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Abstract
Based on the Euler–Maclaurin formula, the Romberg quadrature method extrapo-
lates trapezoidal values to improve their accuracy when computing the integral of
smooth functions from equispaced samples. It has been known at least since an article
of Lyness in 1971 that the Euler–Maclaurin formula may be extended to accommo-
date functions with jumps. In the present work, we develop an extrapolation method,
based on this extended formula, for the quadrature of such discontinuous functions.
We illustrate the method with numerical examples, using one as well as several
sample vectors.

Keywords Numerical quadrature · Equispaced samples · Jumps ·
Euler–Maclaurin formula · Extrapolation
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1 Introduction

Consider the numerical approximation of the definite integral

I :=
∫ L

0
f (x)dx (1)
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of a smooth function f by sampling it at equispaced points (or nodes) xk := kh, k =
0, . . . , n, h = L/n, fk := f (xk), and evaluating the composite trapezoidal rule

Tf (h) := h

(
f (x0)

2
+

n−1∑
k=1

f (xk) + f (xn)

2

)
.

In this work, we abide by the signal processing (Wikipedia) definition of a sample as
a value at a point in time or space. A sample vector is a vector of equispaced samples.

It is well known that the accuracy of Tf (h) depends on the values of the derivatives
of odd orders of f at the extremities 0 and L. In the favorable case where all of those
coincide at these endpoints, the convergence is faster than every power of h, i.e.,
spectral. If f , L-periodically extended on both sides of the interval [0, L], is analytic
in a horizontal strip containing , the convergence even becomes exponential. A
survey [19] about Tf (h) has been published in 2014.

In many numerical analysis courses, students learn that the difference between the
(composite) trapezoidal rule and the exact integral is given by the Euler–Maclaurin
formula [2, 13].

Theorem 1 (Euler--Maclaurin formula for the trapezoidal rule) Let f ∈ C2m+2[0, L]
for some m ≥ 0. Then, for every n ∈ and h := L

n
, the error of the trapezoidal rule

may be written as follows:

Tf (h) − I = a2h
2 + a4h

4 + . . . + a2mh2m + L
B2m+2

(2m + 2)!f
(2m+2)(ξ)h2m+2 (2)

for some ξ ∈ [0, L], where
a2j := B2j

(2j)! [f
(2j−1)(L) − f (2j−1)(0)].

Here B� denotes the �th Bernoulli number.

There are at least two ways of deriving Tf (h). The customary one is to consider
I as the sum of the integrals over the subintervals [xk, xk+1] and to replace each of
these integrals with the area of the trapezoid with bases f (xk) and f (xk+1) and height
h. But one may also see Tf (h) (up to a constant depending on the length of the inter-
val) as the exact integral of the trigonometric polynomial of minimal degree which
interpolates the function values

(
f (x0)+ f (xn)

)
/2, f (x1), . . ., f (xn−1) at the nodes

x0, . . . , xn−1 [1, 2]. That way, formula (2) is a quantitative description of the influ-
ence of the jump at 0 ≡ L (mod L) of the L-periodically extended function f (on
both sides of [0, L]) on the accuracy of the exact integral Tf (h) of that trigonometric
polynomial as an approximation of I .

In the present work, we shall address the following problem: we assume that a
vector (in Section 7 a few vectors) of equispaced samples of a piecewise smooth
function is (are) given, together with the location of its jumps. As usual in quadrature
by extrapolation, we shall first assume that the number of subintervals is some power
of two (or an odd number times such a power). It turns out that a large number of
nodes are required in many cases. We therefore also consider the case where several
vectors of samples can be taken.
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In Section 2, we recall the Euler–Maclaurin formula for functions with jumps, the
basis of the extrapolation method presented in this work. The method is described for
the case of a single interior jump in Section 3, and an example is given in Section 4.
The next section introduces the general method, of which examples are given in
Section 6. Up to that point, we use a single vector of samples; Section 7 extends
the method to the case where several vectors of samples can be obtained, which can
greatly reduce the total number of function evaluations required to achieve a pre-
scribed level of accuracy, and gives corresponding examples. A few remarks conclude
the paper.

2 The Euler–Maclaurin formula for functions with jumps

According to the circular interpretation mentioned above, the L-periodized f usually
has a jump at c0 := 0 ≡ L (mod L). Nevertheless, when we talk about jumps in the
present work, we mean the usual concept, i.e., that f has interior jumps, i.e., jumps at
some points cj , 0 < cj < L, j = 1, . . . , J . We assume that these cj are distinct and
ordered according to their index, and that f is continuous on every interval (cj , cj+1)

between two consecutive jumps, and possesses one-sided limits f (c−
j ) and f (c+

j )

at cj , j = 0, 1, . . . , J − 1. Moreover, the value of f at every jump is changed, if
necessary, to the average (f (cj−)+f (cj+))/2 of the two corresponding limits there.

As in [2], we consider the classic Riemann sum generalization of Tf (h) with
“offset” t , where 0 ≤ t < 1,

Rf (h) := h

N−1∑
k=0

f
(
(k + t)h

) = h

N∑
k=1

f
(
(k − 1 + t)h

)
. (3)

For t = 0, we have Rf (h) = Tf (h); for t = 1
2 , this is the midpoint rule.

Let us recall the following theorem of [2], which will be the basis of our extrapo-
lation procedure. The result was already given by Lyness in [14] (see the discussion
in [2, p. 383]).

Theorem 2 (Euler–Maclaurin formula for Riemann sums of piecewise
smooth functions) Let f be piecewise Cm−1[0, L], and pick a t , 0 ≤ t < 1. Let cj

denote the abscissae of the J + 1 jumps of f and, for each of them, tj := t − cj

h
mod 1, j = 0, . . . , J .

If f (m) is absolutely integrable between every two consecutive cj , then the
integration error may be written as follows:

Rf (h) − I = a1h +
m∑

�=2

a�h
� − hm

m!
∫ L

0
f (m)(x)

J∑
j=0

�Pm(tj − x

h
)dx (4)

with

a1 :=
J∑

j=0

γjP1(tj )
[
f (cj−) − f (cj+)

]
, γj :=

{
0, tj = 0,

1, tj �= 0,
(5)
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and

a� :=
J∑

j=0

P�(tj )

�!
[
f (�−1)(cj−) − f (�−1)(cj+)

]
, (6)

where P� is the Bernoulli polynomial of degree � and �P� its continuous 1-periodic
extension.

