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Abstract
In this paper, we study the nonuniform fast Fourier transform with nonequispaced 
spatial and frequency data (NNFFT) and the fast sinc transform as its application. 
The computation of NNFFT is mainly based on the nonuniform fast Fourier trans-
form with nonequispaced spatial nodes and equispaced frequencies (NFFT). The 
NNFFT employs two compactly supported, continuous window functions. For fixed 
nonharmonic bandwidth, we show that the error of the NNFFT with two sinh-type 
window functions has an exponential decay with respect to the truncation param-
eters of the used window functions. As an important application of the NNFFT, we 
present the fast sinc transform. The error of the fast sinc transform is estimated as 
well.
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1 Introduction

The discrete Fourier transform (DFT) can easily be generalized to arbitrary nodes in 
the space domain as well as in the frequency domain (see [4, 6], [13, pp. 394–397]). 
Let N ∈ ℕ with N ≫ 1 and M1,M2 ∈ 2ℕ be given. By IM1

 we denote the index set 
{−

M1

2
, 1 −

M1

2
,… ,

M1

2
− 1} . We consider an exponential sum f ∶

[
−

1

2
,
1

2

]
→ ℂ of the 

form

where fk ∈ ℂ are given coefficients and v
k
∈
[
−

1

2
,
1

2

]
 , k ∈ IM1

 , are arbitrary nodes 
in the frequency domain. The parameter N ∈ ℕ is called nonharmonic bandwidth of 
the exponential sum (1.1).

We assume that a linear combination (1.1) of exponentials with bounded frequen-
cies is given. For arbitrary nodes xj ∈

[
−

1

2
,
1

2

]
 , j ∈ IM2

 , in the space domain, we are 
interested in a fast evaluation of the M2 values

A fast algorithm for the computation of the M2 values (1.2) is called a nonuniform 
fast Fourier transform with nonequispaced spatial and frequency data (NNFFT) 
which was introduced by B. Elbel and G. Steidl in [6]. In this approach, the rapid 
evaluation of NNFFT is mainly based on the use of two compactly supported, con-
tinuous window functions. As in [10] this approach is also referred to as NFFT of 
type 3.

In this paper we present new error estimates for the NNFFT. Since these esti-
mates depend exclusively on the so-called window parameters of the NNFFT, this 
gives rise to an appropriate parameter choice. The outline of this paper is as fol-
lows. In Section  2, we introduce the special set Ω of continuous, even functions 
� ∶ ℝ → [0, 1] with the support [− 1,1]. Choosing ω1, ω2 ∈Ω, we consider two win-
dow functions

where N1 ∶= �1N ∈ 2ℕ with some oversampling factor σ1 > 1 and where m1 ∈ ℕ ⧵ {1} 
is a truncation parameter with 2m1 ≪ N1. Analogously, N2 ∶= �2(N1 + 2m1) ∈ 2ℕ is 
given with some oversampling factor σ2 > 1 and m2 ∈ ℕ ⧵ {1} is another truncation 
parameter with 2m2 ≪

(
1 −

1

𝜎1

)
N2 . For the fast, approximate computation of the values 

(1.2), we formulate the NNFFT in Algorithm 1. In Section 3, we derive new explicit error 
estimates of the NNFFT with two general window functions φ1 and φ2. In Section 4, we 
specify the result when using two sinh-type window functions. Namely, we show that for 
fixed nonharmonic bandwidth N of (1.1), the error of the related NNFFT has an 

(1.1)f (x) ∶=
∑
k∈IM1

fke
−2� iNvkx, x ∈

[
−
1

2
,
1

2

]
,

(1.2)f (xj) =
∑
k∈IM1

fke
−2�iNvkxj , j ∈ IM2

.

�1(t) = �1

(
N1t

m1

)
, �2(t) = �2

(
N2t

m2

)
, t ∈ ℝ,
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exponential decay with respect to the truncation parameters m1 and m2. Numerical experi-
ments illustrate the performance of our error estimates.

In Section 5, we study the approximation of the function sinc(Nπx), x ∈ [− 1, 1], 
by an exponential sum. For given target accuracy ε > 0 and n ≥ 4N, there exist coef-
ficients wj > 0 and frequencies vj ∈ (− 1, 1), j = 1…,n, such that for all x ∈ [− 1, 1],

In practice, we simplify the approximation procedure. Since for fixed N ∈ ℕ , it 
holds

we apply the Clenshaw–Curtis quadrature with Chebyshev points 
zk = cos

k�

n
∈ [−1, 1] , k = 0…,  n, where n ∈ ℕ fulfills n ≥ 4N. Then the function 

sinc(Nπx), x ∈ [− 1, 1], can be approximated by the exponential sum

with explicitly known coefficients wk > 0 which satisfy the condition 
∑n

k=0
wk = 1.

An interesting signal processing application of the NNFFT is presented in the 
last Section 6. If a signal h ∶

[
−

1

2
,
1

2

]
→ ℂ is to be reconstructed from its nonu-

niform samples at ak ∈
[
−

1

2
,
1

2

]
 , then h is often modeled as linear combination of 

shifted sinc functions

with complex coefficients ck. Hence, we present a fast, approximate computation of 
the discrete sinc transform (see [7, 11])

where b
�
∈
[
−

1

2
,
1

2

]
 can be nonequispaced. The discrete sinc transform is motivated 

by numerous applications in signal processing. However, since the sinc function 
decays slowly, it is often avoided in favor of some more local approximation. Here 
we prefer the approximation of the sinc function by an exponential sum (1.3). Then 
we obtain the fast sinc transform in Algorithm 3, which is an approximate algorithm 
for the fast computation of the values (6.2) and applies the NNFFT twice. Besides, 
the error of the fast sinc transform is estimated and numerical examples are pre-
sented as well.

||||sinc(N�x) −
n∑
j=1

wje
−�iNvjx

|||| ≤ �.

sinc(N�x) =
1

2∫
1

−1

e−�iNtx dt, x ∈ ℝ,

(1.3)
n∑

k=0

wke
−�iNzkx

h(x) =
∑
k∈IL1

cksinc
(
N�(x − ak)

)

h(b
�
) =

∑
k∈IL1

cksinc
(
N�(b

�
− ak)

)
, � ∈ IL2

,
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2  NNFFT

Now we start with the explanation of the main algorithm, the NNFFT. To this 
end, we firstly introduce the special set Ω, which is necessary to define required 
window functions φj, j = 1,2. Since the NNFFT is mainly based on the well-
known NFFT, then we proceed with a short description of the NFFT and move 
on to the NNFFT afterwards. This procedure is summarized in Algorithm 1. Note 
that here a parameter a > 1 is necessary in order to prevent aliasing artifacts, 
since we approximate a non-periodic function on the interval [− 1, 1] by means of 
a-periodic functions.

Let Ω be the set of all functions � ∶ ℝ → [0, 1] with the following properties:

• Each function ω is even, has the support [− 1, 1], and is continuous on ℝ.
• Each restricted function ω|[0,1] is decreasing with ω(0) = 1.
• For each function ω its Fourier transform

is positive and decreasing for all v ∈ [0,
m1

2�1
] , where it holds m1 ∈ ℕ ⧵ {1} and 

�1 ∈ [
5

4
, 2].

Obviously, each ω ∈Ω is of bounded variation over [− 1,1].

Example 2.1 By B2m1
 , we denote the centered cardinal B-spline of even order 2m1 

with m1 ∈ ℕ . Thus, B2 is the centered hat function. We consider the spline

which has the support [− 1, 1]. Its Fourier transform reads as

Obviously, �̂�B,1(v) is positive and decreasing for v ∈ [0,m1). Hence, the function ωB,1 
belongs to the set Ω.

For 𝜎1 >
𝜋

3
 and β1 = 3m1 with m1 ∈ ℕ ⧵ {1} , we consider

By [12, p. 8], its Fourier transform reads as

�̂�(v) ∶= ∫
ℝ

𝜔(x)e−2𝜋ivx dx = 2∫
1

0

𝜔(x) cos(2𝜋vx) dx

�B,1(x) ∶=
1

B2m1
(0)

B2m1
(m1x), x ∈ ℝ,

�̂�B,1(v) =
1

m1B2m1
(0)

(
sinc

𝜋v

m1

)2m1

, v ∈ ℝ.

�alg,1(x) ∶=

{
(1 − x2)�1−1∕2 x ∈ [−1, 1],

0 x ∈ ℝ ⧵ [−1, 1].

�̂�alg,1(v) =
𝜋(2𝛽1)!

4𝛽1𝛽1!
⋅

{
(𝜋v)−𝛽1J𝛽1 (2𝜋v) v ∈ ℝ ⧵ {0},
1

𝛽1!
v = 0,
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where J�1 denotes the Bessel function of order β1. By [1, p. 370], it holds for v≠ 0 the 
equality

where j�1,s denotes the s th positive zero of J�1 . For β1 = 3m1, it holds 
j𝛽1,1 > 3m1 + 𝜋 −

1

2
 (see [8]). Hence, by 𝜎1 >

𝜋

3
 we get

Therefore, the Fourier transform �̂�alg,1(v) is positive and decreasing for v ∈
[
0,

m1

2�1

]
 . 

Hence, ωalg,1 belongs to the set Ω.
Let �1 ∈

[
5

4
, 2
]
 and m1 ∈ ℕ ⧵ {1} be given. We consider the function

with the shape parameter

Then by [12, p. 38], its Fourier transform reads as

where I1 and J1 denote the modified Bessel function and the Bessel function of first 
order, respectively. Using the power series expansion of I1 (see [1, p. 375]), we 
obtain for |v| < m1

(
1 −

1

2𝜎1

)
 that

Therefore, the Fourier transform �̂�sinh,1(v) is positive and decreasing for v ∈
[
0,

m1

2�1

]
 , 

since for �1 ≥ 5

4
 it holds

(�v)−�1J�1(2�v) =
1

�1!

