Hilbert matrix. It influences significantly on the quality of computed results in floating-point arithmetic.

The results are contained in Table 4.

Example 5 The matrices $A(2 n \times 2 n)$ are generated for $n=2: 2: 250$ by the following MATLAB code:

$$
\begin{aligned}
& \text { rand ('state }, 0) ; \\
& \text { randn('state }, 0) \\
& d=\operatorname{rand}(1, \mathrm{n}) ; \\
& \mathrm{U}=\operatorname{orth}-\operatorname{symp}(\mathrm{n}) ; \\
& \mathrm{g}=[\mathrm{d}, 1 . / \mathrm{d}] ; \mathrm{G}=\operatorname{diag}(\mathrm{g}) ; \\
& \mathrm{A}=\mathrm{U} * \mathrm{G} * \mathrm{U}^{\prime} ; \mathrm{A}=\left(\mathrm{A}+\mathrm{A}^{\prime}\right) / 2 ;
\end{aligned}
$$

We applied Lemma 3 for creating matrices of the form $A=U G U^{T}$, where G is a diagonal matrix, and U is an orthogonal symplectic matrix, generated by the same MATLAB function as in Example 3.

Table 4 The results for Example 4

n	10	16	20	24		
$\kappa_{2}(A)$	$1.1262 \mathrm{e}+06$	$6.2776 \mathrm{e}+09$	$1.9056 \mathrm{e}+12$	$5.6578 \mathrm{e}+14$		
$\kappa_{2}\left(A_{11}\right)$	$5.6043 \mathrm{e}+04$	$1.4639 \mathrm{e}+08$	$3.0158 \mathrm{e}+10$	$6.4618 \mathrm{e}+12$		
$d e c_{W_{1}}$	$6.3416 \mathrm{e}-17$	$1.0803 \mathrm{e}-12$	$2.8482 \mathrm{e}-11$	$1.5496 \mathrm{e}-10$		
$d e c_{W_{2}}$	$6.3329 \mathrm{e}-17$	$6.7428 \mathrm{e}-17$	$6.9001 \mathrm{e}-17$	$1.0661 \mathrm{e}-16$		
symp^{2}	$1.0928 \mathrm{e}-17$	$2.1256 \mathrm{e}-17$	$2.0100 \mathrm{e}-17$	$2.2716 \mathrm{e}-17$		
$\operatorname{symp}^{2} L_{W_{1}}$	$5.3818 \mathrm{e}-16$	$6.2006 \mathrm{e}-15$	$4.3833 \mathrm{e}-14$	$3.3376 \mathrm{e}-13$		
$\operatorname{symp} L_{W_{2}}$	$2.1743 \mathrm{e}-15$	$1.7424 \mathrm{e}-13$	$2.1389 \mathrm{e}-13$	$8.3257 \mathrm{e}-12$		
$\Delta(A)$	$1.2307 \mathrm{e}-11$	$1.3344 \mathrm{e}-07$	$3.8304 \mathrm{e}-05$	$1.2844 \mathrm{e}-02$		
$\Delta L_{W_{1}}$	$5.7112 \mathrm{e}-13$	$4.9129 \mathrm{e}-10$	$6.0509 \mathrm{e}-08$	$7.9364 \mathrm{e}-06$		
$\Delta L_{W_{2}}$	$2.3074 \mathrm{e}-12$	$1.3805 \mathrm{e}-08$	$2.9526 \mathrm{e}-07$	$1.9798 \mathrm{e}-04$		
$\left\\|F_{11}\right\\|_{2}$	$5.6852 \mathrm{e}-13$	$4.9102 \mathrm{e}-10$	$6.0506 \mathrm{e}-08$	$7.9364 \mathrm{e}-06$		
$\left\\|F_{12}\right\\|_{2}$ from W_{1}	$6.1156 \mathrm{e}-15$	$6.9449 \mathrm{e}-13$	$7.4234 \mathrm{e}-12$	$9.0109 \mathrm{e}-11$		
$\left\\|F_{12}\right\\|_{2}$ from W_{2}	$2.2400 \mathrm{e}-12$	$1.3799 \mathrm{e}-08$	$2.8950 \mathrm{e}-07$	$1.9783 \mathrm{e}-04$		

Fig. 1 Condition numbers $\kappa_{2}(A)$ and decomposition errors for Example 5

Figures 1, 2 and 3 illustrate the values of the statistics. We can see the differences between decomposition errors $d e c$ (in favor of Algorithm W_{2}) and between the values ΔL, in favor of Algorithm W_{1}.