In the sequel, we shall refer to formula (4) by the acronym EMF.
The change of variable y = L(x − a)/(b − a) shows that the polynomial part of

Rf (h) − I is the same when f is defined on an arbitrary interval [a, b] instead of
[0, L]; the latter only makes the formulas and the proofs simpler to read.

In the exceptional case where the values of the derivatives are known on both
sides of the jumps, substituting them into (4) easily permits the improvement of the
Riemann values (3) (see [2]). One can also correct the endpoint weights in Tf (h) to
increase its order [8].

The number tj is the relative distance of cj to the node following it. In the rather
exceptional case where the values of h are such that tj = 1/2 (or constant) for every
h, one can directly apply Richardson–Romberg (see Example 1 of [2], where the only
interior jump is at the midpoint of the interval of integration). But this is atypical and,
usually, the tj depend on h, so that the factors a� of the powers of h in the EMF are
not constants as they depend on values of the Bernoulli polynomials at the tj .

3 Extrapolation via a system of equations

Extrapolation eliminates the first powers of h on the right-hand side of the EMF
without knowledge of the a�. Assume that a quantity I is approximated by a formula
B(h), and that the latter may be written as follows:

B(h) = I + a1h + a2h
2 + . . . + aphp + Sp(h) = Cp(h) + Sp(h) (7)

with Sp(h) = O(hp+1). Here B(h) = Rf (h) as given in (3). One method for suc-
cessively eliminating the first powers of h proceeds by linear combination of values
of B(h) for different arguments h; another solves a system of equations, and this is
what we shall use here.

Suppose B(h0), B(h1), . . . , B(hp) have been evaluated for a decreasing sequence
of hk monotonely approaching 0. The system of equations with unknowns Ĩ and ã�

Ĩ + hkã1 + h2
kã2 + . . . + h

p
k ãp = B(hk), k = 0, . . . , p,

determines the polynomial Qp(h) of degree at most p

Qp(h) = Ĩ + ã1h + ã2h
2 + . . . + ãphp

interpolating the values B(hk), k = 0, . . . , p.
Recall that the Lebesgue function λp(h) is defined as follows:

λp(h) =
p∑

k=0

|�k(h)|, (8)
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in which the �k are the Lagrange fundamental polynomials

�k(h) =
∏p

j=0,j �=k(h − hj )∏p

j=0,j �=k(hk − hj )
.

The Lebesgue function is the norm of the interpolation operator and indicates the
conditioning of the interpolant (see for example [20]).

Theorem 3 Let the function B(h) of (7) be interpolated in the interval [0, h0] by the
polynomial Qp(h) described above, and let the Lebesgue function λp(h) beO

(
g(h)

)
near 0, for some function g(h). Then

Ĩ − I = O
(
g(h)hp+1). (9)

Proof Obviously, Ĩ −I = Qp(0)−Cp(0). In view of the linearity and uniqueness of
polynomial interpolation, the polynomial part Cp(h) of B(h) is interpolated exactly
by Qp(h), so that Qp(h) − Cp(h) is the interpolant of Sp(h). But, according to a
well-known result about the perturbation of the polynomial interpolant [3, 7],

|Qp(h) − Cp(h)| ≤ λp(h)|Sp(h)|.
Letting h → 0 in this expression yields (9).

With a good set of interpolation nodes {hk}, such as Chebyshev or Legendre
points, one has λp(h) = O(log p) [6], so that the error becomes O(hp+1 log p).
Apart from that of the Chebyshev points of the first kind, we do not know bounds
on the Lebesgue function for sets of nodes which accumulate toward a point outside
of the interpolation interval, such as 0 here, but our computations with the geometri-
cally decreasing sequence of the first example below demonstrate that its growth at 0
is indeed very slow in comparison with that of 1/h.

It remains to compute Ĩ = Qp(0). Since it is the value at a single point of the
interpolating polynomial Qp, one usually uses Neville’s algorithm [17], which is sta-
ble in the context of numerical quadrature, where the h–values hk cluster toward the
interpolation point 0 and the coefficients a� do not depend on hk . However, in our
case, they do (through the tj ). General Neville–Aitken type interpolation algorithms
going into that direction have been given in the literature. According to the Math-
SciNet review of [11], Schneider [16] introduced the first one in a special case, before
Mühlbach [15] solved the general problem. Brezinski [4] and Håvie [11] later gave
different proofs. These same authors [5, 10] also independently derived a general
extrapolation algorithm, which Brezinski called the E-algorithm. But none of these
articles contains much in terms of numerical experiments demonstrating the stability
of the methods, if any; moreover, none seems to have been used to treat functions
with interior singularities.

Here we use the (simpler) matrix version (corresponding to the Vandermonde solu-
tion to the interpolation problem) and solve the resulting system of linear equations
by means of Gaussian elimination.
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4 A first example with one jump

As a test and an example illustrating the method, we have started with a function
which numerically has no jump at the extremities of the interval and only one in the
interior,

f (x) := 2e−η(2x−1)2
g(x), (10)

with

g(x) :=
{

cos(βx), 0 ≤ x ≤ c1,

ex−c1 , c1 < x < 1.
(11)

f is plotted for c1 = 1/
√

3, β = 2, and η = 35 in Fig. 1. Here and in the subsequent
figures, a small circle at a jump cj marks the value (f (cj−) + f (cj+))/2 used in
the trapezoidal sum when cj is one of the nodes.

We limit our computations to the case t = 0, i.e., Rf (h) = Tf (h), the composite
trapezoidal rule. As the sequence of hk-values, we have taken the geometric sequence
hk = 2−k , as in classic Richardson extrapolation [12, p. 100].

