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Abstract
Computed tomography (CT) techniques are well known for their ability to produce
high-quality images needed for medical diagnostic purposes. Unfortunately, standard
CT machines are extremely large, heavy, require careful and regular calibration, and
are expensive, which can limit their availability in point-of-care situations. An alter-
native approach is to use portable machines, but parameters related to the geometry
of these devices (e.g., distance between source and detector, orientation of source to
detector) cannot always be precisely calibrated, and these parameters may change
slightly when the machine is adjusted during the image acquisition process. In this
work, we describe the non-linear inverse problem that models this situation, and dis-
cuss algorithms that can jointly estimate the geometry parameters and compute a
reconstructed image. In particular, we propose a hybrid machine learning and block
coordinate descent (ML-BCD) approach that uses an ML model to calibrate geom-
etry parameters, and uses BCD to refine the predicted parameters and reconstruct
the imaged object simultaneously. We show using numerical experiments that our
new method can efficiently improve the accuracy of both the image and geometry
parameters.

Keywords Computed tomography · Optimization · Machine learning

1 Introduction

In imaging applications, a typical inverse problem takes the form

Ax = b, (1)
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where A ∈ R
M×N models the forward process, x ∈ R

N is the image of interest,
b ∈ R

M is the observation that is usually contaminated with unknown noise η ∈ R
M ,

and b = bex + η. Here, bex = Axex denotes the noise free data, and xex denotes the
exact (true) solution. Note also that b and x are vectorized quantities of the observed
data B and the solution image X ∈ R

n×n, where N = n2. It is typically assumed
(see, e.g., [1–3]) that the forward model A is known exactly. In the image deblur-
ring application, the forward model A is constructed using a point spread function
(PSF), which can be formulated based on knowledge of the physical process, and
can be obtained using a precise mathematical expression or through experimentation
[4]. In imaging applications arising from computed tomography (CT), the matrix A

models the Radon Transform [5] that outputs the projection data obtained from a
tomographic scan. For CT, the observed data is a so-called “sinogram”, which stores
the projection data.

Large-scale linear systems arising from inverse problems are usually very ill-
conditioned, meaning that there might not be a unique solution, and a slight change
in the data b can lead to a large change in the solution x. Hence, regularization is
often needed in order to obtain a meaningful solution. Direct regularization methods
add a penalty term to the least squares formulation of (1), i.e., minx ‖Ax − b‖22, so
that we solve instead

min
x

‖Ax − b‖22 + λR(x), (2)

where λ > 0 is a regularization parameter, andR(x) is a regularization term defined
as a function of x (e.g., a vector norm). Popular choices forR(x) include the �2 norm
(Tikhonov regularization) and the �1 norm of x.

In this paper, we focus on a specific type of imaging inverse problem that arises
from CT applications, where the forward model A is not known exactly. This sce-
nario may arise, for example, in the diagnosis and management of infectious diseases
such as Covid-19, where portable tomosynthesis machines are brought to the location
of patients to help minimize the risk of cross-infection [6, 7], and more experimental
errors such as inaccurate calibration of geometry parameters (e.g., source to object
distance, source orientation) are introduced, making the image acquisition and recon-
struction processes more challenging. Consider a fan-beam tomography set-up, in
which we have a point source that emits fan beams, as can be seen in Fig. 1(a). Ide-
ally, for each scan, the source should be of equal distance to the object and rotates
a fixed angle. However, this may not be the case for portable CT machines that are
subject to more experimental errors caused by machine transportation. In Fig. 1(b),
the theoretical location of the center scanning position is shown in light green, but
during the scanning process it may be shifted to the dark green location.

