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Abstract
We consider the time discretization of a linear parabolic problem by the discontinuous 
Galerkin (DG) method using piecewise polynomials of degree at most r − 1 in t, for r 
≥ 1 and with maximum step size k. It is well known that the spatial L2-norm of the DG 
error is of optimal order kr globally in time, and is, for r ≥ 2, superconvergent of order 
k2r− 1 at the nodes. We show that on the n th subinterval (tn− 1,tn), the dominant term 
in the DG error is proportional to the local right Radau polynomial of degree r. This 
error profile implies that the DG error is of order kr+ 1 at the right-hand Gauss–Radau 
quadrature points in each interval. We show that the norm of the jump in the DG solu-
tion at the left end point tn− 1 provides an accurate a posteriori estimate for the maxi-
mum error over the subinterval (tn− 1,tn). Furthermore, a simple post-processing step 
yields a continuous piecewise polynomial of degree r with the optimal global conver-
gence rate of order kr+ 1. We illustrate these results with some numerical experiments.

Keywords Superconvergence · Post-processing · Gauss–Radau quadrature · 
Legendre polynomials
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1 Introduction

Consider an abstract, linear initial-value problem

(1)u�(t) + Au(t) = f (t) for 0 < t ≤ T , with u(0) = u0.
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We assume a continuous solution u ∶ [0, T] → � , with u(t) ∈ ℍ if t > 0, for two 
Hilbert spaces � and ℍ with a compact and dense imbedding ℍ ⊆ 𝕃 . By using the 
inner product 〈⋅,⋅〉 in � to identify this space with its dual �∗ , we obtain in the 
usual way an imbedding 𝕃 ⊆ ℍ

∗ . The linear operator A ∶ ℍ → ℍ
∗ is assumed to 

be bounded and self-adjoint, as well as strictly positive-definite. For instance, if 
A = −∇2 so that (1) is the classical heat equation on a bounded Lipschitz domain 
Ω ⊂ ℝ

d where d ≥ 1, and if we impose homogeneous Dirichlet boundary condi-
tions, then in the usual way we can choose � = L2(Ω) and ℍ = H1

0
(Ω) , in which 

case ℍ∗ = H−1(Ω).
For an integer r ≥ 1, let U denote the discontinuous Galerkin (DG) time step-

ping solution to (1) using piecewise polynomials of degree at most r − 1 with 
coefficients in ℍ . Thus, we consider only the time discretization with no addi-
tional error arising from a spatial discretization. Section  2 summarizes known 
results on the convergence properties of the DG solution U, and Section 3 intro-
duces a local Legendre polynomial basis that is convenient for the practical 
implementation of DG time stepping as well as for our theoretical study. These 
sections serve as preparation for Section 4 where we show that

Here, kn denotes the length of the n th time interval In = (tn− 1,tn), the function pnr 
denotes the Legendre polynomial of degree r, shifted to In, and anr(u) denotes the 
coefficient of pnr in the local Legendre expansion of u on In. Since anr(u) = O(kr

n
) , 

the result (2) shows that the dominant term in the DG error is proportional to 
the Gauss–Radau polynomial pnr(t) − pn,r− 1(t) for t ∈ In. However, the coefficient 
anr(u) and the O

(
kr+1
n

)
 term in (2) typically grow as t → 0 at rates depending on 

the regularity of the solution u, which in turn depends on the regularity and com-
patibility of the data.  A possible extension permitting a time-dependent operator 
A(t) is discussed briefly in Remark 4.8.

In 1985, Eriksson, Johnson and Thomée [1] presented an error analysis for DG 
time stepping of (1), showing optimal O(kr+ 1) convergence in L∞

(
(0, T);L2(Ω)

)
 and 

O(k2r− 1) superconvergence for the nodal values limt→t−
n
U(t) , where k = max1≤n≤N kn . 

Subsequently, numerous authors [2–8] have refined these results, including a recent 
L∞ stability result of Schmutz and Wihler [9] that we use in the proof of Theo-
rem 4.4. Shortly before completing the present work we learned that the expansion 
(2) was proved by Adjerid et al. [10, 11] for a linear, scalar hyperbolic problem, and 
also for nonlinear systems of ODEs [12]; see Remark 4.7 for more details. 

Section 5 discusses some practical consequences of (2), in particular the super-
convergence of the DG solution at the right Radau points in each interval. This phe-
nomenon was exploited by Springer and Vexler [13] in the piecewise-linear (r = 2) 
case to achieve higher-order accuracy for a parabolic optimal control problem. We 
will see in Lemma 5.1 how the norm of the jump in U at the break point tn− 1 provides 
an accurate estimate of the maximum DG error over the interval In. Moreover, a sim-
ple, low-cost post-processing step yields a continuous piecewise polynomial U* of 
degree at most r, called the reconstruction of U, that satisfies U∗(t) − u(t) = O

(
kr+1
n

)
 

for t ∈ In; see Corollary 5.3. Finally, Section 6 reports the results of some numerical 

(2)U(t) − u(t) = −anr(u)
[
pnr(t) − pn,r−1(t)

]
+ O

(
kr+1
n

)
for t ∈ In.
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experiments for a scalar ODE and for heat equations in one and two spatial dimen-
sions, confirming the convergence behavior from the theory based on (2).

Our motivation for the present study originated in a previous work [14] deal-
ing with the implementation of DG time stepping for a subdiffusion equation 
u�(t) + �1−�

t
Au(t) = f (t) with 0 < ν < 1, where �1−�

t
 denotes the Riemann–Liouville 

fractional time derivative of order 1 − ν. We observed in numerical experiments that 
(2) holds except with O

(
kr+�
n

)
 in place of O

(
kr+1
n

)
.