As a means of comparison, we have first applied Richardson extrapolation to the
problem of computing (1) with L = 1, c1 = 1/

√
3 (this choice guarantees that the

jump at c1 does not coincide with an integration node for any h) and β = 2. η is
introduced so that all derivatives of f numerically vanish at the extremities 0 and
1; hence, from a practical point of view, only one jump is present, namely at c1: we
chose η = 35.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4
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1

1.2
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1.6

Fig. 1 Function f from (10) with c1 = 1/
√

3, β = 2 and η = 35 on [0, 1]

70 Numerical Algorithms (2023) 92:65–88



We have used two calls of the MATLAB quad–routine, one on each subinter-
val [0, c1] and [c1, 1], to obtain an accurate approximate value of (1) with which to
compare our results: I ≈ 0.180560634293184. One could also use Chebfun with
“splitting on.” (We note, however, that these algorithms are no competitors to our
method, as we assume that f is given by one vector of equispaced samples only.)
Our results are summarized in Table 1. The first column contains the sequence of hk-
values, the second the error of the trapezoidal value for hk without extrapolation, and
the third the error in the Richardson-extrapolated value (the value at zero of the poly-
nomial of the lowest degree interpolating the trapezoidal values up to hk , computed
here with the polyfit routine of MATLAB). The last column shows the error Ĩ −I

with the extrapolation method presented below. Every row contains the results when
the given samples are those corresponding to the value hk in the first column, and the
extrapolation makes use of all the trapezoidal values up to this hk .

The trapezoidal values decrease, but not monotonically: this is to be expected, as
the relative location of the jump in the interval between the two nodes enclosing it
varies with h (see also the values of t1(h) in the next tables).

The Richardson values do not improve on the direct trapezoidal ones. This is
hardly surprising, as the main part of the Euler–Maclaurin formula is no polynomial
in h, because of the tj .

Let us now write down the extrapolation equations of the suggested method. Since
there is no jump at the extremities, f (�−1)(c0−) = f (�−1)(c0+) for all �, so that the
sums in the a� start with j = 1 (t0 = 0 is present only when there is a jump at the
extremities). We denote by

d
(�)
1 := f (�−1)(c1−) − f (�−1)(c1+), � = 1, 2, . . . ,

Table 1 Example with one interior jump and no jump at the extremities

hk Trapezoidal rule error Richardson error Error Ĩ − I with extrapolation

1 −1.8056e − 01

1/2 3.5974e − 01 9.0004e − 01 −1.3391e − 02

1/4 8.9754e − 02 −5.4033e − 01 −1.3125e − 02

1/8 4.5382e − 03 2.2912e − 02 9.4367e + 12

1/16 −8.6898e − 03 2.8676e − 03 −8.2194e − 03

1/32 −7.5809e − 04 2.1220e − 02 −4.7358e − 03

1/64 3.7568e − 03 5.9615e − 03 −5.2189e − 04

1/128 1.6354e − 03 −6.6700e − 03 1.9178e − 05

1/256 6.0816e − 04 7.7813e − 04 −5.9895e − 09

1/512 1.0287e − 04 −4.8423e − 04 4.1272e − 10

1/1024 −1.4770e − 04 −3.9391e − 04 4.7887e − 09

1/2048 −2.1896e − 05 4.7029e − 04 8.1089e − 12

1/4096 4.1135e − 05 3.7051e − 05 −1.5894e − 12

1/8192 9.6524e − 06 −1.0899e − 04 −3.9972e − 12
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the differences of derivatives of f at the jump c1, which are not known. Then,
according to (4), the trapezoidal value equals

Tf (h) = I + γ1P1(t1(h))d
(1)
1 h + P2(t1(h))

2! d
(2)
1 h2 + P3(t1(h))

3! d
(3)
1 h3 + . . .

+ Pq(t1(h))

q! d
(q)

1 hq + O(hq),

where the dependence of t1 on h is now explicit. We approximate the right-hand side
by the pseudo-polynomial with p + 1 ≤ q terms

Qp(h) = Ĩ + γ1P1(t1(h))d̃
(1)
1 h + P2(t1(h))d̃

(2)
1

h2

2! + . . . + Pp(t1(h))d̃
(p)

1
hp

p!
for values Ĩ , d̃

(1)
1 , . . . , d̃

(p)

1 approximating I , d
(1)
1 , . . . , d

(p)

1 . The interpolation con-
ditions Qp

(
h0
2i

) = Tf

(
h0
2i

)
, i = 0, . . . , p, lead to the system of p + 1 equations

AH

⎡
⎢⎢⎢⎢⎢⎢⎣

Ĩ

d̃
(1)
1

d̃
(2)
1
...

d̃
(p)

1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Tf (h0)

Tf

(
h0
2

)
Tf

(
h0
4

)
...

Tf

(
h0
2p

)

⎤
⎥⎥⎥⎥⎥⎦

(12)

in the p + 1 unknowns Ĩ , d̃
(1)
1 , d̃

(2)
1 . . . , d̃

(p)

1 , with the matrices

A :=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 γ1(h0)P1(t1(h0)) P2(t1(h0)) . . . Pp(t1(h0))

1 1
2γ1(

h0
2 )P1(t1(

h0
2 )) 1

22 P2(t1(
h0
2 )) . . . 1

2p Pp(t1(
h0
2 ))

1 1
4γ1(

h0
4 )P1(t1(

h0
4 )) 1

42 P2(t1(
h0
4 )) . . . 1

4p Pp(t1(
h0
4 ))

...
...

1 1
2p γ1(

h0
2p )P1(t1(

h0
2p )) 1

(2p)2 P2(t1(
h0
2p )) . . . 1

(2p)p
Pp(t1(

h0
2p ))

⎤
⎥⎥⎥⎥⎥⎥⎦

(compare with [9, p. 220]) and

H := diag
(

1, h0,
h2

0

2! ,
h3

0

3! , . . . ,
h

p

0

p!
)

.

We merely need the first component of the solution x :=
[
Ĩ , d̃

(1)
1 , d̃

(2)
1 , . . . , d̃

(p)

1

]T
.

Since the first element of the diagonal of H is 1, it suffices to find the first component
of the solution of Ay = b (y := Hx), where b is the right-hand side of (12).

If the jump is a quadrature node for every hk , then γ1 = 0 for all of
these and the second column of A vanishes. Then the unknown d̃

(1)
1 must be

removed, together with the second column and the last row of A, H becomes
diag(1, h2

0/2!, h3
0/3!, . . . , hp

0 /p!) and the last component of the right-hand side of
(12) must be discarded as well.

These equations could probably be solved analytically to obtain Neville-like for-
mulas. As mentioned at the end of Section 3, we solve the system with Gaussian
elimination, in which pivoting almost always guarantees a stable method. This is
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more expensive, but every value of the Neville tableau is computed independently,
so that any numerical error arising in one of the entries does not affect the following
ones. Our results are in the last column of Table 1.

