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Abstract
Global Krylov subspace methods are effective iterative solvers for large linear matrix
equations. Several Lanczos-type product methods (LTPMs) for solving standard lin-
ear systems of equations have been extended to their global versions. However, the
GPBiCGstab(L) method, which unifies two well-known LTPMs (i.e., BiCGstab(L)
and GPBiCG methods), has been developed recently, and it has been shown that this
novel method has superior convergence when compared to the conventional LTPMs.
In the present study, we therefore extend the GPBiCGstab(L) method to its global
version. Herein, we present not only a naive extension of the original GPBiCGstab(L)
algorithm but also its alternative implementation. This variant enables the precondi-
tioning technique to be applied stably and efficiently. Numerical experiments were
performed, and the results demonstrate the effectiveness of the proposed global
GPBiCGstab(L) method.
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1 Introduction

In many fields of scientific computing, it is important to solve linear matrix equations
of the form

A(X) = B, (1)

where A : R
n×s → R

n×s is a linear operator, and X, B ∈ R
n×s . In the present

work, we focus mainly on the case where the representation of A is a large sparse
nonsymmetric matrix and s � n.

The most basic form of (1) is the standard linear system of equations Ax = b,
where A ∈ R

n×n and b ∈ R
n. For this problem, short-recurrence Krylov subspace

methods, such as the conjugate gradient squared (CGS) method [1], bi-conjugate gra-
dient stabilized (BiCGSTAB) method [2], and BiCGStab2 method [3], are typical
iterative solvers that are widely used. The CGS, BiCGSTAB, and BiCGStab2 meth-
ods are known to belong to the so-called Lanczos-type product methods (LTPMs)
(also called hybrid BiCG methods), wherein the residuals are defined by the product
of the stabilizing polynomials and BiCG residuals. The BiCGstab(L) method [4] and
GPBiCG method [5] also belong to LTPMs and can be viewed as two different gen-
eralizations of the abovementioned typical methods. Moreover, the GPBiCGstab(L)
method [6], which unifies BiCGstab(L) and GPBiCG, has been developed recently.
Numerical experiments have been performed to demonstrate that the GPBiCGstab(L)
method has superior convergence when compared to the conventional LTPMs,
especially for linear systems with complex spectra.

Because A is defined on the finite-dimensional space, there always exists a stan-
dard linear system of equations that is mathematically equivalent to (1), to which
LTPMs can be applied theoretically. However, it is often difficult to construct the
representation matrix ofA, i.e., the coefficient matrix of the converted linear system.
For example, it is well known that the Sylvester equation

A(X) = AX − XC = B, A ∈ R
n×n, C ∈ R

s×s (2)

can be converted to a standard linear system Ãx = b̃ with Ã := Is ⊗ A − C� ⊗ In ∈
R

ns×ns and b̃ := vec(B) ∈ R
ns , but it is costly to construct Ã explicitly when ns is

large. Here, ⊗ denotes the Kronecker product, Ik is the identity matrix of order k, and
vec : Rn×s → R

ns is the vectorization operator, i.e., vec(V ) = [v�
1 , v�

2 , . . . , v�
s ]� ∈

R
ns for V = [v1, v2, . . . , vs] ∈ R

n×s . More generally, there are also cases where
the representation matrix of A cannot be expressed explicitly. Therefore, application
of iterative solvers to the matrix equations without explicitly using the represen-
tation matrix is desirable. The global Krylov subspace methods (cf., e.g., [7–12])
are known to be such matrix-free approaches and generate approximate solutions

using the matrix Krylov subspace Kk(A, R0) :=
{∑k−1

i=0 ciAi (R0) | ci ∈ R

}
, where

R0 := B − A(X0) is the initial residual with an initial guess X0, and Ai indicates
that A acts i times. Thus, the global methods can be implemented without using the
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representation matrix if the linear transformation A(V ) is available for an arbitrary
V ∈ R

n×s .
Several LTPMs have been extended thus far to their global versions. For exam-

ple, the Gl-CGS-type methods [13, 14], Gl-BiCGSTAB method [9], and Gl-GPBiCG
method [15], have been proposed, where “Gl-” represents the global version of
the method. Moreover, relating to the methods based on the global Lanczos pro-
cess [9], the global quasi-minimal residual (Gl-QMR) method [16] and the global
bi-conjugate residual (Gl-BiCR) type methods [17] have also been developed. How-
ever, to the best of our knowledge, the global versions of the classical BiCGstab(L)
and recent GPBiCGstab(L) methods have not been studied previously. We there-
fore develop a novel global GPBiCGstab(L) method (including Gl-BiCGstab(L)) for
further convergence improvement. Then, based on the aforementioned works, we
restrict the target matrix equation to a large sparse nonsymmetric linear system with
multiple right-hand sides AX = B and discuss the preconditioned algorithms of
Gl-GPBiCGstab(L). It is comparatively easy to extend the original GPBiCGstab(L)
algorithm [6, Algorithm 3] to its global version naively. However, when applying the
so-called right preconditioning to this naive Gl-GPBiCGstab(L), several concerns
regarding numerical stability and computational costs are noted. To overcome these
problems, we also derive a refined variant of Gl-GPBiCGstab(L), which is mathe-
matically equivalent to the naive version but uses alternative recursion formulas to
update the iteration matrices. This refined variant enables right preconditioning to be
applied with greater robustness and fewer computational costs. Through numerical
experiments on model problems (i.e., linear system AX = B and the Sylvester equa-
tion AX − XC = B), we show that the refined Gl-GPBiCGstab(L) (with or without
preconditioning) is more effective than other typical Gl-LTPMs.

The remainder of this paper is organized as follows. In Section 2, we
describe a naive Gl-GPBiCGstab(L) algorithm for (1) by extending the original
GPBiCGstab(L). In Section 3, we derive a refined variant of Gl-GPBiCGstab(L)
by partly using different recursion formulas. In Section 4, we present the precondi-
tioned algorithms of the naive and refined Gl-GPBiCGstab(L) for the representative
matrix equation AX = B as well as note their advantages and disadvantages. In
Section 5, numerical experiments are presented to demonstrate that the proposed
methods have superior convergence when compared to the conventional ones. Finally,
some concluding remarks and a note on the future directions are given in Section 6.

2 Global GPBiCGstab(L) algorithm

This section presents the extension of the GPBiCGstab(L) algorithm proposed in [6]
to its global version for solving linear matrix equations of the form (1).