Treatment of the spatial discretization of (1) is beyond the scope of this paper, 
apart from its use in our numerical experiments. To make practical use of our result 
(2) it is necessary to ensure that the spatial error is dominated by the O

(
kr+1
n

)
 term. 

Also, although we allow nonuniform time steps in our analysis, we will not consider 
questions such as local mesh refinement or adaptive step size control, which are gen-
erally required to resolve the solution accurately for t near 0.

2  Discontinuous Galerkin time stepping

As background and preparation for our results, we formulate in this section the DG 
time stepping procedure and summarize key convergence results from the literature. 
Our standard reference is the monograph of Thomée [15, Chapter 12].

Choosing time levels 0 = t0 < t1 < t2 < ⋯ < tN = T, we put

Let ℙj(𝕍 ) denote the space of polynomials of degree at most j with coefficients from 
a vector space �  . We fix an integer r ≥ 1, put t = (tn)

N
n=0

 and form the piecewise-
polynomial space Xr = Xr(t,ℍ) defined by

Denoting the one-sided limits of X at tn by

we discretize (1) in time by seeking U ∈ Xr satisfying [15, p. 204]

for X ∈ Xr and 1 ≤ n ≤ N, with U0
−
= u0 . Section 3 describes how, given Un−1

−
 and f, 

we can solve a linear system to obtain U|In and so advance the solution by one time 
step.

Remark 2.1 If the integral on the right-hand side of (3) is evaluated using the right-
hand, r-point, Gauss–Radau quadrature rule on In, then the sequence of nodal values 
Un

−
 coincides with the finite difference solution produced by the r-stage Radau IIA 

(fully) implicit Runge–Kutta method; see Vlasák and Roskovec [16, Section 3].

k = max
1≤n≤Nkn where kn = tn − tn−1.

X ∈ Xr iff X|In ∈ ℙr−1(ℍ) for 1 ≤ n ≤ N.

Xn
+
= lim

t→t+
n

X(t) and Xn
−
= lim

t→t−
n

X(t),

(3)⟨Un−1
+

,Xn−1
+

⟩ + ∫ In

⟨U� + AU,X⟩ dt = ⟨Un−1
−

,Xn−1
+

⟩ + ∫ In

⟨f ,X⟩ dt
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Let ∥⋅∥ denote the norm in � and let u(ℓ) denote the ℓ th derivative of u with 
respect to t. It will be convenient to write

and to define the fractional powers of A in the usual way via its spectral decomposi-
tion [15, Chapter 3]. The DG time stepping scheme has the nodal error bound [15, 
Theorem 12.1]

and the uniform bound [15, Theorem 12.2]

where in both cases 1 ≤ n ≤ N. We therefore have optimal convergence

provided u(r) ∈ L∞((0, T);�) and A1∕2u(r) ∈ L2((0, T);�) . In fact, U is superconver-
gent at the nodes [15, Theorem 12.3] when r ≥ 2, with

Thus,

provided Ar−1∕2u(r) ∈ L2((0, T);�).
Suppose for the remainder of this section that f ≡ 0, and consider error bounds 

involving the (known) initial data u0 instead of the (unknown) solution u. By sep-
arating variables, one finds that [15, Lemma 3.2]

assuming that u0 belongs to the domain of As. It follows that, for sufficiently regular 
initial data, we have the basic error bound [1, Theorem 1],

For non-smooth initial data u0 ∈ L2(Ω), the full rate of convergence still holds 
but with a constant that blows up as t tends to zero [1, Theorem 3]: provided kn ≤ 
Ckn− 1 for all n ≥ 2,

and hence, by interpolation,

‖v‖In = sup
t∈In

‖v(t)‖,

(4)‖Un
−
− u(tn)‖2 ≤ C

n�
j=1

k2�
j � Ij

‖A1∕2u(�)(t)‖2 dt for 1 ≤ � ≤ r,

‖U − u‖In ≤ ‖Un
−
− u(tn)‖ + C‖Un−1

−
− u(tn−1)‖ + Ck�

n
‖u(�)‖In for 1 ≤ � ≤ r,

(5)‖U(t) − u(t)‖ = O(kr) for 0 ≤ t ≤ T ,

‖Un
−
− u(tn)‖2 ≤ Ck2(�−1)

n�
j=1

k2�
j � Ij

‖A�−1∕2u(�)(t)‖2dt for 1 ≤ � ≤ r.

(6)‖Un
−
− u(tn)‖ = O(k2r−1),

(7)‖Aqu(�)(t)‖ ≤ Cts−(q+�)‖Asu0‖ for 0 ≤ s ≤ q + � and 0 < t ≤ T ,

(8)‖U(t) − u(t)‖ ≤ Ck�‖A�u0‖ for 0 ≤ t ≤ T and 0 ≤ � ≤ r.

‖U(t) − u(t)‖ ≤ Ct−rkr‖u0‖ for 0 < t ≤ T ,
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At the nodes [1, Theorem 2],

and [1, Theorem 3], provided kn ≤ Ckn− 1 for all n ≥ 2,

Taking s = q in (10) and (11), we see by interpolation that

3  Local Legendre polynomial basis

We now return to considering the general inhomogeneous problem and describe a 
practical formulation of the DG scheme using local Legendre polynomial expan-
sions that will also play an essential role in our subsequent analysis.

Let Pj denote the Legendre polynomial of degree j with the usual normaliza-
tion Pj(1) = 1, and recall that

Using the affine map βn : [− 1,1] → [tn− 1,tn] given by

we define local Legendre polynomials on the n th subinterval,

and note that

The local Fourier–Legendre expansion of a function v is then, for t ∈ In,

In particular, for the DG solution U we put Unj = anj(U) ∈ ℍ so that

(9)‖U(t) − u(t)‖ ≤ Cts−rkr‖Asu0‖ for 0 < t ≤ T and 0 ≤ s ≤ r.

