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Abstract
In this paper, we analyze the drift-implicit (or backward) Euler numerical scheme
for a class of stochastic differential equations with unbounded drift driven by an
arbitrary λ-Hölder continuous process, λ ∈ (0, 1). We prove that, under some mild
moment assumptions on the Hölder constant of the noise, the Lr(�; L∞([0, T ]))-
approximation error converges to 0 as O(�λ), � → 0. To exemplify, we consider
numerical schemes for the generalized Cox–Ingersoll–Ross and Tsallis–Stariolo–
Borland models. The results are illustrated by simulations.

Keywords Sandwiched process · Unbounded drift · Hölder continuous noise ·
Numerical scheme
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1 Introduction

We analyze the drift-implicit (also known as backward) Euler numerical scheme for
stochastic differential equations (SDEs) of the form

Y (t) = Y (0) +
∫ t

0
b(s, Y (s))ds + Z(t), t ∈ [0, T ], (1.1)

where Z is a general λ-Hölder continuous noise, λ ∈ (0, 1), and the drift b is
unbounded and has one of the following two properties:

(A) b(t, y) has an explosive growth of the type (y − ϕ(t))−γ as y ↓ ϕ(t), where ϕ

is a given Hölder continuous function of the same order λ as Z and γ > 1
λ

− 1;
(B) b(t, y) has an explosive growth of the type (y − ϕ(t))−γ as y ↓ ϕ(t) and

an explosive decrease of the type −(ψ(t) − y)−γ as y ↑ ψ(t), where ϕ and
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ψ are given Hölder continuous functions of the same order λ as Z such that
ϕ(t) < ψ(t), t ∈ [0, T ], and γ > 1

λ
− 1.

The SDEs of this type were extensively studied in [14]. It was shown that the
properties (A) or (B), along with some relatively weak additional assumptions, ensure
that the solution to (1.1) is bounded from below (one-sided sandwich case) by the
function ϕ in the setting (A), i.e.

Y (t) > ϕ(t), t ∈ [0, T ], (1.2)

or stays between ϕ and ψ (two-sided sandwich case) in the setting (B), i.e.

ϕ(t) < Y(t) < ψ(t), t ∈ [0, T ]. (1.3)

We emphasize that the SDE type (1.1) includes and generalizes several widespread
stochastic models. For example, the process given by

Y (t) = Y (0) −
∫ t

0

κY (s)

1 − Y 2(s)
ds + Z(t), t ∈ [0, T ],

where Z is λ-Hölder continuous with λ > 1
2 , fits into the setting (B), and can

be regarded as a natural extension of the Tsallis–Stariolo–Borland (TSB) model
employed in biophysics (for more details on the standard Brownian TSB model,
see, e.g. [15, Subsection 2.3] or [16, Chapter 3 and Chapter 8]). Another important
example is

Y (t) = Y (0) +
∫ t

0

(
κ1

Yγ (s)
− κ2Y (s)

)
ds + Z(t), t ∈ [0, T ], (1.4)

where Z is λ-Hölder continuous, λ ∈ (0, 1), and γ > 1
λ

− 1. It can be shown (see
[14, Subsection 4.2]) that, if λ > 1

2 , stochastic process X(t) := Y 1+γ (t) satisfies the
SDE

X(t) = X(0)+(1+γ )

∫ t

0
(κ1 − κ2X(s)) ds+

∫ t

0
Xα(s)dZ(s), t ∈ [0, T ], (1.5)

where α := γ
1+γ

∈ (0, 1) and the integral w.r.t. Z exists as a pathwise limit of
Riemann-Stieltjes integral sums. Equations of the type (1.5) are used in finance in the
standard Brownian setting and are called Chan–Karolyi–Longstaff–Sanders (CKLS)
or constant elasticity of variance (CEV) model (see, e.g. [4, 8, 9]). If α = 1

2 , Eq.
(1.5) is also known as the Cox–Ingersoll–Ross (CIR) equation, see, e.g. [10–12].

In this work, we develop a numerical approximation (both pathwise and in
Lr(�; L∞([0, T ]))) for sandwiched processes (1.1) which is similar to the drift-
implicit (also known as backward) Euler scheme constructed for the classical
Cox–Ingersoll–Ross process in [2, 3, 13] and extended to the case of the fractional
Brownian motion with H > 1

2 in [18, 21, 22]. In this drift-implicit scheme, in order
to generate Ŷ (tk+1), one has to solve the equation of the type

Ŷ (tk+1) = Ŷ (tk) + b(tk+1, Ŷ (tk+1))�N + (Z(tk+1) − Z(tk)) (1.6)

with respect to Ŷ (tk+1) which is in general a more computationally heavy prob-
lem in comparison to the standard Euler-type techniques (see, e.g. [14, Section 5]).
However, this drift-implicit numerical method also has a substantial advantage: the

460



Numerical Algorithms (2023) 93:459–491

approximation Ŷ maintains the property of being sandwiched, i.e. for all points tk of
the partition

Ŷ (tk) > ϕ(tk)

in the setting (A) and
ϕ(tk) < Ŷ (tk) < ψ(tk)

in the case (B). Having this in mind, we shall say that the drift-implicit scheme is
sandwich preserving.

We note that a similar approximation scheme was studied in [21] and [18, 22] for
processes of the type (1.4) driven by a fractional Brownian motion with H > 1/2.
Our work can be seen as an extension of those. However, we emphasize that our
results have several elements of novelty. In particular, the paper [21] discusses only
pathwise convergence and not convergence in Lr(�; L∞([0, T ])). The approach of
[18] and [22] is very noise specific as both use Malliavin calculus techniques in the
spirit of [19, Proposition 3.4] to estimate inverse moments of the considered process
(which turns out to be crucial to control explosive growth of the drift). As a result,
two limitations appear: a restrictive condition involving the time horizon T (see, e.g.
[18, Eq. (8) and Remark 3.1]) and sensitivity to the choice of the noise, i.e. their
method cannot be applied directly for drivers other than fBm with H > 1/2. This
lack of flexibility in terms of the choice of the noise is a crucial disadvantage in,
e.g. finance where modern empirical studies justify the use of fBm with extremely
low Hurst index (H < 0.1) [7] or even drivers with time-varying roughness [1]. Our
approach makes use of [14, Theorem 3.2] based on the pathwise calculus and allows
us to obtain strong convergence with no limitations on T for a substantially larger
class of noises. In fact, we require only Hölder continuity of the noise and some
moment condition on the corresponding Hölder coefficient which is often satisfied
and shared by, e.g. all Hölder continuous Gaussian processes.

The paper is organized as follows. Section 2 describes the setting in detail and
contains some necessary statements on the properties of the sandwiched processes.
In Section 3, we give the convergence results in the setting (B) which turns out to be a
bit simpler than (A) due to boundedness of the process. Section 4 extends the scheme
to the setting (A). In Section 5, we give some examples and simulations; in particular,
we show that in some cases (e.g. for the generalized TSB and CIR models), Eq. (1.6)
can be solved explicitly which drastically improves the computational efficiency of
the algorithm.

2 Preliminaries and assumptions

Fix T > 0 and define

Da1 := {(t, y) ∈ [0, T ] × R+, y ∈ (ϕ(t) + a1, ∞)}, a1 ≥ 0,

Da1,a2 := {(t, y) ∈ [0, T ] × R+, y ∈ (ϕ(t) + a1, ψ(t) − a2)},
a1, a2 ∈

[
0,

1

2
‖ψ − ϕ‖∞

)
. (2.1)

where ϕ, ψ ∈ C([0, T ]) are such that ϕ(t) < ψ(t), t ∈ [0, T ].
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Throughout the paper, we will be dealing with a stochastic differential equation of
the form

Y (t) = Y (0) +
∫ t

0
b(s, Y (s))ds + Z(t), t ∈ [0, T ]. (2.2)

The noise Z = {Z(t), t ∈ [0, T ]} is always assumed to satisfy the following
conditions:

(Z1) Z(0) = 0 a.s.;
(Z2) Z has a.s. λ-Hölder continuous paths for some λ ∈ (0, 1), i.e. there exists a

positive random variable 
 such that

|Z(t) − Z(s)| ≤ 
|t − s|λ, s, t ∈ [0, T ], a.s.

Given the noise Z satisfying (Z1)–(Z2), the initial value Y (0) and the drift b satisfy
one of the two assumptions given below.

Assumption A (One-sided sandwich case) There exists a λ-Hölder continuous
function ϕ: [0, T ] → R with λ being the same as in (Z2) such that

(A1) Y (0) is deterministic and Y (0) > ϕ(0),
(A2) b: D0 → R is continuous and for any ε ∈ (0, 1)

|b(t1, y1)−b(t2, y2)| ≤ c1

εp

(|y1 − y2| + |t1 − t2|λ
)
, (t1, y1), (t2, y2) ∈ Dε,

where c1 > 0 and p > 1 are some given constants and λ is from (Z2),
(A3)

b(t, y) ≥ c2

(y − ϕ(t))γ
, (t, y) ∈ D0 \ Dy∗ ,

where y∗, c2 > 0 are some given constants and γ > 1
λ

− 1 with λ being from
(Z2),

(A4) the partial derivative ∂b
∂y

, with respect to the spacial variable exists, is
continuous and bounded from above, i.e.