The values display a pattern that is common to several of our examples. When
starting with h0 = b−a, as we do, quite a large number of subdivisions of the interval
are needed to reach the point (here hk = 1/64) where the extrapolated values become
better than those obtained with the plain trapezoidal method. But once this stage
is attained, our extrapolation scheme rapidly outperforms the latter and we always
obtain an accuracy below our tolerance (usually N ∗ 10−16, where N + 1 is the size
of the sample vector).

The huge value for h = 1/8 is consistent with the large condition number of A:
see Section 6.2 for a discussion.

Our function cos(2x) may seem too nice and simple. We also computed with a
more challenging function, namely cos(100x), as well as Runge’s function centered
at c1/2, both of which are much more difficult to interpolate with equispaced points:
the results are very similar, and the method continues to perform well.

5 Generalization to several jumps

We now address the general case, where f may have several interior jumps at c1, c2,

. . . , cJ , J ≥ 1. Since with the trapezoidal rule the extremities 0 and L are quadrature
points, the jump at the endpoints has γ0 = 0 and formula (4) becomes

Tf (h) = I +
J∑

j=1

γjP1(tj )d
(1)
j h +

q∑
�=2

( J∑
j=0

P�(tj )

�! d
(�)
j

)
h� + O(hq) (13)

with
d

(�)
j := f (�−1)(cj−) − f (�−1)(cj+). (14)

Here, the tj are as defined in Theorem 2. The interpolating pseudo-polynomial Qp(h)

with p + 1 ≤ q terms again is the same expression, in which I is replaced with its
approximation Ĩ and the terms of the �–sum stop with hp. The interpolation condi-
tions Qp

(
h0
2i

) = Tf

(
h0
2i

)
, i = 0, . . . , (J + 1)p − 1, lead to the system of (J + 1)p

equations

AHx =
[
Tf (h0), Tf

(
h0

2

)
, Tf

(
h0

4

)
, . . . , Tf

(
h0

2(J+1)p−1

)]T

(15)

in the (J +1)p unknowns x =
[
Ĩ , d̃

(1)
1 , . . . , d̃

(1)
J , d̃

(2)
0 , . . . , d̃

(2)
J , d̃

(3)
0 , . . . , d̃

(3)
J , . . . ,

d̃
(p)

0 , . . . , d̃
(p)
J

]T
with

H := diag
(

1, h0, . . . , h0,
h2

0

2! , . . . ,
h2

0

2! ,
h3

0

3! , . . . ,
h3

0

3! , . . . ,
h

p

0

p! , . . . ,
h

p

0

p!
)
,

in which h0 appears J times and the other powers of h0 show up J + 1 times. Again,
we only want the first component of the solution x, i.e., the first component of the
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solution of Ay = b, where b is the right-hand side of (15) and the matrix A is given
by

A :=
⎛
⎝A1

∣∣∣∣∣∣A2

∣∣∣∣∣∣ . . .
∣∣∣∣∣∣Ap−1

∣∣∣∣∣∣Ap

⎞
⎠ (16)

with r = (J + 1)p − 1 rows,

A1 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 γ1(h0)P1(t1(h0)) γ2(h0)P1(t2(h0)) . . . γJ (h0)P1(tJ (h0))

1 1
2γ1(

h0
2 )P1(t1(

h0
2 )) 1

2γ2(
h0
2 )P1(t2(

h0
2 )) . . . 1

2γJ (
h0
2 )P1(tJ (

h0
2 ))

1 1
4γ1(

h0
4 )P1(t1(

h0
4 )) 1

4γ2(
h0
4 )P1(t2(

h0
4 )) . . . 1

4γJ (
h0
4 )P1(tJ (

h0
4 ))

1 1
8γ1(

h0
8 )P1(t1(

h0
8 )) 1

8γ2(
h0
8 )P1(t2(

h0
8 )) . . . 1

8γJ (
h0
8 )P1(tJ (

h0
8 ))

...
1 1

2r γ1(
h0
2r )P1(t1(

h0
2r )) 1

2r γ2(
h0
2r )P1(t2(

h0
2r )) . . . 1

2r γJ (
h0
2r )P1(tJ (

h0
2r ))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Am :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P ∗
m(t0(h0)) Pm(t1(h0)) . . . Pm(tJ (h0))

1
2m P ∗

m(t0(
h0
2 )) 1

2m Pm(t1(
h0
2 )) . . . 1

2m Pm(tJ (
h0
2 ))

1
4m P ∗

m(t0(
h0
4 )) 1

4m Pm(t1(
h0
4 )) . . . 1

4m Pm(tJ (
h0
4 ))

1
8m P ∗

m(t0(
h0
8 )) 1

8m Pm(t1(
h0
8 )) . . . 1

8m Pm(tJ (
h0
8 ))

...
1

(2r )m
P ∗

m(t0(
h0
2r )) 1

(2r )m
Pm(t1(

h0
2r )) . . . 1

(2r )m
Pm(tJ (

h0
2r ))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 2 ≤ m ≤ p.

(17)
However, there is a caveat here. Recall that all odd degree Bernoulli polynomials

vanish at 0, and that t0(z) = 0 (t0 as defined in Theorem 2) for all z = h0/2k ,
k ∈ N, in the present case. Therefore, the first column of the mth block Am of A
vanishes when m is odd and a “jump” is present at the extremities. (The unknown
d̃0 is absent as well.) We thus implement the following modification of the process:
when the increase of p by one unit leads to an odd number, that first column is
erased, and simultaneously one row of the matrix is removed, which means that one
less trapezoidal approximation is taken into account in the process (making it, in fact,
cheaper). We express this by adding a star to the first column of Am, to indicate that
it is absent if p is odd; then r < (J + 1)p − 1 if p exceeds two. H changes as well,
as some of its elements are eliminated, but that does not affect the method, as only
the first component of x is needed.

A general algorithm, which includes the case where several sample vectors are
available, is given in Section 7.

One of the reviewers expressed doubts about our method’s efficiency and sug-
gested to replace f over every interval between two jumps by an approximation
constructed from the samples there and to sum the exact integrals of these approx-
imations (which amounts to using an open quadrature rule over every subinterval).
We have not compared our method to such a scheme. Another comment suggested
to use adaptivity, and implement a special procedure near the discontinuities. This
is a natural idea, but would ignore our assumption that only equispaced samples are
available in our setting.
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6 Examples

6.1 A first example with the jump at the boundary

Here we want to integrate the function g in (11) between 0 and 1. The exact value is

I = 1

β
sin
(
βc1
)+ e1−c1 − 1.