(10)‖Un
−
− u(tn)‖ ≤ Cks‖Asu0‖ for 1 ≤ n ≤ N and 1 ≤ s ≤ 2r − 1,

(11)‖Un
−
− u(tn)‖ ≤ Ct−s

n
ks‖u0‖ for 1 ≤ n ≤ N and 0 ≤ s ≤ 2r − 1.

(12)‖Un
−
− u(tn)‖ ≤ Cts−q

n
kq‖Asu0‖ for 1 ≤ n ≤ N and 0 ≤ s ≤ q ≤ 2r − 1.

∫
1

−1

Pi(�)Pj(�) d� =
2�ij

2j + 1
.

(13)�n(�) =
1

2

[
(1 − �)tn−1 + (1 + �)tn

]
for − 1 ≤ � ≤ 1,

pnj(t) = Pj(�) for t = �n(�) and − 1 ≤ � ≤ 1,

(14)pnj(tn) = 1 and ∫ In

pni(t) pnj(t) dt =
kn�ij

2j + 1
.

v(t) =

∞∑
j=0

anj(v)pnj(t) where anj(v) =
2j + 1

kn ∫ In

v(t)pnj (t) dt.
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Define [14, Lemma 5.1]

 and Hij = ∫ 1

−1
Pj(�)Pi(�)d� = �ij∕(2j + 1) ; e.g., if r = 4 then

By choosing a test function of the form X(t) = pni(t)χ, for t ∈ In and � ∈ ℍ , we find 
that the DG equation (3) implies

for 0 ≤ i ≤ r − 1 and 1 ≤ n ≤ N, where

Thus, given Un− 1,j for 0 ≤ j ≤ r − 1, by solving the (block) r × r system (15) we 
obtain Unj for 0 ≤ j ≤ r − 1, and hence U(t) for t ∈ In. The existence and uniqueness 
of this solution follows from the stability of the scheme [15, p. 205]. Notice that

4  Behavior of the DG error

To prove our main results, we will make use of two projection operators. The first is 
just the orthogonal projector Πr ∶ L2((0, T);�) → Xr defined by

 which has the explicit representation

U(t) =

r−1∑
j=0

Unjpnj(t) for t ∈ In.

Gij = Pj(−1)Pi(−1) + �
1

−1

P�
j
(𝜏)Pi(𝜏) d𝜏 =

{
(−1)i+j, if i ≥ j,

1, if i < j,

G =

⎡
⎢⎢⎢⎣

1 1 1 1

−1 1 1 1

1 −1 1 1

−1 1 −1 1

⎤
⎥⎥⎥⎦

and H =

⎡
⎢⎢⎢⎢⎣

1
1

3
1

5
1

7

⎤
⎥⎥⎥⎥⎦
.

(15)
r−1∑
j=0

(
Gij + knHijA

)
Unj = Ǔn−1,i + ∫ In

f (t)pni(t) dt

Ǔ0i = (−1)iu0 and Ǔni = (−1)i
r−1∑
j=0

Unj for n ≥ 1.

Un−1
+

=

r−1�
j=0

(−1)jUnj and Un−1
−

=

�
u0 if n = 1,∑r−1

j=0
Un−1,j if 2 ≤ n ≤ N.

∫
T

0

⟨Πrv,X⟩ dt = ∫
T

0

⟨v,X⟩ dt for all X ∈ Xr,
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The second projector Π̃r ∶ C([0, T];�) → Xr is defined by the conditions [15, 
Equation (12.9)]

for all X ∈ Xr and for 1 ≤ n ≤ N. The next lemma shows that Π̃ru is in fact the 
DG solution of the trivial equation with A = 0; cf. Chrysafinos and Walkington [3, 
Section 2.2].

Lemma 4.1 If u� ∶ (0, T] → � is integrable, then

Proof Integrating by parts and using the properties (16) of Π̃r , we have

and a second integration by parts then yields the desired identity.

The Legendre expansion of Π̃rv coincides with that of Πrv, except for the 
coefficient of pn,r− 1. Below, we denote the closure of the nth time interval by 
Īn = [tn−1, tn].

Lemma 4.2 If v ∶ Īn → � is continuous, then

where

Proof By choosing X�|In = pnj in the second property of (16), we see that

implying that Π̃rv = Πr−1v + �pn,r−1 for some � ∈ ℍ . Since pnj(tn) = Pj(1) = 1, the 
first property in (16) gives

(Πrv)(t) =

r−1∑
j=0

anj(v)pnj(t) for t ∈ In and 1 ≤ n ≤ N.

(16)(Π̃rv)
n
−
= v(tn) and ∫ In

⟨Π̃rv,X
�⟩ dt = ∫ In

⟨v,X�⟩ dt

⟨(Π̃ru)
n−1
+

,Xn−1
+

⟩ + ∫ In

⟨(Π̃ru)
�,X⟩ dt = ⟨u(tn−1),Xn−1

+
⟩ + ∫ In

⟨u�,X⟩ dt.

∫
In
⟨(Π̃ru)

�,X⟩ dt = ⟨(Π̃ru)
n
−
,Xn

−
⟩ − ⟨(Π̃ru)

n−1
+

,Xn−1
+

⟩ − ∫
In
⟨Π̃ru,X

�⟩ dt
= ⟨u(tn),Xn

−
⟩ − ⟨(Π̃ru)

n−1
+

,Xn−1
+

⟩ − ∫
In
⟨u,X�⟩ dt,

(�Πrv)(t) =

r−2∑
j=0

anj(v)pnj(t) + ãn,r−1(v)pn,r−1(t) for t ∈ In,

ãn,r−1(v) = v(tn) − (Πr−1v)
n
−
= v(tn) −

r−2∑
j=0

anj(v).

anj(Π̃rv) = anj(v) for 0 ≤ j ≤ r − 2,
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showing that 𝜆 = ãn,r−1(v).