∂b

∂y
(t, y) < c3, (t, y) ∈ D0,

for some c3 > 0.

Assumption B (Two-sided sandwich case) There exist λ-Hölder continuous func-
tions ϕ, ψ : [0, T ] → R, ϕ(t) < ψ(t), t ∈ [0, T ], with λ being the same as in (Z2)
such that

(B1) Y (0) is deterministic and ϕ(0) < Y(0) < ψ(0),

(B2) b: D0,0 → R is continuous and for any ε ∈
(

0, min
{

1, 1
2‖ψ − ϕ‖∞

})

|b(t1, y1)−b(t2, y2)| ≤ c1

εp

(|y1 − y2| + |t1 − t2|λ
)
, (t1, y1), (t2, y2) ∈ Dε,ε,

where c1 > 0 and p > 1 are some given constants and λ is from (Z2),
(B3)

b(t, y) ≥ c2

(y − ϕ(t))γ
, (t, y) ∈ D0,0 \ Dy∗,0,
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b(t, y) ≤ − c2

(ψ(t) − y)γ
, (t, y) ∈ D0,0 \ D0,y∗,

where y∗, c2 > 0 are some given constants and γ > 1
λ

− 1 with λ being from
(Z2),

(B4) the partial derivative ∂b
∂y

, with respect to the spacial variable exists, is
continuous and bounded from above, i.e.

∂b

∂y
(t, y) < c3, (t, y) ∈ D0,0,

for some c3 > 0.

Both Assumptions A and B along with (Z1)–(Z2) ensure that the SDE (2.2) has
a unique solution. In the theorem below, we provide some relevant results related to
sandwiched processes (see [14, Theorems 2.3, 2.5, 2.6, 3.1, and 3.2]).

Theorem 2.1 Let Z = {Z(t), t ∈ [0, T ]} be a stochastic process satisfying
(Z1)–(Z2).

1) If the initial value Y (0) and the drift b satisfy assumptions (A1)–(A3), then the
SDE has a unique strong pathwise solution such that for all t ∈ [0, T ]

Y (t) > ϕ(t) a.s. (2.3)

Moreover, there exist deterministic constants L1, L2, L3, and L4 > 0 depending
only on Y (0), the shape of b and λ, such that for all t ∈ [0, T ], the estimate
(2.3) can be refined as follows:

ϕ(t) + L1

(L2 + 
)
1

γ λ+λ−1

≤ Y (t) ≤ L3 + L4
 a.s., (2.4)

where 
 is from (Z2) and γ is from (A3). In particular, if 
 is such that

E

[



r
γλ+λ−1

]
< ∞ (2.5)

for some r > 0, then

E

[
sup

t∈[0,T ]
1

(Y (t) − ϕ(t))r

]
< ∞,

and, if

E
r < ∞ (2.6)

for some r > 0, then

E

[
sup

t∈[0,T ]
|Y (t)|r

]
< ∞.

2) If the initial value Y (0) and the drift b satisfy assumptions (B1)–(B3), then the
SDE has a unique strong pathwise solution such that for all t ∈ [0, T ]

ϕ(t) < Y(t) < ψ(t) a.s. (2.7)
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Moreover, there exist deterministic constants L1 and L2 > 0 depending only on
Y (0), the shape of b and λ, such that for all t ∈ [0, T ], the estimate (2.7) can be
refined as follows:

ϕ(t) + L1

(L2 + 
)
1

γ λ+λ−1

≤ Y (t) ≤ ψ(t) − L1

(L2 + 
)
1

γ λ+λ−1

a.s., (2.8)

where 
 is from (Z2) and γ is from (B3). In particular, if 
 can be chosen in
such a way that

E

[



r
γλ+λ−1

]
< ∞ (2.9)

for some r > 0, then

E

[
sup

t∈[0,T ]
1

(Y (t) − ϕ(t))r

]
< ∞, E

[
sup

t∈[0,T ]
1

(ψ(t) − Y (t))r

]
< ∞.

Remark 2.2 Properties (2.3)–(2.4) and (2.7)–(2.8) hold on each ω ∈ � such that
Z(ω; t), t ∈ [0, T ], is Hölder continuous and we always consider only such ω ∈ �

in all proofs with pathwise arguments. For notational simplicity, we will also omit ω

in brackets.

Remark 2.3 Due to the property (2.7), the setting described in Assumption B will
be referred to as the two-sided sandwich case since the solution is “sandwiched”
between ϕ and ψ a.s. Similarly, the property (2.3) justifies the name one-sided sand-
wich case for the setting corresponding to Assumption A. In both cases A and B, the
solution to (2.2) will be referred to as a sandwiched process.

Remark 2.4 Note that assumptions (A4) and (B4) are not required for Theorem 2.1
to hold and will be used later on.

In what follows, conditions (2.5), (2.6), and (2.9) will play an important role since
the Lr(�; L∞([0, T ]))-convergence of the approximation scheme will directly fol-
low from the integrability of 
. However, it should be noted that these conditions are
not very restricting as indicated in the following example.

Example 2.5 (Hölder Gaussian noises) Let Z = {Z(t), t ∈ [0, T ]} be an arbitrary
Hölder continuous Gaussian process satisfying (Z1)–(Z2), e.g. standard or fractional
Brownian motion. In this case, by [6], the random variable 
 from (Z2) can be chosen
to have moments of all orders.

We now complete the Section with some examples of the sandwiched processes.

Example 2.6 (Generalized CIR and CKLS/CEV models) Let ϕ ≡ 0, Z satisfy (Z1)–
(Z2) with λ ∈ (0, 1) and Y (0), κ1, κ2 > 0, γ > 1

λ
− 1 be given. Then, by Theorem

2.1 (1), the SDE of the form

Y (t) = Y (0) +
∫ t

0

(
κ1

Yγ (s)
− κ2Y (s)

)
ds + Z(t), t ∈ [0, T ], (2.10)
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has a unique positive solution. Moreover, it can be shown (see [14, Subsection 4.2])
that, if λ > 1

2 , stochastic process X(t) := Y 1+γ (t), t ∈ [0, T ], a.s. satisfies the SDE
of the form

X(t) = X(0)+(1+γ )

∫ t

0
(κ1 − κ2X(s)) ds +(1+γ )

∫ t

0
Xα(s)dZ(s), t ∈ [0, T ],

(2.11)
where α := γ

1+γ
∈ (0, 1) and the integral w.r.t. Z exists a.s. as a pathwise limit of

Riemann-Stieltjes integral sums. As mentioned already, the (2.11) appears in finance
in the standard Brownian setting and is called Chan–Karolyi–Longstaff–Sanders
(CKLS) or constant elasticity of variance (CEV) model (see, e.g. [4, 8, 9]). If α = 1

2
(i.e. when γ = 1), the (2.11) is also known as the Cox–Ingersoll–Ross (CIR) equation
[10–12].

Remark 2.7 (Connection with the classical Brownian CIR/CKLS models)

1) If γ = 1 in (2.10) (CIR case), Assumption (A3) demands Z to be Hölder contin-
uous of order λ > 1

2 . That means that Example 2.6 does not cover the classical
Brownian CIR model since the continuous modification of a standard Brownian
motion has paths that are Hölder continuous only up to (but not including) the
order 1/2. However, it is still possible to establish a clear connection between our
setting and the classical CIR model. Indeed, let {W(t), t ∈ [0, T ]} be the con-
tinuous modification of a standard Brownian motion. Consider the CIR process
X = {X(t), t ∈ [0, T ]} defined by

dX(t) = a(b − X(t))dt + σ
√

X(t)dW(t), X0 > 0,

where a, b, σ > 0 and 2ab > σ 2. The latter condition ensures that X has positive
paths a.s. and hence one can define Y := √

X. By Itô’s formula, Y satisfies the
SDE

dY (t) =
(

κ1

Y (t)
− κ2Y (t)

)
dt + σ

2
dW(t), Y0 = √X0 > 0, (2.12)

with κ1 := 4ab−σ 2

8 and κ2 := a
2 , which has a type very similar to (2.10). The

SDE (2.12) can then be used to define a drift-implicit Euler scheme of the form
(1.6) which turns out to converge to the original process (2.12). For more details
on the drift-implicit Euler scheme for the classical Brownian CIR process, see,
e.g. [13].

2) If γ > 1 in (2.10), Assumptions (Z1)–(Z2) and (A1)–(A4) allow Z to be a stan-
dard Brownian motion. However, in this case, one cannot use pathwise calculus
to obtain (2.11) whereas the standard Itô’s formula shows that X := Y 1+γ does
not coincide with the standard CKLS process. In order to cover the standard
CKLS model, we have to modify the drift in (2.10) to compensate for the second
order term in Itô’s formula as follows:

dY (t) =
(

κ1

Yγ (t)
− γ σ 2

2Y (t)
− κ2Y (t)

)
dt + σdW(t). (2.13)
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The SDE (2.13) satisfies Assumption A and X := Y 1+γ is the solution to the
SDE

X(t) = X(0) + (1 + γ )

∫ t

0
(κ1 − κ2X(s)) ds + (1 + γ )σ

∫ t

0
Xα(s)dW(s),

α = γ

1 + γ
,

i.e. X := Y 1+γ is the classical CKLS process.

