Skip to main content
Log in

Approximation of solutions of DDEs under nonstandard assumptions via Euler scheme

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We deal with approximation of solutions of delay differential equations (DDEs) via the classical Euler algorithm. We investigate the pointwise error of the Euler scheme under nonstandard assumptions imposed on the right-hand side function f. Namely, we assume that f is globally of at most linear growth, satisfies globally one-side Lipschitz condition but it is only locally Hölder continuous. We provide a detailed error analysis of the Euler algorithm under such nonstandard regularity conditions. Moreover, we report results of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. sgn(x) = 1 if x ≥ 0 and sgn(x) = − 1 if x < 0

References

  1. Baker, C.T.H.: Retarded differential equations. J. Comput. Appl. Math. 125, 309–335 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baker, C.T.H., Paul, C.A.H., Willé, D.R.: A Bibliography on the Numerical Solution of Delay Differential Equations. Numerical Analysis Report 269, Mathematics Department, University of Manchester, U.K. (1995)

    Google Scholar 

  3. Baker, C.T.H., Paul, C.A.H., Willé, D.R.: Issues in the numerical solution of evolutionary delay differential equations. Adv. Comput. Math. 3, 171–196 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balachandran, B., Kalmár-Nagy, T., Gilsinn, D.E. (eds.): Delay Differential Equations Directions New Recent Advanced. Springer, New York (2009)

    Google Scholar 

  5. Baleanu, D., Agheli, B., Darzi, R.: An optimal method for approximating the delay differential equations of noninteger order advances in difference equations 2018(284) (2018)

  6. Bellen, A., Maset, S.: Numerical solution of constant coefficient linear delay differential equations as abstract Cauchy problems. Numer. Math. 84 (3), 351–374 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellen, A., Zennaro, M.: Numerical Methods For Delay Differential Equations. Oxford, New York (2003)

    Book  MATH  Google Scholar 

  8. Breda, D., Maset, S., Vermiglio, R.: Stability of Linear Delay Differential Equations. A Numerical Approach with MATLAB. Springer, New York (2015)

    MATH  Google Scholar 

  9. Butcher, J.C.: Numerical methods for ordinary differential equations, 3rd edn. Wiley, Chichester (2016)

    Book  Google Scholar 

  10. Cooke, K.L., Györi, I.: Numerical approximation of the solutions of delay differential equations on an infinite interval using piecewise constant arguments. Comput. Math. Appl. 28(1–3), 81–92 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Czyżewska, N., Morkisz, J., Kusiak. P., Oprocha, P., Pietrzyk, M., Przybyłowicz, P., Rauch, Ł., Szeliga, D.: On mathematical aspects of evolution of dislocation density in metallic materials. arXiv:2011.08504 (2020)

  12. Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.O.: Delay Equations. Functional-Complex-, and Nonlinear Analysis. Springer, New York (1995)

    MATH  Google Scholar 

  13. Driver, R.D.: Ordinary and Delay Differential Equations. Springer, New York (1977)

    Book  MATH  Google Scholar 

  14. Estrin, Y., Mecking, H.: A unified phenomenological description of work hardening and creep based on one parameter models. Acta Metall. 29, 57–70 (1984)

    Article  Google Scholar 

  15. Fiorenza, R.: Hölder and locally hölder Continuous Functions, and Open Sets of Class ck, Ck, λ. Birkhäuser. Cham, Switzerland (2016)

    Book  Google Scholar 

  16. Górniewicz, L., Ingarden, R.S.: Mathematical Analysis for Physicists (in Polish). Wydawnictwo Naukowe UMK, Toruń (2012)

    Google Scholar 

  17. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations I. Nonstiff problems, 2nd revised edn. Springer, New York (2008)

    MATH  Google Scholar 

  18. Hu, X., Cong, Y., Hu, G.: Delay-dependent stability of linear multistep methods for DAEs with multiple delays. Numer. Algo. 79, 719–739 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hale, J.K.: History of Delay Equations. In: Arino, O., Hbid, M., Dads E.A. (eds.) Delay Differential Equations and Applications. NATO Science Series (II.Mathematics, Physics and Chemistry), vol. 205. Springer Dordrecht (2006)