Due to these uncertainties, forward models that describe the forward process only
approximate the reality to some extent, and without proper model calibration, qual-
ity of the solutions will be degraded. Using mathematical language—when working
on the corresponding inverse problem, we need to take into account an additional
set of unknown parameters p that the forward operator A is dependent on. That is,
when reconstructing the imaged object, we also need to perform geometry parameter
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Fig. 1 Tomography illustration

calibration. So instead of (2), we need to solve the following problem:

min
x,p

‖A(p)x − b‖22 + λR(x). (3)

Recall that b is the vectorized quantity of observed data, which, in this case, is the
sinogram B ∈ R

Nτ ×Nθ (where Nτ is the number of beams and Nθ is the number of
scanning angles). The true geometry parameters p in the image requisition process
are unknown, but we know p0, which are the theoretical (i.e., guessed or incorrectly
assumed) values.

For this problem, we consider two types of uncertainties in the geometry parame-
ters: source to object distances, and scanning angles. Hence, the unknown geometry
parameters p ∈ R

2Np consist of two components r and d, i.e., p = [r; d], where
r ∈ R

Np = [r1; · · · ; rNp ] are source to object distances with theoretical constant
value (which we assume to be 2n in our experiments), and d ∈ R

Np = [δθ
1 ; · · · ; δθ

Np
]

are perturbation in scanning angles with theoretical value 0. We assume that ri ∈
[1.5n, 2.5n] (n is dimension of image) and δθ

i ∈ [−0.5, 0.5]. Note that technically,
Np could be equal to the total number of scanning angles and can be as large as 180
or 360. For simplification purposes, we start by choosing Np much smaller than the
total number of scanning angles (e.g., Np = 3 or Np = 6). For instance, if we use
Nθ = 180 scanning angles 0:2:359 and Np = 3, then p ∈ R

6, r, d ∈ R
3, and

(ri , δ
θ
i ) would be constant for a set of 180/Np = 60 angles.

A lot of work has been done in various applications, such as scanning position
error correction for image reconstruction in the fields of electron tomography [8, 9]
and ptychography [10, 11], addressing the importance of accurate system modeling.
In the field of X-ray tomography, scientists at Argonne National Laboratory have
developed algorithms to calibrate the center of rotation errors [12] using numerical
optimization, and drifts in scanning positions [13] using targeted calibration models.
In the application where uncertain view angles need to be estimated for computed
tomography in addition to image reconstruction, approaches such as uncertainty
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quantification have been proposed, and they seek to quantify scanning angles via a
model-discrepancy formulation [14, 15]. Though very different from each other in
nature, many of these methods share a similar framework called the block coordinate
descent (BCD), which alternatively optimizes for the unknown parameters p and the
image of interest x; see Algorithm 1. While the minimization step with respect to x

(step 3 of Algorithm 1) is linear, the optimization with respect to p (step 4 of Algo-
rithm 1) is non-linear, because A depends non-linearly on p. Note that sometimes
Algorithm 1 is also referred to as alternating minimization.

Algorithm 1 Block coordinate descent.

We make the remark that Algorithm 1 should be regarded as a generic framework
for solving (3). In the linear optimization step (step 3), the regularization parameter
λk can be chosen of as a fixed parameter for the linear solver in iteration k of BCD,
or as an adaptively selected sequence of λk,i , i = 0, 1, 2, · · · for each iteration i

in the linear solver. Methods for adaptively setting regularization parameters include,
e.g., weighted generalized cross validation [16] and discrepancy principle [17, 18].
We also remark that because we do not have an analytical expression for A(p), we
cannot provide any theoretical results on convergence of the non-linear least squares
problem in step 4 of Algorithm 1. We can, however, note that the Jacobian is an
M×2Np matrix, with M = Nτ ·Nθ � 2Np, and in all of our numerical experiments,
we observed the Jacobian to always be full rank and well-conditioned. This situation
improves further when exploiting separability, as discussed in Section 2.1.