∞∏
s=1

(1 −
4�2v2

j2
�1,s

),

2𝜋m1

2𝜎1j𝛽1,1
<

𝜋

𝜎1
m1

3m1 + 𝜋 −
1

2

<
3m1

3m1 + 𝜋 −
1

2

< 1.

�sinh,1(x) ∶=

�
1

sinh �1
sinh

�
�1

√
1 − x2

�
x ∈ [−1, 1],

0 x ∈ ℝ ⧵ [−1, 1]

�1 ∶= 2�m1

(
1 −

1

2�1

)
.

(2.1)

�̂�
sinh,1

(v) =
𝜋𝛽

1

sinh 𝛽
1

⋅

⎧
⎪⎪⎨⎪⎪⎩

(𝛽2
1
− 4𝜋2v2)−1∕2I

1
(
�

𝛽2
1
− 4𝜋2v2) �v�< m

1
(1 −

1

2𝜎
1

),
1

2
v = ±m

1
(1 −

1

2𝜎
1

),

(4𝜋2v2 − 𝛽2
1
)−1∕2J

1
(
�

4𝜋2v2 − 𝛽2
1
) �v�> m

1
(1 −

1

2𝜎
1

),

(�2
1
− 4�2v2)−1∕2I1

(√
�2
1
− 4�2v2

)
=

1

2

∞∑
k=0

1

4kk!(k + 1)!
(�2

1
− 4�2v2)k.

 Hence, �sinh,1 belongs to the set Ω.   

m1

2𝜎1
< m1

(
1 −

1

2𝜎1

)
.
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As known (see [6, 14]), the NNFFT can mainly be computed by means of an 
NFFT. This is why this algorithm is briefly explained below. For fixed N,M2 ∈ 2ℕ 
and N1 := σ1N with σ1 > 1, the NFFT (see [4, 5, 17] or [13, pp. 377–381]) is a fast 
algorithm that approximately computes the values p(xj), j ∈ IM2

 , of any 1-periodic 
trigonometric polynomial

at nonequispaced nodes xj ∈
[
−

1

2
,
1

2

]
 , j ∈ IM2

 , where ck ∈ ℂ , k ∈ IN , are given 
complex coefficients. In other words, for the NFFT it holds N = M1 ∈ 2ℕ in (1.2).

For ω1 ∈Ω we introduce the window function

By construction, the window function (2.3) is even, has the support 
[
−

m1

N1

,
m1

N1

]
 , and is 

continuous on ℝ . Further, the restricted window function �1|[0,m1∕N1]
 is decreasing 

with φ1(0) = 1. Its Fourier transform

is positive and decreasing for v ∈
[
0,N1 −

N

2

)
 . Thus, φ1 is of bounded variation over [

−
1

2
,
1

2

]
.

In the following, we denote the torus ℝ∕ℤ by �  and the Banach space of con-
tinuous, 1-periodic functions by C(� ) . For the window function (2.3), we denote its 
1-periodization by

Using a linear combination of shifted versions of the 1-periodized window func-
tion �̃�(1)

1
 , we construct a 1-periodic continuous function s ∈ C(� ) which approxi-

mates (2.2) well. Then the computation of the values s(xj), j ∈ IM2
 , is very easy, 

since φ1 has the small support 
[
−

m1

N1

,
m1

N1

]
 . The computational cost of NFFT is 

O(N logN +M2) flops, see [4, 5, 17] or [13, pp. 377–381]. The error of the NFFT 
(see [15]) can be estimated by

where e�1(�1) denotes the C(� )-error constant defined as

(2.2)p(x) ∶=
∑
k∈IN

cke
2�ikx

(2.3)�1(t) ∶= �1

(
N1t

m1

)
, t ∈ ℝ.

�̂�1(v) ∶= ∫
ℝ

𝜑1(t)e
−2𝜋ivt dt = 2∫

m1∕N1

0

𝜑1(t) cos(2𝜋vt) dt

�̃�
(1)

1
(x) ∶=

∑
k∈ℤ

𝜑1(x + k), x ∈ ℝ.

max
j∈IM2

�s(xj) − p(xj)� ≤ ‖s − p‖C(� ) ∶= max
x∈[−1∕2,1∕2]

�s(x) − p(x)�
≤ e�1 (�1)

∑
n∈IN

�cn�,

(2.4)e�1 (�1) = sup
N∈2ℕ

e�1,N(�1)
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with

Note that the constants e�1,N(�1) are bounded with respect to N (see [15, 
Theorem 5.1]).

Now we proceed with the NNFFT. For better readability, we describe the pro-
cedure just shortly. For more detailed explanations we refer to [6]. For chosen 
functions ω1,ω2 ∈ Ω, we form the window functions

where again N1 ∶= �1N ∈ 2ℕ with some oversampling factor σ1 > 1 and 
m1 ∈ ℕ ⧵ {1} with 2m1 ≪ N1 and where N2 ∶= �2(N1 + 2m1) ∈ 2ℕ with an over-
sampling factor σ2 > 1 and m2 ∈ ℕ ⧵ {1} with 2m2 ≤

(
1 −

1

�1

)
N2 . The second win-

dow function φ2 has the support 
[
−

m2

N2

,
m2

N2

]
 . Additionally, in order to prevent aliasing, 

we use a-periodic functions, where we introduce the constant

such that aN1 = N1 + 2m1 and N2 = σ2σ1aN. Without loss of generality, we can 
assume that

If vk ∈
[
−

1

2
,
1

2

]
 , then we replace the nonharmonic bandwidth N by N∗ ∶= N + ⌈ 2m1

�1
⌉ 

and set v∗
j
∶=

N

N∗
vj ∈

[
−

1

2a
,

1

2a

]
 such that Nvj = N∗v∗

j
.

For arbitrarily given fk ∈ ℂ , k ∈ IM1
 , and k ∈ IM1

 , k ∈ IM1
 , we introduce the 

compactly supported, continuous auxiliary function

which has the Fourier transform

e𝜎1,N(𝜑1) ∶= max
n∈IN

‖‖‖‖‖
∑

r∈ℤ⧵{0}

�̂�1(n + rN1)

�̂�1(n)
e2𝜋irN1⋅

‖‖‖‖‖C(𝕋 )
.

(2.5)�1(t) ∶= �1

(
N1t

m1

)
, �2(t) ∶= �2

(
N2t

m2

)
, t ∈ ℝ,

(2.6)a ∶= 1 +
2m1

N1

> 1,

(2.7)vk ∈
[
−

1

2a
,
1

2a

]
.

h(t) ∶=
∑
k∈IM1

fk�1(t − vk), t ∈ ℝ,

(2.8)

ĥ(Nx) = ∫
ℝ

h(t) e−2𝜋iNxt dt

=
∑
k∈IM1

f
k ∫

ℝ

𝜑
1
(t − v

k
) e−2𝜋iNxt dt

(2.9)=
∑

k∈IM1

fke
−2𝜋iNvkx�̂�1(Nx) = f (x) �̂�1(Nx), x ∈ ℝ.

2313



Numerical Algorithms (2023) 92:2307–2339

1 3

Hence, for arbitrary nodes xj ∈
[
−

1

2
,
1

2

]
 , j ∈ IM2

 , we have

Therefore, it remains to compute the values ĥ(Nxj) , j ∈ IM2
 , because we can 

precompute the values �̂�1(Nxj) , j ∈ IM2
 . In some cases (see Section 4), these values 

�̂�1(Nxj) , j ∈ IM2
 , are explicitly known.

For arbitrary vk ∈
[
−

1

2a
,

1

2a

]
 , k ∈ IM1

 , we have φ1(t − vk) = 0 for all t < −
1

2a
−

m1

N1

= 

−
a

2
+
(

1

2
−

1

2a

)
 and for all t > 1

2a
+

m1

N1

=
a

2
−
(

1

2
−

1

2a

)
 , since supp�1 =

[
−

m1

N1

,
m1

N1

]
 

and 1
2
−

1

2a
> 0 . Thus, by (2.8) and

we obtain

Then the rectangular quadrature rule leads to

which approximates ĥ(Nx) . Note that �
N1

∈
[
−

a

2
,
a

2

]
 for each � ∈ IN1+2m1

 by N1 + 2m1 
= aN1. Changing the order of summations in (2.10), it follows that

After computation of the inner sums

we arrive at the following NFFT

If we denote the result of this NFFT (with the 1-periodization �̃�(1)

2
 of the second 

window function φ2 and N2 := σ2(N1 + 2m1)) by s1(Nxj), then s1(Nxj)∕�̂�1(Nxj) is 
an approximate value of f(xj), j ∈ IM2

 . Thus, the algorithm can be summarized as 
follows.

f (xj) =
ĥ(Nxj)

�̂�1(Nxj)
, j ∈ IM2

.

supp𝜑1(⋅ − vk) ⊂
[
−
a

2
,
a

2

]
, k ∈ IM1

,

ĥ(Nx) =
∑
k∈IM1

fk∫
a∕2

−a∕2

𝜑1(t − vk)e
−2𝜋iNxt dt, x ∈ ℝ.

(2.10)s(Nx) ∶=
∑
k∈IM1

fk
1

N1

∑
�∈IN1+2m1

�1

(
�

N1

− vk

)
e−2�i�x∕�1 , x ∈ ℝ,

(2.11)s(Nx) =
∑

�∈IN1+2m1

(
1

N1

∑
k∈IM1

fk�1

(
�

N1

− vk

))
e−2�i�x∕�1 .