By mapping to the reference element (− 1,1), applying the Peano kernel theorem, 
and then mapping back to In, we find [14, p. 137]

and

Theorem 4.3 For 1 ≤ n ≤ N, if v ∶ Īn → � is Cr+ 1 then

Proof By Lemma 4.2, if t ∈ In then

and

so

Taking the limit as t → t−
n
 , and recalling that pnj(tn) = 1, we see that

Using (20) to eliminate ãn,r−1(v) in (19), we find that

 on In, and the desired estimate follows at once from (18).

The following theorem and its corollary, together with the superconvergence 
result (6), show that

provided u is sufficiently regular.

v(tn) = (Π̃rv)
n
−
= (Πr−1v)

n
−
+ � with (Πr−1v)

n
−
=

r−2∑
j=0

anj(v),

(17)‖anj(v)‖ ≤ Ckj−1
n � In

‖v(j)(t)‖ dt ≤ Ckj
n
‖v(j)‖In for j ≥ 0,

(18)‖v − Πrv‖In ≤ Ck�−1
n � In

‖v(�)(t)‖ dt ≤ Ck�
n
‖v(�)‖In for 1 ≤ � ≤ r.

���Π̃rv − v + anr(v)(pnr − pn,r−1)
���In ≤ Ckr+1

n
‖v(r+1)‖In .

(�Πrv)(t) = (Πr−1v)(t) + ãn,r−1(v)pn,r−1(t)

(Πr+1v)(t) = (Πr−1v)(t) + an,r−1(v)pn,r−1(t) + anr(v)pnr(t),

(19)(�Πrv)(t) − (Πr+1v)(t) = [ãn,r−1(v) − an,r−1(v)]pn,r−1(t) − anr(v)pnr(t).

(20)v(tn) − (Πr+1v)
n
−
= ãn,r−1(v) − an,r−1(v) − anr(v).

Π̃rv − v + anr(v)
[
pnr − pn,r−1

]
= (Πr+1v − v) +

[
v(tn) − (Πr+1v)

n
−

]
pn,r−1

(21)‖U − Π̃ru‖In = O
�
kr+1
n

�
for r ≥ 2,
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Theorem 4.4 For 1 ≤ n ≤ N, if Au ∶ Īn → � is Cr, then

Proof It follows from Lemma 4.1 that Π̃ru satisfies

whereas U satisfies

for all X ∈ Xr . Letting � = A(u − Π̃ru) and noting (Π̃ru)
n−1
−

= u(tn−1) , we see that the 
piecewise polynomial � = U − Π̃ru ∈ Xr satisfies

for all X ∈ Xr , with �n−1
−

= Un−1
−

− u(tn−1) . A stability result of Schmutz and Wihler 
[9, Proposition 3.18] yields the estimate

that is,

By putting v = Au in (18) we find kn∫ In
‖�‖2 dt ≤ k2

n
‖�‖2

In
≤ C(kr+1

n
‖Au(r)‖In)2 , and 

the desired estimate follows at once.

We are now able to establish the claim (2) from the Introduction.

Theorem 4.5 For 1 ≤ n ≤ N, if Au(r) and u(r+ 1) are continuous on Īn , then

Proof Write

 and apply Theorem 4.3 and 4.4.

‖U − Π̃ru‖In ≤ C‖Un−1
−

− u(tn−1)‖ + Ckr+1
n

‖Au(r)‖In .

⟨(Π̃ru)
n−1
+

,Xn−1
+

⟩ + ∫
In
⟨(Π̃ru)

� + AΠ̃ru,X⟩ dt
= ⟨u(tn−1),Xn−1

+
⟩ + ∫

In
⟨u� + AΠ̃ru,X⟩ dt,

⟨Un−1
+

,Xn−1
+

⟩ + ∫ In

⟨U� + AU,X⟩ dt = ⟨Un−1
−

,Xn−1
+

⟩ + ∫ In

⟨u� + Au,X⟩ dt,

(22)⟨�n−1
+

,Xn−1
+

⟩ + ∫ In

⟨�� + A�,X⟩ dt = ⟨�n−1
−

,Xn−1
+

⟩ + ∫ In

⟨�,X⟩ dt

(23)‖�‖2
In
≤ C

�
‖�n−1

−
‖2 + kn� In

‖�‖2 dt
�
,

‖U − Π̃ru‖2In ≤ C

�
‖Un−1

−
− u(tn−1)‖2 + kn� In

‖�‖2 dt
�
.

‖U − u + anr(u)(pnr − pn,r−1)‖In ≤ C‖Un−1
−

− u(tn−1)‖
+ Ckr+1

n

�‖Au(r)‖In + ‖u(r+1)‖In
�
.

U − u + anr(u)(pnr − pn,r−1) = (U − Π̃ru) +
(
Π̃ru − u + anr(u)(pnr − pn,r−1)

)
,
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We therefore have the following estimate for the homogeneous problem expressed 
in terms of the initial data.

Corollary 4.6 Assume kn ≤ Ckn− 1 for 2 ≤ n ≤ N so that (12) holds. If f ≡ 0, then for 
0 ≤ s ≤ r + 1 and 2 ≤ n ≤ N,

Proof Taking q = r + 1 in (12) yields

and using (7) we have ∥Au(r)(t)∥ = ∥u(r+ 1)(t)∥≤ Cts−(r+ 1)∥Asu0∥. The result follows for 
n ≥ 2 after noting that tn = tn− 1 + kn ≤ tn− 1 + Ckn− 1 ≤ Ctn− 1.