Example 2.8 (Generalized TSB model) Let ϕ ≡ −1, ψ ≡ 1, Y (0) ∈ (−1, 1), Z

satisfy (Z1)–(Z2) with λ > 1
2 and κ > 0. Then, by Theorem 2.1 (2), the SDE of the

form

Y (t) = Y (0) −
∫ t

0

κY (s)

1 − Y 2(s)
ds + Z(t), t ∈ [0, T ], (2.14)

has a unique solution such that −1 < Y(t) < 1 for all t ∈ [0, T ] a.s. In the
standard Brownian setting, the SDE of the type (2.14) is known as the Tsallis–
Stariolo–Borland (TSB) model and is used in biophysics (for more details, see, e.g.
[15, Subsection 2.3] or [16, Chapter 3 and Chapter 8]).

Example 2.9 For the given Z satisfying (Z1)–(Z2) with λ ∈ (0, 1), λ-Hölder contin-
uous functions ϕ, ψ , ϕ(t) < ψ(t), t ∈ [0, T ], and Y (0) ∈ (ϕ(0), ψ(0)) consider the
SDE of the form

Y (t) = Y (0) +
∫ t

0

(
κ1

(Y (s) − ϕ(s))γ
− κ2

(ψ(s) − Y (s))γ
− κ3Y (s)

)
ds + Z(t),

t ∈ [0, T ],
where κ1, κ2 > 0, κ3 ∈ R, and γ > 1

λ
−1. By Theorem 2.1 (2), this SDE has a unique

solution such that ϕ(t) < Y(t) < ψ(t) a.s. Note that the TSB drift from (2.14) also
has this shape with ϕ ≡ −1, ψ ≡ 1, γ = 1, κ1 = κ2 = κ

2 , and κ3 = 0 since

− κy

1 − y2
= κ

2

(
1

y + 1
− 1

1 − y

)
.

Notation 2.10 In what follows, C denotes any positive deterministic constant that
does not depend on the partition and the exact value of which is not relevant. Note
that C may change from line to line (or even within one line).

3 The approximation scheme for the two-sided sandwich

We will start by considering the numerical scheme for the two-sided sandwich case
which turns out to be slightly simpler due to boundedness of Y . Let the noise Z

satisfy (Z1)–(Z2), Y (0) and b satisfy Assumption B and Y = {Y (t), t ∈ [0, T ]} be
the unique solution of the SDE (2.2). Consider a uniform partition {0 = t0 < t1 <

... < tN = T } of [0, T ], tk := T k
N

, k = 0, 1, ..., N , with the mesh �N := T
N

such that

c3�N < 1, (3.1)
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where c3 is an upper bound for ∂b
∂y

from (B4). Let us define Ŷ (t) as follows:

Ŷ (0) = Y (0),

Ŷ (tk+1) = Ŷ (tk) + b(tk+1, Ŷ (tk+1))�N + (Z(tk+1) − Z(tk)),

Ŷ (t) = Ŷ (tk), t ∈ [tk, tk+1), (3.2)

where the second expression is considered as an equation with respect to Ŷ (tk+1).

Remark 3.1 Equation with respect to Ŷ (tk+1) from (3.2) has a unique solution such
that Ŷ (tk+1) ∈ (ϕ(tk+1), ψ(tk+1)). Indeed, for any fixed t ∈ [0, T ] and any z ∈ R,
consider the equation

y − b(t, y)�N = z (3.3)

w.r.t. y. Assumption (B4) together with condition (3.1) imply that (y−b(t, y)�N)′y >

0 and, by (B3),

y − b(t, y)�N → −∞, y → ϕ(t)+,

y − b(t, y)�N → ∞, y → ψ(t) − .

Thus, there exists a unique y ∈ (ϕ(t), ψ(t)) satisfying (3.3).

Remark 3.2 The value of Ŷ (t) for t ∈ [0, T ] \ {t0, ..., tN } can also be defined via
linear interpolation as

Ŷ (t) = 1

�N

(
(tk+1 − t)Ŷ (tk) + (t − tk)Ŷ (tk+1)

)
, t ∈ [tk, tk+1), k = 0, ..., N−1.

In such case, all results of this section hold with almost no changes in the proofs.

Remark 3.3 The algorithms of the type (3.2) are sometimes called the drift-implicit
[2, 3, 13] or backward [18] Euler approximation schemes.

Before presenting the main results of this section, we require some auxiliary lem-
mas. First of all, we note that the values Ŷ (tn), n = 0, 1, ..., N , of the discretized
process are bounded away from both ϕ and ψ by random variables that do not depend
on the partition. Namely, we have the following result that can be regarded as a
discrete modification of arguments in [14, Theorem 3.2].

Lemma 3.4 LetZ satisfy (Z1)–(Z2), Assumption B hold and the mesh of the partition
�N satisfy (3.1). Then there exist deterministic constants L1 and L2 > 0 depending
only on Y (0), the shape of the drift b and λ, such that

ϕ(tn)+ L1

(L2 + 
)
1

γ λ+λ−1

≤ Ŷ (tn) ≤ ψ(tn)− L1

(L2 + 
)
1

γ λ+λ−1

, n = 0, 1, ..., N, a.s.,

where 
 is from (Z2) and γ is from (B3).
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Proof We will prove that

ϕ(tn) + L1

(L2 + 
)
1

γ λ+λ−1

≤ Ŷ (tn), n = 0, 1, ..., N, a.s. (3.4)

by using the pathwise argument (see Remark 2.2). The other inequality can be derived
in a similar manner. Recall that, by Assumption B, ϕ and ψ are λ-Hölder continuous,
i.e. there exists K > 0 such that

|ϕ(t) − ϕ(s)| + |ψ(t) − ψ(s)| ≤ K|t − s|λ, t, s ∈ [0, T ].
Denote also

β := λ
λ

1−λ − λ
1

1−λ

c
λ

1−λ

2

> 0,

where c2 is from (B3),

L2 := K + (2β)λ−1
(

(Y (0) − ϕ(0)) ∧ y∗ ∧ (ψ(0) − Y (0))

2

)1−λ−γ λ

> 0,

with the constants y∗ and γ also from (B3), and

ε := 1

(2β)
1−λ

γ λ+λ−1 (L2 + 
)
1

γ λ+λ−1

.

Note that, with probability 1,

|ϕ(t) − ϕ(s)| + |ψ(t) − ψ(s)| + |Z(t) − Z(s)| ≤ (L2 + 
)|t − s|λ, t, s ∈ [0, T ],
and, furthermore, it is easy to check that ε < Y(0) − ϕ(0), ε < ψ(0) − Y (0), and
ε < y∗.

If Ŷ (tn) ≥ ϕ(tn) + ε for a particular n = 0, 1, ..., N , then, by definition of ε, the
bound of the type (3.4) holds automatically. Suppose that there exists n = 1, ..., N
such that Ŷ (tn) < ϕ(tn) + ε. Denote by κ(n) the last point of the partition before tn
on which Ŷ stays above ε, i.e.

κ(n) := max{k = 0, ..., n − 1 | Ŷtk ≥ ϕ(tk) + ε}
(note that such point exists since Ŷ (t0) − ϕ(0) = Y (0) − ϕ(0) > ε). Then, for all
k = κ(n)+1, ..., n we have that Ŷ (tk) < ε < y∗ and therefore, using (B3), we obtain
that, with probability 1,

Ŷ (tn) − ϕ(tn) = Ŷ (tκ(n)) − ϕ(tn) + �N

n∑
k=κ(n)+1

b(tk, Ŷ (tk)) + Z(tn) − Z(tκ(n))

≥ ε + ϕ(tκ(n)) − ϕ(tn) + c2

εγ
(tn − tκ(n)) + Z(tn) − Z(tκ(n))

≥ ε + c2

εγ
(tn − tκ(n)) − (L2 + 
)(tn − tκ(n))

λ.

Consider a function Fε : R+ → R such that

Fε(t) = ε + c2

εγ
t − (L2 + 
)tλ.
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It is straightforward to verify that Fε attains its minimum at

t∗ :=
(

λ

c2

) 1
1−λ

ε
γ

1−λ (L2 + 
)
1

1−λ

and, taking into account the explicit form of ε,

Fε(t∗) = ε + λ
1

1−λ

c
λ

1−λ

2

ε
γλ

1−λ (L2 + 
)
1

1−λ − λ
λ

1−λ

c
λ

1−λ

2

ε
γλ

1−λ (L2 + 
)
1

1−λ

= ε − βε
γλ

1−λ (L2 + 
)
1

1−λ = 1

2
γ λ

γ λ+λ−1 β
1−λ

γ λ+λ−1 (L2 + 
)
1

γ λ+λ−1

= ε

2
.