2.1 Extension to global algorithms

We first describe a generic method for constructing global algorithms. When an algo-
rithm of the LTPMs for the standard linear system of equations is given, its global
version can be derived directly through the following simple steps (see also [9, 10]):
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1. Applying the given LTPM algorithm to Ãx = b̃ that is equivalent to (1), where
Ã ∈ R

ns×ns is a representation matrix of A and b̃ := vec(B).
2. Rewriting the operations in the algorithm using the following equivalent refor-

mulations. For x, y ∈ R
ns and a ∈ R,

linear transformation: Ãx −→ A(X), (3)

vector update (AXPY): ax + y −→ aX + Y, (4)

inner product (DOT): (x, y) := x�y −→ 〈X, Y 〉F := tr(X�Y ), (5)

where X, Y ∈ R
n×s are the matrices satisfying x = vec(X) and y = vec(Y ).

Note that the 2-norm ‖x‖2 is also converted to the associated Frobenius norm
(F-norm) ‖X‖F := √〈X, X〉F .

From (3), the resulting global algorithm can be implemented without using the rep-
resentation matrix Ã explicitly. This is the main advantage of the global methods
in actual computations. Moreover, when the transformation by A is based mainly
on matrix–matrix products, we can also implement it with high-performance level-3
BLAS routines.

2.2 Simple derivation

Herein, we describe an algorithm of the Gl-GPBiCGstab(L) method obtained by
the simple transformations noted above. For details regarding the GPBiCGstab(L)
method itself, we refer to [6] and the next section.

By applying the original GPBiCGstab(L) algorithm [6, Algorithm 3] to Ãx = b̃

and rewriting the iteration process with (3)–(4), the naive extension to the Gl-
GPBiCGstab(L) algorithm is obtained as shown in Algorithm 1. The notations
in the algorithm are based on MATLAB conventions. For example, the variables
R and P consist of n × s submatrices Ri and Pi for i = 0, 1, . . . , j , respec-
tively; that is, R = [R0;R1; . . . ;Rj ] and P = [P0; P1; . . . ; Pj ], respectively,
where [V0;V1; . . . ;Vj ] := [V�

0 ,V�
1 , . . . ,V�

j ]�, and the submatrix Vi theoretically

corresponds to Ai (V0).

Remark 1 When using MATLAB, there are several approaches for storing the vari-
ables comprising n × s submatrices, such as R and P above. One method is to
construct R = [R0;R1; . . . ;Rj ] directly as an n(j + 1) × s long rectangular matrix.
Another approach is to use a multidimensional array. Because the matrix R can
be viewed as a three-dimensional tensor, it can be stored in an n × s × (j + 1)
three-dimensional array. In this case, the ith submatrix Ri is accessed as R(:, :, i) in
MATLAB. Alternatively, we can use a structure array. For example, the matrix R can
be defined using the MATLAB command ‘struct’ as follows:

R struct = struct(‘R′, {R0,R1, . . . ,Rj }),
where the first argument ‘R’ is the field name and second argument is a cell
array containing the submatrices. In this case, the ith submatrix Ri is accessed as
R struct(i).R. Because the implementation using the structure array is faster than the
other approaches in our experience, we use this in the actual computations.
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Line 19 of Algorithm 1 requires solving a minimization problem

min
ζi ,η

∥∥∥∥∥R0 −
L∑

i=1

ζiRi − ηY

∥∥∥∥∥
F

for L + 1 scalar variables ζ1, . . . , ζL and η, where Ri ∈ R
n×s for i = 0, 1, . . . , L

and Y ∈ R
n×s are given in the iteration process. Note that the integer L is a pre-

determined constant in Gl-GPBiCGstab(L). The above problem is equivalent to the
standard least-squares problem

min
ζ ,η

∥∥∥∥vec(R0) − M

[
ζ

η

]∥∥∥∥
2
,

M := [vec(R1), . . . , vec(RL), vec(Y)] , ζ := [ζ1, . . . , ζL]�, (6)

and can be converted to the normal equation

M�M

[
ζ

η

]
= M�vec(R0). (7)

As is well known, we can use a direct method such as Cholesky factorization to solve
(7), and a more stable approach such as QR factorization is useful for solving the
least-squares problem (6) directly when M is ill-conditioned.

Note that the first iteration of GPBiCGstab(L) corresponds to that of BiCGstab(L)
and that η needs to be 0. Hence, the first iteration (i.e., one BiCGstab(L) iteration)

Algorithm 1 Gl-GPBiCGstab(L) for (1) (naive)
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is displayed separately from the main GPBiCGstab(L) iterations in the original algo-
rithm [6, Algorithm 3], whereas we display all iterations in the same form using a
branch at line 19 in Algorithm 1.

3 Alternative implementation of Gl-GPBiCGstab(L)

In this section, we present the derivation of another Gl-GPBiCGstab(L) algorithm
that is mathematically equivalent to Algorithm 1 but exploits alternative recursion
formulas for updating the iteration matrices. The resulting algorithm uses a slightly
simpler expression and is also useful for designing a robust right preconditioned Gl-
GPBiCGstab(L) with fewer additional costs, as shown in the next section.

3.1 Basic concepts

Similar to standard LTPMs, the global versions of the LTPMs can be characterized
by generating the residuals Rk defined by the form

Rk := Hk(A)
[
R

gbcg
k

]
, (8)

whereHk(λ) is the so-called stabilizing polynomial of degree k satisfyingHk(0) = 1,
and R

gbcg
k is the kth Gl-BiCG residual that is generated by the coupled two-term

recurrences

R
gbcg

k+1 = R
gbcg
k − αkA

(
P

gbcg
k

)
, (9)

P
gbcg

k+1 = R
gbcg

k+1 − βkP
gbcg
k (10)

with recurrence coefficients αk, βk ∈ R and direction matrix P
gbcg
k ∈ R

n×s of Gl-
BiCG [9]. Note that Hk(A) is a linear operator of the polynomial form, i.e., Hk(A) =
I − ω1A − · · · − ωkAk with ωj ∈ R and an identity operator I, and we define its
operation for X ∈ R

n×s as

Hk(A)[X] := X − ω1A(X) − · · · − ωkAk(X).

Specific choices of the stabilizing polynomials give specific Gl-LTPMs.
The original GPBiCGstab(L) [6] is a novel framework of the standard LTPMs

using the following comprehensive stabilizing polynomials.