5 Conclusions

- We analyzed two algorithms W_{1} and W_{2} for computing the symplectic $L L^{T}$ factorization of a given symmetric positive definite matrix $A(2 n \times 2 n)$. To assess their practical behavior we performed numerical experiments.
- Algorithm W_{1} is cheaper than Algorithm W_{2}. However, Algorithm W_{1} is unstable for matrices not being exactly symplectic, although it works very well for many test matrices. The decomposition error (27) of the computed matrix \tilde{L} via Algorithm W_{1} can be very large. In opposite, in all our tests, Algorithm W_{2} produces numerically stable resulting matrices \tilde{L} in floating-point arithmetic (in sense of Definition 2). Numerical stability of Algorithms W_{1} and W_{2} remains a topic of future work.

Fig. 2 The loss of symplecticity (relative errors) for Example 5

Fig. 3 The loss of symplecticity (absolute errors) for Example 5

- Numerical tests presented in Section 4 give indication that the loss of symplecticity of the computed matrix \tilde{L} from Algorithm W_{2} can be much larger than obtained from Algorithm W_{1}. We observe that the loss of symplecticity of \tilde{L} for both Algorithms W_{1} and W_{2} strongly depends on the distance from the symplecticity properties (see Lemma 5), and also on conditioning of A and its submatrix A_{11}.

Author contribution The contributions of individual authors to the paper are respectively: dr Maksymilian Bujok, 50\%; dr hab. Alicja Smoktunowicz, 30\%; dr hab. Grzegorz Borowik, 20%.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4. $0 /$.

References

1. Benzi, M., Razouk, N.: On the Iwasawa decomposition of a symplectic matrix. Appl. Math. Lett. 20, 260-265 (2007). https://doi.org/10.1016/j.aml.2006.04.004
2. Demmel, J.M., Higham, N.J., Schreiber, R.S.: Stability of block LU factorization. Numer. Linear Algebra Appl. 2(2), 173-190 (1995). https://doi.org/10.1002/nla. 1680020208
3. Dopico, F.M., Johnson, C.R.: Parametrization of the matrix symplectic group and applications. SIAM J. Matrix Anal. Appl. 31(2), 650-673 (2009). https://doi.org/10.1137/060678221
4. Grover, P., Panwar, V.S., Reddy, A.S.: Positivity properties of some special matrices. Linear Algebra Appl. 596, 203-215 (2020). https://doi.org/10.1016/j.laa.2020.03.008
5. Higham, N.J. Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)
6. Higham, N.J., Mikaitis, M.: Anymatrix: an extensible MATLAB matrix collection. Numer. Algoritm. 1-22. https://doi.org/10.1007/s11075-021-01226-2 (2021)
7. Tam, T.Y.: Computing Iwasawa decomposition of a symplectic matrix by Cholesky factorization. Appl. Math. Lett. 19, 1421-1424 (2006). https://doi.org/10.1016/j.aml.2006.03.001
8. Lin, W.-W., Mehrmann, V., Xu, H.: Canonical forms for Hamiltonian and symplectic matrices and pencils. Linear Algebra Appl. 302-303, 469-533 (1999). https://doi.org/10.1016/S0024-3795(99) 00191-3
9. Xu, H.: An SVD-like matrix decomposition and its applications. Linear Algebra Appl. 368, 1-24 (2003). https://doi.org/10.1016/S0024-3795(03)00370-7

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