Namely, even if Ŷ (tn) < ϕ(tn) + ε, we still have that, with probability 1,

Ŷ (tn) − ϕ(tn) ≥ Fε(tn − tκ(n)) ≥ Fε(t∗) = ε

2
,

and thus, with probability 1, for any n = 0, 1, ..., N

Ŷ (tn) ≥ ϕ(tn) + ε

2
= ϕ(tn) + 1

2
γ λ

γ λ+λ−1 β
1−λ

γ λ+λ−1 (L2 + 
)
1

γ λ+λ−1

=: ϕ(tn) + L1

(L2 + 
)
1

γ λ+λ−1

,

where L1 := 1

2
γ λ

γ λ+λ−1 β
1−λ

γ λ+λ−1
.

Remark 3.5 It is clear that constants L1 and L2 in Lemma 3.4 can be chosen jointly
for Y and Ŷ , so that the inequalities

ϕ(t) + L1

(L2 + 
)
1

γ λ+λ−1

≤ Y (t) ≤ ψ(t) − L1

(L2 + 
)
1

γ λ+λ−1

, t ∈ [0, T ],

and

ϕ(tn) + L1

(L2 + 
)
1

γ λ+λ−1

≤ Ŷ (tn) ≤ ψ(tn) − L1

(L2 + 
)
1

γ λ+λ−1

, n = 0, 1, ..., N,

hold simultaneously with probability 1.

Next, we proceed with a simple property of the sandwiched process Y in (2.2).

Lemma 3.6 Let Z satisfy (Z1)–(Z2) and assumptions (B1)–(B3) hold.

1) There exists a positive random variable ϒ such that, with probability 1,

|Y (t) − Y (s)| ≤ ϒ |t − s|λ, t, s ∈ [0, T ].
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2) If, for some r ≥ 1,

E

[



r max{p,γ λ+λ−1}
γ λ+λ−1

]
< ∞, (3.5)

where λ and 
 are from (Z2), p is from (B2), and γ is from (B3), then one can
choose ϒ such that

E[ϒr ] < ∞.

Proof Denote φ(t) := 1
2 (ψ(t) + ϕ(t)), t ∈ [0, T ]. By (2.8),

ϕ(t) + L1

(L2 + 
)
1

γ λ+λ−1

≤ Y (t) ≤ ψ(t) − L1

(L2 + 
)
1

γ λ+λ−1

, t ∈ [0, T ], a.s.,

i.e. with probability 1 (t, Y (t)) ∈ D 1
ξ
, 1
ξ
, t ∈ [0, T ], where

ξ := (L2 + 
)
1

γ λ+λ−1

L1
(3.6)

and D 1
ξ
, 1
ξ

is defined by (2.1). It is evident that (t, φ(t)) ∈ D 1
ξ
, 1
ξ
, t ∈ [0, T ]; therefore,

using (Z2), (B2), and (2.7), we can write that, with probability 1, for all 0 ≤ s < t ≤
T :

|Y (t) − Y (s)| ≤
∫ t

s

|b(u, Y (u))|du + |Z(t) − Z(s)|

≤
∫ t

s

|b(u, Y (u)) − b(u, φ(u))|du +
∫ t

s

|b(u, φ(u))|du + 
(t − s)λ

≤ c1ξ
p

∫ t

s

|Y (u) − φ(u)|du + max
u∈[0,T ]|b(u, φ(u))|(t − s) + 
(t − s)λ

≤
(

c1ξ
p‖ψ − ϕ‖∞ + max

u∈[0,T ]|b(u, φ(u))|
)

(t − s) + 
(t − s)λ

≤ C(ξp + 
 + 1)(t − s)λ, (3.7)

where C is a positive constant. Now one can put

ϒ := C(ξp + 
 + 1) (3.8)

and observe that the definition of ϒ , (3.5), and (3.6) implies that

E[ϒr ] < ∞.

Next, using Lemma 3.4 and following the proof of Lemma 3.6, it is easy to obtain
the following result.

Corollary 3.7 Let (Z1)–(Z2) and Assumption B hold. Then there exists a random
variable ϒ independent of the partition such that with probability 1

|Ŷ (tk) − Ŷ (tn)| ≤ ϒ |tk − tn|λ, k, n = 0, ..., N . (3.9)

Furthermore, if (3.5) holds for some for r ≥ 1, then

E[ϒr ] < ∞.
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Finally, ϒ can be chosen jointly for Y and Ŷ , so that

|Y (t) − Y (s)| ≤ ϒ |t − s|λ, t, s ∈ [0, T ],
holds simultaneously with (3.9) with probability 1.

Lemma 3.8 LetZ satisfy (Z1)–(Z2), Assumption B hold and the mesh of the partition
�N satisfy (3.1). Then

1) for any r ≥ 1, there exists a positive random variable C1 that does not depend
on the partition such that

sup
k=0,1,...,N

|Y (tk) − Ŷ (tk)|r ≤ C1�
λr
N a.s.;

2) if, additionally,

E

[



r(p+max{p,γ λ+λ−1})
γ λ+λ−1

]
< ∞, (3.10)

where λ and 
 are from (Z2), p is from (B2), and γ is from (B3), then one can
choose C1 such that E[C1] < ∞, i.e. there exists a deterministic constant C that
does not depend on the partition such that

E

[
sup

k=0,1,...,N
|Y (tk) − Ŷ (tk)|r

]
≤ C�λr

N .

Proof Fix ω ∈ � such that Z(ω, t), t ∈ [0, T ], is Hölder continuous (for simplicity
of notation, we will omit ω in the brackets). Denote en := Y (tn) − Ŷ (tn), �Zn :=
Z(tn) − Z(tn−1). Then

en = Y (tn−1) +
∫ tn

tn−1

b(s, Y (s))ds + �Zn

−Ŷ (tn−1) − b(tn, Ŷ (tn))�N − �Zn

= en−1 + (b(tn, Y (tn)) − b(tn, Ŷ (tn))
)
�N

+
∫ tn

tn−1

(b(s, Y (s)) − b(tn, Y (tn)))ds. (3.11)

By the mean value theorem,
(
b(tn, Y (tn)) − b(tn, Ŷ (tn))

)
�N = ∂b

∂y
(tn, �n)�N(Y (tn) − Ŷ (tn))

= ∂b

∂y
(tn, �n)�Nen

with �n ∈ (Y (tn)∧Ŷ (tn), Y (tn)∨Ŷ (tn)). Using this, we can rewrite (3.11) as follows:(
1 − ∂b

∂y
(tn, �n)�N

)
en = en−1 +

∫ tn

tn−1

(b(s, Y (s)) − b(tn, Y (tn)))ds, (3.12)

where

1 − ∂b

∂y
(tn, �n)�N > 1 − c3�N > 0
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by (B4) and (3.1).
Next, denote

ζ0 := 1, ζn :=
n∏

i=1

(
1 − ∂b

∂y
(ti , �i)�N

)

and define ẽn := ζnen. By multiplying both sides of (3.12) by ζn−1, we obtain that

ẽn = ẽn−1 + ζn−1

∫ tn

tn−1

(b(s, Y (s)) − b(tn, Y (tn)))ds (3.13)

and, expanding the terms ẽi−1 in (3.13) one by one, i = n, n − 1, ..., 1, and taking
into account that ẽ0 = 0, we obtain that

ẽn =
n∑

i=1

ζi−1

∫ ti

ti−1

(b(s, Y (s)) − b(ti , Y (ti)))ds.

Therefore,

en =
n∑

i=1

ζi−1

ζn

∫ ti

ti−1

(b(s, Y (s)) − b(ti , Y (ti)))ds.

Observe that, by assumption (B4) and (3.1), for any i, n ∈ N, i < n,

ζk

ζn

=
n∏

i=k+1

(
1 − ∂b

∂y
(ti , �i)�N

)−1

≤
N∏

i=k+1

(1 − c3�N)−1

≤ (1 − c3�N)−N =
(

1 − c3T

N

)−N

→ ec3T , N → ∞,

whence there exists a constant C that does not depend on i, n or N such that

ζk

ζn

≤ C.

Using this, one can deduce that

|en|r ≤ C

∣∣∣∣∣
n∑

i=1

ζi−1

ζn

∫ ti

ti−1

(b(s, Y (s)) − b(ti , Y (ti)))ds

∣∣∣∣∣
r

≤ C

(
n∑

i=1

∫ ti

ti−1

|b(s, Y (s)) − b(ti , Y (ti))| ds

)r

.
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Note that (t, Y (t)) ∈ D 1
ξ
, 1
ξ
, where ξ is defined by (3.6) and D 1

ξ
, 1
ξ

is defined via (2.1);

hence, by (B2) as well as Lemma 3.6, we can deduce that(
n∑

i=1

∫ ti

ti−1

|b(s, Y (s)) − b(ti , Y (ti))| ds

)r

≤ Cξpr

(
n∑

i=1

∫ ti

ti−1

|s − ti |λ ds

)r

+ Cξpr

(
n∑

i=1

∫ ti

ti−1

|Y (s) − Y (ti)| ds

)r

≤ Cξpr

(
n∑

i=1

∫ ti

ti−1

|s − ti |λ ds

)r

+ Cξprϒr

(
n∑

i=1

∫ ti

ti−1

|s − ti |λ ds

)r

= Cξpr(1 + ϒr)

(
n∑

i=1

1

(1 + λ)
�1+λ

N

)r

≤ Cξpr(1 + ϒr)�λr
N .