Hk+L(λ) :=
(
1 − ζk,1λ − · · · − ζk,LλL

)
Hk(λ) − ηkλGk−1(λ), (11)

Gk−1(λ) := Hk−L(λ) − Hk(λ)

λ
, (12)

where H0(λ) := 1, η0 := 0, and k is a multiple of L. The L + 1 coefficients
ζk,1, . . . , ζk,L, ηk ∈ R are independent parameters. The stabilizing polynomi-
als are reduced to those of BiCGstab(L) if ηk is always set to 0 and can be
equivalent to those of GPBiCG when L = 1. Thus, we can also derive CGS,
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BiCGSTAB, and BiCGStab2 from the above framework. In the practical computa-
tion of GPBiCGstab(L), the L + 1 parameters are determined by locally minimizing
the residual norms in each iteration.

In the following subsections, we show derivation of the Gl-GPBiCGstab(L) algo-
rithm that generates residuals (8) with stabilizing polynomials (11) and (12). The
derivation is somewhat different from the one in [6].

3.2 Recursion formulas for updating the iterationmatrices

Herein, the operators Hk(A) and Gk−1(A) are denoted as Hk and Gk−1, respectively,
and we omit the parentheses for simplicity; specifically, Hk(A)[X], Gk−1(A)[X],
and A(X) are expressed as HkX, Gk−1X, and AX, respectively.

Let Xk , Rk = HkR
gbcg
k , and Pk = HkP

gbcg
k be the approximation, residual, and

direction matrix of Gl-GPBiCGstab(L), respectively. These matrices are updated to
Xk+L,Rk+L = Hk+LR

gbcg
k+L , and Pk+L = Hk+LP

gbcg
k+L , respectively, and the processes

are counted as one cycle below. We now introduce the following auxiliary matrices
for j = 1, 2, . . . , L.

R
(j)
k := HkR

gbcg
k+j , P

(j)
k := HkP

gbcg
k+j , (13)

Y
(j)
k := AGk−1R

gbcg
k+j , U

(j)
k := AGk−1P

gbcg
k+j , Z

(j)
k := Gk−1R

gbcg
k+j . (14)

From (11), (13), and (14), the updated residual and direction matrices can be
expanded as

Rk+L = R
(L)
k − ζk,1AR

(L)
k − · · · − ζk,LALR

(L)
k − ηkY

(L)
k , (15)

Pk+L = P
(L)
k − ζk,1AP

(L)
k − · · · − ζk,LALP

(L)
k − ηkU

(L)
k , (16)

and the associated approximation can be expressed as

Xk+L = X
(L)
k + ζk,1R

(L)
k + · · · + ζk,LAL−1R

(L)
k + ηkZ

(L)
k , (17)

where we note that Y
(L)
k = AZ

(L)
k holds. When the auxiliary matrices in (15)–(17)

are obtained, we can determine the L + 1 parameters ζk,1, . . . , ζk,L, ηk to minimize
the residual norm ‖Rk+L‖F , as described in Section 2.2.

As mentioned in [6], the stabilizing polynomial Hk+L(λ) consists of two parts:
multiplication of an Lth degree polynomial with the previous Hk(λ) and relaxation
term −ηkλGk−1(λ). We therefore describe the generation of auxiliary matrices for
each part separately.

3.2.1 Multiplication of the Lth degree polynomial

We describe an iteration process to generate the auxiliary matrices AiR
(L)
k and

AiP
(L)
k for i = 0, 1, . . . , L, and the associated approximation X

(L)
k in (15)–(17).
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This process corresponds to the well-known L-times-BiCG steps in BiCGstab(L),
and the description below is based on that in [6, Section 2.2].

Assuming that the approximation X
(0)
k := Xk , the corresponding residual R

(0)
k :=

Rk , and direction matrix P
(0)
k := Pk are given at the beginning of the cycle. Then,

the j th repetition (j = 1, 2, . . . , L) of the BiCG steps is described as follows.
From the Gl-BiCG recursions (9) and (10), applying operators AiHk to R

gbcg
k+j for

i = 0, 1, . . . , j − 1 and to P
gbcg
k+j for i = 0, 1, . . . , j , we have

AiHkR
gbcg
k+j = AiHkR

gbcg

k+j−1 − αk+j−1Ai+1HkP
gbcg

k+j−1, i = 0, 1, . . . , j − 1,

AiHkP
gbcg
k+j = AiHkR

gbcg
k+j − βk+j−1AiHkP

gbcg

k+j−1, i = 0, 1, . . . , j,

where it is noted that HkAV = AHkV holds for an arbitrary V ∈ R
n×s . Rewriting

the above recursions with the auxiliary matrices (13) gives

AiR
(j)
k = AiR

(j−1)
k − α

(j−1)
k Ai+1P

(j−1)
k , i = 0, 1, . . . , j − 1, (18)

AiP
(j)
k = AiR

(j)
k − β

(j−1)
k AiP

(j−1)
k , i = 0, 1, . . . , j, (19)

where α
(j)
k := αk+j and β

(j)
k := βk+j . The approximation X

(j)
k associated with R

(j)
k

can be expressed as

X
(j)
k = X

(j−1)
k + α

(j−1)
k P

(j−1)
k . (20)

Following [6, Eqs. (14) and (15)] and using the iteration matrices, we compute the
Gl-BiCG coefficients α

(j)
k and β

(j)
k as follows:

α
(j)
k = ρ

(j)
k

σ
(j)
k

, β
(j)
k = ρ

(j+1)
k

σ
(j)
k

,

ρ
(j)
k := 〈R̃0,AjR

(j)
k 〉, σ

(j)
k := 〈R̃0,Aj+1P

(j)
k 〉, (21)

where R̃0 is the initial shadow residual.
Thus, when X

(j−1)
k , AiR

(j−1)
k , and AiP

(j−1)
k for i = 0, 1, . . . , j − 1 are given

at the beginning of the j th repetition; the new matrices X
(j)
k , AiR

(j)
k , and AiP

(j)
k

for i = 0, 1, . . . , j can be generated using (18)–(21). This updating scheme is
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summarized as follows:

P
(j−1)
k X

(j−1)
k

Eq.(20)−−−−→ X
(j)
k P

(j)
k

Eq.(19)
↗ i=0

AP
(j−1)
k R

(j−1)
k

Eq.(18)−−−−→
i=0

R
(j)
k AP

(j)
k

...
...

...
...

...
...

