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Abstract
Many problems in science and engineering give rise to linear systems of equations 
that are commonly referred to as large-scale linear discrete ill-posed problems. 
These problems arise, for instance, from the discretization of Fredholm integral 
equations of the first kind. The matrices that define these problems are typically 
severely ill-conditioned and may be rank-deficient. Because of this, the solution of 
linear discrete ill-posed problems may not exist or be very sensitive to perturbations 
caused by errors in the available data. These difficulties can be reduced by applying 
Tikhonov regularization. We describe a novel “approximate Tikhonov regulariza-
tion method” based on constructing a low-rank approximation of the matrix in the 
linear discrete ill-posed problem by carrying out a few steps of the Arnoldi process. 
The iterative method so defined is transpose-free. Our work is inspired by a scheme 
by Donatelli and Hanke, whose approximate Tikhonov regularization method seeks 
to approximate a severely ill-conditioned block-Toeplitz matrix with Toeplitz-blocks 
by a block-circulant matrix with circulant-blocks. Computed examples illustrate the 
performance of our proposed iterative regularization method.
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1 Introduction

We are interested in computing approximate solutions to linear least-squares prob-
lems of the form

where A ∈ ℝ
n×n is a square severely ill-conditioned or rank-deficient matrix, whose 

singular values “cluster” at the origin. Throughout, we let ∥⋅∥ denote the Euclidean 
norm. Least-squares problems with a matrix of this kind are commonly referred to 
as linear discrete ill-posed problems. They arise, for instance, by discretizing Fred-
holm integral equations of the first kind; see [7, 12]. We focus on applications to 
image deblurring, but the method proposed also can be used with other applications.

The vector bδ in (1) often represents measurements that are corrupted by error; we 
denote this error by e so that

where b is the unknown error-free vector associated with bδ. We would like to determine 
the solution of minimal Euclidean norm, x† , of the unavailable least-squares problem

Since bδ is contaminated by error and the singular values of the matrix A clus-
ter at the origin, the solution of (1) of minimal Euclidean norm typically is a poor 
approximation of x† . For this reason, we replace the problem (1) by a nearby prob-
lem whose solution is less sensitive to the error e in bδ. This replacement is known 
as regularization. The most popular and well-understood regularization method is 
due to Tikhonov. The simplest form of Tikhonov regularization replaces the least-
squares problem (1) by the penalized least-squares problem

where α > 0 is a regularization parameter. The solution of (3) can be expressed as

where the superscript T denotes transposition. The regularization parameter α > 0 
determines the sensitivity of the vector x(α) to the error in bδ, as well as the closeness 
of x(α) to the desired solution x†.

There are many techniques for determining a suitable value of α including general-
ized cross validation and the L-curve criterion; see [2, 8, 15, 16, 18] for discussions and 
illustrations. Another fairly common technique is the discrepancy principle. It requires 
knowledge of a fairly accurate error bound

as well as that the system (2) be consistent. The discrepancy principle prescribes 
that α > 0 be chosen so that

(1)min
x∈ℝn

‖Ax − b
�‖,

b
� = b + e,

(2)min
x∈ℝn

‖Ax − b‖.

(3)min
x∈ℝn

{‖Ax − b
�‖2 + �‖x‖2},

(4)x
(�) = A

T (AAT + �I)−1b�,

(5)‖e‖ ≤ �,
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where τ > 1 is a user-specified constant that is independent of δ. It can be shown that 
x(�) → x† as δ ↘ 0; see [7] for a proof in a Hilbert space setting.

We are interested in developing an iterative method for the computation of x(α) 
when A is a large matrix and matrix-vector products Aw for w ∈ ℝ

n can be evalu-
ated fairly inexpensively, but matrix-vector products ATw cannot. This situation 
arises, for instance, when A represents a discretization of an integral operator and 
Aw is evaluated by a multipole method. It also arises when A represents the Jaco-
bian of a nonlinear problem; see [5]. We therefore focus on an iterative method that 
only requires matrix-vector product evaluations with A, but not with AT.

Let x(k) denote the approximate solution of the least-squares problem (1) determined 
at step k of an iterative method. Define the (unknown) error

 We may approximate e(k) by the solution h(k) of the error equation

As the matrix A is ill-conditioned and the residual r(k) is contaminated by error, we 
determine an approximate solution of (6) by Tikhonov regularization

 Then, generally, an improved approximation of x† is given by

The iterations may be repeated and the resulting solution method is known as the 
iterated Tikhonov method; see, e.g., [2, 3, 11] for discussions of this method. These 
iterations may be terminated by the discrepancy principle, i.e., the iterative process 
is stopped once the kth iterate, x(k), satisfies

As the computed solution of (7) may be sensitive to the choice of the regulariza-
tion parameter α(k) at step k, Donatelli and Hanke use a modified Levenberg-Marquardt 
iteration, first suggested in [10], to solve

up to a certain relative error, i.e., they solve

where the lower bound of 0 < q(k) < 1 is a user-specified constant. This approach to 
determine the regularization parameter using a damped version of the discrepancy 

‖Ax(�) − b
�‖ = ��,

e
(k) = x

† − x
(k).