The non-linear optimization step (step 4) in Algorithm 1 is usually very expen-
sive, and depends heavily on the initial guess. Hence, if p0 is far from the true p,
the accuracy of results given by the non-linear step, and BCD as a whole may be
sacrificed. In this paper, we present a hybrid machine learning and block coordinate
descent method (ML-BCD), which incorporates a machine learning model ̂� that
maps b to p. When given an observation b, we first use the ML model to make a pre-
diction for p, which is then fed into the BCD algorithm as an initial guess. Through
this approach, we are able to improve the accuracy of both the calibrated geometry
parameters and the reconstructed image when compared to using BCD or ML alone.

This paper is organized as follows. In Section 2, we go over the baseline block
coordinate descent method (BCD) and discuss how to make it run more efficiently
for our problem (3). We also present the baseline machine learning (ML) model for
learning geometry parameters. In Section 3, we introduce the new, machine learn-
ing - block coordinate descent (ML-BCD) hybrid algorithm that combines ML with
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BCD, and describe the training of the ML model. Numerical experiments are pre-
sented in Section 4. We finish off with some conclusions and future work directions
in Section 5.

2 Background

2.1 Block coordinate descent

Recall that block coordinate descent (BCD) is a numerical algorithm that alterna-
tively optimizes with respect to different subsets of the unknown variable. Hence, it
can be used to alternatively solve for x and p in Problem (3). The idea is simple: for
the unknowns x and p, we can fix one and solve for the other, and repeat this process
multiple times. The algorithm is summarized in Algorithm 1 in Section 1.

The linear steps 2 and 6 of Algorithm 1 can be solved with a linear inverse prob-
lem solver such as LSQR. But for the model update step (step 4), since A depends
non-linearly on p, we need to use a non-linear solver such as Gauss-Newton based
imfil [19], and this non-linear step can be expensive for large values of Np. Note
that for this step, we can actually reduce problem size by exploiting separability of
A(p). That is, the minimization problem in step 4 of Algorithm 1 can be equivalently
written as

min
p

∥

∥

∥

∥

∥

∥

∥

∥

∥
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2

=
Np
∑

i=1

min
pi

‖A(pi)x − bi‖2. (4)

By doing so, we divide the big non-linear problem into Np small problems, which
can be solved in parallel. The resulting algorithm is summarized in Algorithm 2.

Algorithm 2 Block coordinate descent—separable non-linear step.

The separability property works very well with our proposed BCD framework,
but other approaches such as variable projection [20, 21] would not be able to utilize
this nice property. On the other hand, the non-linear solver can depend heavily on the
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initial guess, and may converge to a local minimum rather than the global minimum,
which affects all subsequent xk’s and pk’s. Hence, although we can conveniently
define p0 as the theoretical value for p, it might be worthwhile to look for other ways
of defining p0 that allows for better convergence of the overall BCD solver.

2.2 Machine learning

Since the non-linear optimization step is very costly and takes a long time to run,
it would be even better if we can find a way to avoid running this step. Inspired by
[22], which trains neural networks to learn regularization parameters for inverse prob-
lems, we are interested in building machine learning models to learn the unknown
CT geometry parameters. In other words, by training a machine learning model
̂� : b → p that maps sinogram b to geometry parameters p, we may be able to avoid
running the alternating minimization scheme. And as a result, we only need to run
one linear step to solve for x. This framework is summarized in Algorithm 3.

Algorithm 3 Learning geometry parameters.

To train the model ̂� : b → p, we need the following training data:

• ̂B ∈ R
J×M is (feature) matrix with J rows. Each row is a vectorized sinogram bj

of length M , constructed using random rj and δθ
j , with superimposed Gaussian

noise, i.e., bj = A(rj , δ
θ
j )x

ex
j +ηj , with xex

j the true phantom and ηj the random
noise vector.

• R, D ∈ R
J×Np are matrices of true geometry parameters, with rows rj and δθ

j

corresponding to sinogram bj .