Aj−1P
(j−1)
k Aj−2R

(j−1)
k

Eq.(18)−−−−→
i=j−2

Aj−2R
(j)
k Aj−1P

(j)
k

↓ApplyA
Eq.(19)

↗ i=j−1

AjP
(j−1)
k Aj−1R

(j−1)
k

Eq.(18)−−−−→
i=j−1

Aj−1R
(j)
k AjP

(j)
k

↓ApplyA
Eq.(19)

↗ i=j

AjR
(j)
k

(22)
Note that AjP

(j−1)
k and AjR

(j)
k are obtained by explicitly applying A to

Aj−1P
(j−1)
k and Aj−1R

(j)
k , respectively. By repeating scheme (22) for j =

1, 2, . . . , L, we obtain the auxiliary matrices X
(L)
k , AiR

(L)
k , and AiP

(L)
k for i =

0, 1, . . . , L. This process is identical to that used in Algorithm 1.

3.2.2 Relaxation

Next, we describe the iterations to generate the auxiliary matrices Y
(L)
k , U

(L)
k , and

Z
(L)
k for (15)–(17). This process corresponds to [6, Section 3.1], but we exploit dif-

ferent recursion formulas, and the resulting algorithm will thus be different from
Algorithm 1.

For now, we consider the generation of Y
(L)
k = AGk−1R

gbcg
k+L and U

(L)
k =

AGk−1P
gbcg
k+L . We introduce additional auxiliary matrices

S
(j)
k := Hk−LR

gbcg
k+j , Q

(j)
k := Hk−LP

gbcg
k+j

for j = 0, 1, . . . , L, where S
(0)
k = R

(L)
k−L and Q

(0)
k = P

(L)
k−L hold. Using the relation

AGk−1 = Hk−L − Hk , we have

AGk−1R
gbcg
k+L = Hk−LR

gbcg
k+L − HkR

gbcg
k+L ,

AGk−1P
gbcg
k+L = Hk−LP

gbcg
k+L − HkP

gbcg
k+L ,

which can be rewritten as follows:

Y
(L)
k = S

(L)
k − R

(L)
k , (23)

U
(L)
k = Q

(L)
k − P

(L)
k . (24)

BecauseR
(L)
k and P

(L)
k are generated byL repetitions of (22) with i = 0, we consider

the method of obtaining S
(L)
k and Q

(L)
k . At the j th repetition, applying AiHk−L for
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i = 0, 1, . . . , L − j to the Gl-BiCG recursions, we have

AiHk−LR
gbcg
k+j = AiHk−LR

gbcg

k+j−1 − αk+j−1Ai+1Hk−LP
gbcg

k+j−1,

AiHk−LP
gbcg
k+j = AiHk−LR

gbcg
k+j − βk+j−1AiHk−LP

gbcg

k+j−1.

Rewriting these recursions with the auxiliary matrices gives

AiS
(j)
k = AiS

(j−1)
k − α

(j−1)
k Ai+1Q

(j−1)
k , (25)

AiQ
(j)
k = AiS

(j)
k − β

(j−1)
k AiQ

(j−1)
k . (26)

Thus, when AiS
(j−1)
k for i = 0, 1, . . . , L − j and AiQ

(j−1)
k for i = 0, 1, . . . , L −

j + 1 are given at the beginning of the j th repetition, the new matrices AiS
(j)
k and

AiQ
(j)
k for i = 0, 1, . . . , L − j can be generated using (21), (25), and (26). This is

summarized by the following scheme:

Q
(j−1)
k Q

(j)
k

Eq.(26)
↗ i=0

AQ
(j−1)
k S

(j−1)
k

Eq.(25)−−−−→
i=0

S
(j)
k AQ

(j)
k

...
...

...
...

...
...

AL−jQ
(j−1)
k AL−j−1S

(j−1)
k

Eq.(25)−−−−−−→
i=L−j−1

AL−j−1S
(j)
k AL−jQ

(j)
k

Eq.(26)
↗ i=L−j

AL−j+1Q
(j−1)
k AL−j S

(j−1)
k

Eq.(25)−−−−→
i=L−j

AL−j S
(j)
k

(27)
Here, the starting matrices AiS

(0)
k = AiR

(L)
k−L for i = 0, 1, . . . , L − 1 and AiQ

(0)
k =

AiP
(L)
k−L for i = 0, 1, . . . , L are generated in the previous cycle. We note that when

j increases, the number of matrix updates decreases in the scheme (27), whereas it
increases in the scheme (22). Thus, repeating (27) for j = 1, 2, . . . , L gives S

(L)
k and

Q
(L)
k .

We now consider the computation ofZ(L)
k = Gk−1R

gbcg
k+L . FromAGk−1 = Hk−L−

Hk and the Gl-BiCG recursion for the residuals, we have

AGk−1P
gbcg

k+j−1 = Hk−LP
gbcg

k+j−1 − HkP
gbcg

k+j−1,

Gk−1R
gbcg
k+j = Gk−1R

gbcg

k+j−1 − αk+j−1AGk−1P
gbcg

k+j−1,

and rewriting them gives

U
(j−1)
k = Q

(j−1)
k − P

(j−1)
k , (28)

Z
(j)
k = Z

(j−1)
k − α

(j−1)
k U

(j−1)
k . (29)
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Therefore, we generate Z
(L)
k by repeating (29) with (28) for j = 1, 2, . . . , L, where

U
(0)
k := Q

(0)
k − P

(0)
k and Z

(0)
k := Gk−1R

gbcg
k . Because it holds that

Gk+L−1 = ζk,1Hk + ζk,2AHk + · · · + ζk,LAL−1Hk + ηkGk−1,

application to R
gbcg
k+L produces a recursion formula for computing the next starting

matrix Z
(0)
k+L as follows:

Z
(0)
k+L = ζk,1R

(L)
k + ζk,2AR

(L)
k + · · · + ζk,LAL−1R

(L)
k + ηkZ

(L)
k . (30)

We now have all the auxiliary matrices required for the cycles.

3.3 Refined Gl-GPBiCGstab(L ) algorithm

By combining (15)–(30), we obtain the refined Gl-GPBiCGstab(L) algorithm shown
in Algorithm 2. We refer to Section 2 for the notation. Algorithms 1 and 2 gen-
erate the same approximations in exact arithmetic, but they use different formulas,
especially for computing Y and U, and their numerical behaviors are different in
finite-precision arithmetic. The total computational costs of Algorithms 1 and 2 are
identical. However, Algorithm 2 has slightly simpler implementation because unlike
Algorithm 1, there is no branch in the loops with j and no recursions of Y and U.
Moreover, this simplicity is useful when applying preconditioning. As we show in
later sections, Algorithm 2 with right preconditioning is numerically more stable and
has a lower computational cost than that of Algorithm 1.