  20. Koto, T.: Method of lines approximation of delay differential equations. Computers and Mathematics with Applications 48(1–2), 45–59 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  MATH  Google Scholar 

  22. Mahrouf, M., Boukhouima, A., Houssine, Z., Lofti, M., Torres, D.F.M., Yousfi, N.: Modeling and forecasting of COVID-19 spreading by delayed stochastic differential equations. Axioms 10(1), 18 (2021)

    Article  Google Scholar 

  23. Mecking, H., Kocks, U.F.: Kinetics of flow and strain-hardening. Acta Metall. 29, 1865–1875 (1981)

    Article  Google Scholar 

  24. Morkisz, P., Oprocha, P., Przybyłowicz, P., Czyżewska, N., Kusiak, J., Szeliga, D., Rauch, Ł., Pietrzyk, M.: Prediction of distribution of microstructural parameters in metallic materials described by differential equations with recrystallization term. Int. J. Multi. Comput. Eng. 17(3), 361–371 (2019)

    Article  Google Scholar 

  25. Pietrzyk, M., Madej, Ł., Rauch, Ł., Szeliga, D.: Computational Materials Engineering: Achieving High Accuracy and Efficiency in Metals Processing Simulations. Butterworth-Heinemann, Elsevier, Amsterdam (2015)

    Google Scholar 

  26. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics 57. Springer, New York (2011)

    Book  Google Scholar 

  27. Szeliga, D., Czyżewska, N., Klimczak, K., Kusiak, J., Morkisz, P., Oprocha, P., Pietrzyk, M., Przybył, owicz, P.: Sensivity analysis, identification and validation of the dislocation density-based model for metallic materials. Metall. Res. Technol. 118(317), 1–12 (2021)

    Google Scholar 

  28. Torelli, L.: Stability of numerical methods for delay differential equations. J. Comput. Appl. Math. 25(1), 15–26 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous referees for their valuable comments and suggestions that helped to improve the presentation of the results and quality of this paper.

Funding

This research was partly supported by the National Science Centre, Poland, under project 2017/25/B/ST8/01823.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Czyżewska.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Analytical properties of solutions of ODEs and its Euler approximation

Appendix. Analytical properties of solutions of ODEs and its Euler approximation

This section consists of some auxiliary results for solutions of ordinary differential equations and its Euler approximation that are used in the paper, especially for proving the main Theorem 1.

Lemma A1.1

Let us consider the following ODE

$$ z^{\prime}(t)=g(t,z(t)), \quad t\in [a,b], \quad z(a)=\xi, $$
(A.1)

where \(-\infty <a<b<+\infty \), ξ ∈ ℝd and g : [a, b] × ℝd → ℝd satisfies the following conditions

  • (G1) gC([a, b] × ℝd; ℝd).

  • (G2) There exists \(K\in (0,+\infty )\) such that for all (t, y) ∈ [a, b] × ℝd

    $$ \|g(t,y)\|\leq K(1+\|y\|). $$
  • (G3) There exists H ∈ ℝ such that for all t ∈ [a, b], y1, y2 ∈ ℝd

    $$ \langle y_1-y_2, g(t,y_1)-g(t,y_2)\rangle \leq H \| y_1 - y_2 \|^2. $$

Then we have what follows.

  • (i) The (A.1) has a unique solution \(z\in C^{1}([a,b];\mathbb {R}^{d})\) such that

    $$ \sup\limits_{t\in[a,b]}\|z(t)\|\leq (\|\xi\|+K(b-a))e^{K(b-a)}, $$
    (A.2)

    and for all t, s ∈ [a, b]

    $$ \|z(t)-z(s)\|\leq \bar K |t-s|, $$
    (A.3)

    where \(\bar K=K\Bigl (1+(\|\xi \|+K(b-a))e^{K(b-a)}\Bigr )\).