Remark 4.7 In their proof of (2) for the scalar linear problem

Adjerid et al. [10, Theorem 3] use an inductive argument to show an expansion of 
the form

where Qnj ∈ ℙj−1 and Qnr(t) = cnp[pnr(t) − pn,r− 1(t)] for a constant cnp. They extend 
this result to a homogeneous linear system of ODEs u� − Au = 0 , then a nonlinear 
scalar problem u� − f (u) = 0 , and finally a nonlinear system u� − f (u) = 0.

Remark 4.8 The proof of Theorem 4.4 is largely unaffected if the elliptic term is per-
mitted to have time-dependent coefficients, resulting in a time-dependent operator 
A(t). The main issue is to verify the stability property (23) for this more general set-
ting. The only other complication is the estimation of ρ(t). Consider, for example, 
A(t)u(x, t) = −∇ ⋅ (a(x, t)∇u(x, t)) . Since A(t)u(x,t) is of the form 

∑M

m=1
cm(x, t)Bmu(x, t) , 

where each Bm is a second-order linear differential operator involving only the spatial 
variables x, it follows that

 and the final step of the proof becomes

Of course, to exploit this generalization of Theorem 4.4, it would also be necessary 
to verify the superconvergent error bounds for Un

−
 in this case.

‖U − u + anr(u)(pnr − pn,r−1)‖In ≤ Cts−(r+1)
n

kr+1‖Asu0‖.

‖Un−1
−

− u(tn−1)‖ ≤ Ct
s−(r+1)

n−1
kr+1‖Asu0‖,

u� − au = 0 for t > 0, with u(0) = u0,

U(t) − u(t) =

2r−2∑
j=r

Qnj(t)k
j
n
+ O

(
k2r−1
n

)
for t ∈ In,

�(t) = A(t)
(
u(t) − Π̃ru(t)

)
=

M∑
m=1

cm(x, t)
(
Bmu(t) − Π̃rBmu(t)

)
,

kn� In

‖�‖2dt ≤ Ck2(r+1)
n

M�
m=1

‖Bmu
(r)‖2

In
.
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5  Practical consequences

Throughout this section, we will assume that

for 2 ≤ n ≤ N, where the factor ϕ(t,u) will depend on the regularity of u, which in 
turn depends on the regularity and compatibility of the initial data u0 and the source 
term f. Figure 1 plots the right-hand Gauss–Radau polynomials

as functions of τ ∈ [− 1,1] for r ∈{1,2,3,4}. In general, there are r + 1 points

such that τ1, τ2, …, τr are the r zeros of Pr − Pr− 1, and hence are also the abscis-
sas of the right-hand, r-point Gauss–Radau quadrature rule for the interval [− 1,1]. 
Recalling our previous notation (13), let tnℓ = βn(τℓ) so that tn− 1 = tn0 < tn1 < ⋯ < 
tnr = tn with

(24)‖Un−1
−

− u(tn−1)‖ + ‖U − u + anr(u)(pnr − pn,r−1)‖In ≤ C�(tn, u)k
r+1
n

,

pnr(t) − pn,r−1(t) = Pr(�) − Pr−1(�)

−1 = 𝜏0 < 𝜏1 < ⋯ < 𝜏r = 1,

pnr(tn�) − pn,r−1(tn�) = 0 for 1 ≤ � ≤ r.

Fig. 1  The polynomials Pr(τ) − Pr− 1(τ)
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Thus, whereas U(t) − u(t) = O(kr
n
) for general t ∈ In, the DG time stepping scheme 

is superconvergent at the r special points tn1, tn2, …, tnr in the half-open interval 
(tn− 1,tn]. More precisely,

Since pnj(tn− 1) = Pj(− 1) = (− 1)j, another consequence of (24) is that

which, in combination with the estimate ‖Un−1
−

− u(tn−1)‖ ≤ C�(tn, u)k
r+1
n

 , shows 
that the jump [[U]]n−1 = Un−1

+
− Un−1

−
 in the DG solution at tn− 1 satisfies

We are therefore able to show, in the following lemma, that ∥⟦U⟧n− 1∥ is a low-
cost and accurate error indicator for the DG solution on In.

Lemma 5.1 For ϕ as in (24) and 2 ≤ n ≤ N,

Thus,

Proof First note that since

we have

Hence, for t ∈ In,

and so ‖U − u‖In ≤ 2‖anr(u)‖ + C�(tn, u)k
r+1
n

 . Conversely,

‖U(tn�) − u(tn�)‖ ≤ C�(tn, u)k
r+1
n

for 1 ≤ � ≤ r.

‖Un−1
+

− u(tn−1) + 2(−1)ranr(u)‖ ≤ C�(tn, u)k
r+1
n

,

(25)
‖‖‖[[U]]n−1 + 2(−1)ranr(u)

‖‖‖ ≤ C�(tn, u)k
r+1
n

.

���‖U − u‖In − ‖[[U]]n−1‖��� ≤ C�(tn, u)k
r+1
n

.

‖U − u‖In = 2‖anr(u)‖ + O
�
kr+1
n

�
=
���[[U]]n−1

��� + O
�
kr+1
n

�
.

max
−1≤�≤1|Pr(�) − Pr−1(�)| = |Pr(−1) − Pr−1(−1)| = 2,

(26)‖anr(u)(pnr − pn,r−1)‖In = �pnr(tn−1) − pn,r−1(tn−1)�‖anr(u)‖ = 2‖anr(u)‖.

‖U(t) − u(t)‖ ≤ ‖U(t) − u(t) + anr(u)
�
pnr(t) − pn,r−1(t)

�‖
+‖anr(u)

�
pnr(t) − pn,r−1(t)

�‖ ≤ C�(tn, u)k
r+1
n

+ 2‖anr(u)‖,

2‖anr(u)‖ = ‖anr(u)
�
pnr(tn−1) − pn,r−1(tn−1)

�‖
≤ ‖Un−1

+
− u(tn−1) + anr(u)

�
pnr(tn−1) − pn,r−1(tn−1)

�‖
+‖Un−1

+
− u(tn−1)‖

≤ C�(tn, u)k
r+1
n

+ ‖U − u‖In ,
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and therefore

Since, by (25),

the result follows.