Algorithm 2 Gl-GPBiCGstab(L) for (1) (refined)
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We briefly describe the related Gl-LTPMs derived from Gl-GPBiCGstab(L). If the
parameter η is set to 0 in Algorithms 1 and 2, the computations of relaxation vanish,
and both algorithms reduce to the same Gl-BiCGstab(L) algorithm. To the best of our
knowledge, this is also a new Gl-LTPM. However, Algorithms 1 and 2 withL = 1 are
mathematically equivalent to Gl-GPBiCG [15, Algorithm 2] (and also Gl-GPBiCG-
plus [15, Algorithm 4]), but they use different implementations. As in the case of
standard LTPMs, the global versions of CGS, BiCGSTAB, and BiCGStab2 can be
derived from the framework of Gl-GPBiCG; therefore, Gl-GPBiCGstab(L) includes
them as well. Thus, Algorithms 1 and 2 can be reduced to various global versions and
have different implementations. However, because the main purpose of this study is
to develop an effective method for Gl-GPBiCGstab(L), we will not discuss the details
of the simplified algorithms further or their implementations. We consider several
key algorithms and compare their convergence later in numerical experiments.

4 Preconditioning for linear systems withmultiple right-hand sides

In this section, we focus on linear systems with multiple right-hand sides

AX = B, A ∈ R
n×n, B ∈ R

n×s , (31)

which constitute one of the most important types of linear matrix equations [7–10].
Here, A is a large sparse nonsymmetric and nonsingular matrix. Because the pre-
conditioning technique is useful for enhancing the convergence of Gl-LTPMs when
solving (31), we discuss the preconditioned algorithms of Gl-GPBiCGstab(L).

There are several approaches for converting the above system into a well-
conditioned system using a preconditioner K ≈ A. Multiplying (31) by K−1 from
the left side gives the left preconditioned system

ÂX = B̂, Â := K−1A, B̂ := K−1B.

In general, the left preconditioned algorithm is easy to implement by replacing only
the multiplications by A with those by K−1A, but the residuals generated in the
iterations change to R̂k = K−1Rk; we therefore need special care in setting the
stopping rule. Conversely, the right preconditioned system is given in the form

ÂX̂ = B, Â := AK−1, X̂ := KX. (32)

In this case, the residuals coincide with the standard ones, i.e., R̂k = Rk , and the
approximations generated in the iterations change to X̂k = KXk . The approximation
Xk = K−1X̂k needs to be computed accurately once the iterations are terminated.
Alternatively, to capture the approximations during the iterations, it is well known
that we can update Xk recursively instead of X̂k through some changes in the vari-
ables (cf., e.g., [2, 18]). We describe such algorithms of Gl-GPBiCGstab(L) with
right preconditioning.
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Algorithm 3 Right preconditioned Gl-GPBiCGstab(L) for (31) (naive)

4.1 Naive right preconditioned algorithm

Algorithm 3 is a naive right preconditioned Gl-GPBiCGstab(L) algorithm that is
obtained by applying Algorithm 1 to (32). Similar to [2, 18], several variables are
changed to update Xk recursively, and the variables with the hat symbol ‘ˆ ’ denote
that K−1 acts on its underlying variables (without hats). For example, we have the
following relations in Algorithm 3:

R = [
R0;R1; . . . ;Rj

]=
[
R

(j)
k ;

(
AK−1

)
R

(j)
k ; . . . ;

(
AK−1

)j

R
(j)
k

]
,

R̂ =
[
R̂0; R̂1; . . . ; R̂j

]
=

[
K−1R

(j)
k ; K−1

(
AK−1

)
R

(j)
k ; . . . ; K−1

(
AK−1

)j

R
(j)
k

]
,
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P = [P0; P1; . . . ; Pj−1]=
[(

AK−1
)

P
(j)
k ;

(
AK−1

)2
P

(j)
k ; . . . ;

(
AK−1

)j

P
(j)
k

]
,

P̂ =
[
P̂0; P̂1; . . . ; P̂j

]
=

[
K−1P

(j)
k ; K−1

(
AK−1

)
P

(j)
k ; . . . ; K−1

(
AK−1

)j

P
(j)
k

]
,

where we note that P
(j)
k itself is not needed for updating Xk , and we set P0 :=

(AK−1)P
(j)
k . Similar relationships also hold between other variables with and

without hats.
We briefly describe some concerns regarding Algorithm 3. Because R̂ is com-

puted by a linear combination of R̂i for i = 0, 1, . . . , L and Ŷ in line 26, it may
differ significantly from K−1R owing to accumulation of the rounding errors. In our
experience, this causes numerical instabilities, such as stagnation and divergence of
the residual norms in the late stages of the iterations (see Section 5.1 below). In
our preliminary experiments, we confirmed that the convergence can be improved
by computing R̂ explicitly with the form K−1R. However, this approach is costly
because it requires additional multiplications by K−1. We note that because Ŷ and Û
are computed by their coupled recursions with the starting matrix Ŷ = R̂′ − R̂ given
in line 26, it is difficult to remove this line without using additional multiplications
with K−1.

4.2 Refined right preconditioned algorithm

We can overcome the above difficulty by exploiting Algorithm 2. Algorithm 4
presents the refined right preconditioned Gl-GPBiCGstab(L) algorithm from apply-
ing Algorithm 2 to (32). Here, because Û is computed directly in the form Û =
Q̂0 − P̂0, we do not need Ŷ, which enables removal of the linear combination for
R̂. Then, unlike Algorithm 3, multiplication by K−1 can be used to compute the
following variables in the j th repetition.

R̂j−1 = K−1Rj−1 = K−1
(
AK−1

)j−1
R

(j)
k ,

P̂j = K−1Pj−1 = K−1
(
AK−1

)j

P
(j)
k .

Hence, R̂ is always a good approximation of K−1R in finite-precision arithmetic, and
we expect that Algorithm 4 is numerically more stable than Algorithm 3.

Note that because multiplications with K−1 are used in different parts between
Algorithms 3 and 4, the algorithms with η = 0 result in different formulations of the
right preconditioned Gl-BiCGstab(L).