One important consideration during the training phase is choosing the phantom
images xex

j . If we fix xex
j to be a constant phantom image for all j , then we would

expect that the trained model only works well for the phantom that the model is
trained on. In other words, the model would be best at predicting CT geometry param-
eters when the phantom being reconstructed is the same phantom that the training
data is built upon, and may not generalize well to other phantoms. Since in a real-
world CT reconstruction problem, we do not know what the phantom is, using a
model that is trained upon a fixed phantom may not render good solutions.
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However, if we use different phantoms xex
j ’s when generating the training data,

the model may become confused due to the problem of non-uniqueness. It is pos-
sible that there exist (p1, x1), (p2, x2) with p1 �= p2 and x1 �= x2, such that
A(p1)x1 = A(p2)x2 = b. This means that the mapping ̂� : b → p may not be
one-to-one. Therefore, the model may predict parameters p that are very far from the
true value, thus rendering far-from-true solution x in Algorithm 3. Disturbance-based
strategies have been used in applications like Power Systems [23, 24] to help with
non-uniqueness. If we translate this strategy into our context, we may apply “distur-
bances,” i.e., different phantoms and different noise levels to generate many training
samples that correspond to the same set of geometry parameters p. That is, for each
p, we generate l training samples bi = A(p)xi +ηi for i = 1, · · · , l using l different
phantoms and noise levels. We will see how the disturbance-based strategy performs
in Section 4.

3 Method

In this section, we describe a hybrid method that combines machine learning with
block coordinate descent for solving (3). We will also explain technical details for
training the machine learning model.

We have mentioned previously that the machine learning problem of learning
geometry parameters when the phantom xex

j is not fixed in the training data may suf-
fer from non-uniqueness. Although in our experience, using Algorithm 3 with an ML
model trained using non-fixed xex

j ’s does not deliver solutions that are too far from
the true images, we do notice that relative errors in the predicted parameters on the
testing set have increased compared to the case with a fixed xex

j , but the relative errors
are still very low compared to the theoretical values (more on this in Section 4).

One natural approach that comes to mind is using a hybrid method that combines a
machine learning model and BCD. That is, we may first use the trained ML model to
predict p, then feed the predicted p as a starting guess to the BCD algorithm to run a
few iterations to refine the solution. This hybrid framework is described in Algorithm
4.

Algorithm 4 ML-BCD hybrid framework.

While there are many machine learning models to choose from, we consider one
of the simplest models—a multi-output linear regression model, which can also be
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thought of as a one-layer neural network. This ML model assumes a linear relation-
ship between input and output, and for simplicity, we take a zero bias term. To build
this model, we learn weights W ∈ R

M×2Np by solving the least squares problem

min
W

‖̂BW − [R D]‖2F . (5)

Then, given new data bj ′ ∈ R
M , we simply need to compute

pj ′ = [rj ′ ; δθ
j ′ ] = bT

j ′W (6)

to obtain the predicted geometry parameters. To further explain why (6) makes sense,
we consider a simplified case where there is only one unknown geometry param-
eter r . In this case, we look for weights w = [w1; · · · ; wM ] (here w is a vector
instead of a matrix because there is only one unknown geometry parameter) to build a
single-output linear regression model ̂�(b) = ∑M

m=1 bmwm = bT w = r . When gen-
eralizing to multiple unknown geometry parameters, we need to seek weight matrix
W ∈ R

M×2Np in order to map b to p = [r; δθ ] ∈ R
2Np , which can be done by tak-

ing the inner product of b and W . The predicted geometry parameters p can then be
fed as initial guess p0 into the BCD algorithm.