In other words, there exists a constant C that does not depend on the partition such
that

|en|r = |Y (tn) − Ŷ (tn)|r ≤ Cξpr(1 + ϒr)�λr
N

and, since the right-hand side of the relation above does not depend on n or N , we
have

sup
n=0,...,N

|Y (tn) − Ŷ (tn)|r ≤ Cξpr(1 + ϒr)�λr
N =: C1�

λr
N . (3.14)

It remains to notice that, by (3.6) and (3.8),

E
[
ξpr(1 + ϒr)

]
< ∞

whenever (3.10) holds, which finally implies

E

[
sup

n=0,...,N
|Y (tn) − Ŷ (tn)|r

]
≤ E[C1]�λr

N =: C�λr
N .

Now we are ready to proceed to the main results of this subsection.

Theorem 3.9 Let Z satisfy (Z1)–(Z2), Assumption B hold and the mesh of the
partition �N satisfy (3.1). Then

1) for any r ≥ 1, there exists a random variable C2 that does not depend on the
partition such that

sup
t∈[0,T ]

|Y (t) − Ŷ (t)|r ≤ C2�
λr
N a.s.;

2) if, additionally,

E

[



r(p+max{p,γ λ+λ−1})
γ λ+λ−1

]
< ∞,

where λ and 
 are from (Z2), p is from (B2), and γ is from (B3), then one can
choose C2 such that E[C2] < ∞, i.e. there exists a deterministic constant C that
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does not depend on the partition such that

E

[
sup

t∈[0,T ]
|Y (t) − Ŷ (t)|r

]
≤ C�λr

N .

Proof Fix ω ∈ � such that Z(ω, t), t ∈ [0, T ], is Hölder continuous (for simplicity
of notation, we again omit ω in the brackets) and consider an arbitrary t ∈ [0, T ].
Denote

n(t) := max{n = 0, 1, ..., N | t ≥ tn},
i.e. t ∈ [tn(t), tn(t)+1). Then

|Y (t) − Ŷ (t)|r ≤ C
(|Y (t) − Y (tn(t))|r + |Y (tn(t)) − Ŷ (tn(t))|r

)
≤ Cϒr(t − tn(t))

λr + C(L2 + 
)
pr

γλ+λ−1 (1 + ϒr)�λr
N

≤ C
(
ϒr + (1 + ϒr)(L2 + 
)

pr
γλ+λ−1

)
�λr

N ,

where we used Lemma 3.6 to estimate |Y (t)−Y (tn(t))|r and bound (3.14) to estimate
|Y (tn(t)) − Ŷ (tn(t))|r . Therefore,

sup
t∈[0,T ]

|Y (t) − Ŷ (t)|r ≤ C
(
ϒr + (1 + ϒr)(L2 + 
)

pr
γλ+λ−1

)
�λr

N =: C2�
λr
N .

Finally, using the same arguments as in Lemma 3.6 and Lemma 3.8, one can easily
show that the condition

E

[



r(p+max{p,γ λ+λ−1})
γ λ+λ−1

]
< ∞

implies that

E

[
ϒr + (1 + ϒr)(L2 + 
)

pr
γλ+λ−1

]
< ∞,

therefore

E

[
sup

t∈[0,T ]
|Y (t) − Ŷ (t)|r

]
≤ C

(
ϒr + (1 + ϒr)(L2 + 
)

pr
γλ+λ−1

)
�λr

N

for some constant C > 0 that does not depend on the partition.

Theorem 3.10

1) Let Z satisfy (Z1)–(Z2), Assumption B hold and the mesh of the partition �N

satisfy (3.1). Then, for any r ≥ 1, there exists a random variable C3 that does
not depend on the partition such that

sup
n=0,1,...,N

∣∣∣∣ 1

Y (tn) − ϕ(tn)
− 1

Ŷ (tn) − ϕ(tn)

∣∣∣∣
r

≤ C3�
λr
N a.s.

and

sup
n=0,1,...,N

∣∣∣∣ 1

ψ(tn) − Y (tn)
− 1

ψ(tn) − Ŷ (tn)

∣∣∣∣
r

≤ C3�
λr
N a.s.
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2) If, additionally,

E

[



r(2+p+max{p,γ λ+λ−1})
γ λ+λ−1

]
< ∞, (3.15)

where λ and 
 are from (Z2), p is from (B2), and γ is from (B3), then one can
choose C3 such that E[C3] < ∞, i.e. there exists a deterministic constant C that
does not depend on the partition such that

E

[
sup

n=0,1,...,N

∣∣∣∣ 1

Y (tn) − ϕ(tn)
− 1

Ŷ (tn) − ϕ(tn)

∣∣∣∣
r
]

≤ C�λr
N

and

E

[
sup

n=0,1,...,N

∣∣∣∣ 1

ψ(tn) − Y (tn)
− 1

ψ(tn) − Ŷ (tn)

∣∣∣∣
r
]

≤ C�λr
N .

Proof By Remark 3.5 and estimate (3.14), with probability 1 for any n = 0, ..., N :
∣∣∣∣ 1

Y (tn) − ϕ(tn)
− 1

Ŷ (tn) − ϕ(tn)

∣∣∣∣
r

= |Y (tn) − Ŷ (tn)|r
(Ytn − ϕ(tn))r (Ŷtn − ϕ(tn))r

≤ (L2 + 
)
2r

γ λ+λ−1

L2r
1

sup
n=0,1,...,N

|Y (tn) − Ŷ (tn)|r

≤ C(L2 + 
)
2r

γ λ+λ−1 ξpr (1 + ϒr)�λr
N

=: C3�
λr
N .

It remains to notice that, by (3.6) and (3.8), the condition (3.15) implies that E[C3] <

∞. The second estimate can be obtained in a similar manner.

4 One-sided sandwich case

The drift-implicit Euler approximation scheme described in Section 3 for the two-
sided sandwich can also be adapted for the one-sided setting that corresponds to
Assumption A on the SDE (1.1). However, in the two-sided sandwich case, the pro-
cess Y was bounded (which was utilized, e.g. in Lemma 3.6) and, moreover, the
behaviour of Y was similar near both ϕ and ψ so that it was sufficient to analyze only
one of the bounds. In the one-sided case, each Y (t), for t ∈ [0, T ], is not a bounded
random variable; therefore, the approach from Section 3 has to be adjusted. For this,
we will be using the inequalities (2.4).

Let the noise Z satisfy (Z1)–(Z2), Y (0) and b satisfy Assumption A and Y =
{Y (t), t ∈ [0, T ]} be the unique solution of the SDE (2.2). In line with Section 3,
we consider a uniform partition {0 = t0 < t1 < ... < tN = T } of [0, T ], tk := T k

N
,

k = 0, 1, ..., N , with the mesh �N := T
N

such that

c3�N < 1, (4.1)
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where c3 is an upper bound for ∂b
∂y

from assumption (A4). The backward Euler

approximation Ŷ (t) is defined in a manner similar to (3.2), i.e.

Ŷ (0) = Y (0),

Ŷ (tk+1) = Ŷ (tk) + b(tk+1, Ŷ (tk+1))�N + (Z(tk+1) − Z(tk)),

Ŷ (t) = Ŷ (tk), t ∈ [tk, tk+1), (4.2)

where the second expression is considered as an equation with respect to Ŷ (tk+1).

Remark 4.1 Just as in the two-sided sandwich case, each Ŷ (tk), k = 1, ..., N , is well
defined since the equation

y − b(t, y)�N = z

has a unique solution w.r.t. y such that y > ϕ(t) for any fixed t ∈ [0, T ] and any
z ∈ R. To understand this, note that assumption (A4) together with (4.1) imply that

(y − b(t, y)�N)′y > 0. (4.3)

Second, by (A3),

y − b(t, y)�N → −∞, y → ϕ(t) + . (4.4)

Next, by (A2), for any (s, y1), (s, y2) ∈ D1 := {(u, y) ∈ [0, T ] × R+, y ∈ [ϕ(u) +
1, ∞)}, we have that

|b(s, y1) − b(s, y2)| ≤ c1|y1 − y2|,
i.e.

sup
(s,y)∈D1

∣∣∣∣∂b

∂y
(s, y)

∣∣∣∣ < ∞.

Using this, (A4), and the mean value theorem, for any positive y ≥ ϕ(t) + 1

b(t, y) = b(t, ϕ(t) + 1) + ∂b

∂y
(t, θy)(y − 1 − ϕ(t))

≤ max
s∈[0,T ] b(t, ϕ(t) + 1) + max

s∈[0,T ] |1 + ϕ(s)| sup
(s,y)∈D1

∣∣∣∣∂b

∂y
(s, y)

∣∣∣∣+ c3y

=: C + c3y,

whence

y − b(t, y)�N ≥ −C�N + (1 − c3�N)y → ∞, y → ∞. (4.5)

Existence and uniqueness of the solution then follows from (4.3)–(4.5).

Remark 4.2 Similarly to the two-sided sandwich case, the value of Ŷ (t) for t ∈
[0, T ] \ {t0, ..., tN } can also be defined via linear interpolation with no changes in
formulations of the results and almost no variations in the proofs.