With c1 = 1/
√

3 and β = 2, I ≈ 0.9833366718258914; the corresponding g is given
in Fig. 2. The jump at the extremities — or “boundary jump” — which appears in the
classic Euler–Maclaurin formula of Theorem 1 is now present and the corresponding
terms must be taken into account in Formula (4).

The extrapolation method described in the previous section yields Table 2, in the
caption of which it is called “first version,” to distinguish it from the second version
introduced after the table. Its first column again displays the values hk , the second
gives 100 ∗ t1(hk), the relative location of the jump with respect to the next node,
in percent. The third column shows the errors of the trapezoidal value, the fourth
the degree p of the extrapolation using hk , and the last column lists the errors of
the extrapolated value computed as the first component of the solution of Ay = b.
A missing value in that last column points to the fact that no extrapolated value is
computed after the first new trapezoidal value, when two are needed to interpolate a
hp-term, i.e., p is even.

The abovementioned elimination of one column and simultaneous non-
computation of a trapezoidal value have the consequence that the values used in the
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Fig. 2 Function g from (11) with c1 = 1/
√

3 and β = 2, as in Fig. 1
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Table 2 Example with one interior jump (and the boundary jump), first version

hk 100 ∗ t1(hk) Tf (hk) − I p Ĩ − I

1 42.26 2.7966e − 01

1/2 84.53 −8.1686e − 02 1 1.6786e − 01

1/4 69.06 −1.6003e − 02

1/8 38.12 1.2342e − 02 2 8.7576e − 05

1/16 76.24 −9.1893e − 03 3 −2.0941e − 05

1/32 52.48 −2.2304e − 04

1/64 49.58 4.1829e − 03 4 7.4957e − 09

1/128 99.17 1.8669e − 03 5 −1.3005e − 09

1/256 19.83 7.0387e − 04

1/512 39.67 1.2113e − 04 6 −5.5511e − 16

1/1024 79.33 −1.7055e − 04 7 −1.9129e − 13

1/2048 58.66 −2.5152e − 05

1/4096 17.33 4.7528e − 05 8 −4.4409e − 16

1/8192 34.66 1.1160e − 05 9 −2.4425e − 15

next extrapolation step do not improve in accuracy as much as for even p. We have
therefore repeated the same computations, but by dividing the stepsize h by four when
extrapolation is not performed (with corresponding modification of the matrix A,
i.e., a multiplication by 1/4 instead of 1/2 of the fraction in front of γ1 in the second
column, and correspondingly in the next columns). The results with this “second ver-
sion” of the method are given in Table 3. Fewer trapezoidal values are now used for
extrapolation for about the same accuracy (11 instead of 14 in this example), which
decreases the size of the system of equations.

Table 3 Same as Table 2, but second version

hk 100 ∗ t1(hk) Tf (hk) − I p Ĩ − I

1 42.26 2.7966e − 01

1/2 84.53 −8.1686e − 02 1 1.6786e − 01

1/4 69.06 −1.6003e − 02

1/8 38.12 1.2342e − 02 2 8.7576e − 05

1/32 52.48 −2.2304e − 04 3 −1.8929e − 06

1/64 49.58 4.1829e − 03

1/128 99.17 1.8669e − 03 4 1.1806e − 08

1/512 39.67 1.2113e − 04 5 −5.0959e − 14

1/1024 79.33 −1.7055e − 04

1/2048 58.66 −2.5152e − 05 6 −8.8818e − 16

1/8192 34.66 1.1160e − 05 7 −1.4433e − 15
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6.2 Another function with one jump

To confirm the above results, we have tried another function with one jump, namely

f (x) :=

⎧⎪⎨
⎪⎩

cos(4x), −1 ≤ x < c1,(
cos(4x) + sin(2.5x)

)
/2, x = c1,

sin(2.5x), c1 < x ≤ 3.

(18)

The exact value is
∫ 3
−1 f (x)dx = (

sin(4c1) + sin(4)
)
/4 + (

cos(2.5c1) −
cos(2.5)

)
/2.5. We set c1 = 1/30; the corresponding function is plotted in Fig. 3 and

the results with the first version, i.e., the division of h by two at every computation
of a new Tf (h), are displayed in Table 4. (From here on, we refrain from giving the
value of p, which is just the number of the extrapolation step, i.e., of the row in the
last column.)

As in Table 1, we encounter a phenomenon that arose in several of our examples:
the extrapolated value can be extremely large before hk becomes small enough (or
enough trapezoidal values are computed). But this is not terribly important, as we
need small enough hk to get improvement over the trapezoidal values.

The results also confirm that bad intermediate extrapolated values do not affect
the quality of the subsequent approximations Ĩ : the only numbers used in performing
the extrapolation are the trapezoidal values. This illustrates our comments about the
Neville tableau in Section 4.

We stopped with the last hk given in the table, since the difference between two
consecutive extrapolated values was smaller than our tolerance of N ∗ 10−16. We
then went up to p = 15: the accuracy remained below 5 · 10−13, despite condition
numbers of A larger than 1020.
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Fig. 3 Function f from (18) with c1 = 1/30
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Table 4 Second example with one interior jump, first version

hk/(b − a) 100 ∗ t1(hk) Tf (hk) − I Ĩ − I

1 74.17 4.6472e − 01

1/2 48.33 1.3773e + 00 1.3469e + 00

1/4 96.67 6.7773e − 01

1/8 93.33 2.5092e − 01 −4.6420e + 14

1/16 86.67 1.0063e − 01 1.5684e − 02

1/32 73.33 3.2481e − 02

1/64 46.67 −1.4205e − 04 3.1060e + 08

1/128 93.33 1.2459e − 02 −1.0385e + 07

1/256 86.67 5.2622e − 03

1/512 73.33 1.6775e − 03 6.7007e − 07

1/1024 46.67 −1.1137e − 05 −2.6336e − 01

1/2048 93.33 7.6903e − 04

1/4096 86.67 3.2533e − 04 −6.2422e − 14

1/8192 73.33 1.0353e − 04 −4.5927e − 13

These huge condition numbers impact the results only for relatively large hk . The
condition number is, of course, only an upper bound on the amplification of round-off
errors in solving linear equations. Whether actual amplification occurs depends on
how the right hand side b and perturbations to it are aligned with the singular vectors
of the matrix. In many practical applications, numerical solutions behave much better
than predicted by condition numbers.