(2.12)g
�
∶=

1

N1

∑
k∈IM1

fk�1

(
�

N1

− vk

)
, � ∈ IN1+2m1

,

s(Nxj) =
∑

�∈IN1+2m1

g
�
e−2�i�xj∕�1 , j ∈ IM2

.
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The computational cost of the NNFFT is equal to O
(
N logN +M1 +M2

)
 flops.

In Step 4 of Algorithm 1 we use the assumption 2m2 ≤
(
1 −

1

�1

)
N2 such that

Then for all j ∈ IM2
 and s ∈ IN2

 , it holds

Since we approximate a non-periodic function f on the interval 
[
−

1

2
,
1

2

]
 by means of 

a-periodic functions on the torus a� ≅
[
−

a

2
,
a

2

)
 , the parameter a has to fulfill the 

condition a > 1, in order to prevent aliasing artifacts.

1

2�1
+

m2

N2

≤ 1

2
.

�̃�
(1)

2

( xj

𝜎1
−

s

N2

)
= 𝜑2

( xj

𝜎1
−

s

N2

)
.

Algorithm 1  NNFFT
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3  Error estimates for NNFFT

Now we study the error of the NNFFT, which is measured in the form

where f is a given exponential sum (1.1) and xj ∈
[
−

1

2
,
1

2

]
 , j ∈ IM2

 , are arbitrary spa-
tial nodes. At the beginning of this section we present some technical lemmas. The 
main result will be Theorem 3.5.

We introduce the a-periodization of the given window function (2.3) by

For each x ∈ ℝ , the above series (3.1) has at most one nonzero term. This can be seen 
as follows: For arbitrary x ∈ ℝ there exists a unique �∗ ∈ ℤ such that x = −aℓ* + r 
with a residuum r ∈

[
−

a

2
,
a

2

)
 . Then φ1(x + aℓ*) = φ1(r) and hence φ1(r) > 0 for 

r ∈
(
−

m1

N1

,
m1

N1

)
 and φ1(r) = 0 for r ∈

[
−

a

2
,−

m1

N1

]
∪
[m1

N1

,
a

2

)
 . For each � ∈ ℤ ⧵ {�∗} , 

we have

since |a(� − �
∗) + r| ≥ a

2
=

1

2
+

m1

N1

>
m1

N1

 . Further it holds

By the construction of φ1, the a-periodic window function (3.1) is continuous on ℝ 
and of bounded variation over 

[
−

a

2
,
a

2

]
 . Then the k-th Fourier coefficient of the 

a-periodic window function (3.1) reads as follows

By the convergence theorem of Dirichlet–Jordan (see [19, Vol. 1, pp. 57–58]), the 
a-periodic Fourier series of (3.1) converges uniformly on ℝ and it holds

Then we have the following technical lemma.

Lemma 3.1 Let the window function φ1 be given by (2.3). Then for any n ∈ IN 
with N ∈ 2ℕ , the series

max
j∈IM2

||||f (xj) −
s1(Nxj)

�̂�1(Nxj)

||||,

(3.1)�̃�
(a)

1
(x) ∶=

∑
�∈ℤ

𝜑1(x + a�), x ∈ ℝ.

�1(x + a�) = �1(a(� − �
∗) + r) = 0,

�̃�
(a)

1
(x) = 𝜑1(x), x ∈

[
−1 −

m1

N1

, 1 +
m1

N1

]
.

(3.2)c
(a)

k

(
�̃�
(a)

1

)
∶=

1

a∫
a∕2

−a∕2

�̃�
(a)

1
(t) e−2𝜋ikt∕a dt =

1

a
�̂�1

(
k

a

)
, k ∈ ℤ.

(3.3)�̃�
(a)

1
(x) =

∑
k∈ℤ

c
(a)

k

(
�̃�
(a)

1

)
e2𝜋ikx∕a =

1

a

∑
k∈ℤ

�̂�1

(
k

a

)
e2𝜋ikx∕a.
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is uniformly convergent on ℝ and has the sum

which coincides with the rectangular quadrature rule of the integral

Proof Using the uniformly convergent Fourier series (3.3), we obtain for all n ∈ IN that

Replacing x by x + �

N1

 with � ∈ IN1+2m1
 , we see that by N1 + 2m1 = aN1,

Summing the above formulas for all � ∈ IN1+2m1
 and applying the known formula

we conclude that

Obviously,

is the rectangular quadrature formula of the integral

with respect to the uniform grid 
{

�

N1

∶ � ∈ IN1+2m1

}
 of the interval 

[
−

a

2
,
a

2

]
 . This 

completes the proof.

∑
r∈ℤ

c
(a)

n+r(N1+2m1)

(
�̃�
(a)

1

)
e2𝜋i(n+r(N1+2m1))x∕a

1

N1 + 2m1

∑
�∈IN1+2m1

e−2𝜋in�∕(N1+2m1)�̃�
(a)

1

(
x +

�

N1

)

c(a)
n

(
�̃�
(a)

1
(x + ⋅)

)
=

1

a∫
a∕2

−a∕2

�̃�
(a)

1
(x + s) e2𝜋ins∕a ds = c(a)

n

(
�̃�
(a)

1

)
e2𝜋inx∕a.

e−2𝜋inx∕a�̃�
(a)

1
(x) =

∑
k∈ℤ

c
(a)

k

(
�̃�
(a)

1

)
e2𝜋i(k−n)x∕a =

∑
q∈ℤ

c
(a)
n+q

(
�̃�
(a)

1

)
e2𝜋iqx∕a.

e−2𝜋in(x+�∕N1)∕a�̃�
(a)

1

(
x +

�

N1

)
=
∑
q∈ℤ

c
(a)
n+q

(
�̃�
(a)

1

)
e2𝜋iqx∕a e2𝜋iq�∕(N1+2m1).

∑
�∈IN1+2m1

e2�iq�∕(N1+2m1) =

{
N1 + 2m1 q ≡ 0 mod(N1 + 2m1),

0 q ≢ 0 mod(N1 + 2m1),

∑
�∈IN1+2m1

e−2𝜋in(x+�∕N1)∕a�̃�
(a)

1

�
x +

�

N1

�

= (N1 + 2m1)
∑
r∈ℤ

c
(a)

n+r(N1+2m1)

�
�̃�
(a)

1

�
e2𝜋ir(N1+2m1)x∕a.

1

N1 + 2m1

∑
�∈IN1+2m1

e−2𝜋in(x+�∕N1)∕a�̃�
(a)

1

(
x +

�

N1

)

1

a∫
a∕2

−a∕2

�̃�
(a)

1
(x + s)e2𝜋ins∕a ds

2317



Numerical Algorithms (2023) 92:2307–2339

1 3

By (3.2) we obtain that for n ∈ IN,

Now we generalize the technical Lemma 3.1.

Lemma 3.2 For arbitrary fixed v ∈
[
−

N

2
,
N

2

]
 , N ∈ ℕ , and given window function 

(2.3), the function

is 1

N1

-periodic, continuous on ℝ , and of bounded variation over 
[
−

1

2
,
1

2

]
 . For each 

x ∈ ℝ , the corresponding 1

N1

-periodic Fourier series converges uniformly to ψ1(x), 
i.e.,

Proof The definition (3.4) of the function ψ1 is correct, since

with the finite index set ℤm1,N1
(x) = {� ∈ ℤ ∶ |N1x + �| < m1} . If x ∈

[
−

1

2
,
1

2

]
 , we 

observe that ℤm1,N1
(x) ⊆ IN1+2m1

 and therefore

Simple calculation shows that for each x ∈ ℝ,

By the construction of φ1, the 1

N1

-periodic function ψ1 is continuous on ℝ and of 

bounded variation over 
[
−

1

2
,
1

2

]
 . Thus, by the convergence theorem of Dirichlet–Jor-

dan, the Fourier series of ψ1 converges uniformly on ℝ to ψ1. The r th Fourier coeffi-
cient of ψ1 reads as follows

|||||
∑

r∈ℤ⧵{0}

c
(a)

n+r(N1+2m1)
(�̃�

(a)

1
)

c
(a)
n (�̃�

(a)

1
)

e2𝜋ir(N1+2m1)x∕a
|||||
=
|||||

∑
r∈ℤ⧵{0}

�̂�1(n∕a + rN1)

�̂�1(n∕a)
e2𝜋irN1x∕a

|||||
.

(3.4)�1(x) ∶=
1

N1

∑
�∈ℤ

e−2�iv�∕(N1+2m1) e−2�ivx∕a�1

(
x +

�

N1

)

𝜓1(x) =
∑
r∈ℤ

�̂�1

(
v

a
+ rN1

)
e2𝜋irN1x.

�1(x) =
1

N1

∑
�∈ℤm1,N1

(x)

e−2�iv�∕(N1+2m1) e−2�ivx∕a�1

(
x +

�

N1

)

�1(x) =
1

N1

∑
�∈IN1+2m1

e−2�iv�∕(N1+2m1) e−2�ivx∕a�1

(
x +

�

N1

)
.

�1

(
x +

1

N1

)
=

1

N1

∑
�∈ℤ

e−2�iv(�+1)∕(N1+2m1) e−2�ivx∕a�1

(
x +

� + 1

N1

)
= �1(x).
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This completes the proof.

Then Lemma 3.2 leads immediately to the following technical result.

Corollary 3.3 Let the window function φ1 be given by (2.3). For all x ∈
[
−

1

2
,
1

2

]
 

and w ∈
[
−

N

2a
,
N

2a

]
 it holds then

Further, for all w ∈
[
−

N

2a
,
N

2a

]
 , it holds

Proof As before, let v ∈
[
−

N

2
,
N

2

]
 be given. Substituting w ∶=

v

a
∈
[
−

N

2a
,
N

2a

]
 and 

observing N1 + 2m1 = aN1, we obtain by Lemma 3.2 that for all x ∈
[
−

1

2
,
1

2

]
 it 

holds,

Since by assumption �̂�1(w) > 0 for all w ∈
[
−

N

2a
,
N

2a

]
⊂

[
−

N

2
,
N

2

]
 , we have

Multiplying the above equality by the exponential  e2πiwx, this results in (3.5) and 
(3.6).