(6)Ah
(k) = r

(k), r
(k) = b

� − Ax
(k).

h
(k) = A

T (AAT + �I)−1r(k).

(7)x
(k+1) = x

(k) + h
(k) = x

(k) + A
T (AAT + �I)−1r(k).

(8)‖Ax(k) − b
�‖ ≤ ��.

(9)Ae
(k) ≈ r

(k)

(10)q(k)‖r(k)‖ = ‖r(k) − Ah
(k)‖

= ‖r(k) − AA
T (AAT + �(k)I)−1r(k)‖,
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principle has proved to be useful when A has a structure that allows fast execution of 
each step of iterated Tikhonov regularization.

A major drawback of the iterative method (7) is that if A is large, then a large system of 
linear equations with the matrix AAT + α(k)I has to be solved in each iteration. Moreover, 
the transpose of A may be unavailable or expensive to compute. In [6] Donatelli and Hanke 
address these issues by replacing A in (7) by a matrix C, whose structure allows for fast 
computation and transposition. The matrix CT(CCT + α(k)I)− 1 so obtained is referred to as a 
preconditioner; see [11]. The algorithm in [6], termed the approximated iterated Tikhonov 
(AIT) method, was demonstrated to give accurate image reconstructions for a reasonable 
computational cost when A is a matrix that has dominant block-Toeplitz with Toeplitz-
blocks (BTTB) substructure and C is a suitably chosen block-circulant with circulant-blocks 
(BCCB) matrix. Analyses of the AIT method are provided in [4, 6]. Under the assumption 
that A and C are spectrally equivalent (see below), it is shown in [6] that the AIT method is 
a regularization method in a well-defined sense. However, oftentimes in applications, the 
spectral equivalence assumption is not satisfied; this issue is addressed in [4]. Irrespective 
of this, the AIT method provides fast and reliable image reconstructions when the available 
image, represented by the vector bδ, is contaminated by sufficiently much noise.

In this paper, we allow A ∈ ℝ
n×n to be a fairly general large matrix whose sin-

gular values “cluster” at the origin, and let the matrix C be a low-rank matrix that 
is constructed by applying a few steps of the Arnoldi process to the matrix A. We 
will refer to the iterative method so obtained as the iterated Arnoldi-Tikhonov (IAT) 
method. Our analysis of this method is closely related to the analysis of the AIT 
method in [6]. The main advantage of our IAT method, when compared to the AIT 
method, is that we do not require A to have a particular structure.

The rest of this paper is structured as follows: Section 2 describes the AIT method 
by Donatelli and Hanke [6] and reviews its properties. In Section 3 we introduce 
the IAT method and present its analysis. Section 4 provides a brief background on 
image deblurring problems and reports some numerical examples. We conclude in 
Section 5 with some remarks.

2  The approximated iterated Tikhonov method

This section reviews the AIT method and the theoretical results shown by Donatelli 
and Hanke [6]. A modification of this method is discussed in [4]; we will not con-
sider this modification in the present paper. As mentioned above, the AIT method is 
a regularization method in a well-defined sense under the assumption that A and C 
are spectrally equivalent; this condition is stated as follows:

Assumption 1 (Spectral Equivalence) The matrices A,C ∈ ℝ
m×n are said to be 

spectrally equivalent if for some constant 0 < ρ < 1/2 it holds

Note that condition (11) implies that N(A) ⊆ N(C) . The following algorithm 
describes the AIT method.

(11)‖(A − C)z‖ ≤ �‖Az‖.
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We review the essential results by Donatelli and Hanke [6] regarding the AIT 
method without proofs.

Proposition 1. Let Assumption 1 hold for some 0 < ρ < 1/2, and let τ* = (1 + ρ)/
(1 − 2ρ). Then, if τ(k) = ∥r(k)∥/δ > τ*, it follows that

where x(k) is the kth iterate generated by the AIT method, e(k) = x† − x(k) , and r(k) = 
bδ −Ax(k).

Proposition 2. Let Assumption 1 hold. Then the norm of the error, e(k), in the kth 
iterate, x(k), generated by Algorithm 1 decreases monotonically as k increases,

 as long as ∥r(k)∥ > τδ, where r(k) = bδ −Ax(k).

Corollary 1. Under the assumptions of Proposition 2, let kδ denote the index of the 
last iterate determined by Algorithm 1. Then

 for some constant c > 0 that only depends on ρ and q.