We have chosen the loss function to be ‖·‖2F , which makes the minimization prob-
lem separable (similar to the non-linear step of BCD). Since R = [̂r1 · · · r̂Np ] with
column vectors r̂ i , and D = ̂d1 · · ·̂dNp ] with column vectorŝd i , (5) is equivalent to

Np
∑

i=1

min
ŵr,i∈RM

‖̂Bŵr,i − r̂ i‖22 +
Np
∑

i=1

min
ŵd,i∈RM

‖̂Bŵd,i −̂d i‖22, (7)

where ŵr,i and ŵd,i are column vectors of WR and WD such that WR =
[ŵr,1 · · · ŵr,Np ], WD = [ŵd,1 · · · ŵd,Np ], and W = [WR WD]. The sub-problems

minŵr,i
‖̂Bŵr,i − r̂ i‖22 and minŵd,i

‖̂Bŵd,i − ̂d i‖22 are large and non-square linear
systems, and we need to use an iterative solver such as standard LSQR to solve each
of them. Algorithm 5 contains more detailed description of the hybrid method.

Algorithm 5 ML-BCD hybrid algorithm.
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4 Numerical experiments

In this section, we present several numerical experiments comparing performances
of Algorithms 1, 3, and 5. We have used the PRtomo function of IR Tools [25] to
generate all training data in this section. The linear solver used is IRhybrid lsqr
from IRTools and the non-linear solver is imfil [19]. We have used the default
configurations of IRhybrid lsqr whenever we run the linear solve, i.e., we take
the Tikhonov regularization termR(x) = ‖x‖22 and use weighted GCV to adaptively
select regularization parameters. The stopping criterion is when the GCV function
stabilizes or starts to increase (see [25] Sect. 2.5 for details). For the non-linear solver
imfil, we have set the budget, i.e., the maximum number of function evaluations
in Gauss-Newton, to be 50. We have also fixed the number of BCD iterations to be
10, and always report the reconstruction at the 10th BCD iteration unless otherwise
stated.

Test 1: 64by 64fixedphantomproblemwithNp = 3 We first consider a 64×64 fixed
Shepp-Logan phantom (see Fig. 2) as xex

j ∀j when generating the training data. We
use 180 scanning angles, i.e., 0:2:359 and Np = 3, so there are 6 unknown geometry
parameters in total: 3 ri’s and 3 δθ

i ’s, with each pair of (ri , δ
θ
i ) corresponding to 60

adjacent scanning angles. As a result, each bj ∈ R
16380, so ̂B ∈ R

J×16380, R and
D ∈ R

16380×3. Random white noise with fixed noise level 0.01 is superimposed onto
each bj .

We have generated training data ̂B, R and D with J = 20000 training sam-
ples, and an additional testing set ̂Btest, Rtest, and Dtest of 2000 samples. We train
ML model weights using the method described in Section 3, i.e., computing weight
matrix W = [WR WD] by solving every subproblem of (7). We train weights W

using training sets of different sizes: 2000, 4000, 6000, · · · , 20000, compute the
predicted geometry parameters

Rpred = ̂BtestWR and Dpred = ̂BtestWD,

Fig. 2 64 by 64 exact phantom
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and evaluate testing errors

‖Rpred − Rtest‖F

‖Rtest‖F

and
‖Dpred − Dtest‖F

‖Dtest‖F

on the testing set of 2000 samples. We plot testing errors against training set size in
Fig. 3.

We can observe that as the training set size increases, relative error in the predicted
geometry parameters decreases. This is because as the training set becomes larger, it
covers more variations in the different combinations of geometry parameters, which
makes predictions more accurate. Also, the relative errors in Rpred and Dpred are
very different in magnitude, meaning that it is much easier to predict r parameters
more accurately.

Figure 4 shows solutions using theoretical parameters, true parameters, ML-
predicted parameters (Algorithm 3), and BCD (Algorithm 1). The MLmodel weights
are trained on a training set of size 20000. We can observe in Fig. 4 that if we
leave the geometry parameters uncalibrated, the solution images will have very poor
quality. If we use the BCD scheme (Algorithm 1), the reconstruction quality seems
to have improved, but the solutions are still fuzzy and unclear. Using Algorithm 3
to predict geometry parameters using learned ML model weights, we obtain highly
accurate solutions, resembling solutions computed using the true parameters (which
represents the case of perfect calibration).