We say that the window function φ1 of the form (2.3) is convenient for NNFFT, if 
the general C(� )-error constant

c
(1∕N1)
r (𝜓1) = N1∫ 1∕N1

0
𝜓1(t)e

−2𝜋irN1t dt

=
∑
�∈ℤ

e−2𝜋iv�∕(N1+2m1)∫ 1∕N1

0
e−2𝜋ivt∕a𝜑1

�
t +

�

N1

�
dt

=
∑
�∈ℤ

∫ (�+1)∕N1

�∕N1
𝜑1(s)e

−2𝜋i(v∕a+rN1)s ds = �̂�1

�
v

a
+ rN1

�
, r ∈ ℤ.

(3.5)

∑
r∈ℤ⧵{0}

�̂�1(w+rN1)

�̂�1(w)
e2𝜋i(w+rN1)x

=
1

N1�̂�1(w)

∑
�∈IN1+2m1

e−2𝜋iw�∕N1𝜑1

�
x +

�

N1

�
− e2𝜋iwx.

(3.6)

max
x∈[−1∕2,1∕2]

�����
1

N
1
�̂�
1
(w)

∑
𝓁∈IN1+2m1

𝜑
1

�
x +

𝓁

N
1

�
e
−2𝜋iw𝓁∕N

1 − e
2𝜋iwx

�����
=
�����

∑
r∈ℤ⧵{0}

�̂�
1
(w+rN

1
)

�̂�
1
(w)

e
2𝜋irN

1
⋅

�����C(𝕋 )
.

1

N1

∑
�∈IN1+2m1

e−2𝜋iw�∕N1 e−2𝜋iwx𝜑1

�
x +

�

N1

�
− �̂�1(w)

=
∑

r∈ℤ⧵{0}

�̂�1(w + rN1) e
2𝜋irN1x.

1

N1�̂�1(w)

∑
�∈IN1+2m1

e−2𝜋iw�∕N1 e−2𝜋iwx𝜑1

�
x +

�

N1

�
− 1

=
∑

r∈ℤ⧵{0}

�̂�1(w+rN1)

�̂�1(w)
e2𝜋irN1x.
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with

fulfills the condition E𝜎1
(𝜑1) ≪ 1 for conveniently chosen truncation parameter m1 ≥ 2 

and oversampling factor σ1 > 1. Obviously, the C(� )-error constant (2.4) is a “discrete” 
version of the general C(� )-error constant (3.7) with the property

Thus, Corollary 3.3 means that all complex exponentials  e2πiwx with w ∈
[
−

N

2a
,
N

2a

]
 

and x ∈
[
−

1

2
,
1

2

]
 can be uniformly approximated by short linear combinations of 

shifted window functions, cf. [4, Theorem 2.10], if φ1 is convenient for NNFFT.

Theorem  3.4 Let σ1 > 1, m1 ∈ ℕ ⧵ {1} , and N1 = �1N ∈ 2ℕ with 2m1 ≪ N1 be 
given. Let φ1 be the scaled version (2.3) of ω1 ∈Ω. Assume that the Fourier trans-
form �̂�1 fulfills the decay condition

with certain constants c1 > 0, c2 > 0, and μ > 1.
Then the general C(� )-error constant E�1

(�1) of the window function (2.3) has 
the upper bound

Proof By the scaling property of the Fourier transform, we have

For all v ∈
[
−

N

2
,
N

2

]
 and r ∈ ℤ ⧵ {0,±1} , we obtain

and hence

(3.7)E�1
(�1) ∶= sup

N∈ℕ

E�1,N
(�1)

(3.8)E𝜎1,N
(𝜑1) ∶= max

v∈[−N∕2,N∕2]

‖‖‖‖
∑

r∈ℤ⧵{0}

�̂�1(v + rN1)

�̂�1(v)
e2𝜋irN1⋅

‖‖‖‖C(𝕋 )

(3.9)e�1 (�1) ≤ E�1
(�1).

��̂�1(v)� ≤
⎧
⎪⎨⎪⎩

c1 �v� ∈
�
m1

�
1 −

1

2𝜎1

�
,m1

�
1 +

1

2𝜎1

��
,

c2�v�−𝜇 �v� ≥ m1

�
1 +

1

2𝜎1

�
,

(3.10)E𝜎1
(𝜑1) ≤ 1

�̂�1(
m1

2𝜎1
)

[
2c1 +

2c2

(𝜇 − 1)m
𝜇

1

(
1 −

1

2𝜎1

)1−𝜇
]
.

�̂�1(v) = ∫
ℝ

𝜑1(t) e
−2𝜋ivt dt =

m

N1

�̂�1

(m1v

N1

)
, v ∈ ℝ.

||||
m1v

N1

+ m1r
|||| ≥ m1

(
2 −

1

2𝜎1

)
> m1

(
1 +

1

2𝜎1

)

|�̂�1(v + rN1)| =
m1

N1

|||�̂�1

(m1v

N1

+ m1r
)||| ≤

m1c2

m
𝜇

1
N1

|||
v

N1

+ r
|||
−𝜇
.
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From [15, Lemma 3.1] it follows that for fixed u =
v

N1

∈
[
−

1

2�1
,

1

2�1

]
,

For all v ∈
[
−

N

2
,
N

2

]
 , we sustain

since it holds

Thus, for each v ∈
[
−

N

2
,
N

2

]
 , we estimate the sum

such that

Now we determine the minimum of all positive values

Since m1|v|
N1

≤ m1

2�1
 for all v ∈

[
−

N

2
,
N

2

]
 , we obtain

Thus, we see that the constant E�1,N
(�1) can be estimated by an upper bound which 

depends on m1 and σ1, but does not depend on N. We obtain

∑
r∈ℤ⧵{0,±1}

|u + r|−� ≤ 2

� − 1

(
1 −

1

2�1

)1−�

.

|�̂�1(v ± N1)| =
m1

N1

|||�̂�1

(m1v

N1

± m1

)||| ≤
m1

N1

c1,

||||
m1v

N1

± m1

|||| ∈
[
m1

(
1 −

1

2�1

)
,m1

(
1 +

1

2�1

)]
.

∑
r∈ℤ⧵{0}

��̂�1(v + rN1)� ≤ m1

N1

�����̂�1

�
m1v

N1

− m1

���� +
����̂�1

�
m1v

N1

+ m1

����
+

∑
k∈ℤ⧵{0,±1}

����̂�1

�
m1v

N1

+ m1r
����
�

≤ m1

N1

�
2c1 +

c2

m
𝜇

1

∑
r∈ℤ⧵{0,±1}

���
v

N1

+ r
���
−𝜇
�

≤ m1

N1

�
2c1 +

2c2

(𝜇−1)m
𝜇

1

�
1 −

1

2𝜎1

�1−𝜇
�

max
v∈[−N∕2,N∕2]

∑
r∈ℤ⧵{0}

|�̂�1(v + rN1)| ≤ m1

N1

[
2c1 +

2c2

(𝜇 − 1)m
𝜇

1

(
1 −

1

2𝜎1

)1−𝜇
]
.

�̂�1(v) =
m1

N1

�̂�1

(m1v

N1

)
, v ∈

[
−
N

2
,
N

2

]
.

min
v∈[−N∕2,N∕2]

�̂�1(v) =
m1

N1

min
v∈[−N∕2,N∕2]

�̂�1(
m1v

N1

) =
m1

N1

�̂�1(
m1

2𝜎1
) = �̂�1(

N

2
) > 0.

E𝜎1,N
(𝜑1) ≤ 1

�̂�1(N∕2)
max

v∈[−N∕2,N∕2]

∑
r∈ℤ⧵{0}

��̂�1(n + rN1)�

≤ 1

�̂�1(
m1

2𝜎1
)

�
2c1 +

2c2

(𝜇−1)m
𝜇

1

�
1 −

1

2𝜎1

�1−𝜇
�
.

2321



Numerical Algorithms (2023) 92:2307–2339

1 3

Consequently, the general C(� )-error constant E�1
(�1) has the upper bound (3.10). 

By (3.9), the expression (3.10) is also an upper bound of C(� )-error constant e�1(�1).

Thus, by means of these technical results we obtain the following error estimate 
for the NNFFT.

Theorem  3.5 Let the nonharmonic bandwidth N ∈ ℕ with N ≫ 1 be given. 
Assume that N1 = �1N ∈ 2ℕ with σ1 > 1. For fixed m1 ∈ ℕ ⧵ {1} with 2m1 ≪ N1, 
let N2 = σ2(N1 + 2m1) with σ2 > 1. For m2 ∈ ℕ ⧵ {1} with 2m2 ≤ (1 −

1

�1
)N2 , let φ1 

and φ2 be the window functions of the form (2.5). Let xj ∈
[
−

1

2
,
1

2

]
 , j ∈ IM2

 , be 
arbitrary spatial nodes and let fk ∈ ℂ , k ∈ IM1

 , be arbitrary coefficients. Further, let 
a > 1 be the constant (2.6).

Then for a given exponential sum (1.1) with arbitrary frequencies vk ∈
[
−

1

2a
,

1

2a

]
 , 

k ∈ IM1
 , the error of the NNFFT can be estimated by

where E�j
(�j) for j = 1,2, are the general C(� )-error constants of the form (3.7).