‖r(k) − Ce
(k)‖ ≤ �

𝜌 +
1 + 𝜌

𝜏 (k)

�
‖r(k)‖ < (1 − 𝜌)‖r(k)‖,

‖e(k)‖2 − ‖e(k+1)‖2 ≥ 2�‖(CCT + �(k)
I)−1‖‖r(k)‖,

‖e0‖2 ≥ 2�

k�−1�
i=0

‖(CCT + �(i)
I)−1‖‖r(i)‖ ≥ c

k�−1�
i=0

‖r(i)‖2,

Algorithm 1 (Approximated Iterated Tikhonov (AIT) method). Let � and � Csatisfy Assumption 1 for 
some 0 < ρ < 1/2. Fix q ∈ (2ρ,1). Let δ > 0 satisfy (5), and let x(0) be an initial guess for x†.
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Theorem  1. Assume that δ = 0 and that x(0) is not a solution of (2). Then the 
sequence of iterates x(k), k = 0, 1, 2,… , generated by Algorithm  1 converges as 
k → ∞ to the solution of (1) that is closest to x(0).

The following final result states that the AIT algorithm is an iterative regularization 
method.

Theorem 2. Let Assumption 1 be valid for some 0 < ρ < 1/2, and let δ↦bδ be a 
function such that (5) holds for all δ > 0. For fixed parameters τ and q, let xδ denote 
the approximate solution computed by Algorithm 1. Then, as � → 0 , xδ converges to 
the solution of (1) that is closest to x(0).

3  The iterated Arnoldi‑Tikhonov method

We now turn our attention to the IAT method and its relation to the AIT method. The 
use of a BCCB matrix C to approximate A in [6] was justified by the ease of computa-
tion of matrix-vector products as well as inversion with such matrices; see Section 4. 
In a similar light, we utilize the Arnoldi process and the orthogonality of the vectors 
generated by this process to simplify the computations.

The pth step of the Arnoldi process applied to the matrix A ∈ ℝ
n×n with initial vec-

tor bδ generically yields the decomposition

where the matrix Vp+1 = [v1, v2,… , vp+1] ∈ ℝ
n×(p+1) has orthonormal columns vj for 

j = 1, 2,… , p + 1 with v1 = b
�∕‖b�‖ , and Vp ∈ ℝ

n×p is made up of the first p col-
umns of Vp+ 1. Further, Hp+1,p ∈ ℝ

(p+1)×p is of upper Hessenberg form. The range of 
Vp is the Krylov subspace

 see, e.g., Saad [19] for details on the Arnoldi process.
At step p we utilize the Arnoldi decomposition (12) to approximate A. Because of 

this, we seek the projected solution of x† in the Krylov subspace �p
 using the column 

space of Vp. We will denote this projected solution in �p
 by x†

p
 . The iterated Tikhonov 

method may be simplified by substituting (12) into (7) to obtain

as an improved approximation to x†
p
 . Since we may select a different regularization 

parameter �(k)
p  at each iteration, we refer to the iterative method (13) as a nonstation-

ary preconditioned iterative method, analogously with the terminology used in [6].

(12)AVp = Vp+1Hp+1,p,

�p = span{b�,Ab�,… ,Ap−1
b
�};

(13)
x(k+1)
p

= x(k)
p

+ h
(k)
p

= x(k)
p

+ Vp(H
T
p+1,p

Hp+1,p + �(k)
p
I)−1HT

p+1,p
V

T
p+1

r(k)
p
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The following theorem connects Assumption 1 of Section 2 with our proposed 
method.

Theorem 3. Let the matrices A and

be nonvanishing. Then A and Ap are spectrally equivalent for any � ∈ ℝ and for all 
z ∈ �p.

Proof Define z = Vpx for any fixed x ∈ ℝ
p . We note that for any z ∈ �p that

 In this case Assumption 1 is satisfied trivially for any � ∈ ℝ

□

We remark that Theorem 3 only holds when the Arnoldi decomposition (12) is 
determined in exact arithmetic. In particular, the columns of the matrix Vp+ 1 are 
required to be exactly orthonormal. This requirement is typically not satisfied 
when finite-precision floating-point arithmetic is used as in the computed examples 
reported in Section 4. We have not experienced any difficulty due to this issue. If the 
error e is of very small norm and, therefore, many steps of the Arnoldi process will 
be carried out, then it may be advantageous to implement this process with reorthog-
onalization. This has not been necessary for the computed examples reported in this 
paper.

Theorem  3 allows us to replace the BCCB matrix C from Section  2 by the 
matrix (14) determined by p steps of the Arnoldi process because it satisfies 
Assumption 1 for any � ∈ ℝ . To utilize the general algorithmic structure of the 
AIT method and its theory we will require � ∈ (0,

1

2
) as in [6].

To determine an apt regularization parameter at step k of the iterative process, 
we now introduce a result adapted from [4 Lemma 1].

Proposition 3. Let x(k) live in the Krylov subspace �p , and assume that the residual 
vector r(k) = bδ −Ax(k) and the matrix A are nonvanishing. Then by Theorem 3, the 
equation

(14)Ap = Vp+1Hp+1,pV
T
p

Apz = Vp+1Hp+1,pV
T
p
Vpx = Vp+1Hp+1,px = Az.

‖(A − Ap)z‖ = 0 ≤ �‖Az‖.