In our case, because of the jumps, the first components of b behave eratically,
and it is not surprising that sometimes the solution of the system suffers gravely
from the ill-conditioning. When the abscissae hk of the last Tf (hk) cluster close to
the evaluation point 0, these trapezoidal values become much more regular, which
diminishes the likelihood of a bad b. For a generalized Richardson method close to
ours, Gaussian elimination has been shown in [18, pp. 73–76] to be stable. All the
above likely explains the excellent behavior of our scheme for p large enough.

We then solved the same problem, but, as with the former example, by dividing the
stepsize h by four when extrapolation is not performed. The results with that second
version appear in Table 5.

When hk is such that the jump is close to a node, the trapezoidal rule usually per-
forms worse than with hk−1. Nevertheless, the extrapolated values are much more
regular than in the first version. We have therefore considered only this second
version from here on.

What if, after some steps, the jump coincides with a node? In fact, this does not
cause a problem: as the first elements of the corresponding column do not vanish, the
matrix A remains (mathematically) nonsingular (except for the case where the jump
coincides with a node from the onset, but then Romberg may be applied from the
start). To demonstrate this, we have repeated the calculations for the last example, but
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Table 5 Same as Table 4, but second version

hk/(b − a) 100 ∗ t1(hk) Tf (hk) − I Ĩ − I

1 74.17 4.6472e − 01

1/2 48.33 1.3773e + 00 1.3469e + 00

1/4 96.67 6.7773e − 01

1/8 93.33 2.5092e − 014 −4.4620e + 14

1/32 73.33 3.2481e − 02 4.8516e − 03

1/64 46.67 −1.4205e − 04

1/128 93.33 1.2459e − 02 −1.0787e − 04

1/512 73.33 1.6775e − 03 −1.9432e − 06

1/1024 46.67 −1.1137e − 04

1/2048 93.33 7.6903e − 04 3.2082e − 11

1/8192 73.33 1.0353e − 05 1.2349e − 11

1/16384 46.67 −7.3617e − 06

1/32768 93.33 4.8027e − 05 −1.2351e − 15

1/131072 73.33 6.4652e − 06 −5.8106e − 14

this time with c1 = 1/32. The results are listed in Table 6: from n = 128 on, when c1
is a node, the trapezoidal values become much more regular (in fact O(h2) according
to the Euler–Maclaurin formula) and the extrapolated values rapidly converge within
our tolerance N ∗ 10−16.

Table 6 Second example with one interior jump at c1, with c1 becoming a node

hk/(b − a) 100 ∗ t1(hk) Tf (hk) − I Ĩ − I

1 74.22 4.6662e − 01

1/2 48.44 1.3792e + 00 1.3507e + 00

1/4 96.88 6.7963e − 01

1/8 93.75 2.5282e − 01 −2.3533e + 15

1/16 87.5 1.0252e − 01 1.6122e − 02

1/32 75. 3.4379e − 02

1/64 50. 1.7559e − 03 7.4550e + 08

1/128 0. 7.3504e − 05 −1.4381e + 09

1/256 0. 1.8368e − 05

1/512 0. 4.5917e − 06 −3.9274e − 13

1/1024 0. 1.1479e − 06 −2.5814e − 13

1/2048 0. 2.8697e − 07

1/4096 0. 7.1742e − 08 −4.0704e − 14

1/8192 0. 1.7936e − 08 −3.5472e − 14

79Numerical Algorithms (2023) 92:65–88



6.3 An example with two jumps

As a specific example with two jumps, we have taken

f (x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cos(4x), −1 ≤ x < c1,(
cos(4x) + sin(2.5x)

)
/2, x = c1,

sin(2.5x), c1 < x < c2,

(sin(2.5x) + e(x−c2))/2 x = c2,

e(x−c2), c2 < x ≤ 3,

(19)

and we have again integrated from −1 to 3. The exact value is
(

sin(4c1)+sin(4)
)
/4+(

cos(2.5c1) − cos(2.5c2)
)
/2.5 + e(3−c2) − 1.

The function with c1 = 1/30 and c2 = √
3 is shown in Fig. 4; the exact value

becomes I = 2.945411417434258 and our results are given in Table 7. The number
of trapezoidal values necessary for an extrapolation is not always three, the num-
ber of jumps, since for odd p only two such values are required: as in Section 5,
Pm(t0(h/2k)) = 0 for all k, so that d

(�)
0 does not appear in (13) and therefore needs

not be determined.
The first extrapolated values are extremely large, in fact about the reciprocal of

the unit round-off. This results from the extremely bad conditioning of the matrix A
and, at first, even led us to believe that there was a programming error in our code.
To test this, we changed c2 from

√
3 to 1 + √

3. The results are given in Table 8.
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Fig. 4 Function f from (19) with c1 = 1/30 and c2 = √
3
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Table 7 Example (19) with two interior jumps

hk/(b − a) 100 ∗ t2(hk) Tf (hk) − I Ĩ − I

1 31.70 2.8544e + 00

1/2 63.40 1.1514e + 00

1/4 26.79 1.4103e + 00 −1.2524e + 15

1/8 53.59 2.9075e − 01

1/16 7.18 3.1524e − 01

1/32 14.36 1.2127e − 01 6.4842e + 13

1/128 57.44 8.2702e − 03

1/256 14.87 1.5888e − 02 −5.7300e − 04

1/512 29.75 4.7436e − 03

1/1024 59.50 −8.2221e − 04

1/2048 19.00 1.9371e − 03 3.7371e − 06

1/8192 75.99 −1.4111e − 04

1/16384 51.99 −1.6706e − 05 2.2564e − 11

1/32768 3.98 1.5633e − 04

1/65536 7.96 6.9790e − 05

1/131072 15.91 2.6519e − 05 −1.5543e − 14

Table 8 Same as Table 7, but with c2 = 1 + √
3 instead of

√
3

hk/(b − a) 100 ∗ t2(hk) Tf (hk) − I Ĩ − I

1 6.70 1.0990e + 00

1/2 13.40 1.6423e + 00

1/4 26.79 7.5809e − 01 1.1553e + 00

1/8 53.59 2.3895e − 01

1/16 7.18 1.5756e − 01

1/32 14.36 5.4763e − 02 −1.9864e − 02

1/128 57.44 1.1337e − 02

1/256 14.87 7.9106e − 03 −5.2911e − 04

1/512 29.75 2.4376e − 03

1/1024 59.50 −2.8953e − 04

1/2048 19.00 1.0598e − 03 3.9057e − 07

1/8192 75.99 4.2617e − 05

1/16384 51.99 −9.6930e − 06 −5.9827e − 11

1/32768 3.98 7.4990e − 05

1/65536 7.96 3.2635e − 05

1/131072 15.91 1.1458e − 05 −1.8568e − 14
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7 Extension to several sample vectors