Proof Now for arbitrary spatial nodes xj ∈
[
−

1

2
,
1

2

]
 , j ∈ IM2

 , we estimate the error of 
the NNFFT in the form

At first we consider

From (2.9) and (2.11) it follows that for all x ∈ ℝ,

Thus, by (2.7), (3.6), and (3.8), we obtain the estimate

Now we show that for �2(t) ∶= �2

(N2t

m2

)
 and N2 = σ2(N1 + 2m1) it holds

(3.11)

max
j∈IM2

����f (xj) −
s1(Nxj)

�̂�1(Nxj)

���� ≤ max
x∈[−1∕2,1∕2]

����f (x) −
s1(Nx)

�̂�1(Nx)

����
≤
⎡⎢⎢⎣
E𝜎1

(𝜑1) +
a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

⎤⎥⎥⎦
∑

k∈IM1

�fk�,

max
j∈IM2

||||f (xj) −
s1(Nxj)

�̂�1(Nxj)

|||| ≤ max
j∈IM2

||||f (xj) −
s(Nxj)

�̂�1(Nxj)

|||| + max
j∈IM2

|s(Nxj) − s1(Nxj)|
�̂�1(Nxj)

.

max
j∈IM2

||||f (xj) −
s(Nxj)

�̂�1(Nxj)

|||| ≤ max
x∈[−1∕2,1∕2]

||||f (x) −
s(Nx)

�̂�1(Nx)

||||.

f (x) −
s(Nx)

�̂�1(Nx)
=

ĥ(Nx)−s(Nx)

�̂�1(Nx)

=
∑

k∈IM1

fk

�
e−2𝜋iNvkx −

1

N1�̂�1(Nx)

∑
�∈IN1+2m1

𝜑1

�
�

N1

− vk

�
e−2𝜋i�x∕𝜎1

�
.

(3.12)max
x∈[−1∕2,1∕2]

����f (x) −
s(Nx)

�̂�1(Nx)

���� ≤ E𝜎1,N
(𝜑1)

∑
k∈IM1

�fk� ≤ E𝜎1
(𝜑1)

∑
k∈IM1

�fk�.
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By construction, the functions s and s1 can be represented in the form

where �̃�(1)

2
 denotes the 1-periodization of the second window function φ2 and

Substituting t = x

�1
 , it follows that

are 1-periodic functions. By [15, Lemma 2.3], we conclude

where the general C(� )-error constant E�2
(�2) defined similar to (3.7) has an analo-

gous property (3.9). Since x = σ1t, we obtain that

such that (3.13) is shown. Note that for x ∈
[
−

1

2
,
1

2

]
 it holds

with the index set

Further, by (2.6) and (2.12) it holds

(3.13)max
x∈[−1∕2,1∕2]

|s(Nx) − s1(Nx)| ≤ E�2
(�2)

∑
�∈IN1+2m1

|g
�
|.

s(Nx) =
∑

�∈IN1+2m1

g
�
e−2𝜋i�x∕𝜎1 ,

s1(Nx) =
∑

s∈IN2

hs�̃�
(1)

2

�
x

𝜎1
−

s

N2

�
, x ∈ ℝ,

hs ∶=
1

N2

∑
�∈IN1+2m1

g
�

�̂�2(�)
e−2𝜋i�s∕N2 .

s(N1t) =
∑

�∈IN1+2m1

g
�
e−2𝜋i�t,

s1(N1t) =
∑

s∈IN2

hs�̃�
(1)

2

�
t −

s

N2

�
, t ∈ ℝ,

max
t∈[−1∕2,1∕2]

|s(N1t) − s1(N1t)| ≤ e�2(�2)
∑

�∈IN1+2m1

|g
�
| ≤ E�2

(�2)
∑

�∈IN1+2m1

|g
�
|,

(3.14)
max

t∈[−1∕2,1∕2]
�s(N1t) − s1(N1t)� = max

x∈[−�1∕2,�1∕2]
�s(Nx) − s1(Nx)�

≤ E�2
(�2)

∑
�∈IN1+2m1

�g
�
�,

s1(Nx) =
∑

s∈I��
N2
(x)

hs�2

(
x

�1
−

s

N2

)

I
��
N2
(x) ∶=

{
s ∈ IN2

∶
||||
s

N2

−
x

𝜎1

|||| <
m2

N2

}
.

∑
𝓁∈IN1+2m1

�g
𝓁
� ≤ 1

N1

∑
𝓁∈IN1+2m1

∑
k∈IM1

�fk� ⋅ 1 ≤ N1+2m1

N1

∑
k∈IM1

�fk� = a
∑

k∈IM1

�fk�.
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Combining this with (3.12) and (3.14) completes the proof.

Now it merely remains to estimate the general C(� )-error constants E�j
(�j) for j = 1,2, 

and �̂�1

(
N

2

)
 in (3.11) for specific window functions.

4  Error of NNFFT with sinh‑type window functions

In this section we specify the result in Theorem 3.5 for the NNFFT with two sinh-type 
window functions.

Let N ∈ ℕ with N ≫ 1 be the fixed nonharmonic bandwidth. Let �1, �2 ∈
[
5

4
, 2
]
 

be given oversampling factors. Further let N1 = �1N ∈ 2ℕ , m1 ∈ ℕ ⧵ {1} with  
2m1 ≪ N1, and N2 = �2(N1 + 2m1) = �1�2aN ∈ 2ℕ be given, where a > 1 denotes 
the constant (2.6). Let m2 ∈ ℕ ⧵ {1} with 2m2 ≤

(
1 −

1

�1

)
N2 be given as well.

For j = 1, 2, we consider the functions

with the shape parameter

As shown in Example 2.1, both functions belong to the set Ω. By scaling, for j = 1, 2, 
we introduce the sinh-type window functions

Now we show that the error of the NNFFT with two sinh-type window functions 
(4.1) has exponential decay with respect to the truncation parameters m1 and m2.

Theorem 4.1 Let the nonharmonic bandwidth N ∈ ℕ with N ≫ 1 be given. Further let 
N1 = �1N ∈ 2ℕ with �1 ∈

[
5

4
, 2
]
 be given. For fixed m1 ∈ ℕ ⧵ {1} with 2m1 ≪ N1, let 

N2 = �2(N1 + 2m1) ∈ 2ℕ with �2 ∈
[
5

4
, 2
]
 . For m2 ∈ ℕ ⧵ {1} with 2m2 ≤

(
1 −

1

�1

)
N2 , 

let �sinh,1 and �sinh,2 be the sinh-type window functions (4.1). Assume that m2 ≥ m1. Let 
xj ∈

[
−

1

2
,
1

2

]
 , j ∈ IM2

 , be arbitrary spatial nodes and let fk ∈ ℂ , k ∈ IM1
 , be arbitrary 

coefficients. Let a > 1 be the constant (2.6).
Then for the exponential sum (1.1) with arbitrary frequencies vk ∈

[
−

1

2a
,

1

2a

]
 , 

k ∈ IM1
 , the error of the NNFFT with the sinh-type window functions (4.1) can be 

estimated in the form

�sinh,j(x) ∶=

�
1

sinh �j
sinh

�
�j

√
1 − x2

�
x ∈ [−1, 1],

0 x ∈ ℝ ⧵ [−1, 1]

�j ∶= 2�mj

(
1 −

1

2�j

)
.

(4.1)�sinh,j(t) ∶= �sinh,j

(
Njt

mj

)
, t ∈ ℝ.

max
j∈IM2

||||f (xj) −
s1(Nxj)

�̂�sinh,1(Nxj)

|||| ≤ max
x∈[−1∕2,1∕2]

||||f (x) −
s1(Nx)

�̂�sinh,1(Nx)

|||| ≤ E(𝜑sinh)
∑
k∈IM1

|fk|
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with the constant

Proof By Theorem 3.5 we have to estimate the general C(� )-error constants E�j
(�j) , 

j = 1, 2, and �̂�1

(
N

2

)
 in (3.11) for the sinh-type window functions (4.1).

Applying Theorem 3.4, we obtain by the same technique as in [15, Theorem 5.6] that

Now we estimate �̂�sinh,1

(
N

2

)
 . Using the scaling property of the Fourier transform, by 

(2.1) we obtain

where we have used the equality

From m1 ≥ 2 and �1 ≥ 5

4
 , it follows that

By the inequality for the modified Bessel function I1 (see [15, Lemma 3.3]) it holds

Thus, we obtain

By the simple inequality

(4.2)

�̂�sinh,1

(
N

2

)
=

m1

N1

�̂�sinh,1

(
m1N

2N1

)
=

m1

N1

�̂�sinh,1

(
m1

2𝜎1

)

=
𝜋m1𝛽1

N1 sinh 𝛽1

(
𝛽2
1
−

𝜋2m2
1

𝜎2
1

)−1∕2

I1

(√
𝛽2
1
−

𝜋2m2
1

𝜎2
1

)

=
m1𝜋

N1 sinh 𝛽1

(
1 −

1

2𝜎1

)(
1 −

1

𝜎1

)−1∕2

I1

(
2𝜋m1

√
1 −

1

𝜎1

)
,

(4.3)E�j
(�sinh,j) ≤ (24m

3∕2

j
+ 10)e

−2�mj

√
1−1∕�j , j = 1, 2.

�̂�sinh,1

(
N

2

)
=

m1

N1

�̂�sinh,1

(
m1N

2N1

)
=

m1

N1

�̂�sinh,1

(
m1

2𝜎1

)

=
𝜋m1𝛽1

N1 sinh 𝛽1

(
𝛽2
1
−

𝜋2m2
1

𝜎2
1

)−1∕2

I1

(√
𝛽2
1
−

𝜋2m2
1

𝜎2
1

)

=
m1𝜋

N1 sinh 𝛽1

(
1 −

1

2𝜎1

)(
1 −

1

𝜎1

)−1∕2

I1

(
2𝜋m1

√
1 −

1

𝜎1

)
,

(
�2
1
−

�2m2
1

�2
1

)1∕2

= 2�m1

((
1 −

1

2�1

)2

−
1

4�2
1

)1∕2

= 2�m1

√
1 −

1

�1
.