(15)
q(k)‖r(k)‖ = ‖r(k) − Ah

(k)‖
= ‖r(k) − AVp(H

T
p+1,p

Hp+1,p + �(k)I)−1HT
p+1,p

V
T
p+1

r(k)‖
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has a unique solution for 0 < 𝛼(k) < ∞ , when 0 < q(k) < 1 is close enough to unity, 
and the elements of r(k) satisfy a pair of conditions specified in the proof.

Proof We argue first that q(k) > 0. Assume that q(k) = 0 and α(k) > 0. Then we have 
from (15)

 This equation only holds if α(k)r(k) = 0. Thus, we have that q(k) > 0.
Before proceeding, we simplify (15). Using the Arnoldi decomposition (12), we 

may rewrite the right-hand side of (15) as

 Multiply the vector inside the norm by the matrix VT
p+1

 from the left. This gives

Define the singular value decomposition (SVD) Hp+1,p = U�W
T , where the matri-

ces U ∈ ℝ
(p+1)×(p+1) and W ∈ ℝ

p×p are orthogonal, and � ∈ ℝ
(p+1)×p is diagonal; the 

diagonal entries are the singular values of Hp+ 1,p in non-increasing order. Using the 
SVD of Hp+ 1,p and defining r̃(k) ∶= V

T
p+1

r(k) , the expression (16) simplifies to

Let �̄ ∶= ��
T ∈ ℝ

(p+1)×(p+1) , whose first p diagonal elements �̄�j , 1 ≤ j ≤ p, are 
the squared singular values of Hp+ 1,p and the last diagonal entry �̄�p+1 vanishes. 
Finally, defining r̂(k) ∶= U

T
r̃
(k) and using orthogonality, we arrive at the simplified 

form of (15):

Squaring both sides of (17) gives

where r̂(k)
j

 denotes the jth entry of the vector r̂(k).
Introduce the function

 Then we have

r
(k) = AVp(H

T
p+1,p

Hp+1,p + �(k)
I)−1HT

p+1,p
V

T
p+1

r
(k).

‖r(k) − Vp+1Hp+1,p(H
T
p+1,p

Hp+1,p + �(k)
I)−1HT

p+1,p
V

T
p+1

r
(k)‖.

(16)‖VT
p+1

r
(k) −Hp+1,pH

T
p+1,p

(Hp+1,pH
T
p+1,p

+ �(k)
I)−1VT

p+1
r
(k)‖.

‖r̃(k) − U��
T
U

T (U��T
U

T + �(k)
I)−1r̃(k)‖.

(17)q(k)‖r̂(k)‖ = ‖r̂(k) − �̄(�̄ + �(k)
I)−1r̂(k)‖.

(18)
p∑
j=1

(
1 −

�̄�j

�̄�j + 𝛼(k)

)2(
r̂
(k)

j

)2
+
(
r̂
(k)

p+1

)2
=
(
q(k)

)2 p+1∑
j=1

(
r̂
(k)

j

)2
,

𝜙
(
𝛼(k)

)
=

p∑
j=1

(
1 −

�̄�j

�̄�j + 𝛼(k)

)2(
r̂
(k)

j

)2
.
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and the derivative satisfies ��(0) = 0 and 𝜙�
(
𝛼(k)

)
> 0 for α(k) > 0. Thus, the func-

tion ϕ(α(k)) is monotonically increasing for α(k) > 0. It follows that (18) has a unique 
finite solution if and only if the following pair of conditions are satisfied

The bottom inequality holds when 0 < q(k) < 1 and the top inequality holds when q(k) 
is large enough and p is sufficiently large (see Remark 2 below). □

Remark 1 For the constants q and q(k) that occur in both Algorithms 1 and 2, we 
note that by construction q ≤ q(k). The conditions in Proposition 3 on q(k) can then be 
satisfied by choosing q large enough. In numerical experiments reported in [4. ,6. ], 
the value q = 0.7 worked well. We will use this value in the examples reported in the 
next section. The computed results are not sensitive to small changes in the q-value, 
however, we note that using a value very close to one results in an increased number 
of iterations, while a value very close to zero gives fewer iterations and worse qual-
ity of the computed reconstructions.

Remark 2 In computations, the top condition of (19) usually fails to be satis-
fied after a single Tikhonov step has been carried out in �p , because the first 
p entries of the residual vector (r̂(k))2 are small compared to the (p + 1)st entry. 
When this situation occurs, a positive regularization parameter with which to 
carry out the next Tikhonov step in �p cannot be found using the Levenberg-
Marquardt iteration. To alleviate this issue, one need only expand the Krylov 
space by performing an additional step of the Arnoldi process. By doing so, the 
entries of (r̂(k))2 become larger in magnitude. This process is repeated as neces-
sary until the top inequality of (19) holds. We demonstrate in our numerical 
experiments that it is typically unnecessary to carry out multiple expansions in 
early Tikhonov steps of the IAT method. We visualize and comment further on 
this issue in Section 4.

We now present the IAT algorithm.