  • (ii) Let us consider \(u:[a,b]\to \mathbb {R}^{d}\) the solution of

    $$ u^{\prime}(t)=g(t,z(t)), \quad t\in [a,b], \quad u(a)=\zeta, $$
    (A.4)

    with \(\zeta \in \mathbb {R}^{d}\). Then for all t ∈ [a, b] we have

    $$ \|u(t)-z(t)\|\leq e^{H_{+}(b-a)}\|\xi-\zeta\|. $$
    (A.5)

Proof

Since the right-hand side function g is continuous and it is of at most linear growth, Peano’s theorem guarantees existence of the C1-solution (e.g., see Theorem 70.4, page 292 in [16]). Now, we show that the uniqueness follows from the one-sided Lipschitz assumption (G3). Namely, let us assume that (A.1) has two solutions z = z(t) and x = x(t) with the same initial value z(a) = x(a) = ξ. By (G3) we have for all t ∈ [a, b] that

$$ \begin{array}{@{}rcl@{}} &&\frac{d}{dt}\| z(t)-x(t)\|^{2} = 2 \left\langle z(t)-x(t), g(t, z(t))-g(t, x(t)) \right\rangle\\ &&\leq 2 H \| z(t)-x(t) \|^{2}\leq 2 H_{+} \| z(t)-x(t) \|^{2}. \end{array} $$
(A.6)

Let us consider the C1-function \([a,b]\ni t\to \varphi (t) = \| z(t)-x(t)\|^{2}\in [0,+\infty )\), where φ(a) = 0. Integrating two sides of the preceding inequality we get

$$ \varphi(t) \leq 2 H_+ {\int}_a^t \varphi(s) ds. $$

Hence, from the Grownall’s lemma we obtain that φ(t) = 0 for all t ∈ [a, b], which in turns implies that z(t) = x(t) for all t ∈ [a, b].

Note that, by the assumption (G2), for all t ∈ [a, b] it holds

$$ \|z(t)\| \leq \|\xi\| + {{\int}_{a}^{t}} \|g(s, z(s))\| ds\leq \|\xi\| + K(b-a) + K {{\int}_{a}^{t}}\| z(s) \| ds. $$
(A.7)

Again by the Gronwall’s lemma we obtain for all t ∈ [a, b] that

$$ \|z(t)\| \leq (\|\xi\| + K(b-a)) e^{K(t-a)}. $$
(A.8)

This implies (A.2).

By (G2) and (A.2) we obtain for all t, s ∈ [a, b]

$$ \begin{array}{@{}rcl@{}} &&\|z(t) - z(s)\| = \|z(t \vee s) - z(t \wedge s)\| \leq {\int}_{t \wedge s}^{t \vee s} \|g(u, z(u))\| du\\ &&\leq K (1 + \sup_{t \in [a,b]} \|z(t)\|)(t \wedge s - t \vee s) \leq \bar{K} |t-s|, \end{array} $$
(A.9)

where \(\bar {K}= K\Bigl (1+(\|\xi \|+K(b-a))e^{K(b-a)}\Bigr )\). Hence, the proof of (A.3) is completed.

As in (A.6) we get that for all t ∈ [a, b]

$$ \frac{d}{dt}\| z(t)-u(t)\|^{2} \leq 2H_{+}\|z(t)-u(t)\|^{2} $$
(A.10)

which implies that

$$ \|z(t)-u(t)\|^{2}\leq \|\xi-\zeta\|^{2}+2H_{+}{\int\limits_{a}^{t}}\|z(s)-u(s)\|^{2}ds. $$
(A.11)

By using Gronwall’s lemma we get (A.5). □

Lemma A.2

Let us consider the following ordinary differential equation

$$ z^{\prime}(t)=g(t,z(t)), \quad t\in [a,b], \quad z(a)=\xi, $$
(A.12)

where \(-\infty <a<b<+\infty \), η ∈ ℝd and g : [a, b] × ℝd → ℝd satisfies the following conditions:

  • (G1) gC([a, b] × ℝd; ℝd).