2�m1

�
1 −

1

�1
≥ 4�

�
1 −

1

�1
≥ x0 ∶=

4�√
5
.

I1(x) ≥ √
x0 e

−x0 I1(x0)x
−1∕2 ex >

2

5
x−1∕2 ex, x ≥ x0.

�̂�sinh,1

�
N

2

�
≥

√
2m1𝜋

5N1 sinh 𝛽1

�
1 −

1

2𝜎1

��
1 −

1

𝜎1

�−3∕4

e2𝜋m1

√
1−1∕𝜎1 .

sinh 𝛽1 <
1

2
e𝛽1 =

1

2
e2𝜋m1(1−1∕(2𝜎1)),
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we conclude that

and hence

Applying Theorem 3.5, we estimate the error of the NNFFT with two sinh-type win-
dow functions (4.1). By (4.3) and (4.4) we obtain the inequality

since it holds

This completes the proof. 

Example 4.2 Now we visualize the result of Theorem 4.1. To this end, we fix N = 1200 
and consider m1 ∈{2,…,8} and σ1 ∈{1.25,1.5,2}. In Fig.  1 the error bound (4.2) is 
depicted for several choices of m2 ≥ m1 and σ2 ≥ σ1. Clearly, the error bounds (4.2) 
decrease for increasing truncation parameters and oversampling factors, respectively. 
Moreover, we recognize that the results get better when choosing σ2 > σ1, cf. Fig. 1c, 
and are best for m2 > m1, cf. Fig. 1a. Besides, we remark that choices m2 < m1 or σ2 < σ1 
produce the same results as in the equality setting such that we omitted these tests.

Therefore, we recommend the use of truncation parameters m2 > m1 and over-
sampling factors σ2 ≥ σ1. For the choice of m1 and σ1, we refer to previous works 
concerning the NFFT, e.g., [15, 16].

�̂�sinh,1

�
N

2

� ≥ 2
√
2m1𝜋

5N1

�
1 −

1

2𝜎1

��
1 −

1

𝜎1

�−3∕4

e2𝜋m1(
√
1−1∕𝜎1−1+1∕(2𝜎1))

(4.4)

a

�̂�sinh,1(N∕2)
≤ 5N1a

2
√
2m1𝜋

�
1 −

1

2𝜎1

�−1�
1 −

1

𝜎1

�3∕4

e−2𝜋m1(
√
1−1∕𝜎1−1+1∕(2𝜎1)).

E𝜎1
(𝜑sinh,1) +

a

�̂�sinh,1(N∕2)
E𝜎2

(𝜑sinh,2) ≤ (24m
3∕2

1
+ 10)e−2𝜋m1

√
1−1∕𝜎1

+ (24m
3∕2

2
+ 10)

2N1a√
2m1𝜋

e2𝜋m1(1−
√
1−1∕𝜎1−1∕(2𝜎1))e−2𝜋m2

√
1−1∕𝜎2 ,

5

2

�
1 −

1

2𝜎1

�−1�
1 −

1

𝜎1

�3∕4

≤ 5

3

√
2 < 2, 𝜎1 ∈

�
5

4
, 2
�
.

Fig. 1  Error bound (4.2) (dashed) for the NNFFT with sinh-type window functions for N = 1200, 
m1 ∈ {2,… , 8} and σ1 ∈ {1.25,1.5,2}. Part (b) additionally depicts the relative error (4.5) (solid) using 
Kaiser–Bessel window functions
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Additionally, we aim to compare these theoretical bounds with the errors obtained 
by the NNFFT. For this purpose, we introduce the relative error

since by Theorem 4.1 it holds

Thus, we choose random nodes xj ∈
[
−

1

2
,
1

2

]
 , j ∈ IM2

 , and vk ∈
[
−

1

2a
,

1

2a

]
 , k ∈ IM1

 , 
with a = 1 +

2m1

N1

 , as well as random coefficients fk ∈ ℂ , k ∈ IM1
 , and compute the 

values (1.2) once directly and once rapidly using the NNFFT. Due to the random-
ness of the given data, this test is repeated one hundred times and afterwards the 
maximum error over all repetitions is computed. The errors (4.5) for the parameter 
choice M1 = 2400 and M2 = 1600 are displayed in Fig. 1b.

Unfortunately, the current release NFFT 3.5.3 of the software package [9] is not 
yet designed for the use of parameters m1≠m2 and σ1≠σ2. Therefore, we can only 
handle the setting m1 = m2 and σ1 = σ2 in Fig. 1b. Moreover, the sinh-type window 
function is currently not implemented in the software package [9]. Thus, we use two 
standard window functions, namely the Kaiser–Bessel window functions, since it 
was shown in [15] that those are very much related. Since the results in Fig. 1 show 
great promise, these features might be part of future releases.

5  Approximation of sinc function by exponential sums

Since we aim to present an interesting signal processing application of the NNFFT in the 
last Section 6, we now study the approximation of the function sinc(Nπx), x ∈ [− 1,1], by 
an exponential sum (1.1).

In [3] the exponential sum (1.1) is used for a local approximation of a bandlim-
ited function F of the form

where w ∶
[
−

1

2
,
1

2

]
→ [0,∞) is an integrable function with ∫ 1∕2

−1∕2
w(t) dt > 0 . By the 

substitution

(4.5)

( ∑
k∈IM1

|fk|
)−1

max
j∈IM2

||||f (xj) −
s1(Nxj)

�̂�sinh,1(Nxj)

||||,

(∑
k∈IM1

|fk|
)−1

max
j∈IM2

||||f (xj) −
s1(Nxj)

�̂�sinh,1(Nxj)

|||| ≤ E(𝜑sinh).

(5.1)F(x) ∶= ∫
1∕2

−1∕2

w(t) e−2�iNtx dt, x ∈ ℝ,

F(x) =
1

N ∫
N∕2

−N∕2

w(−
s

N
) e2�isx ds,
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we recognize that the Fourier transform of (5.1) is supported on 
[
−

N

2
,
N

2

]
 , i.e., the 

function (5.1) is bandlimited with bandwidth N. For instance, for w(t) := 1, 
t ∈

[
−

1

2
,
1

2

]
 , we obtain the famous bandlimited sinc function

Now we show that the bandlimited sinc function (5.2) can be uniformly approxi-
mated on the interval [− 1,1] by an exponential sum (1.1). We start with the uniform 
approximation of the sinc function on the interval 

[
−

1

2
,
1

2

]
.

Theorem 5.1 Let ε > 0 be a given target accuracy.
Then for sufficiently large n ∈ ℕ with n ≥ 2N, there exist constants wj > 0 and fre-

quencies vj ∈
(
−

1

2
,
1

2

)
 , j = 1,…,n, such that for all x ∈

[
−

1

2
,
1

2

]
,

Proof This result is a simple consequence of [3, Theorem  6.1]. Introducing 
� ∶=

N

n
≤ 1

2
 , we obtain by substitution � ∶= −

t

2�
 that

Setting y ∶= nx ∈
[
−

n

2
,
n

2

]
 , we have

Then from [3, Theorem 6.1] (with d =
1

2
 ), it follows the existence of wj > 0 and 

Θj ∈ (−ν, ν), j = 1,…, n, such that for all y ∈
[
−

n

2
− 1,

n

2
+ 1

]
,

Hence, for all x = y

n
∈
[
−

1

2
,
1

2

]
 , we conclude that for vj ∶= −

Θj

2�
∈
(
−

1

2
,
1

2

)
 , j = 1,…,n,

This completes the proof.

Substituting the variable x = t

2
 , t ∈ [− 1, 1], the frequencies vj =

zj

2
 , zj ∈ (− 1, 1), and 

replacing the bandwidth N in (5.3) by 2N, we obtain the following uniform approximation 
of the sinc function (5.2) on the interval [− 1, 1] (after denoting t by x and zj by vj again):

Corollary 5.2 Let ε > 0 be a given target accuracy.

(5.2)F(x) = sinc(�Nx) ∶=

{
sin(�Nx)

�Nx
x ∈ ℝ ⧵ {0},

1 x = 0.

(5.3)
||||sinc(�Nx) −

n∑
j=1

wj e
−2�iNvjx

|||| ≤ �.

sinc(�Nx) = ∫
1∕2

−1∕2

e−2�iN�x d� =
1

2�∫
�

−�

ei�ntx dt.

sinc(��y) =
1

2�∫
�

−�

ei�ty dt.

||||
1

2��
�

−�

�(t) ei�ty dt −

n∑
j=1

wje
�iΘjy

|||| ≤ �.

||||
1

2��
�

−�

ei�ntx dt −

n∑
j=1

wje
�inΘjx

|||| =
||||sinc(�Nx) −

n∑
j=1

wje
−2�iNvjx

|||| ≤ �.
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Then for sufficiently large n ∈ ℕ with n ≥ 4N, there exist constants wj > 0 and fre-
quencies vj ∈ (− 1,1), j = 1,…, n, such that (5.3) holds for all x ∈ [− 1, 1], i.e.,

In practice, we simplify the approximation procedure of the function sinc(Nπx). 
Since for fixed N ∈ ℕ , it holds

the approximation on the interval [− 1, 1] can efficiently be realized by means of 
the Clenshaw–Curtis quadrature (see [18, pp. 143–153] or [13, pp. 357–364]). 
Using this procedure for the integrand  1

2
e−�iNtx , t ∈ [− 1, 1], with fixed parameter  

x ∈ [− 1, 1], the Chebyshev points zk = cos
k�

n
∈ [−1, 1] , k = 0,…, n, and the posi-

tive coefficients

with �n(0) = �n(n) ∶=
√
2

2
 and εn(j) := 1, j = 1,…, n − 1 (see [13, p. 359]), we obtain

Further the coefficients fulfill the condition (see [13, p. 359])

Then we receive the following error estimate.