𝜙(0) = 0, lim
𝛼(k)→∞

𝜙
(
𝛼(k)

)
=

p∑
j=1

(
r̂
(k)

j

)2
,

(19)

⎧
⎪⎪⎨⎪⎪⎩

�
r̂
(k)

p+1

�2
<
�
q(k)

�2 p+1∑
j=1

�
r̂
(k)

j

�2
,

p+1∑
j=1

�
r̂
(k)

j

�2
>
�
q(k)

�2 p+1∑
j=1

�
r̂
(k)

j

�2
.
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Remark 3 With regard to computational efficiency, we note that the computation 
of the (k + 1)st residual vector r(k+1)

p
 in Algorithm 2 does not require an additional 

matrix-vector product with A. Instead, this vector may be computed as follows:

where in the last equality we have used the Arnoldi decomposition (12) to avoid the 
evaluation of further matrix-vector products with the matrix A.

The following results are analogous to those at the end of Section 2; most of 
them can be found in [6].

r(k+1)
p

= b
� − Ax(k+1)

p

= b
� − A

(
x(k)
p

+ h
(k)
p

)
= r(k)

p
− AVp(H

T
p+1,p

Hp+1,p + �(k)
p
I)−1HT

p+1,p
V

T
p
r(k)
p

=
(
I − Vp+1Hp+1,p(H

T
p+1,p

Hp+1,p + �(k)
p
I)−1HT

p+1,p
V

T
p

)
r(k)
p
,

Algorithm 2  (Iterated Arnoldi-Tikhonov (IAT) method). For a given real A ∈ ℝ
n×n select 0 < ρ < 1/2 

and fix q ∈ (2ρ,1). Let δ > 0 satisfy (5) and let x(0)
1

 be an initial guess for x† ∈ ℝ
n.
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Proposition 4. For some 0 < ρ < 1/2, let τ* = (1 + ρ)/(1 − 2ρ). Then, by Theo-
rem 3 if 𝜏 (k)

p
= ‖r(k)

p
‖∕𝛿 > 𝜏∗ , it follows that

where x(k)
p

 is the kth iterate generated by the outer pth loop of Algorithm  2, 
e(k)
p

= x†
p
− x(k)

p  , and r(k)
p

= b
� − Ax(k)

p
.

Proposition 5. Under the results and assumptions of Theorem  3, the norm of 
the iteration error e(k)

p
= x†

p
− x(k)

p
 in the subspace �p decreases monotonically for 

k = 0, 1, 2,… , k�
p
− 1:

provided that ‖r(k)
p
‖ > 𝜏𝛿.

Corollary 2. Under the assumptions and notation of Proposition 5, and for suffi-
ciently large p, there exists a first iterate x(k)

p
 with k = k�

p
 such that

for some constant c > 0 that only depends on the parameter ρ and the value of q used 
in Algorithm 2.

Theorem 4. Assume that δ = 0 and that x(0) is not a solution of (2). Then for suf-
ficiently large p, the sequence of iterates x(k)

p
 , k = 1, 2,… , generated by the outer pth 

loop of Algorithm 2 converges as k → ∞ to a solution of (1) that is closest to x(0)
p

.

Proof If δ = 0 then the stopping criterion (8) can only be satisfied with k = k�
p
 for a 

solution x(k)
p

 of (1). Here, if k > 0 then h(k−1)
p

 must coincide with e(k−1)
p

 up to an ele-
ment in the null space of A, that is, in the null space of Ap by Theorem 3. Accord-
ingly, it follows from (10) with the pth Arnoldi approximation of A substituted and 
Proposition 4 that

However, this contradicts the definition of q(k−1)
p

∶= max{q, 2� + (1 + �)∕�(k−1)
p

} 
that is used in Algorithms 1 and 2. Thus, the iteration does not terminate for exact 
data unless x(0)

p
 is already a solution of (1). An analogous argument to that in [6] 

can be used to show that for p sufficiently large each sequence {x(k)
p
} is a Cauchy 

sequence that converges as k → ∞ to a solution of (1) that is closest to x(0)
p
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Theorem 5. By Theorem 3 and for some 0 < ρ < 1/2, let δ↦bδ be a function such 
that (5) holds for all δ > 0. For fixed parameters τ and q, let x�

p
 denote the approxi-

mate solution generated by the outer pth loop of Algorithm 2. Then, as � → 0 and for 
sufficiently large p, x�p converges to a solution of (1) that is closest to x(0)

p
.

A variant of Theorem 5 has been used previously in [7, 10]. Necessary results 
include the monotonicity property of the iterates and their continuous depend-
ence on bδ.