The model weights trained in this test are based on training data generated with the
same phantom. Therefore, if the solution image we are looking for is different from
the phantom that the weights are trained on, then the ML model may not generalize
well. As we observe in Fig. 5, the test samples have different underlying phantoms
(different from what is in the training data). As a result, Algorithm 3 no longer yields
accurate solutions, and no longer has an advantage over BCD.

Test 2: testing disturbances While we want to train models that generalize well
to different phantoms, the problem of non-uniqueness may affect the training of
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Fig. 3 Relative errors in Rpred (left) and Dpred (right) on testing set
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Fig. 4 Phantom reconstructions of 3 testing samples that share the same underlying phantom with training
set (1 testing sample per row). 1st column: solutions using theoretical parameters (i.e., uncalibrated).
2nd column: solutions using true parameters (i.e., perfect calibration). 3rd column: solutions using ML-
predicted parameters (Algorithm 3). 4th column: solutions using 10 BCD iterations (Algorithm 1)

Fig. 5 Phantom reconstructions of 2 testing samples that have different underlying phantom than training
set (1 testing sample per row). Column order same as Fig. 4
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machine learning models. In this test, we explore the effect of disturbances by gen-
erating the training data using different phantoms xex

j ’s. Examples of such phantoms
used are shown in Fig. 6. It can be seen that each phantom is created by altering the
original phantom by randomly removing ellipses and slightly varying ellipse sizes
and angles. Random noise of noise level chosen randomly in the range 0.1 to 2% is
superimposed to each sample.

Two training sets are created. We apply the disturbance strategy in the first training
set by generating 5 different phantoms and noise levels for each pj , with 7000 pj ’s in
total, i.e., there are 35000 samples in the dataset. As a frame of reference, we compare
results given by another training set of the same size, but without disturbances. That
is, 35000 samples each with a different pj , phantom and noise level.

We use these two training sets and subsets of the data sets to train ML model
weights. We compare the relative errors of the ML-predicted p for the testing set
consisting of 1000 samples (generated with different samples in the same way
as illustrated in Fig. 6). In Fig. 7, we show convergence of relative errors in
the geometry parameters Rpred and Dpred predicted by ML models trained using
5000:5000:35000 samples of the two data sets. Note that, for example, with the train-
ing set size 15000, one training set consists of 3000 pj ’s each having 5 disturbances
(i.e., phantoms and noise levels), the other training set has 15000 pj ’s (each having
their own phantom and noise level). We also notice that when the model is trained on
training data generated using different phantoms, the relative errors in the geometry
parameters are around 10 times larger than the relative errors presented in Test 1 due
to the variance of phantoms.

We see in Fig. 7 that the relative errors decrease for both training sets as training set
size increases. If we compare the relative errors vertically, we can see that the errors
are not so different for the two training sets. The slight difference may be caused by
randomness in generating the two sets. We believe it is only fair to compare results
using training sets of the same size, since, for example, if we compare results given
by one training set of 5000 samples with results given by another training set of 5000
samples each with 5 disturbances, the decrease in relative errors may be caused by
the increased training set size, not disturbance. Therefore, given the results in this
test, it is hard to conclude that disturbances help improve accuracy in the predicted
geometry parameters.

Test 3: 128 by 238 varying phantomproblemwith Np = 6 We have observed in Tests
1 and 2 that errors in the predicted geometry parameters would increase if the ML

Fig. 6 Examples of different phantoms used
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Fig. 7 Relative errors in Rpred and Dpred on testing set

model is not trained and tested on the same phantom images. We have also seen that,
in this case, although errors in δθ are quite large, relative errors in r are still relatively
low.