Our strategy for proving the convergence of Ŷ to Y will be similar to what we
have done in Section 3. Therefore, we will be omitting the details highlighting only
the points which are different from the two-sided sandwich case. We start with some
useful properties of Ŷ and Y .
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Lemma 4.3 LetZ satisfy (Z1)–(Z2), Assumption A hold and the mesh of the partition
�N satisfy (4.1). Then there exist deterministic constants L1, L2 > 0 depending only
on Y (0), the shape of the drift b and λ, such that

Ŷ (tn) ≥ ϕ(tn) + L1

(L2 + 
)
1

γ λ+λ−1

a.s.,

where 
 is from assumption (Z2) and γ is from assumption (A3). Moreover, there
exist constants L3, L4 > 0 that also depend only on Y (0), the shape of the drift b

and λ such that

Ŷ (tn) ≤ L3 + L4
, n = 0, 1, ..., N, a.s.

for all partitions with the mesh satisfying c1
(Y (0)−ϕ(0))p

�N < 1 with c1 and p being
from (A2).

Proof The proof of

Ŷ (tn) ≥ ϕ(tn) + L1

(L2 + 
)
1

γ λ+λ−1

is identical to the corresponding one in Lemma 3.4 and will be omitted. Let us prove
that

Ŷ (tn) ≤ L3 + L4
 a.s.

Fix ω ∈ � for which Z(ω, t) is Hölder continuous, consider a partition with the
mesh satisfying c1

(Y (0)−ϕ(0))p
�N < 1 and fix an arbitrary n = 0, 1, ..., N −1. Assume

that Ŷ (tn+1) > ϕ(tn+1) + (Y (0) − ϕ(0)) (otherwise, the claim of the lemma holds
automatically). Put

κ(n) := max{k = 0, 1, ..., n | Ŷ (tk) ≤ ϕ(tk) + (Y (0) − ϕ(0))}
and observe that (tk, Ŷ (tk)) ∈ DY(0)−ϕ(0) for any k = κ(n) + 1, ..., n + 1, where
DY(0)−ϕ(0) is defined via (2.1). Next, by (A2), for any y ∈ DY(0)−ϕ(0)

|b(t, y)| −
∣∣∣b
(
t, ϕ(t) + (Y (0) − ϕ(0))

)∣∣∣ ≤
∣∣∣b(t, y) − b

(
t, ϕ(t) + (Y (0) − ϕ(0))

)∣∣∣
≤ c1

(Y (0) − ϕ(0))p
|y − ϕ(t) − (ϕ(0) − Y (0))|

≤ c1

(Y (0) − ϕ(0))p
|y| + c1

(Y (0) − ϕ(0))p
|ϕ(t) + (ϕ(0) − Y (0))|,

i.e. there exists a constant C > 0 that does not depend on the partition such that

|b(t, y)| ≤ C + c1

(Y (0) − ϕ(0))p
|y|. (4.6)

477



Numerical Algorithms (2023) 93:459–491

Next, observe that, for any k = κ(n) + 1, ..., n + 1, we have

Ŷ (tk) = Ŷ (tκ(n)) +
k∑

i=κ(n)+1

b(ti , Ŷ (ti))�N + Z(tk) − Z(tκ(n))

≤ ϕ(tκ(n)) + (Y (0) − ϕ(0)) +
k∑

i=κ(n)+1

b(ti , Ŷ (ti))�N + 
(tk − tκ(n))
λ

≤
∣∣∣∣ max
s∈[0,T ] ϕ(s) + (Y (0) − ϕ(0))

∣∣∣∣+ T λ
 +
k∑

i=κ(n)+1

b(ti , Ŷ (ti))�N .

Therefore, using (4.6) and

Ŷ (tk) > ϕ(tk) ≥ min
s∈[0,T ] ϕ(s),

one can write

|Ŷ (tk)| ≤
∣∣∣∣ min
s∈[0,T ] ϕ(s)

∣∣∣∣+
∣∣∣∣ max
s∈[0,T ] ϕ(s) + (Y (0) − ϕ(0))

∣∣∣∣+ T λ
 +
k∑

i=κ(n)+1

|b(ti , Ŷ (ti ))|�N

≤
∣∣∣∣ min
s∈[0,T ] ϕ(s)

∣∣∣∣+
∣∣∣∣ max
s∈[0,T ] ϕ(s) + (Y (0) − ϕ(0))

∣∣∣∣+ T λ
 + C

k∑
i=κ(n)+1

�N

+ c1

(Y (0) − ϕ(0))p

k∑
i=κ(n)+1

|Ŷ (ti )|�N,

where C > 0 is some positive constant that does not depend on the partition.
Now we want to apply the discrete version of the Gronwall inequality from [20,

Lemma A.3]. In order to do that, we observe that

|Ŷ (tκ(n)+1)| ≤ C + T λ
 + c1
(Y (0)−ϕ(0))p

�N |Ŷ (tk)|,
and, for any k = κ(n) + 2, ..., n + 1,

|Ŷ (tk)| ≤ C + T λ
 + c1
(Y (0)−ϕ(0))p

∑k−1
i=κ(n)+1 |Ŷ (ti )|�N + c1

(Y (0)−ϕ(0))p
�N |Ŷ (tk)|.

Now, since c1
(Y (0)−ϕ(0))p

�N < 1, we can write that
(

1 − c1

(Y (0) − ϕ(0))p
�N

)
|Ŷ (tκ(n)+1)| ≤ C + T λ


and, for all k = κ(n) + 2, ..., n + 1,
(

1 − c1

(Y (0) − ϕ(0))p
�N

)
|Ŷ (tk)| ≤ C+T λ
+ c1

(Y (0) − ϕ(0))p

k−1∑
i=κ(n)+1

|Ŷ (ti)|�N .

Put

N0 := min

{
N ≥ 1 : c1

(Y (0) − ϕ(0))p
�N < 1

}
=
[

T c1

(Y (0) − ϕ(0))p

]
+ 1
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with [x] being the greatest integer less than or equal to x and observe that, for all
N ≥ N0,

1 − c1

(Y (0) − ϕ(0))p
�N ≥ 1 − c1

(Y (0) − ϕ(0))p
�N0 .

Therefore,

|Ŷ (tκ(n)+1)| ≤ C

1 − c1
(Y (0)−ϕ(0))p

�N

+ T λ

1 − c1
(Y (0)−ϕ(0))p

�N




≤ C

1 − c1
(Y (0)−ϕ(0))p

�N0

+ T λ

1 − c1
(Y (0)−ϕ(0))p

�N0




=: C1 + C2


and, for all k = κ(n) + 2, ..., n + 1,

|Ŷ (tk)| ≤ C

1 − c1
(Y (0)−ϕ(0))p

�N

+ T λ

1 − c1
(Y (0)−ϕ(0))p

�N




+ c1

(Y (0) − ϕ(0))p

k−1∑
i=κ(n)+1

|Ŷ (ti)| �N

1 − c1
(Y (0)−ϕ(0))p

�N

≤ C

1 − c1
(Y (0)−ϕ(0))p

�N0

+ T λ

1 − c1
(Y (0)−ϕ(0))p

�N0




+ c1

(Y (0) − ϕ(0))p

k−1∑
i=κ(n)+1

|Ŷ (ti)| �N

1 − c1
(Y (0)−ϕ(0))p

�N0

=: C1 + C2
 + C3

k−1∑
i=κ(n)+1

|Ŷ (ti)|�N .

Using a discrete version of the Gronwall inequality, we now obtain that for all k =
κ(n) + 1, ..., n + 1

|Ŷ (tk)| ≤ (C1 + C2
) exp

⎧⎨
⎩C3

k−1∑
i=κ(n)+1

�N

⎫⎬
⎭ ≤ (C1 + C2
) exp {T C3}

=: L3 + L4
.

which ends the proof.

Remark 4.4 It is clear that constants L1, L2, L3, and L4 can be chosen jointly for Y

and Ŷ , so that the inequalities

ϕ(t) + L1

(L2 + 
)α
≤ Y (t) ≤ L3 + L4
, t ∈ [0, T ],

and

ϕ(tn) + L1

(L2 + 
)α
≤ Ŷ (tn) ≤ L3 + L4
, n = 0, 1, ..., N,

hold simultaneously with probability 1.
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Next, corresponding to Lemma 3.6 in the two-sided case, Y enjoys Hölder con-
tinuity with the Hölder constant being integrable provided that 
 has moments of
sufficiently high order. This is summarized in the lemma below.

Lemma 4.5 Let Z satisfy (Z1)–(Z2) and assumptions (A1)–(A3) hold.

1) There exists a positive random variable ϒ such that with probability 1

|Y (t) − Y (s)| ≤ ϒ |t − s|λ, t, s ∈ [0, T ].
2) If, for some r ≥ 1,

E

[



r(p+γ λ+λ−1)
γ λ+λ−1

]
< ∞, (4.7)

where λ and 
 are from (Z2), p is from (A2), and γ is from (A3), then one can
choose ϒ such that

E[ϒr ] < ∞.