A unique continuous function U∗ ∈ Xr+1 satisfies the r + 1 interpolation conditions

for 1 ≤ n ≤ N, and we see that

Makridakis and Nochetto [4] introduced this interpolant in connection with a poste-
riori error analysis of diffusion problems, and called U* the reconstruction of U. The 
next theorem provides a more explicit description of U* that we then use to prove U* 
achieves the optimal convergence rate of order kr+1

n
 over the whole subinterval In.

Theorem 5.2 For t ∈ In and 1 ≤ n ≤ N, the reconstruction U* of the DG solution U 
has the representation

where

Proof Since the polynomial (U − U∗)|In ∈ ℙr(ℍ) vanishes at tnℓ for 1 ≤ ℓ ≤ r, there 
must be a constant γ such that U(t) − U*(t) = γ(pnr − pn,r− 1)(t) for t ∈ In. Taking the 
limit as t → t+

n−1
 , we have Un−1

+
− Un−1

−
= �[(−1)r − (−1)r−1] = 2(−1)r� and so γ = 

(− 1)r⟦U⟧n− 1/2. It follows from (14) that

���‖U − u‖In − 2‖anr(u)‖��� ≤ C�(tn, u)k
r+1
n

.

�‖[[U]]n−1‖ − 2‖anr(u)‖� = �‖[[U]]n−1‖ − ‖2(−1)r+1anr(u)‖�
≤ ���[[U]]n−1 + 2(−1)ranr(u)

��� ≤ C�(tn, u)k
r+1
n

,

U∗(tn�) =

⎧⎪⎨⎪⎩

Un−1
−

if � = 0,

U(tn�) if 1 ≤ � ≤ r − 1,

Un
−

if � = r,

(27)(U∗ − u)(tn�) = O
(
kr+1
n

)
for 0 ≤ � ≤ r.

U∗(t) = U(t) −
(−1)r

2
[[U]]n−1(pnr − pn,r−1)(t) =

r∑
j=0

Unj
∗
pnj(t),

Unj
∗
=

⎧⎪⎨⎪⎩

Unj if 0 ≤ j ≤ r − 2,

Un,r−1 +
1

2
(−1)r[[U]]n−1 if j = r − 1,

−
1

2
(−1)r[[U]]n−1 if j = r.

anj(U − U∗) =
2j + 1

kn ∫ In

(U − U∗)(t)pnj(t) dt =
(−1)r

2
[[U]]n−1(�jr − �j,r−1),
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implying the formulae for Unj
∗ = anj(U∗).

Corollary 5.3 ‖U∗ − u‖In ≤ C�(tn, u)k
r+1
n

 for 2 ≤ n ≤ N.

Proof We see from the Theorem 5.2 and (26) that

so it suffices to apply (24) and (25).

Example 5.4 Let f ≡ 0 and let u0 belong to the domain of As. By (9),

and by (12),

Furthermore, Corollary 4.6 shows that our assumption (24) is satisfied with

so

6  Numerical experiments

The computational experiments described in this section were performed in standard 
64-bit floating point arithmetic using Julia v1.7.2 on a desktop computer having a 
Ryzen 7 3700X processor and 32GiB of RAM. The source code is available online 
[17]. In all cases, we use uniform time steps kn = k = T/N.

6.1  A simple ODE

We begin with the ODE initial-value problem

where in place of a linear operator A we have just the scalar λ = 1/2, and where 
f (t) = cos(�t) . For the piecewise-cubic case with N = 5 subintervals, Fig. 2 shows 
that U − U* provides an excellent approximation to the error U − u, and that the 
error profile is approximately proportional to pnr − pn,r− 1 with r = 4; cf. (21) and 
Fig. 1. In particular, superconvergence at the Radau points is apparent. By sampling 
at 50 points in each subinterval, we estimated the maximum errors

‖U∗ − u‖In = ‖U − u −
1

2
(−1)r[[U]]n−1(pnr − pn,r−1)‖In≤ ‖U − u + anr(u)(pnr − pn,r−1)‖In + 1

2
‖[[U]]n−1 + 2(−1)ranr(u)‖,

tr−s‖U(t) − u(t)‖ ≤ Ckr‖Asu0‖ if 0 < t ≤ T and 0 ≤ s ≤ r,

t2r−1−s
n

‖Un
−
− u(tn)‖ ≤ Ck2r−1‖Asu0‖ if 1 ≤ n ≤ N and 0 ≤ s ≤ 2r − 1.

�(t, u) = ts−(r+1)‖Asu0‖

tr+1−s
n

‖U∗ − u‖In ≤ Ckr+1‖Asu0‖ if 2 ≤ n ≤ N and 0 ≤ s ≤ r + 1.

u� + �u = f (t) for 0 ≤ t ≤ 2, with u(0) = 1,
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and, as expected from (5) and Corollary 5.3, the values shown in Table 1 exhibit 
convergence rates r = 4 and r + 1 = 5, respectively. The table also shows a conver-
gence rate 2r − 1 = 7 for the nodal error max

1≤n≤N |U
n
−
− u(tn)| up to the row where this 

error approaches the unit roundoff. By using Julia’s BigFloat datatype, we were able 

max
1≤n≤Nsupt∈In

|U(t) − u(t)| and max
1≤n≤Nsupt∈In

|U∗(t) − u(t)|,

Fig. 2  The DG error U − u, the difference U − U* between the DG solution and its reconstruction, along 
with the superconvergence points tnj (1 ≤ j ≤ r), for the ODE of Section 6.1 using piecewise-cubics (r = 4)