4.3 Computational costs andmemory requirements

We compare the computational costs and memory requirements between the
related right preconditioned algorithms. We consider the original Gl-GPBiCG and
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Algorithm 4 Right preconditioned Gl-GPBiCGstab(L) for (31) (refined)

Gl-GPBiCG-plus with right preconditioning given in [15] as well as the naive and
refined variants of Gl-BiCGstab(L) and Gl-GPBiCGstab(L) with right precondition-
ing. Note that the evaluations for the naive and refined Gl-GPBiCG derived from
Gl-GPBiCGstab(L) are obtained by substituting L = 1 in the results of Algorithms 3
and 4, respectively.

Below, “MM” denotes a matrix–matrix product withA. Although Gl-GPBiCG and
Gl-GPBiCG-plus require two MMs per iteration while the others require 2L MMs
per cycle, all methods require one MM per increase by one Krylov dimension on
average. A single multiplication by K−1 is also required per MM for all the methods.
The number of AXPYs and DOTs per MM as well as their memory requirements
are summarized in Table 1, where AXPY and DOT correspond to the forms (4) and
(5), respectively. Following [6], the form aX or X + Y is counted as 1/2 AXPYs.
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Table 1 Computational cost per MM and memory requirements with right preconditioning

Algorithms AXPYs DOTs Memory

Gl-GPBiCG 31
4

7
2 14

[15, Algorithm 3]

Gl-GPBiCG-plus 27
4

7
2 13

[15, Algorithm 5]

Gl-BiCGstab(L) (naive) L + 4 L
4 + 7

4 + 1
2L 4L + 5

(Algorithm 3 with η = 0)

Gl-BiCGstab(L) (refined) L + 5
2

L
4 + 7

4 + 1
2L 4L + 4

(Algorithm 4 with η = 0)

Gl-GPBiCGstab(L) (naive) 2L + 11
2 + 11

4L
L
4 + 9

4 + 3
2L 8L + 10

(Algorithm 3)

Gl-GPBiCGstab(L) (refined) 2L + 15
4 + 2

L
L
4 + 9

4 + 3
2L 8L + 8

(Algorithm 4)

The computational costs for checking the stopping rule are not included. The mem-
ory requirements indicate the amount of n × s matrices that must be stored in the
algorithms. The memories for A and B are not counted.

From Table 1, we see that Algorithm 4 has an additional advantage that it requires
lower computational cost and memory requirements than Algorithm 3. The costs and
memories of Algorithm 4 for a modest value of L, e.g., L ≤ 4, are not high compared
with those of the Gl-GPBiCG and Gl-BiCGstab(L) algorithms.

5 Numerical experiments

We present numerical experiments to show the effectiveness of the proposed
Gl-GPBiCGstab(L) method. Numerical calculations were carried out in double-
precision floating-point arithmetic on a PC (Intel Core i7-1185G7 CPU with 32 GB
of RAM) equipped with MATLAB 2021a. The right-hand side B ∈ R

n×s was given
by a random matrix. The initial guess X0 and initial shadow residual R̃0 were set to
O and R0 (= B), respectively. The least-squares problem (6) was converted to a nor-
mal equation (7) and solved using the backslash command in MATLAB. The other
computational conditions were set individually for each example, as noted below.

5.1 Comparison of the naive and refined algorithms

We first compare convergence between the naive and refined Gl-GPBiCGstab(L)
algorithms with and without preconditioning. Algorithms 1–4 were applied to (31).
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Following [6], the coefficient matrix A was given by the following Toeplitz matrix:

A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1
0 2 1

0 0 2
. . .

0 0 0
. . .

1.4 0 0
. . .

1.4 0
. . .

1.4
. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
500×500.

The iterations were stopped when the relative residual norms ‖Rk‖F /‖B‖F were less
than 10−14. The parameters s and L were set to s = 1, 2, 4, 8, 16, 32 and L = 2, 4, 8,
respectively. The maximum number of MMs was set to 2n. ILU(0) [19] was used as
the preconditioner in Algorithms 3 and 4.

Figure 1 shows the convergence histories of the relative residual norms of
Algorithms 3 and 4, i.e., the naive and refined Gl-GPBiCGstab(L) with right pre-
conditioning, for s = 1 and 32. The plots indicate the number of MMs along the
horizontal axis versus log10 of the relative residual F-norm along the vertical axis.
Note that “MV” (matrix–vector product) and 2-norm are utilized for s = 1 instead of
MM and F-norm, respectively. Table 2 shows the number of MMs required for suc-
cessful convergence of the four algorithms. The symbol † in Table 2 indicates that
the residual norms stagnate or diverge at the late stages of the iterations, as displayed
in Fig. 1.

From Fig. 1 and Table 2, we observe the following. The numbers of MMs required
for successful convergence of Algorithms 1 and 2 (without preconditioning) are
comparable for each value of s and L. In contrast, in the preconditioned case, Algo-
rithm 4 achieves faster convergence than in the non-preconditioned case for all s

and L, whereas Algorithm 3 often does not converge. As noted in Section 4.1, R̂ in
Algorithm 3 may differ from K−1R because of rounding errors, and this difference
is expected to increase with increasing L. Actually, Algorithm 3 becomes unsta-
ble as parameter L increases for a fixed s. Similar results have been observed for

Fig. 1 Convergence histories of Algorithms 3 and 4 (naive and refined Gl-GPBiCGstab(L) with right
preconditioning, respectively) for s = 1 (left) and s = 32 (right)
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Table 2 Number of MMs for Algorithms 1–4 for the Toeplitz matrix

Solvers L \ s 1 2 4 8 16 32

Algorithm 1 2 761 696 693 752 688 720

4 677 648 672 663 653 624

8 641 640 656 653 640 653

Algorithm 2 2 755 701 707 707 676 685

4 641 665 671 683 632 624

8 641 641 635 640 640 649

Algorithm 3 2 193 196 193 192 188 †

4 † 200 193 † † †

8 † † † † † †

Algorithm 4 2 195 204 191 197 184 185

4 200 199 192 208 200 195

8 205 208 208 208 208 208

other matrices. Moreover, because stagnation of the residual norms occurs even when
s = 1, there is an inherent problem in the original GPBiCGstab(L) with right pre-
conditioning, but the numerical instability seems to grow with increasing s. For the
above reasons, we conclude that our refined Gl-GPBiCGstab(L) algorithm is more
robust than the naive version with right preconditioning.

5.2 Experiments for linear systems withmultiple right-hand sides

Next, we apply several Gl-LTPMs with preconditioning to (31) and compare
their convergences. We use Gl-BiCGSTAB, Gl-GPBiCG, Gl-BiCGstab(L), and Gl-
GPBiCGstab(L), which can be obtained from Algorithm 4. For Gl-GPBiCG, we
also use the Gl-GPBiCG-plus implementation [15, Algorithm 5]. Table 3 dis-
plays the abbreviations of the solvers and their corresponding algorithms. Right
preconditioning was applied to all methods, and the ILU(0) preconditioner was used.