Theorem 5.3 Let N ∈ ℕ , n = νN be given. Let zk = cos
k�

n
∈ [−1, 1] , be the Che-

byshev points, let wk, k = 0,…, n, denote the coefficients (5.4), and set C ∶=
�(e2−1)

2e
.

Then for all x ∈ [− 1, 1], the approximation error of sinc(Nπx) can be estimated in the form

In other words, the error bound is exponentially decaying if ν > C ≈ 3.69.

Proof Since the imaginary part of the integrand 1
2
e−�iNtx , t ∈ [− 1, 1], is odd, it holds

||||sinc(�Nx) −
n∑
j=1

wj e
−�iNvjx

|||| ≤ �, x ∈ [−1, 1].

sinc(N�x) =
1

2 ∫
1

−1

e−�iNtx dt, x ∈ ℝ,

(5.4)wk =

�
1

n
�n(k)

2
∑n∕2

j=0
�n(2j)

2 2

1−4j2
cos

2jk�

n
n ∈ 2ℕ,

1

n
�n(k)

2
∑(n−1)∕2

j=0
�n(2j)

2 2

1−4j2
cos

2jk�

n
n ∈ 2ℕ + 1,

sinc(N�x) =
1

2∫
1

−1

e−�iNtx dt ≈

n∑
k=0

wke
−�iNzkx.

(5.5)
n∑

k=0

wk = 1.

(5.6)
||||sinc(N�x) −

n∑
k=0

wke
−�iNzkx

|||| ≤
36(1 + e−2CN)

35(e2 − 1)
e−N(�−C).

(5.7)sinc(N�x) =
1

2∫
1

−1

e−�iNtx dt =
1

2∫
1

−1

cos(�Ntx) dt.
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Therefore, we apply the Clenshaw–Curtis quadrature to the analytic function 
f (t, x) ∶=

1

2
cos(�Ntx) , t ∈ [− 1, 1], with fixed parameter x ∈ [− 1, 1]. Note that it 

holds

by the symmetry properties of the Chebyshev points zk and the coefficients wk, 
namely zk = −zn−k and wk = wn−k, k = 0,…, n (see [13, p. 359]).

By Eρ with some ρ > 1, we denote the Bernstein ellipse defined by

Then Eρ has the foci − 1 and 1. For simplicity, we choose ρ = e.
For z ∈ ℂ and fixed x ∈ [− 1, 1], it holds

For z ∈ ℂ with Re z = 0 we have

Hence, in the interior of the Bernstein ellipse Ee, the integrand is bounded, since

Therefore, by [18, p. 146] we obtain the error estimate

By defining C ∶=
�(e2−1)

2e
 , the term e−n cosh(CN) in (5.8) can be rewritten as

Thus, we end up with (5.6). This completes the proof.

In practice, the coefficients wk in (5.4) can be computed by a fast algorithm, the so-
called discrete cosine transform of type I (DCT–I) of length n + 1, n =  2t, (see [13, 
Algorithm 6.28 or Algorithm 6.35]). This DCT–I uses the orthogonal cosine matrix of 
type I

n∑
k=0

wke
−�iNzkx =

n∑
k=0

wk cos(�Nzkx) + 0

E� ∶=

{
z ∈ ℂ ∶ Re z =

1

2

(
� +

1

�

)
cos t, Im z =

1

2

(
� −

1

�

)
sin t, t ∈ [0, 2�)

}
.

||||
1

2
cos(�Nxz)

|||| ≤
1

2
cosh(�NxIm z).

||||
1

2
cos(�Nxz)

|||| =
1

2
cosh(�NxIm z).

||||
1

2
cos(�Nxz)

|||| ≤
1

2
cosh

�Nx(e2 − 1)

2e
≤ 1

2
cosh

�N(e2 − 1)

2e
.

(5.8)
||||sinc(N�x) −

n∑
k=0

wke
−�iNzkx

|||| ≤
144

70(e2 − 1)
e−n cosh

�(e2 − 1)N

2e
.

e−n cosh(CN) = e−�N ⋅
1

2
(eCN + e−CN) =

1

2
e−N(�−C)(1 + e−2CN).

�
I
n+1

∶=

√
2

n

(
�n(j)�n(k) cos

jk�

n

)n

j,k=0

.
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A similar approach can be found in [7], where a Gauss–Legendre quadrature was 
applied to obtain explicit coefficients wk for given Legendre points zk. However, the 
computation of the coefficients wk using Algorithm 2 is more effective for large n.

Example 5.4 Now we visualize the result of Theorem  5.3. In Fig.  2a  the error 
bound (5.6) is depicted as a function of N for several choices of � ∈ {1,… , 5} , 
where n = νN. It clearly demonstrates that ν ≥ 4 is needed to obtain reasonable 
error bounds.

Additionally, we compare the error constant and the maximum approximation 
error, cf. (5.6). To measure the accuracy we consider a fine evaluation grid xr =

2r

R
 , 

r ∈ IR , with R ≫ N, where R = 3 ⋅  105 is fixed. On this grid we calculate the discrete 
maximum error

for different bandwidths N =  2ℓ, � = 3,… , 7 . For the parameter n = νN we inves-
tigate several choices � ∈ {1,… , 10} . We compute the coefficients wk using Algo-
rithm  2. Subsequently, the approximation to the sinc function is computed by 
means of the NFFT, which is possible since the xr are equispaced. The results for 
both the error bound (5.6) and the maximum error (5.9) are displayed in Fig. 2b. 

(5.9)max
r∈IR

||||sinc(�Nxr) −
n∑

k=0

wk e
−�iNzkxr

||||

Fig. 2  Error constant (5.6) (dashed) and maximum error (5.9) (solid) of the approximation of sinc(Nπx), 
x ∈ [− 1,1], for different bandwidths N =  2ℓ, � = 1,… , 7 , where n = νN, � ∈ {1,… , 10} , and Chebyshev 
nodes z

k
∈ [−1, 1], k = 0,… , n

Algorithm 2  Fast computation of the coefficients wk
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It becomes apparent that for increasing oversampling factor ν, the maximum error 
(5.9) decreases to machine precision for all choices of N. Even for rather large 
choices of ν (up to 10) the error remains stable, so there is no worsening in terms 
of ν.

6  Discrete sinc transform

Finally, we present an interesting signal processing application of the NNFFT. If a sig-
nal h ∶

[
−

1

2
,
1

2

]
→ ℂ is to be reconstructed from its equispaced/nonequispaced sam-

ples at ak ∈
[
−

1

2
,
1

2

]
 , then h is often modeled as linear combination of shifted sinc 

functions

with complex coefficients ck. In the following, we propose a fast algorithm for the 
approximate computation of the discrete sinc transform (see [7, 11])

where b
�
∈
[
−

1

2
,
1

2

]
 can be equispaced/nonequispaced points.

Such a function (6.1) occurs by the application of the famous sampling theorem of 
Shannon–Whittaker–Kotelnikov (see, e.g., [13, pp. 86–88]). Let f ∈ L1(ℝ) ∩ C(ℝ) 
be bandlimited on 

[
−

L2

2
,
L2

2

]
 for some L2 > 0, i.e., the Fourier transform of f is sup-

ported on 
[
−

L2

2
,
L2

2

]
 . Then for N ∈ ℕ with N ≥ L2, the function f is completely deter-

mined by its values f
(

k

N

)
 , k ∈ ℤ , and further f can be represented in the form

where the series converges absolutely and uniformly on ℝ . By truncation of this 
series, we obtain the linear combination of shifted sinc functions

which has the same form as (6.1), when ak are equispaced.

(6.1)h(x) =
∑
k∈IL1

ck sinc
(
N�(x − ak)

)
, x ∈ ℝ,

(6.2)h(b
�
) =

∑
k∈IL1

ck sinc
(
N�(b

�
− ak)

)
, � ∈ IL2

,

f (x) =
∑
k∈ℤ

f (
k

N
)sinc(N�(x −

k

N
)), x ∈ ℝ,

∑
k∈IL1

f (
k

N
)sinc(N�(x −

k

N
)), x ∈ ℝ,
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Since the naive computation of (6.2) requires O(L1 ⋅ L2) arithmetic opera-
tions, the aim is to find a more efficient method for the evaluation of (6.2). Up 
to now, several approaches for a fast computation of the discrete sinc transform 
(6.2) are known. In [7], the discrete sinc transform (6.2) is realized by applying 
a Gauss–Legendre quadrature rule to the integral (5.7). The result can then be 
approximated by means of two NNFFT’s with O((L1 + L2) log(L1 + L2)) arithme-
tic operations. A multilevel algorithm with O(L2 log(1∕�)) arithmetic operations is 
presented in [11] which is most effective for equispaced points ak and bℓ and, as the 
authors claim themselves, is only practical for rather large target evaluation accu-
racy δ > 0.