Table 1  Errors and convergence rates for the ODE of Section 6.1 using piecewise-cubics (r = 4)

N Error in U Error in U* Error in Un
−

4 1.75e-03 6.15e-05 5.26e-09

8 1.36e-04 3.684 2.26e-06 4.769 4.08e-11 7.010

16 8.85e-06 3.945 7.19e-08 4.973 3.27e-13 6.962

32 5.55e-07 3.996 2.26e-09 4.994 2.66e-15 6.941

64 3.48e-08 3.995 7.05e-11 5.000 7.77e-16 1.778

128 2.17e-09 3.999 2.20e-12 4.999 1.55e-15 -1.000

Theory 4 5 7
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to observe O(k7) convergence of Un
−
 up to N = 128, for which value the nodal error 

was 1.56e-19.

6.2  A parabolic PDE in 1D

Now consider the 1D heat equation with constant thermal conductivity κ > 0,

subject to the boundary conditions u(0,t) = 0 = u(L,t) for 0 ≤ t ≤ T, and to the initial 
condition u(x,0) = u0(x) for 0 ≤ x ≤ L. To obtain a reference solution, we intro-
duce the Laplace transform û(x, z) = ∫ ∞

0
e−ztu(x, t) dt , which satisfies the two-point 

boundary-value problem (with complex parameter z),

where ω = (z/κ)1/2 and g(x, z) = 𝜅−1[u0(x) + f̂ (x, z)] . Consequently, the variation-of-
constants formula yields the representation [14, Section 7.3]

and we then invert the Laplace transform by numerical evaluation of the Bromwich 
integral [18],

for a hyperbolic contour C homotopic to the imaginary axis and passing to the right 
of all singularities of û(x, z).

To discretize in space, we introduce a finite difference grid

and define up(t) ≈ u(xp,t) via the method of lines, replacing uxx with a second-order 
central difference approximation to arrive at the system of ODEs

where fp(t) = f(xp,t) with the boundary conditions u0(t) = 0 = uP(t) and the initial 
condition up(0) = u0(xp). For our test problem, we choose

(28)ut − 𝜅uxx = f (x, t) for 0 < t ≤ T and 0 ≤ x ≤ L,

−ûxx + 𝜔2û = g(x, z) for 0 ≤ x ≤ L, with û(0, z) = 0 = û(L, z),

û(x, z) =
sinh𝜔(L−x)

𝜔 sinh𝜔L
∫ x

0
g(𝜉, z) sinh𝜔𝜉d𝜉

+
sinh𝜔x

𝜔 sinh𝜔L
∫ L

x
g(𝜉, z) sinh𝜔(L − 𝜉)d𝜉,

u(x, t) =
1

2𝜋i∫C

eztû(x, z)dz,

xp = ph for 0 ≤ p ≤ P, where h = L∕P,

(29)u�
p
(t) − �

up+1(t) − 2up(t) + up−1(t)

h2
= fp(t) for 1 ≤ p ≤ P − 1,

(30)L = 2, T = 2, � = (L∕�)2, u0(x) = x(L − x), f (x, t) = (1 + t)e−t,
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where the value of the thermal conductivity κ normalizes the time scale by making 
the smallest eigenvalue of A = −κ(d/dx)2 equal 1. We will see below that u0 ∈ D(As) 
iff s < 5/4, so the regularity of the solution u is limited.

We apply DG to discretize up(t) in time and denote the resulting fully discrete solu-
tion by U(t) = [Up(t)] ≈u(t) = [up(t)]. Figure 3 plots the error in U and in its reconstruc-
tion U* using piecewise-quadratics (r = 3) and N = 8 equal subintervals in time, with P 
= 500 for the spatial grid. The errors are measured in the discrete L2-norm, that is,

and we observe a clear deterioration in accuracy as t approaches zero.
To speed up the convergence as h → 0, we compute also a second DG solution 

Ufine
p

(t) using a finer spatial grid with Pfine = 2P subintervals, and then perform one step 
of Richardson extrapolation (on the coarser grid), defining

‖U(t) − u(t)‖2
h
=

P�
p=0

�Up(t) − u(xp, t)�2h,

UR
p
(t) = Ufine

2p
(t) +

1

3

[
Ufine

2p
(t) − Up(t)

]
for 0 ≤ p ≤ P.

Fig. 3  Time dependence of the errors in the DG solution U(t) and its reconstruction U*(t) for the 1D heat 
equation (28), using piecewise-quadratics (r = 3) over N = 8 time intervals
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Table 2 shows errors in this spatially extrapolated DG solution over the time interval 
[T/4,T], that is,

as well as the corresponding errors in the reconstruction UR
∗
(t) and the nodal values 

(UR)n
−
 . Again, the observed convergence rates are as expected.

To investigate the time dependence of the error for t near zero, we consider the 
weighted error in the DG solution

(31)max
T∕4≤t≤T‖U

R(t) − u(t)‖h,

Table 2  Maximum errors over the time interval [T/4,T] for the 1D heat equation of Section  6.2 using 
piecewise-quadratics (r = 3)

N P Error in UR Error in UR
∗

Error in (UR)n
−

8 500 8.46e-05 7.51e-05 5.17e-06

16 500 1.07e-05 2.978 5.37e-07 7.129 1.15e-07 5.490

32 500 1.35e-06 2.989 2.30e-08 4.544 3.99e-09 4.847

64 500 1.69e-07 2.995 1.21e-09 4.244 1.47e-10 4.762

128 500 2.12e-08 2.997 6.98e-11 4.121 5.80e-12 4.664

Theory 3 4 5

Table 3  Weighted errors for the 1D heat equation of Section 6.2 using piecewise-quadratics (r = 3) and 
the indicated exponent α in the weight function wα(t). The top set of results is for the homogeneous equa-
tion (f ≡ 0). The bottom set is for the general case (both u0 and f non-zero)