4  Numerical results

We illustrate the properties of the IAT method and compare its performance to the 
AIT and range restricted generalized minimum residual (rrGMRES) when applied 
to image deblurring. The latter method is described in [17]. Both spatially variant 
and invariant blur are considered. Both kinds of blur can be modeled by a Fredholm 
integral equation of the first kind,

where b represents the blurred image, κ the point spread function (PSF), and Ω is 
the domain of the exact image represented by x. When the blur is spatially invari-
ant, the kernel κ in the integral equation above is given by κ(u,s,v,t) = κ(u − s,v − t). 
Upon discretization of (22) we have a problem of the form (1), where the structure 
of A ∈ ℝ

n×n depends on the properties of κ and on the boundary conditions (BC); 
see [1, 13]. For common BCs including zero, periodic, and reflexive, the matrix A 
may be decomposed as

where T is a BTTB matrix, R is a matrix of low-rank, and E is a matrix of small 
norm. The approximation of A by a BCCB matrix is attractive, because the structure 
of C allows diagonalization by the discrete Fourier transform. Therefore, the vector 
(CCT + �

p
I)−1r

p
 can be computed in O(n log n) floating-point operations using a fast 

Fourier transform algorithm.
To evaluate the quality of the reconstructed images, we compute the relative 

reconstructive error (RRE), which is defined by

where x(k)p  denotes the computed approximate solution obtained when the discrep-
ancy principle (8) is satisfied, and x† represents the exact solution. We will refer to 
x(k)
p  as the solution at breakout. Because of the “double” iterative structure of our 

IAT method, it is necessary to differentiate between the Tikhonov steps taken and 
the number of Arnoldi iterations computed. The Tikhonov steps of the IAT method 

(22)∫
�

�(u, s, v, t) x(u, v) du dv = b(s, t) (s, t) ∈ �,

A = T + R + E,

RRE(x(k)
p
) =

‖x(k)
p

− x†‖
‖x†‖ ,
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are measured by the number of successive residual vectors computed, and the 
Arnoldi iterations are tracked by the iteration counter, p, in the algorithm. We will 
see that the number of Arnoldi iterations required to achieve breakout according to 
the discrepancy principle is larger than or equal to the number of Tikhonov steps. 
The number of Arnoldi iterations of the IAT method is compared to the number of 
iterations with the AIT and rrGMRES methods. For further comparative studies of 
the AIT and closely related methods, we refer the interested reader to [2].

Our computational work was carried out in the IR Tools toolbox environment by 
Gazzola et al. [9] using MATLAB R2020b on a MacBook Pro laptop computer run-
ning MacOS Catalina with an i5 Dual-Core Intel processor @2.7 GHz and 8 GB of 
RAM. The computations were carried out with about 15 significant decimal digits. 
Standard images from MATLAB’s image processing toolbox as well as constructed 
PSFs were used. For proper comparison between the IAT and AIT methods, we set ρ 
=  10− 3 and q = 0.7 in our examples, as was done in [6] and [4].

Our first two examples below compare the three methods for two different spa-
tially invariant non-symmetric motion blurs for images that naturally require zero 
and reflexive BCs, respectively. The last example considers a spatially variant rota-
tional motion blur. The first example, hubble, also emphasizes the reconstructive 
process of the IAT method for one level of noise by considering the solution basis 
and computed residuals.

Hubble We begin by considering a non-symmetric problem using a PSF from IR 
Tools that models motion blur; see Fig. 1. Here, we chose the most severe option of 
this PSF from IR Tools, where a high level of severity corresponds to a faster rate 
of decay of the singular values of the blurring matrix to zero. Because the image is 
black near the border, we impose zero BCs. We contaminate the blurred image by 
Gaussian noise with noise levels 3%, 1%, and 0.1%. We found that the best initial 
vector choice for the IAT method was the zero vector (i.e., x0 = 0). Interestingly, the 
AIT method also required fewer iterations and displayed lower RRE values for solu-
tions with x0 = 0 as its starting vector for all noise levels. This is in contrast with the 
examples considered in [6] and [4]. We comment on this further below.

Fig. 1  Hubble test case: (a) true image (512 × 512 pixels), (b) enlarged PSF from IR Tools, (c) blurred 
and 3% noised image (512 × 512 pixels).
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Before comparing the computational aspects and the accuracy of the computed 
reconstructions of the methods considered, we discuss the manner by which the IAT 
method arrives at its reconstructions. By viewing the 19 reshaped basis vectors in 
Fig. 2 that define the solution subspace for the hubble problem with 3% noise, we 
can see that the initial basis vectors of the solution subspace represent low frequen-
cies, while later basis vectors represent higher frequencies. This can be observed 
by the lack of entry-to-entry pixel change in the early reshaped basis vectors. The 

Fig. 2  The 19 reshaped basis vectors that define the solution space for the reconstructed image in the 
hubble example with 3% noise. The top left entry corresponds to the first reshaped basis vector and the 
bottom right the last.
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change in the progression of the reshaped iterative residual vectors in Fig. 3 for the 
same problem also illustrates this.