We consider test matrices from the SuiteSparse Matrix Collection [20]. Table 4
shows the dimension (n), number of nonzero entries (nnz), and 2-norm condition
number (κ2) of each matrix. The condition number is displayed only if it is given
in the above collection. The iterations are stopped when the relative residual norms
‖Rk‖F /‖B‖F are less than 10−10. The maximum number of MMs was set to 2n. For
Gl-BiCGstab(L) and Gl-GPBiCGstab(L), we use L = 2, 4. The number of right-
hand sides s is set to 16.

Figure 2 displays the convergence histories of the relative residual norms of Gl-
LTPMs with right preconditioning for sme3Db and garon2. We refer to Section 5.1
for the plots of the figures. Table 5 shows the number of MMs required for success-
ful convergence (MMs), computation time (Time), and explicitly computed relative
residual norm (referred to as the true relative residual norm) ‖B − AXk‖F /‖B‖F

(TRR) at the time of termination of the solvers. Following [6], the smallest MMs
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Table 3 Solvers used in Section 5.2

Abbreviations Solvers1 Algorithms

-STAB Gl-BiCGSTAB Algorithm 4 with L = 1 and η = 0

GP-plus Gl-GPBiCG-plus [15, Algorithm 5]

GP- Gl-GPBiCG Algorithm 4 with L = 1

-stab(L) Gl-BiCGstab(L) Algorithm 4 with η = 0

GP-stab(L) Gl-GPBiCGstab(L) Algorithm 4

1Right preconditioning is applied to all solvers

and Time are displayed in boldface font in italics, and the second smallest values are
displayed only in italics for each problem. “Inf”’ and “NaN” in the table indicate that
the iteration values are “infinity” and “not a number”, respectively, when iterating
with MATLAB and that the iterations cannot proceed thereafter.

From Fig. 2 and Table 5, we observe the following. The fastest convergence in
terms of number of MMs is achieved by the proposed Gl-GPBiCGstab(L) for all
problems. In particular, Gl-GPBiCGstab(4) often converges faster than not only the
other Gl-LTPMs but also Gl-GPBiCGstab(2). As noted in [6], moderately increas-
ing L seems to be useful for reducing the number of MMs required for successful
convergence. These are important metrics of the effectiveness of Gl-GPBiCGstab(L)
as a global Krylov subspace method because the number of MMs coincides with
the dimensions of the matrix Krylov subspace. In terms of the computational time,
Gl-BiCGstab(L) and Gl-GPBiCGstab(L) are comparable to the conventional Gl-
GPBiCG-plus on average. Comparing the true relative residual norms, there are cases
where Gl-BiCGstab(L) and Gl-GPBiCGstab(L) generate slightly more accurate
approximate solutions than Gl-GPBiCG-plus.

We also remark on the numerical results briefly when the stopping criterion was set
to ‖Rk‖F /‖B‖F < 10−12, because we obtained slightly different observations from
the above. With respect to the convergence speed in terms of the number of MMs,
Gl-BiCGstab(4) and Gl-GPBiCGstab(4) are superior to other Gl-LTPMs. Moreover,

Table 4 Characteristics of test matrices for linear systems with multiple right-hand sides (31)

No. Matrices n nnz κ2

#1 memplus 17,758 99,147 1.3e+05

#2 utm1700b 1,700 21,509 5.6e+06

#3 cavity16 4,562 137,887 9.4e+06

#4 sme3Db 29,067 2,081,063 3.6e+07

#5 dc1 116,835 766,396 -

#6 ex28 2,603 77,031 2.0e+05

#7 garon2 13,535 373,235 6.1e+07

#8 Goodwin 054 32,510 1,030,878 -
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Fig. 2 Convergence histories of the relative residual norms of Gl-LTPMs with right preconditioning for
sme3Db (left) and garon2 (right)

Table 5 Numbers of MMs, computation times, and true relative residual norms for Gl-LTPMs with right
preconditioning for linear systems with multiple right-hand sides (31)

-stab(L) GP-stab(L)

No. Items -STAB GP-plus GP- L = 2 L = 4 L = 2 L = 4

#1 MMs 948 843 772 863 752 761 680

Time 6.142 5.113 5.937 6.164 5.915 6.879 7.164

TRR 4.5e−11 4.5e−09 8.3e−11 8.8e−11 9.8e−11 9.7e−11 7.7e−11

#2 MMs 438 189 198 185 167 173 160

Time 0.314 0.134 0.165 0.145 0.127 0.162 0.148

TRR 2.6e−10 4.3e−09 1.1e−09 5.7e−10 6.0e−09 1.0e−09 6.0e−09

#3 MMs 1836 594 672 725 488 588 464

Time 5.466 1.920 2.354 2.337 1.561 2.130 1.690

TRR 1.1e−10 2.1e−10 1.6e−10 8.5e−11 4.1e−11 6.4e−10 9.6e−11

#4 MMs 17115 1963 6333 2939 2191 5005 1744

Time 1100 124.9 419.0 191.6 150.3 339.9 121.7

TRR 3.3e−08 2.7e−09 2.9e−08 3.3e−09 2.7e−09 9.3e−08 3.7e−09

#5 MMs 2195 799 839 1419 816 705 845

Time 94.04 33.40 41.67 64.98 40.37 39.11 52.37

TRR 2.2e−07 7.6e−06 5.2e−04 7.1e−08 7.0e−08 7.3e−08 7.0e−08

#6 MMs 212 165 172 188 155 152 151

Time 0.377 0.301 0.357 0.344 0.288 0.315 0.327

TRR 3.7e−11 2.4e−10 7.6e−11 4.2e−11 1.7e−10 8.0e−11 3.3e−10

#7 MMs Inf 1023 1171 1331 833 915 784

Time - 10.45 13.56 14.76 9.816 11.65 10.97

TRR - 2.8e−10 9.8e−11 9.1e−11 6.2e−11 8.2e−11 9.6e−11

#8 MMs NaN 4451 NaN 2587 4513 2879 2328

Time - 128.6 - 79.18 176.0 118.1 99.26

TRR - 1.1e−10 - 8.0e−11 7.3e−11 1.1e−10 1.2e−10
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Table 6 Solvers used in Section 5.3

Abbreviations Solvers2 Algorithms

-STAB Gl-BiCGSTAB Algorithm 2 with L = 1 and η = 0

GP-plus Gl-GPBiCG-plus [15, Algorithm 4]

GP- Gl-GPBiCG Algorithm 2 with L = 1

-stab(L) Gl-BiCGstab(L) Algorithm 2 with η = 0

GP-stab(L) Gl-GPBiCGstab(L) Algorithm 2

2No preconditioning is used in all the solvers

only these two solvers converge for all the test matrices; other conventional Gl-
LTPMs fail to converge at the late stages of the iterations for some problems. On the
other hand, the attainable accuracy in terms of the true residual norm is limited for
all the solvers, that is, a so-called large residual gap (the difference between Rk and
B − AXk) appears in most cases. This problem would be improved by combining
Gl-LTPMs with the techniques described in [21].