Proof By (2.4),

Y (t) ≥ ϕ(t) + L1

(L2 + 
)
1

γ λ+λ−1

a.s.,

i.e. with probability 1 (t, Y (t)) ∈ D 1
ξ
, t ∈ [0, T ], where

ξ := (L2 + 
)
1

γ λ+λ−1

L1
(4.8)

and D 1
ξ

is defined in (2.1). Denote φ(t) := ϕ(t) + 1 and notice that (t, φ(t)) ∈ D 1
ξ
,

t ∈ [0, T ], since 1
ξ

≤ Y (0) − ϕ(0). Thus, using the same arguments as applied in
(3.7), we can write that, with probability 1, for any 0 ≤ s < t ≤ T :

|Y (t) − Y (s)| ≤ c1ξ
p

∫ t

s

|Y (u) − φ(u)|du + max
u∈[0,T ] |b(u, φ(u))|(t − s) + 
(t − s)λ,

where c1 is from (A2). Now, again by (2.4),

Y (t) ≤ L3 + L4
 a.s.,

hence with probability 1

|Y (t) − Y (s)| ≤ c1ξ
p

∫ t

s

|Y (u) − φ(u)|du + max
u∈[0,T ] |b(u, φ(u))|(t − s) + 
(t − s)λ

≤ c1ξ
p(L3 + L4
)(t − s) + c1ξ

p max
u∈[0,T ]

|φ(u)|(t − s)

+ max
u∈[0,T ] |b(u, φ(u))|(t − s) + 
(t − s)λ

≤ C(1 + ξp
 + ξp + 
)(t − s)λ,

where C is a positive constant. Now one can put

ϒ := C(1 + ξp
 + ξp + 
) (4.9)
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and observe that
E[ϒr ] < ∞

whenever (4.7) holds.

Corollary 4.6 Using Lemma 4.3 and following the proof of Lemma 4.5, it is easy to
obtain that, for any partition with the mesh satisfying

max

{
c3,

c1

(Y (0) − ϕ(0))p

}
�N < 1 (4.10)

there is a random variableϒ independent of the partition such that with probability 1

|Ŷ (tk) − Ŷ (tn)| ≤ ϒ |tk − tn|λ, k, n = 0, ..., N . (4.11)

Furthermore, just like in Lemma 3.6, for r > 0

E[ϒr ] < ∞
provided that

E

[



r(p+γ λ+λ−1)
γ λ+λ−1

]
< ∞.

Finally, such ϒ can be chosen jointly for Y and Ŷ , so that

|Y (t) − Y (s)| ≤ ϒ |t − s|λ, t, s ∈ [0, T ],
holds simultaneously with (4.11) with probability 1.

Lemma 4.7 LetZ satisfy (Z1)–(Z2), Assumption A hold and the mesh of the partition
�N satisfy (4.1).

1) For any r ≥ 1, there exists a positive random variable C4 that does not depend
on the partition such that

sup
k=0,1,...,N

|Y (tk) − Ŷ (tk)|r ≤ C4�
λr
N a.s.

2) If, additionally,

E

[



r(2p+γ λ+λ−1)
γ λ+λ−1

]
< ∞, (4.12)

where λ and 
 are from (Z2), p is from (A2), and γ is from (A3), then one can
choose C4 such that E[C4] < ∞, i.e. there exists a deterministic constant C that
does not depend on the partition such that

E

[
sup

k=0,1,...,N
|Y (tk) − Ŷ (tk)|r

]
≤ C�λr

N .

Proof Following the proof of Lemma 3.8, one can easily obtain that for any
n = 0, 1, ..., N

|Y (tn) − Ŷ (tn)| ≤ C

(
n∑

i=1

∫ ti

ti−1

|b(s, Y (s)) − b(ti , Y (ti))| ds

)r

.

481



Numerical Algorithms (2023) 93:459–491

Next, note that (t, Y (t)) ∈ D 1
ξ
, where ξ is defined by (4.8), so, by (A2) and

Lemma 4.5,(
n∑

i=1

∫ ti

ti−1

|b(s, Y (s)) − b(ti , Y (ti))| ds

)r

≤ Cξpr

(
n∑

i=1

∫ ti

ti−1

|s − ti |λ ds

)r

+ Cξpr

(
n∑

i=1

∫ ti

ti−1

|Y (s) − Y (ti)| ds

)r

≤ Cξpr

(
n∑

i=1

∫ ti

ti−1

|s − ti |λ ds

)r

+ Cξprϒr

(
n∑

i=1

∫ ti

ti−1

|s − ti |λ ds

)r

= Cξpr(1 + ϒr)

(
n∑

i=1

1

(1 + λ)
�1+λ

N

)r

≤ Cξpr(1 + ϒr)�λr
N ,

i.e.
sup

n=0,...,N
|Y (tn) − Ŷ (tn)|r ≤ Cξpr(1 + ϒr)�λr

N . (4.13)

In order to conclude the proof, it remains to notice that (4.8), (4.9), and (4.12) imply
that

E
[
ξpr(1 + ϒr)

]
< ∞.

Now we are ready to formulate the two main results of this section.

Theorem 4.8 Let Z satisfy (Z1)–(Z2), Assumption A hold and the mesh of the
partition �N satisfy (4.10).

1) For any r ≥ 1, there exists a random variable C5 that does not depend on the
partition such that

sup
t∈[0,T ]

|Y (t) − Ŷ (t)|r ≤ C5�
λr
N a.s.

2) If, additionally,

E

[



r(2p+γ λ+λ−1)
γ λ+λ−1

]
< ∞,

where λ and 
 are from (Z2), p is from (A2), and γ is from (A3), then one can
choose C5 such that E[C5] < ∞, i.e. there exists a deterministic constant C that
does not depend on the partition such that

E

[
sup

t∈[0,T ]
|Y (t) − Ŷ (t)|r

]
≤ C�λr

N .

Proof The proof is similar to the one of Theorem 3.9 but instead of Lemmas 3.6, 3.8
and bound (3.14) one should apply Lemmas 4.5, 4.7 and bound (4.13).

482



Numerical Algorithms (2023) 93:459–491

Theorem 4.9 Let Z satisfy (Z1)–(Z2), Assumption A hold and the mesh of the
partition �N satisfy (4.10).

1) For any r ≥ 1, there exists a random variable C6 that does not depend on the
partition such that

sup
n=0,1,...,N

∣∣∣∣ 1

Y (tn) − ϕ(tn)
− 1

Ŷ (tn) − ϕ(tn)

∣∣∣∣
r

≤ C6�
λr
N a.s.

2) If, additionally,

E

[



r(2+2p+γ λ+λ−1)
γ λ+λ−1

]
< ∞, (4.14)

where λ and 
 are from (Z2), p is from (A2), and γ is from (A3), then one can
choose C6 such that E[C6] < ∞, i.e. there exists a deterministic constant C that
does not depend on the partition such that

E

[
sup

n=0,1,...,N

∣∣∣∣ 1

Y (tn) − ϕ(tn)
− 1

Ŷ (tn) − ϕ(tn)

∣∣∣∣
r
]

≤ C�λr
N .

Proof The proof is similar to Theorem 3.10 and is omitted.

5 Examples and simulations

The algorithms presented in (3.2) and (4.2) imply that, in order to generate Ŷ (tn+1),
one has to solve an equation that potentially can be challenging from the computa-
tional point of view. However, in some cases that are relevant for applications, this
equation has a simple explicit solution.

Regarding the numerical examples that follow, we remark that:

1) all the simulations are performed in the R programming language on the system
with Intel Core i9-9900K CPU and 64 Gb RAM;

2) in order to simulate paths of fractional Brownian motion, R package somebm is
used;

3) in Example 5.3, discrete samples of the multifractional Brownian motion
(mBm) values are simulated using the Cholesky decomposition of the cor-
responding covariance matrix (for covariance structure of the mBm, see,
e.g. [5, Proposition 4]) and the R package nleqslv is used for solving (3.2)
numerically.

Example 5.1 (Generalized CIR processes) Let ϕ ≡ 0, Z satisfy (Z1)–(Z2) with λ ∈(
1
2 , 1
)

, Y (0), κ1, κ2 > 0, γ > 1
λ

− 1 be given and {Y (t), t ∈ [0, T ]} satisfy the SDE

of the form

Y (t) = Y (0) +
∫ t

0

(
κ1

Y (s)
− κ2Y (s)

)
ds + Z(t), t ∈ [0, T ]. (5.1)
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This process fits into the framework of Section 4 and the equation for Ŷ (tk+1) from
(4.2) reads as follows:

Ŷ (tk+1) = Ŷ (tk) +
(

κ1

Ŷ (tk+1)
− κ2Ŷ (tk+1)

)
�N + Z(tk+1) − Z(tk).

It is easy to see that it has a unique positive solution

Ŷ (tk+1) =
Ŷ (tk) + (Z(tk+1) − Z(tk)) +

√(
Ŷ (tk) + (Z(tk+1) − Z(tk))

)2 + 4κ1�N(1 + κ2�N)

2(1 + κ2�N)
.

Figure 1 contains 10 sample paths of the process (5.1) driven by a fractional Brow-
nian motion with H = 0.7. In all simulation, we take N = 10000, T = 1, and
Y (0) = 1 = κ1 = κ2 = 1.