So far we have started with the trapezoidal value corresponding to the interval [a, b]
and then recursively divided all intervals in two, or four in the second version when
p is odd, thereby doubling (resp. quadrupling) the number of function values at each
step. Equivalently, being given the vector of samples corresponding to the last subdi-
vision, we compute all trapezoidal values and solve the system of equations Ay = b
for the first component of y. The fact that this uses only one vector of samples may
be an important advantage of the method.

However, such doubling of the number of function values rapidly results in a very
large number of these. For that reason, it has been suggested long ago to alternate
powers of two multiples of 2 and 3 in the extrapolation process: the so-called Bulirsch
sequence [9] of interval numbers, with nk = 2nk−2 for k ≥ 4, is

(1, )2, 3, 4, 6, 8, 12, 16, 24, 32, 48, . . . . . . (20)

(the sequence is monotonically increasing). This requires two sample vectors, one
with 2 · 2� + 1 and the other with 3 · 2� + 1 samples.

One may generalize this to several vectors of samples, say q of them, the sth one
with (2s − 1)2� + 1 components, s = 1, 2, . . . , q, i.e., the first q odd numbers times
the first � powers of two. (One could consider taking primes times 2� to have only
different values of f in the interior of the interval, but with q ≤ 4 this is the same.)
We do not know whether it matters, but we have ordered the numbers of intervals. For
q = 3, and ignoring the possible first element 1, this yields the following sequences
of sample indices:

2 4 8 16 32 64 128 256 . . .

3 6 12 24 48 96 192 384 . . .

5 10 20 40 80 160 320 640 . . .

Ordering these numbers turns out to be very simple: it suffices to read them one
anti-diagonal after the other, to obtain

(1, )2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, . . . (21)

or

nk = 2nk−3, k ≥ 6. (22)

It does not seem as simple for q = 4.
These numbers indeed grow slowly and may give trapezoidal approximations too

inaccurate to yield a precise extrapolate. Compared with the harmonic sequence,
which is the best in the context of extrapolation methods for ODEs [9, p. 221], the
sequence grows somewhat faster, but requires only three sample vectors whereas the
harmonic sequence requires an unboundedly increasing number of them.
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Table 9 Example (19), same as Table 7 but now with 3 · 2� intervals

hk/(b − a) 100 ∗ t2(hk) Tf (hk) − I Ĩ − I

1 31.70 2.8544e + 00

1/3 95.10 −1.1649e + 00

1/6 90.19 −2.8305e − 01 −2.5987e + 14

1/12 80.38 −2.4552e − 02

1/24 60.77 2.8195e − 02

1/48 21.54 5.7945e − 02 −1.4786e + 12

1/192 86.16 −1.6147e − 02

1/384 72.31 −1.5815e − 03 1.9585e − 04

1/768 44.62 1.0326e − 03

1/1536 89.25 −2.6765e − 03

1/3072 78.50 −8.3245e − 04 1.4068e − 07

1/12288 13.99 2.5559e − 04

1/24576 27.98 2.4766e − 05 −2.4951e − 11

1/49152 55.97 −1.6746e − 05

1/98304 11.94 4.0943e − 05

1/196608 23.87 1.2096e − 05 −2.6645e − 15

The system of equations to be solved for the d̃
(�)
j is like (15), but now with a

modified matrix Am

Am :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
nm

1
P ∗

m(t0(
h0
n1

)) 1
nm

1
Pm(t1(

h0
n1

)) . . . 1
nm

1
Pm(tJ (

h0
n1

))

1
nm

2
P ∗

m(t0(
h0
n2

)) 1
nm

2
Pm(t1(

h0
n2

)) . . . 1
nm

2
Pm(tJ (

h0
n2

))

1
nm

3
P ∗

m(t0(
h0
n3

)) 1
nm

3
Pm(t1(

h0
n3

)) . . . 1
nm

3
Pm(tJ (

h0
n3

))

1
nm

4
P ∗

m(t0(
h0
n4

)) 1
nm

4
Pm(t1(

h0
n4

)) . . . 1
nm

4
Pm(tJ (

h0
n4

))

...
1

nm
r
P ∗

m(t0(
h0
nr

)) 1
nm

r
Pm(t1(

h0
nr

)) . . . 1
nm

r
Pm(tJ (

h0
nr

))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

The general algorithm for determining an extrapolated value Ĩ may now be
described as follows:

• obtain one (or several) sample vector(s) with N1+1, resp. N1+1, N2+1 . . . Nq+
1 samples; the numbers of intervals Nr should be composite numbers, so that
several trapezoidal values can be computed from any one of the vectors;

• determine the sequence {n� + 1} of numbers of samples from which the
trapezoidal values will be computed

(
for instance (20) or (21)

)
;