  • (G2) There exists \(K\in (0,+\infty )\) such that for all (t, y) ∈ [a, b] × ℝd

    $$ \|g(t,y)\|\leq K(1+\|y\|). $$
  • (G3) There exists H ∈ ℝ such that for all t ∈ [a, b], y1, y2 ∈ ℝd

    $$ \langle y_1-y_2, g(t,y_1)-g(t,y_2)\rangle \leq H \| y_1 - y_2 \|^2. $$
  • (G4) There exist L ≥ 0, \(p \in \mathbb {N}\), α, β1, β2,…,βp ∈ (0, 1], such that for all t1, t2 ∈ [a, b], y1, y2 ∈ ℝd

    $$ \|g(t_1,y_1)-g(t_2,y_2)\|\leq L\Bigl((1+\|y_1\|+\|y_2\|)\cdot |t_1-t_2|^{\alpha}+ {\sum}_{i=1}^p \|y_1-y_2\|^{\beta_i}\Bigr). $$

Let us consider the Euler method based on equidistant discretization. Namely, for n ∈ ℤ+, \({\Delta }\in [0,+\infty )\) we set h = (ba)/n, tk = a + kh, k = 0, 1,…,n, and let y0 ∈ ℝd be any vector from the ball B(ξ,Δ) = {yRd : ∥ξy∥≤Δ}. We take

$$ y_{k+1}=y_{k}+h \cdot g(t_{k},y_{k}), \quad k=0,1,\ldots,n-1. $$
(A.13)

Then the following holds

  • (i) There exists \(\tilde {C_{1}}=\tilde {C_{1}}(b-a,K)\in (0,+\infty )\) such that for all n ∈ ℤ+, \({\Delta } \in [0,+\infty )\), \(\xi \in \mathbb {R}^{d}\) y0B(ξ,Δ) we have

    $$ \max\limits_{0\leq k\leq n}\|y_{k}\|\leq \tilde{C_{1}}(1+\|\xi\|)(1+{\Delta}). $$
    (A.14)
  • (ii) There exists \(\tilde {C_{2}}=\tilde {C_{2}}(b-a,L,K,H,p,\alpha , \beta _{1},\ldots ,\beta _{p})\in (0,+\infty )\) such that for all n ∈ ℤ+, \({\Delta } \in [0,+\infty )\), \(\xi \in \mathbb {R}^{d}\) y0B(ξ,Δ) we have

    $$ \max\limits_{0\leq k\leq n}\|z(t_{k})-y_{k}\|\leq \tilde{C_{2}}(1+\|\xi\|)\Bigl({\Delta}+h^{\alpha} + \sum\limits_{i=1}^{p} h^{\beta_{i}}\Bigr). $$
    (A.15)

Proof

Fix n ∈ ℤ+, \({\Delta }\in [0,+\infty )\), \(\xi \in \mathbb {R}^{d}\) and y0B(ξ,Δ). By the assumption (G2) we have that for all k = 0, 1,…,n − 1

$$ \|y_{k+1}\|\leq \|y_k\|+h \|g(t_k,y_k)\| \leq (1+hK)\|y_k\|+hK $$

and, since y0B(ξ,Δ), ∥y0∥≤Δ + ∥ξ∥. Hence, by the discrete version of Gronwall’s lemma we get that for all k = 0, 1,…,n that

$$ \|y_k\|\leq e^{K(b-a)}({\Delta} + \|\xi\|) + e^{K(b-a)}-1\leq e^{K(b-a)}(1+\|\xi\|)(1+{\Delta}). $$

This proves (A.14) with \(\tilde C_{1}= e^{K(b-a)}\).

We now prove (A.15). For k = 0, 1,…,n − 1 we consider the following local ODE

$$ z_{k}^{\prime}(t)=g(t,z_{k}(t)), \quad t\in [t_{k},t_{k+1}], \quad z_{k}(t_{k})=y_{k}. $$
(A.16)

By Lemma A1.1 there exists unique solution \(z_{k}:[t_{k},t_{k+1}]\to \mathbb {R}^{d}\) of (A.16). From the assumption (G2) and by (A.14) we get for all t ∈ [tk, tk+ 1], k = 0, 1,…,n − 1 that

$$ \|z_k(t)\| \leq \tilde{C_1} (1+\|\xi\|)(1+{\Delta})+K(b-a)+K\int\limits_{t_k}^t \|z_k(s)\|ds. $$