In order to illustrate the convergence, we also simulate the drift-implicit approx-
imation Ŷ with a small step size 10−6 (it will serve as the “exact” solution). Then,
using the same path of Z, we generate the drift-implicit Euler approximations with
step sizes of the form 1/N , where N runs over all divisors of 106. Afterwards,
we compute the L∞([0, T ])-distances between the “exact” solution and its approx-
imations with larger step sizes. This procedure is performed 10000 times and the
mean square error of each L∞([0, T ])-distance is computed. The resulting values

Fig. 1 Ten sample paths of (5.1) generated using the drift-implicit Euler approximation scheme; N =
10000, T = 1, Y(0) = κ1 = κ2 = 1, Z is a fractional Brownian motion with H = 0.7
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serve as consistent estimators of the corresponding L2(�; L∞([0, T ]))-errors and
are depicted on Fig. 2a.

Note that the drift-implicit Euler scheme for (5.1) driven by the fractional Brown-
ian motion was the main subject of [18] and [22], but in both cases, the convergence
of Ŷ to Y is established only on [0, T ] with T being small (see, e.g. [18, Eq. (8) and
Remark 3.1]). Our results fill this gap and prove that convergence holds on arbitrary
[0, T ] for any model parameters. It should be noted though that the convergence rate
in Theorem 4.8 is not optimal and can be improved for the fractional Brownian driver.
It is well known that paths of a fractional Brownian motion are Hölder continuous
up to (but not including) its Hurst index H and whence Theorem 4.8 indicates that
the exact convergence speed of the drift-implicit Euler scheme is better than O

(
�λ

N

)
for any λ ∈ (0, H). In turn, [18] uses the results on the modulus of the continuity
of the fractional Brownian motion and establishes that the exact speed of conver-

gence is O
(
�H

N

√| log(�N)|
)

(provided that T is small enough). On Fig. 2b, we

plot the values of log
(
�N |log(�N)| 1

2H

)
against the logarithms of the correspond-

ing L2(�; L∞([0, T ]))-errors from Fig. 2a. The resulting points (depicted in black)
turn out to be located along the line with the slope 0.7022687 ≈ 0.7 = H (depicted
in red; least squares method was used to estimate the slope). This gives an empirical
evidence to the conjecture that additional conditions on T in [18] can be lifted and

the speed O
(
�H

N

√| log(�N)|
)

is still preserved.

Example 5.2 (Sandwiched process of the TSB type) Consider a sandwiched SDE of
the form

Y (t) = Y (0)+
∫ t

0

(
κ1

Y (s) − ϕ(s)
− κ2

ψ(s) − Y (s)
− κ3Y (s)

)
ds+Z(t), t ∈ [0, T ],

(5.2)

Fig. 2 Convergence analysis of the drift-implicit Euler approximation scheme for (5.1); T = 1, Y(0) =
κ1 = κ2 = 1, Z is a fractional Brownian motion with H = 0.7. On panel a, L2(�;L∞([0, T ]))-errors

are depicted. Panel b contains the values of log
(
�N |log(�N)| 1

2H

)
plotted against the logarithms of the

corresponding L2(�;L∞([0, T ]))-errors (black) as well as the line fitted with the least squares method
(red). The slope of the red line is 0.7022687 ≈ 0.7 = H
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where Z satisfies (Z1)–(Z2) with λ ∈
(

1
2 , 1
)

. This equation fits into the framework

of Section 4 and the scheme (3.2) leads to N cubic equations of the form

Ŷ 3(tn+1) + B2,nŶ
2(tn+1) + B1,nŶ (tn+1) + B0,n = 0, n = 0, ..., N − 1, (5.3)

where

B0,n := −ϕ(tn+1)ψ(tn+1)
(
Ŷ (tn) + �Zn

)+ �N (κ1ψ(tn+1) + κ2ϕ(tn+1))

1 + �Nκ3
,

B1,n := ϕ(tn+1)ψ(tn+1) + (ϕ(tn+1) + ψ(tn+1))(Ŷ (tn) + �Zn) − �N(κ1 + κ2)

1 + �Nκ3
,

B2,n := −ϕ(tn+1) − ψ(tn+1) − Ŷ (tn) + �Zn

1 + �Nκ3
,

Note this equation can be solved explicitly using, e.g. the celebrated Cardano method.
Namely, define

Q1,n := B1,n − B2
2,n

3
, Q2,n := 2B3

2,n

27
− B2,nB1,n

3
+ B0,n

and put

Qn :=
(

Q1,n

3

)3

+
(

Q2,n

2

)2

,

αn := 3

√
−Q2,n

2
+√Qn, βn := 3

√
−Q2,n

2
−√Qn,

where among possible complex values of αn and βn, one should take those for which
αnβn = −Q1,n

3 . Then the three roots of the cubic (5.3) are

y1,n = αn + βn, y2,n = −αn + βn

2
+ i

αn − βn

2

√
3,

y3,n = −αn + βn

2
− i

αn − βn

2

√
3,

and Ŷ (tn+1) is equal to the root which belongs to (ϕ(tn+1), ψ(tn+1)) (note that there
is exactly one root in that interval).

Figure 3 contains 10 sample paths of the process (5.2) driven by a fractional Brow-
nian motion with H = 0.7. In all simulations, we take ϕ ≡ −1, ψ ≡ 1, N = 10000,
T = 1, and Y (0) = 0, κ1 = κ2 = 1

2 , κ3 = 0 (this case corresponds to the TSB equa-
tion described in Example 2.8). Simulation is performed by direct implementation of
the Cardano’s method in R. On Fig. 4a, the L2(�; L∞([0, T ]))-errors are depicted.
Just as in Example 5.1, behaviour of the modulus of continuity of the fractional
Brownian motion allows to suggest that the exact convergence speed of the numer-

ical scheme is O
(
�H

N

√| log(�N)|
)

. Figure 4b gives an empirical evidence to this

conjecture: the values of log
(
�N |log(�N)| 1

2H

)
plotted against the logarithms of the

corresponding L2(�; L∞([0, T ]))-errors (black) are located along the line (red) with
the slope 0.7033434 ≈ 0.7 = H (least squares fit was used).
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Fig. 3 Ten sample paths of (5.2) generated using the drift-implicit Euler approximation scheme; ϕ ≡ −1,
ψ ≡ 1, N = 10000, T = 1, Y(0) = 0, κ1 = κ2 = 1

2 , κ3 = 0, Z is a fractional Brownian motion with
H = 0.7

Fig. 4 Convergence analysis of the drift-implicit Euler approximation scheme for (5.2); ϕ ≡ −1, ψ ≡ 1,
T = 1, Y(0) = 0, κ1 = κ2 = 1

2 , κ3 = 0, Z is a fractional Brownian motion with H = 0.7. On panel

a, L2(�;L∞([0, T ]))-errors are depicted. Panel b contains the values of log
(
�N |log(�N)| 1

2H

)
plotted

against the logarithms of the corresponding L2(�;L∞([0, T ]))-errors (black) as well as the line fitted
with the least squares method (red). The slope of the red line is 0.7033434 ≈ 0.7 = H
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Fig. 5 A sample path of (5.4) generated using the backward Euler approximation scheme; N = 10000,
T = 1, Y(0) = 1, κ1 = κ2 = 1, ϕ(t) = sin(10t), ψ(t) = sin(10t) + 2, Z is a multifractional Brownian
motion with functional Hurst parameter H(t) = 1

5 sin(2πt) + 1
2

In both Examples 5.1 and 5.2, equations for computing Ŷ could be explicitly
solved but the Hölder continuity of the noise could not be less then 1/2. The next
example shows that the drift-implicit Euler scheme can be applied in the rough case
as well.

Example 5.3 (Sandwiched process driven by multifractional Brownian motion)
Consider the sandwiched SDE of the form

Y (t) = Y (0) +
∫ t

0

(
κ1

(Y (s) − ϕ(s))4
− κ2

(ψ(s) − Y (s))4

)
ds + Z(t), t ∈ [0, T ].

(5.4)
In this case, Theorem 2.1 guarantees existence and uniqueness of the solution for λ-
Hölder Z with λ > 1

5 (note that this equation fits the framework of Example 2.9 from
Section 2). On Fig. 5, one can see paths of the process (5.4) with κ1 = κ2 = 1, ϕ(t) =
sin(10t), ψ(t) = sin(10t) + 2 driven by multifractional Brownian motion (mBm)
with functional Hurst parameter H(t) = 1

5 sin(2πt) + 1
2 (note that the lowest value

of the functional Hurst parameter is H
(

3
4

)
= 0.3; for more details on mBm, see [5]

as well as [17, Lemma 3.1] for results on Hölder continuity of its paths). Figure 6
contains the L2(�; L∞([0, T ]))-errors of approximation. Note a much slower rate of
convergence: the multifractional Brownian motion Z under consideration is Hölder
continuous up to the order 0.3; therefore, Theorem 3.9 guarantees convergence speed
of only O(�λ

N) with λ ∈ (0, 0.3).
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Fig. 6 L2(�;L∞([0, T ]))-errors of the drift-implicit Euler approximation scheme for (5.4); T = 1,
Y(0) = 1, κ1 = κ2 = 1, ϕ(t) = sin(10t), ψ(t) = sin(10t) + 2, Z is a multifractional Brownian motion
with functional Hurst parameter H(t) = 1

5 sin(2πt) + 1
2
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