N P Error in UR Error in UR
∗

Error in (UR)n
−
 

� = r −
5

4
� = r + 1 −

5

4
� = 2r − 1 −

5

4

8 500 8.52e-05 7.08e-06 1.77e-06

16 500 1.15e-05 2.893 4.42e-07 4.001 5.53e-08 5.001

32 500 1.49e-06 2.946 2.76e-08 4.000 1.73e-09 5.000

64 500 1.90e-07 2.973 1.73e-09 4.000 5.40e-11 5.000

128 500 2.39e-08 2.987 1.08e-10 4.000 1.69e-12 5.000

Theory 3 4 5

N P Error in UR Error in UR
∗

Error in (UR)n
−
 

� = r −
5

4
� = r + 1 −

5

4
� = 2r − 1 −

5

4

8 500 8.46e-05 1.66e-06 4.15e-07

16 500 1.07e-05 2.978 1.03e-07 4.007 1.70e-08 4.606

32 500 1.35e-06 2.989 6.46e-09 3.999 7.89e-10 4.433

64 500 1.69e-07 2.995 4.04e-10 4.000 3.84e-11 4.362

128 500 2.12e-08 2.997 2.52e-11 4.000 1.93e-12 4.311

Theory 3 4 5
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and likewise incorporate the weight wα(t) when measuring the reconstruction error 
and the nodal error. The top part of Table 3 shows results for the homogeneous prob-
lem, that is, with the same data as in (30) except f(x,t) ≡ 0. The mth Fourier sine 
coefficient of u0 is proportional to m− 3, so ∥Asu0∥≤ C𝜖− 1/2 for s = 5

4
− � and 𝜖 > 0. 

Based on the estimates in Example 5.4, we choose the weight exponents � = r −
5

4
 

for the DG error, r + 1 −
5

4
 for the reconstruction error, and 2r − 1 −

5

4
 for the nodal 

error, and observe excellent agreement in the top set of results in Table 3 with the 
expected convergence rates of order r, r + 1 and 2r − 1, respectively.

Similar results are found if u0(x) ≡ 0 with nonzero f. Curiously, in the bottom part 
of Table 3, choosing both u0 and f as in (30) (so both nonzero) disturbs the observed 
convergence rates for (UR)n

−
 , although not for UR or UR

∗
.

6.3  A parabolic PDE in 2D

Now consider the 2D heat equation,

subject to the boundary conditions u(x,y,t) = 0 for (x,y) ∈ ∂Ω, and to the initial con-
dition u(x,y,0) = u0(x,y) for (x,y) ∈ Ω. We introduce a spatial finite difference grid

with hx = Lx/Px and hy = Ly/Py. The semidiscrete finite difference solution upq(t) ≈ 
u(xp,yq,t) is then constructed using the standard 5-point approximation to the Lapla-
cian, so that

max
1≤n≤Nsupt∈In

w�(t)‖UR(t) − u(t)‖h where w�(t) = min(t� , 1),

(32)ut − 𝜅∇2u = f (x, y, t) for 0 < t ≤ T and (x, y) ∈ Ω = (0, Lx) × (0, Ly),

(xp, yq) = (phx, qhy) for 0 ≤ p ≤ Px and 0 ≤ q ≤ Py,

(33)u�
pq
− �

(
up+1,q − 2upq + up−1,q

h2
x

+
up,q+1 − 2upq + up,q−1

h2
y

)
= fpq

Table 4  Maximum errors over the time interval [T/4,T] for the spatially discrete, 2D heat equation of 
Section 6.3 using piecewise-quadratics (r = 3)

N Px Py Error in Uh Error in (Uh)* Error in (Uh)
n
−

8 50 50 5.32e-04 4.70e-04 2.60e-05

16 50 50 4.60e-05 3.533 1.48e-06 8.316 4.40e-07 5.888

32 50 50 5.15e-06 3.160 6.80e-08 4.440 1.43e-08 4.940

64 50 50 6.10e-07 3.078 4.16e-09 4.029 4.65e-10 4.944

128 50 50 7.42e-08 3.038 2.58e-10 4.010 1.49e-11 4.967

Theory 3 4 5
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for 0 ≤ t ≤ T and (xp,yq) ∈ Ω, where fpq(t) = f(xp,yq,t), together with the boundary 
condition upq(t) = 0 for (xp,yq) ∈ ∂Ω, and the initial condition upq(0) = u0(xp,yq) for 
(xp,yq) ∈ Ω. For (xp,yq) ∈ Ω, we use column-major ordering to arrange the unknowns 
upq(t), the source terms fpq(t) and initial data u0pq into vectors uh(t), f(t) and u0 ∈ ℝ

M 
for M = (Px − 1)(Py − 1). There is then a sparse matrix A such that the system of 
ODEs (33) leads to the initial-value problem

For our test problem, we take Lx = Ly = 2 and Px = Py = 50 with

where the choice of κ ensures that the smallest Dirichlet eigenvalue of − κ∇2 on Ω equals 
1. Table 4 compares the piecewise-quadratic (r = 3) DG solution Uh(t) of the semidiscrete 
problem (34) with uh(t), evaluating the latter using numerical inversion of the Laplace trans-
form as before except that now, instead of û(z) , we work with the spatially discrete approxi-
mation ûh(z) obtained by solving the (complex) linear system (zI + A)ûh(z) = u0 + f̂ (z) . 
As with the 1D results in Table 2, we compute the maximum error over the time interval 
[T/4,T], and observe the expected rates of convergence, keeping in mind that by treating 
uh(t) as our reference solution we are ignoring the error from the spatial discretization.
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