The use of Gronwall’s lemma yields

$$ \max\limits_{0\leq k\leq n-1}\sup\limits_{t\in [t_{k},t_{k+1}]}\|z_{k}(t)\|\leq C_{2} (1+\|\xi\|)(1+{\Delta}), $$
(A.17)

where \(C_{2}=e^{K(b-a)} \Bigl (\tilde {C_{1}}+K(b-a) \Bigr )\). By (G2) and (A.17) we get for all t ∈ [tk, tk+ 1], k = 0, 1,…,n − 1

$$ \begin{array}{@{}rcl@{}} &&\|z_{k}(t)-y_{k}\|\leq \int\limits_{t_{k}}^{t} \|g(s,z_{k}(s))\|ds\leq hK\Bigl(1+\sup\limits_{t\in [t_{k},t_{k+1}]}\|z_{k}(t)\|\Bigr)\\ &&\leq hK\Bigl(1+C_{2}(1+\|\xi\|)(1+{\Delta})\Bigr)\leq hC_{3}(1+\|\xi\|)(1+{\Delta}), \end{array} $$
(A.18)

with C3 = K(1 + C2). From Lemma A1.1 (ii) we arrive at

$$ \begin{array}{@{}rcl@{}} \|z(t_{k+1})-y_{k+1}\|&\leq& \|z(t_{k+1})-z_{k}(t_{k+1})\|+\|z_{k}(t_{k+1})-y_{k+1}\|\\ &\leq& e^{hH_{+}}\|z(t_{k})-y_{k}\|+\|z_{k}(t_{k+1})-y_{k+1}\| \end{array} $$
(A.19)

for k = 0, 1,…,n − 1. Using (G4), (A.14), (A.17) and (A.18) we get

$$ \begin{array}{@{}rcl@{}} &&\|z_{k}(t_{k+1})-y_{k+1}\|\leq\int\limits_{t_{k}}^{t_{k+1}}\|g(s,z_{k}(s))-g(t_{k},y_{k})\|ds\\ & \leq& L\int\limits_{t_{k}}^{t_{k+1}}\Bigl((1+\|z_{k}(s)\|+\|y_{k}\|)\cdot (s-t_{k})^{\alpha}+ \sum\limits_{i=1}^{p} \|z_{k}(s)-y_{k}\|^{\beta_{i}}\Bigr)ds\\ &\leq& Lh\left( (1+(\tilde{C_{1}}+C_{2})(1+\|\xi\|)(1+{\Delta}))\frac{1}{\alpha+1}\cdot h^{\alpha}\right.\\ &&\left.+ \sum\limits_{i=1}^{p} h^{\beta_{i}}C_{3}^{\beta_{i}}(1+\|\xi\|)^{\beta_{i}}(1+{\Delta})^{\beta_{i}}\right). \end{array} $$
(A.20)

It is easy to see that for all x ∈ ℝ+ ∪{0}, ϱ ∈ (0, 1]

$$ (1+x)^{{\varrho}}\leq 2(1+x). $$
(A.21)

Hence

$$ \|z_{k}(t_{k+1})-y_{k+1}\|\leq C_{4} (1+\|\xi\|)(1+{\Delta}) h \left( h^{\alpha} + \sum\limits_{i=1}^{p} h^{\beta_{i}}\right), $$
(A.22)

where \(\displaystyle {C_{4}=L\max \limits \Bigl \{\frac {1+\tilde {C_{1}}+C_{2}}{\alpha +1}, 4 \max \limits _{1\leq j \leq p}C_{3}^{\beta _{j}} \Bigr \}}\). From the above considerations we see that C4 depends only on α, β1,…,βp, p, L, K, ba. By (A.19) and (A.22) we get

$$ \|z(t_{k+1})-y_{k+1}\|\leq e^{hH_{+} } \cdot \| z(t_{k})-y_{k}\| +C_{4} (1+\|\xi\|)(1+{\Delta}) h \left( h^{\alpha} + \sum\limits_{i=1}^{p} h^{\beta_{i}}\right). $$
(A.23)