As mentioned in Remark 2, not every Tikhonov step of the IAT method 
requires more than one Arnoldi iteration. We illustrate this in Fig. 3 by denoting 
below each reshaped residual vector the number of sequential basis vectors from 
Fig.  2 that were needed to determine a unique positive regularization param-
eter and thus achieve the next Tikhonov step. We note that the first residual 
vector is determined at the start of the algorithm using A. In our experience, 
later Tikhonov steps often require more Arnoldi iterations. We see this from the 
later reshaped residual vectors in Fig. 3 by noting the larger number of required 
Arnoldi iterations with A. In an image deconvolution setting this point of view 
makes intuitive sense as more high frequency basis information is needed to 
resolve finer details of an image.

The iteration requirements and breakout RRE values for the hubble example for all 
three investigated noise levels are shown in Table 1. Figure 4 displays the final recon-
structions at breakout for the corresponding noise levels. We note that the IAT method 

Fig. 3  The 10 reshaped residual vectors resulting during the IAT method in the hubble example with 3% 
noise. The top left entry is the first residual after the first iterative improvement has been made and the 
bottom right is the last when breakout occurs. Bracketed enumerations below each pane correspond to 
the number of Arnoldi iterations needed for the corresponding residual to be computed.
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produces the lowest RRE values amongst the three methods for all levels of noise. Fur-
thermore, the number of Arnoldi iterations necessary for the IAT method to achieve 
breakout is smaller than the number of iterations required to breakout for rrGMRES in all 
cases.

The AIT method did not perform well in this example compared with the other 
two methods. This is evident from the quick breakouts in the 3% and 1% noise cases, 
and the poor RRE values compared to the other methods. We hasten to add that the 
initial vector x0 = A

T
b
� used in [6] and [4] provided worse results in all noise cases 

for the AIT method, and therefore the initial vector played no major role. This result 
was particularly surprising given that in the aforementioned studies it performed 
well for problems with higher noise levels. We surmise that the chosen severity of 
this PSF from IR Tools contributed significantly to this outcome.

The iterative evolution of the RREs and residual plots for the methods considered 
are shown in Fig. 5 for all noise levels. In the left-hand column of the relative resid-
ual plots, we note the quick termination of the AIT method after two iterations for 
3% and 1% noise levels. For 0.1% noise, the AIT method fares better as it does not 
immediately terminate after the first iteration. In general, these plots provide visu-
alization of the rapid relative residual decay of the IAT and AIT methods compared 
to the rrGMRES method. The RRE plots in the right-hand column provide a visual 
trajectory of the RRE values of each algorithm. We note that the IAT and rrGM-
RES methods demonstrate semiconvergent behavior in the 3% and 1% cases as both 
methods have their RRE values increase before breakout occurs. However, the rela-
tive quickness of termination of the IAT method stymies this effect compared with 
the rrGMRES method.

Brezinski We next consider the Brezinski image blurred with constructed non-sym-
metric motion blur, where the PSF diagonal elements are computed by the Softmax 
function, F  , whose entries are given by

F(yi) =
eyi∑n

i=1
eyi

.

Table 1  Tabular information 
for the hubble example for the 
three methods at each level of 
noise investigated. Bracketed 
iterative information for the 
IAT corresponds to the number 
of Arnoldi expansions needed. 
Breakout RRE values presented 
correspond to the pth iterative 
solution when the discrepancy 
principle is satisfied.

Noise level Method Iteration count Breakout RRE

3% IAT 10[18] 0.3488
rrGMRES 58 0.4073
AIT 2 1.7181

1% IAT 13[32] 0.2133
rrGMRES 80 0.2427
AIT 2 0.5745

0.1% IAT 20[91] 0.0561
rrGMRES 179 0.0615
AIT 15 0.1436
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 Here, the yi come from a linearly spaced vector, y, whose first and last entries are 0 
and 1, respectively. The off-diagonal entries are defined to be zero. We note that the 
singular values associated with this problem decay less rapidly compared to the hub-
ble example. We impose reflexive boundary conditions and introduce 0.1% Gauss-
ian noise; see Fig. 6. Similarly to the hubble example, the selection of x0 = A

T
b
� 

was found to cause the magnitude of the normalized starting residual r0 to be large, 
which resulted in a poor solution. Because of this, we chose our initial vector for the 
IAT algorithm to again be x0 = 0. The AIT algorithm also performed best when the 
starting vector was the zero vector.

Fig. 4  Hubble test case reconstructions: The first row reports the 3% cases for IAT (left), rrGMRES 
(middle), and AIT (right) methods. The second row reports the 1% cases, and the third row reports the 
0.1% cases in the same method ordering as the first row.
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Fig. 5  Hubble test case: left-hand column reports the relative residual plots and the right-hand column 
the RRE plots plotted against the iteration number. The top to bottom rows correspond to the 3%, 1%, 
and 0.1% test cases, respectively. The IAT method is represented by blue stars, the rrGMRES by magenta 
circles, and the AIT by red triangles. The black dashed horizontal lines in the relative residual plots cor-
respond to the breakout level according to the discrepancy principle.
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The iteration requirements and breakout RRE values for the Brezinski example are 
tabulated in Table 2. Figure 7 displays the final image reconstructions at breakout for 
each of the methods. We note a couple of items: the first being that the IAT method 
had the lowest RRE at breakout. The second is that the number of iterations required 
to achieve breakout for the IAT method is smaller than that for the other two meth-
ods. The iterative evolution of the RREs and relative residual plots are provided in 
Fig. 8. The left-hand side plot displays the relative residual progression and the right-
hand side plot displays the RRE values for each iteration of the three methods.