In this test, we focus on the case where phantoms vary across training and testing
samples. We increase phantom size to n = 128 and number of geometry parameters
to Np = 6. Hence, with 180 scanning angles 0:2:358, each pair of (ri , δ

θ
i ) will be

constant for 30 adjacent angles. We compare solutions using the BCD (Algorithm 1),
ML (Algorithm 3) and ML-BCD hybrid (Algorithm 5) methods. The ML weights are
trained using the 40000 training samples. We evaluate the ML-BCD hybrid method
and BCD method (each with 10 iterations) on a testing set of 100 samples, calcu-
late the relative errors in xk , rk and δθ

i for each BCD iteration k, and generate the
histograms in Fig. 8.

In the first row of Fig. 8, frequencies of the iteration at which the minimum error
occurs are plotted. Note that iteration 0 represents the initial guess, i.e., for BCD, this
would be the uncalibrated solution; and for ML-BCD hybrid, this would be obtained
directly from using ML-predicted parameters without further refining with BCD. We
can draw the conclusion that the hybrid method has better convergence properties for
x, where for nearly 40% of testing samples, BCD reaches the minimum relative error
of x in the last iteration. While for BCD, in more than 50% of testing samples, the
minimum relative error in x is either reached at the initial guess or the first iteration,
which means that BCD is not very effective at improving solution accuracy. This is
further confirmed in the distribution of relative errors in the second and third rows of
Fig. 8, in which we notice that in general, the relative errors in both the solutions and
the calibrated geometry parameters given by the ML-BCD hybrid method are very
low compared to BCD.

In Fig. 9, we display solutions of 3 test samples using different methods: ML-
only (Algorithm 3), ML-BCD hybrid (Algorithm 5), and BCD-only (Algorithm 1)
(solutions at the last BCD iteration are shown). As a point of reference, we also
present the solutions obtained using the true parameters to showcase the best solution
possible. The 3 test samples are randomly picked from the 100 testing samples, and
we see that for 2 out of 3, the BCD refinement step of the hybrid method has improved
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Fig. 8 1st row: BCD iteration number with the minimum relative error. 2nd row: minimum relative error
across all iterations. 3rd row: relative error at the 10th BCD iteration

solution accuracy over using ML alone, and for these 2 samples, the hybrid solutions
have significantly higher accuracy compared to the BCD solutions. For the first test
sample, however, the BCD-refinement step of the hybrid method seems to not have
improved solution accuracy. This is also expected because we have observed in the
histograms of Fig. 8 that in some cases, the hybrid method may not work so well—
but it is evident that ML-BCD hybrid is more advantageous over BCD on average in
the tasks of parameter calibration and image reconstruction.

5 Conclusions

In the CT image acquisition process, geometry parameters in the forward model are
prone to perturbation due to experimental errors. Hence, the forward model needs
to be calibrated in order to obtain meaningful reconstructions of the imaged object.
In this paper, we have proposed an enhanced, hybrid BCD framework that incor-
porates machine learning for solving the model calibration problem. By training a
machine learning model (multi-output linear regression model) that maps the obser-
vation b to p and feeding the predicted parameters as initial guesses to BCD, we
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Fig. 9 Phantom reconstructions of 3 testing samples (1 test sample per row). 1st column: solutions using
theoretical parameters (i.e., uncalibrated). 2nd column: solutions using true parameters (i.e., perfect cali-
bration). 3rd column: solutions using ML-predicted parameters (Algorithm 3). 4th column: solutions using
ML-BCD hybrid method with 10 BCD iterations (Algorithm 5). 5th column: solutions using 10 BCD
iterations (Algorithm 1)

are able to improve the accuracy of both the calibrated geometry parameters and the
reconstructed image.

Interesting future directions include the development of more complex machine
learning models that allows for higher parameter calibration capability. For example,
models that can predict Np, i.e., the number of geometry parameters that need to
be tuned, and calibrate the corresponding geometry parameters simultaneously. On
the other hand, the expensive non-linear step for solving (3) calls for more efficient
solvers, for which approximation methods may be developed and utilized.
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