• compute the corresponding vector b of the trapezoidal values; after every step
with no extrapolation, a value of n� (if enough values are available) should
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Table 10 Example (19), same as Table 7, but with two sample vectors

hk/(b − a) 100 ∗ t2(hk) Tf (hk) − I Ĩ − I

1 31.70 2.8544e + 00

1/2 63.40 1.1514e + 00

1/3 95.10 −1.1649e + 00 −8.3146e + 15

1/4 26.79 1.4103e + 00

1/6 90.19 −2.8305e − 01

1/8 53.59 2.9075e − 01 1.6734e + 15

1/16 7.18 3.1524e − 01

1/24 60.77 2.8195e − 02 4.0700e + 13

1/32 14.36 1.2127e − 01

1/48 21.54 5.7945e − 02

1/64 28.72 2.6526e − 02 −2.5154e − 03

1/128 57.44 8.2702e − 03

1/192 86.16 −1.6147e − 02 −8.5729e − 04

1/256 14.88 1.5888e − 02

1/384 72.31 −1.5815e − 03

1/512 29.75 4.7436e − 03 −5.3350e − 09

1/1024 59.50 −8.2221e − 04

1/1536 89.25 −2.6765e − 03 1.7583e − 09

1/2048 19.00 1.9371e − 03

1/3072 78.50 −8.3245e − 04

1/4096 38.00 5.5157e − 04 2.2249e − 13

1/8192 76.00 −1.4111e − 04

1/12288 13.99 2.5559e − 04 1.3145e − 13

1/16384 51.99 −1.6706e − 05

1/24576 27.98 2.4766e − 05

1/32768 3.98 1.5633e − 04 −9.3703e − 14

be skipped to improve accuracy (this is the more accurate “second method”
suggested in Section 5);

• compute the matrix A from (15) with the submatrices Am from (23);
• solve the system of equations Ay = b for the first component y1; the latter is the

sought extrapolated value Ĩ .

Before experimenting with several sample vectors, we have computed with only
the second vector of the above table, i.e., nk = 3 · 2k , k = 0, 1, 2, 3, 4, . . ., which
can be accomplished by a minor change in our program. For the same example as in
Section 6.3, Table 9 then replaces Table 7.

This change does not look like a good idea: to obtain, say, an accuracy of 10−11,
about 25’000 points are necessary, compared to about 16’000 with the sequence 2�.
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Table 11 Example (19), same as Table 7, but with three sample vectors

hk/(b − a) 100 ∗ t2(hk) Tf (hk) − I Ĩ − I

1/3 95.10 −1.1649e + 00

1/4 26.79 1.4103e + 00

1/5 58.49 5.6667e − 01 −8.1725e − 01

1/6 90.19 −2.8305e − 01

1/8 53.59 2.9075e − 01

1/10 16.99 3.2776e − 01 −2.8631e − 03

1/16 7.18 3.1524e − 01

1/20 33.97 1.4608e − 01 −7.3641e − 03

1/24 60.77 2.8195e − 02

1/32 14.36 1.2127e − 01

1/40 67.95 −1.2582e − 02 1.0491e − 05

1/64 28.72 2.6526e − 02

1/80 35.90 7.7531e − 03 −8.5575e − 05

1/96 43.08 −4.7299e − 03

1/128 57.44 8.2702e − 03

1/160 71.80 −6.3044e − 03 −5.3723e − 07

1/256 14.88 1.5888e − 02

1/320 43.59 −2.3700e − 04 2.5267e − 08

1/384 72.31 −1.5815e − 03

1/512 29.75 4.7436e − 03

1/640 87.19 −3.5123e − 03 −2.7220e − 11

1/1024 59.50 −8.2221e − 04

1/1280 74.37 −1.9349e − 03 −1.7808e − 12

1/1536 89.25 −2.6765e − 03

1/2048 19.00 1.9371e − 03

1/2560 48.75 2.7587e − 04 −8.6731e − 13

1/4096 38.00 5.5157e − 04

1/5120 97.50 −8.3326e − 04 5.8265e − 13

1/6144 57.00 8.9776e − 05

1/8192 76.00 −1.4111e − 04

1/10240 94.99 −2.7964e − 04 6.7946e − 13

7.1 An example with two sample vectors

To test the method with several sample vectors, we started with two of them, i.e., with
the Bulirsch sequence (20). Our results, still with the same example as in Section 6.3,
are given in Table 10.
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Fig. 5 Comparison of the number of function evaluations needed for a given accuracy with one, two, and
three sample vectors

The availability of a second vector of samples is very effective in terms of function
evaluations: despite trapezoidal values all in error by more than 10−3, the extrapola-
tion scheme reaches an accuracy better than 10−8 with 512+1+384−1 = 896 values
of f , while it does not even reach 10−6 with a single vector of 2049 values (Table 7)!

7.2 An example with three sample vectors

In example (19), J = 2 and thus three trapezoidal values are needed for the first
extrapolation. In order to avoid computing the same function values twice and to use
the formula giving T (h/2) from T (h) [17, p. 377], and in view of (22), we started the
method with h = (b − a)/3, so that the next two interval lengths are h = (b − a)/4
and h = (b − a)/5. The results are displayed in Table 11.

Here, the extrapolated value is with hk = h0/10 already better than the plain
trapezoidal value, an accuracy of 2.53 · 10−8 is attained with 320 + 256 + 96 – 1 =
671 function evaluations, and a higher precision than 10−10 with 640 + 512 + 340 –
1 = 1491 evaluations, while working with two sample vectors requires 1536 + 1024
= 2060 evaluations for an accuracy of 1.76 · 10−9.

With the data of Tables 7, 10, and 11, we finally plot in Fig. 5 the number of
function evaluations needed to reach a certain accuracy, starting from 10−2, in green
and dotted after extrapolation with one vector of samples, in blue and dashed with
two, and in red and solid with three (the curves are intended to be read from right to
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left); the plain trapezoidal values are added in black and dash-dotted for comparison.
Note the logarithmic scale!

8 Conclusions

The direct application of the composite trapezoidal rule to a piecewise smooth func-
tion f converges slowly and in a non-monotone fashion to the integral of f . The
extrapolation method presented in this work accelerates the convergence, and makes
it regular as soon as the interval length h is small enough. It converged in all exam-
ples we tried, despite obtaining sometimes very bad values at the initial stage. The
number of correct digits increased by a factor of two to three compared with the
trapezoidal values. One may decrease h without any stability concern, and thus use a
stopping criterion based on the agreement of consecutive values of Ĩ .

One question is whether better results could be obtained by starting (and extrapo-
lating) from smaller values h0, to avoid the often erratic first extrapolates. We tried
this for the very first example (Section 4): the results were not too encouraging, as
large values due to the ill-conditioning of the matrices again arose for small divisors
of h0 and longer sample vectors were needed to reach our tolerance.

Note, finally, that the method requires knowledge of the locations of the jumps.
Methods exist for determining them, but most work in a transformation space; we
envision one using just the vector(s) of equispaced samples.
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