Fig. 6  Brezinski test case: (a) true image (700 × 700 pixels), (b) PSF (21 × 21 pixels), (c) blurred and 
0.1% noised image (700 × 700 pixels).

Table 2  Tabular information for the Brezinski example for the three methods investigated. Bracketed iter-
ative information for the IAT corresponds to the number of Arnoldi expansions needed. Breakout RRE 
values presented correspond to the pth iterative solution when the discrepancy principle is satisfied.

Method Iteration count Breakout RRE

IAT 20[23] 0.0103
rrGMRES 42 0.0111
AIT 23 0.0111

Fig. 7  Brezinski test case with 0.1% noise: (a) IAT, (b) rrGMRES, and (c) AIT method reconstructions 
at breakout.
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Satellite In our last example we consider a spatially variant rotational motion blur-
ring problem described in [14] and implemented in the IR Tools toolbox. The sin-
gular values of the blurring matrix decay to zero more slowly than in the hubble 
example. Figure 9 displays both the true image as well as the blurred image with 3% 
imposed noise. Here, again, we impose zero BCs. The blurred image is created by 
taking an average of a series of images, each of which is rotated slightly with respect 
to the center of the image (see Figure 1 in [14]). The IAT method uses x0 = 0 as its 
starting vector. We note that the blurring matrix for this spatially variant motion blur 
problem does not have BTTB substructure. As such, we only compare the IAT and 
rrGMRES methods since the AIT algorithm cannot be applied in this situation.

Iteration requirements and RRE breakout values for the IAT and rrGMRES meth-
ods are provided in Table 3. The final image reconstructions at breakout are shown 
in Fig. 10. We found similarly to the hubble example that many more Arnoldi itera-
tions were required to be able to determine unique regularization parameters for later 
Tikhonov steps than for earlier ones. The number of Arnoldi iterations was largest 
for the final two Tikhonov steps. The number of iterations, while large compared to 

0 5 10 15 20 25 30 35 40
10-3

10-2

10-1

100

0 5 10 15 20 25 30 35 40

10-2

10-1

100

Fig. 8  Brezinski test case: (a) relative residual and (b) RRE plots plotted against the iteration number. 
The IAT method is represented by blue stars, the rrGMRES by magenta circles, and the AIT by red 
triangles. The black dashed horizontal line in the relative residual plot corresponds to the breakout level 
according to the discrepancy principle.

Fig. 9  Satellite test case: (a) 
true image (256 × 256 pixels) 
and (b) blurred and 3% noised 
image (256 × 256 pixels).
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the hubble and Brezinski examples, did result in successful breakout. The rrGMRES 
method was manually terminated at the  300th iteration due to long runtime. In the 
left-hand side pane of Fig. 11, one may estimate that the rrGMRES method might 
have required an additional 100 iterations to achieve breakout. The RRE progression 
of each method is also shown in the right-hand pane of Fig. 11. We especially note 
the erratic behavior of the rrGMRES progression. Finally, we note in Fig. 10 the pic-
torial differences between the IAT and the rrGMRES method reconstructions. While 

Table 3  Tabular information for the satellite example for the two methods investigated. Bracketed itera-
tive information for the IAT corresponds to the number of Arnoldi expansions needed. Breakout RRE 
values presented correspond to the pth iterative solution when the discrepancy principle is satisfied. The 
asterisk, *, denotes the manual termination of the method due to prolonged runtime.

Method Iteration count Breakout RRE

IAT 10[183] 0.3268
rrGMRES 300* 0.3462

Fig. 10  Satellite test case with 
3% noise: (a) IAT and (b) rrG-
MRES method reconstructions 
at breakout.
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Fig. 11  Satellite test case: (a) relative residual and (b) RRE plots plotted against the iteration number. 
The IAT method is represented by blue stars and the rrGMRES by magenta circles. The black dashed 
horizontal line in the relative residual plot corresponds to the breakout level according to the discrepancy 
principle.
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there is some minor background noise in the IAT reconstruction, the wings of the 
satellite are much better defined than in the reconstruction obtained by rrGMRES.

5  Conclusions

We have introduced a transpose-free preconditioned iterated Tikhonov method 
using the Arnoldi iteration which we refer to as the iterated Arnoldi-Tikhonov 
(IAT) method based on the AIT method formulated by Donatelli and Hanke in 
[6]. In Section 3, we presented the IAT algorithm and showed that it is a regulari-
zation method provided the original matrix A is approximated sufficiently accu-
rately by the Arnoldi process. Section 4 showcased the effectiveness of the IAT 
method at reconstructing images that have been contaminated by blurs of various 
severities and Gaussian noise of different levels.
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