5.3 Experiments for the Sylvester equation

Herein, we present the numerical results of the Gl-LTPMs for the Sylvester equation
(2). The solvers shown in Table 6 are applied to (2) without preconditioning.

Note that linear operation by A to X ∈ R
n×s is defined as A(X) := AX −

XC for the given matrices A ∈ R
n×n and C ∈ R

s×s , and “MM” is replaced by
“OP” to denote an operation with A. Motivated by [15, 22], we set the test matrices
A and C as displayed in Table 7. The matrices are derived from the SuiteSparse
Matrix Collection [20], except for the tridiagonal matrix in problems #11 and #12.
The tridiagonal matrix C = [cij ] is defined as ci+1,i := 11, cii := −2, and ci,i+1 :=
−9 for each i (otherwise, cij := 0). The value s is determined by the size of C,
and the maximum number of OPs was set to 2sn. All other computational conditions
were similar to those in Section 5.2.

Table 7 Characteristics of the test matrices for the Sylvester equation (2)

No. Matrices n nnz κ2

#9 A = fs 680 1 680 2,184 1.5e+04

C = can 24 24 160 7.8e+01

#10 A = fs 680 1 680 2,184 1.5e+04

C = ibm32 32 126 4.0e+02

#11 A = sherman1 1,000 3,750 1.6e+04

C = tridiag(11, −2,−9) 10 28 8.4e+00

#12 A = sherman4 1,104 3,786 2.2e+03

C = tridiag(11, −2,−9) 10 28 8.4e+00
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Fig. 3 Convergence histories of the relative residual norms of Gl-LTPMs for problems #9 (left) and #11
(right)

Figure 3 displays the convergence histories of the relative residual norms of the
Gl-LTPMs for problems #9 and #11. The number of OPs and log10 of the relative
residual F-norms are plotted on the horizontal and vertical axes, respectively. Table 8
shows the number of OPs required for successful convergence (OPs), computation
time (Time), and true relative residual norm ‖B − A(Xk)‖F /‖B‖F (TRR) at the
time of termination. The other notations are as defined in Table 5.

From Fig. 3 and Table 8, we observe the following. Similar to the results in
Section 5.2, Gl-GPBiCGstab(L) (especially, with L = 4) often converges faster
than the other Gl-LTPMs with respect to the number of OPs. The conventional
Gl-GPBiCG-plus is efficient in terms of the computational time. However, Gl-
GPBiCG-plus does not converge for problem #11, whereas Gl-BiCGstab(L) and
Gl-GPBiCGstab(L) converge. Similar situations have occasionally occurred in our

Table 8 Numbers of OPs, computation times, and true relative residual norms for Gl-LTPMs for the
Sylvester equation (2)

-stab(L) GP-stab(L)

No. Items -STAB GP-plus GP- L = 2 L = 4 L = 2 L = 4

#9 OPs 1572 1213 1183 1500 1247 1176 1043

Time 0.301 0.212 0.386 0.338 0.286 0.345 0.313

TRR 1.0e−10 1.4e−10 7.7e−11 8.4e−11 9.4e−11 8.5e−11 1.0e−10

#10 OPs 1773 1269 1241 1392 1312 1184 1200

Time 0.383 0.263 0.479 0.368 0.315 0.388 0.370

TRR 8.5e−11 1.3e−10 7.5e−11 8.4e−11 4.7e−11 9.7e−11 1.5e−09

#11 OPs Inf NaN 9430 1471 887 1107 841

Time - - 1.569 0.194 0.126 0.212 0.150

TRR - - 9.6e−11 9.4e−11 9.6e−11 9.2e−11 9.7e−11

#12 OPs 1531 347 360 333 311 317 312

Time 0.187 0.044 0.080 0.049 0.051 0.068 0.065

TRR 7.6e−11 6.8e−11 9.7e−11 6.5e−11 5.9e−11 7.8e−11 9.8e−11

316 Numerical Algorithms (2023) 93:295–319



experience, and the proposed methods appear to be more robust than the conventional
Gl-LTPMs.

We also note that the numerical results with the stopping criterion ‖Rk‖F /‖B‖F <

10−12 are similar to the above. However, Gl-BiCGstab(4) and Gl-GPBiCGstab(4)
have a slightly larger residual gap for problems #9 and #10. We will not further
discuss the residual gap in the present study, but will seek more refined algorithms of
Gl-LTPMs based on [21] in the future.

6 Concluding remarks

We propose a novel global Lanczos-type method Gl-GPBiCGstab(L) for solving
linear matrix equations. The original GPBiCGstab(L) can be easily extended to its
global version naively, but such a method has numerical instabilities when right pre-
conditioning is applied for solving linear systems with multiple right-hand sides.
Therefore, we reconstruct Gl-GPBiCGstab(L) using alternative recursion formulas
to update the iteration matrices. The resulting refined algorithm with right pre-
conditioning has greater robustness and lower computational cost than the naive
version. Moreover, the results of numerical experiments show that the refined Gl-
GPBiCGstab(L) converges quickly and stably compared with other Gl-LTPMs for
linear systems with multiple right-hand sides and the Sylvester equation.

Based on the above results, there are two main prospects for the proposed
approach. First, we can apply the proposed approach to more difficult classes of
matrix equations, such as the general coupled matrix equations including the gener-
alized Sylvester equation [11]. Second, the proposed method can be used to discuss
block Krylov subspace methods, such as the block BiCGstab(L) [23] and block
GPBiCG [24] methods. Because these block-type methods are effective approaches,
especially when solving linear systems with multiple right-hand sides, it is natural
that a block version of GPBiCGstab(L) be developed, as noted in [6]. We have not
elaborated on these points in the present work but expect to discuss them in future
works.
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