In the following, we present a new approach for a fast sinc transform (6.2), 
where we approximate the function sinc(Nπx) by an exponential sum on the inter-
val [− 1, 1] by means of the Clenshaw–Curtis quadrature as described in Section 5. 
Let the Chebyshev points zj = cos

j�

n
 , j = 0,…, n, and the coefficients wj defined by 

(5.4) be given. Utilizing (5.8), for arbitrary ak, b� ∈
[
−

1

2
,
1

2

]
 we obtain the 

approximation

Inserting this approximation into (6.2) yields

If ε > 0 denotes a target accuracy, then we choose n =  2t, t ∈ ℕ ⧵ {1} such that by 
Theorem 5.3 it holds

For example, in the case ε =  10− 8 we obtain n ≥ 4N for N ≥ 54.
We recognize that the term inside the brackets of (6.3) is an exponential sum of 

the form (1.2), which can be computed by means of an NNFFT. Then the resulting 
outer sum is of the same form such that this can also be computed by means of an 
NNFFT. Thus, as in [7] we may compute the discrete sinc transform (6.2) by means 
of an NNFFT, a multiplication by the precomputed coefficients wj as well as another 
NNFFT afterwards. Hence, the fast sinc transform, which is an application of the 
NNFFT, can be summarized as follows.

sinc(N�(ak − b
�
)) ≈

n∑
j=0

wj e
−�iNzj(ak−b�) =

n∑
j=0

wj e
−�iNzjak e�iNzjb� .

(6.3)

h
�

∶=
∑

k∈IL1

ck

n∑
j=0

wj e
−�iNzjak e�iNzjb�

=
n∑
j=0

wj

�
∑

k∈IL1

ck e
−�iNzjak

�
e�iNzjb� , � ∈ IL2

.

36(1 + e−2CN)

35(e2 − 1)
e−N(𝜈−C) < 𝜀, 𝜈 > C = 3.69.
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If we use the same NNFFT in both steps (with the window functions φj, 
truncation parameters mj, and oversampling factors σj for j = 1,2), Algorithm  3 
requires all in all

arithmetic operations.
Considering the discrete sinc transform (6.2), we can deal with the special 

sums of the form

i.e., we are given equispaced points b
�
=

�

N
 with L2 = N. In this special case, we 

simply obtain an adjoint NFFT instead of the NNFFT in step 3 of Algorithm  3. 
Therefore, the computational cost of Algorithm 3 reduces to O(N logN + L1 + n) . In 
the case, where ak =

k

L1
 , k ∈ IL1

 , the NNFFT in step 1 of Algorithm 3 naturally turns 
into an NFFT. Clearly, in this case the same amount of arithmetic operations is 
needed as in the first special case. If both sets of nodes ak and bℓ are equispaced, 
then the computational cost reduces even more to O(N logN + n) . Hence, these 
modifications are automatically included in our fast sinc transform.

A quite similar approach was already developed in [2] for the computation 
of the Coulombian interaction between punctual masses, where the main idea is 
using two different quadrature rules to approximate the given problem. Then the 
computation can be done by means of NNFFTs, i.e., they receive a 3-step method 
analogous to Algorithm 3.

Now we study the error of the fast sinc transform in Algorithm  3, which is 
measured in the form

O(N logN + L1 + L2 + 2n)

h(
�

N
) =

∑
k∈IL1

cksinc(N�(ak −
�

N
)), � ∈ IN ,

Algorithm 3  Fast sinc transform.
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Theorem 6.1 Let N ∈ ℕ with N ≫ 1 and L1, L2 ∈ 2ℕ be given. Let N1 = �1N ∈ 2ℕ 
with σ1 > 1. For fixed m1 ∈ ℕ ⧵ {1} with 2m1 ≪ N1, let N2 = σ2(N1 + 2m1) with σ2 > 1. 
For m2 ∈ ℕ ⧵ {1} with 2m2 ≤ (

1 −
1

�1

)
N2 , let φ1 and φ2 be the window functions of 

the form (2.5). Let ak, b� ∈
[
−

1

2
,
1

2

]
 with k ∈ IL1

 , � ∈ IL2
 be arbitrary points and let 

ck ∈ ℂ , k ∈ IL1
 , be arbitrary coefficients. Let a > 1 be the constant (2.6). For a given 

target accuracy ε > 0, the number n =  2t, t ∈ ℕ ⧵ {1} , is chosen such that

Then the error of the fast sinc transform can be estimated by

where E�j
(�j) for j = 1,2, are the general C(� )-error constants of the form (3.7). If it 

holds

one can use the simplified estimate

Proof By (6.3), the value hℓ is an approximation of h(bℓ). Since ak, b� ∈
[
−

1

2
,
1

2

]
 , it 

holds by (5.8) and (6.6) that

Hence, we conclude that

After step 1 of Algorithm 3, the error of the NNFFT (with the window functions φ1 
and φ2) can be estimated by Theorem 3.5 in the form

(6.5)max
�∈IL2

|h(b
�
) − h̃

�
|.

(6.6)
36(1 + e−2CN)

35(e2 − 1)
e−N(𝜈−C) < 𝜀, 𝜈 > C = 3.69.

(6.7)
max
�∈IL2

��h(b�) − h̃
�
�� ≤

�
𝜀 + 2

�
E𝜎1

(𝜑1) +
a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

�

+

�
E𝜎1

(𝜑1) +
a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

�2� ∑
k∈IL1

�ck�,

(6.8)E𝜎1
(𝜑1) +

a

�̂�1

(
N

2

)E𝜎2
(𝜑2) ≤ 1,

(6.9)max
�∈IL2

�h(b
�
) − h̃

�
� ≤

�
𝜀 + 3E𝜎1

(𝜑1) +
3a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

�
∑

k∈IL1

�ck�.

||||sinc(�N
(
ak − b

�
)
)
−

n∑
j=0

wje
−�iNzj(ak−b� )

|||| ≤ �.

(6.10)|h(b
�
) − h

�
| ≤ �

∑
k∈IL1

|ck|, � ∈ IL2
.
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Using (5.5), step 2 of Algorithm 3 generates the error

After step 3 of Algorithm 3, the error of the NNFFT (with the same window func-
tions φ1 and φ2) can be estimated by Theorem 3.5 in the form

Using the triangle inequality, we obtain

such that by (5.5)

Thus, the error of Algorithm 3 can be estimated by

From (6.10)–(6.12) it follows the estimate (6.7). If it holds (6.8), we have

�gj − g̃j� ≤
⎡
⎢⎢⎢⎣
E𝜎1

(𝜑1) +
a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

⎤
⎥⎥⎥⎦

�
k∈IL1

�ck�, j = 0,… , n.

(6.11)

�ĥ
�
− h

�
� ≤ n∑

j=0

wj�gj − g̃j� ≤
�

n∑
j=0

wj

��
E𝜎1

(𝜑1) +
a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

�
∑

k∈IL1

�ck�

=

�
E𝜎1

(𝜑1) +
a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

�
∑

k∈IL1

�ck�.

�ĥ
�
− h̃

�
� ≤

⎡⎢⎢⎢⎣
E𝜎1

(𝜑1) +
a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

⎤⎥⎥⎥⎦

n�
j=0

wj�g̃j�, � ∈ IL2
.

�g̃j� ≤ �gj� + �gj − g̃j� ≤ ∑
k∈IL1

�ck� + �gj − g̃j�

≤ ∑
k∈IL1

�ck� +
�
E𝜎1

(𝜑1) +
a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

�
∑

k∈IL1

�ck�, j = 0,… , n

(6.12)

��ĥ� − h̃
�
�� ≤

�
E𝜎1

(𝜑1) +
a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

��
n∑
j=0

wj

� ∑
k∈IL1

�ck�

+

�
E𝜎1

(𝜑1) +
a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

�2� n∑
j=0

wj

� ∑
k∈IL1

�ck�

=

�
E𝜎1

(𝜑1) +
a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

� ∑
k∈IL1

�ck�

+

�
E𝜎1

(𝜑1) +
a

�̂�1

�
N

2

�E𝜎2
(𝜑2)

�2 ∑
k∈IL1

�ck�.

|h(b
�
) − h̃

�
| ≤ |h(b

�
) − h

�
| + |h

�
− ĥ

�
| + |ĥ

�
− h̃

�
|, � ∈ IL2

.
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and therefore the simplified estimate (6.9).

Thus, the error of Algorithm 3 for the fast sinc transform mostly depends on the 
target accuracy ε of the precomputation and on the general C(� )-error constants 
E�j

(�j) , j = 1,2, of the window functions φj, j = 1,2, see Theorem 3.5.

Example 6.2 Next we verify the accuracy of our fast sinc transform in Algorithm 3. 
To this end, we choose random nodes ak ∈

[
−

1

2
,
1

2

]
 , equispaced points b

�
=

�

N
 with 

� ∈ IN , as well as random coefficients ck ∈ ℂ , k ∈ IL1
 , and compute the discrete 

sinc transform (6.2) directly as well as its approximation (6.4) by means of the fast 
sinc transform. Subsequently, we compute the maximum error (6.5). Due to the ran-
domness of the given values this test is repeated one hundred times and afterwards 
the maximum error over all repetitions is computed.

In this experiment we choose different bandwidths N =  2k, k = 5,… , 13, and 
without loss of generality we use L1 =

N

2
 . We apply Algorithm 3 using the weights wj 

computed by means of Algorithm 2 and the Chebyshev points zj = cos
j�

n
 , j = 0,…,n. 

Therefore, we only have to examine the parameter choice of n ≥ 4N. To this end, we 
compare the results for several choices, namely for n ∈{4N,6N,8N}. The appropriate 
results can be found in Fig. 3. We see that for large N there is almost no difference 
between the different choices of n. However, we point out that a higher choice heav-
ily increases the computational cost of Algorithm 3. Therefore, it is recommended 
to use the smallest possible choice n = 4N. Compared to [7] the same approximation 
errors are obtained, but with a more efficient precomputation of weights.

[
E𝜎1

(𝜑1) +
a

�̂�1

(
N

2

)E𝜎2
(𝜑2)

]2
≤ E𝜎1

(𝜑1) +
a

�̂�1

(
N

2

)E𝜎2
(𝜑2)

Fig. 3  Maximum error (6.5) 
for several bandwidths N =  2k, 
k = 5,… , 13, shown for n 
= νN, ν ∈{4,6,8}, using the 
coefficients wj obtained by 
Algorithm 2
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