Let us denote

$$ e_{k}=z(t_{k})-y_{k}, \quad k=0,1,\ldots,n. $$
(A.24)

Of course ∥e0∥ = ∥ξy0∥≤Δ. Hence, we arrive at the following recursive inequality

$$ \|e_{k+1}\|\leq e^{hH_{+}}\|e_{k}\| + C_{4} (1+\|\xi\|)(1+{\Delta}) h \left( h^{\alpha} + \sum\limits_{i=1}^{p} h^{\beta_{i}}\right), $$
(A.25)

for k = 0, 1,…,n − 1. Applying the Gronwall’s lemma we get when H+ > 0

$$ \begin{array}{@{}rcl@{}} &&\|e_{k}\| \leq e^{H_{+}(b-a)} {\Delta} + \frac{e^{H_{+}(b-a)}-1}{e^{hH_{+}}-1} C_{4} (1+\|\xi\|)(1+{\Delta}) h \left( h^{\alpha} + \sum\limits_{i=1}^{p} h^{\beta_{i}}\right)\\ &&\leq e^{H_{+}(b-a)} {\Delta} + \frac{e^{H_{+}(b-a)}-1}{H_{+}} C_{4} (1+\|\xi\|)(1+{\Delta}) \left( h^{\alpha} + \sum\limits_{i=1}^{p} h^{\beta_{i}}\right) \end{array} $$
(A.26)

for k = 0, 1,…,n, and when H+ = 0

$$ \|e_{k}\| \leq {\Delta} + C_{4} (1+\|\xi\|)(1+{\Delta})(b-a) \left( h^{\alpha} + \sum\limits_{i=1}^{p} h^{\beta_{i}}\right) $$
(A.27)

for k = 0, 1,…,n. By elementary calculations we arrive at (A.15). □

The following fact is well-known, see, for example, pages 3–4 in [15].

Lemma A.3

For all ϱ ∈ (0, 1] and x, y ∈ ℝ it holds

$$ |x|^{{\varrho}}\leq 1+|x|, $$
(A.27)

and

$$ \left||x|^{{\varrho}}-|y|^{{\varrho}}\right|\leq |x-y|^{{\varrho}}. $$
(A.28)

Below we establish main properties of the functions (5.1) and (5.2).

Fact A.4

Let A, B, C ≥ 0, D ∈ ℝ, ϱ, γ ∈ (0, 1] and consider \(f:[0,+\infty )\times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) defined as followsFootnote 1

$$ f(t,y,z)=A-B\cdot \text{sgn} (y)\cdot |y|-C\cdot \text{sgn}(y)\cdot |y|^{{\varrho}}\cdot |z|^{\gamma} +D \cdot y \cdot |z|^{\gamma}. $$

Then the function f satisfies the assumptions (F1)–(F4).

Proof

Let us define h1(y) = −sgn(y) ⋅|y| = −y, h2(y) = −sgn(y) ⋅|y|ϱ for all y ∈ ℝ. Then we can write that

$$ f(t,y,z)=A+B\cdot h_{1}(y)+C\cdot h_{2}(y)\cdot |z|^{\gamma} + D \cdot y \cdot |z|^{\gamma}. $$
(A.29)

Of course h1C(ℝ). Moreover,

$$ \lim\limits_{y\to 0-}h_{2}(y)=\lim\limits_{y\to 0-}(-y)^{{\varrho}}=0=h_{2}(0)=\lim\limits_{y\to 0+}h_{2}(y)=\lim\limits_{y\to 0+}(-1)\cdot y^{{\varrho}}, $$
(A.30)

therefore h2C(ℝ). In particular, this implies that \(f \in C([0, \infty ) \times \mathbb{R} \times \mathbb{R} )\), so f satisfies (F1).

By Lemma A.3 we have |h1(y)| = |y|≤ 1 + |y|, |h2(y)| = |y|ϱ ≤ 1 + |y| for all y ∈ ℝ. Hence, for \((t, y, z) \in [0,+\infty )\times \mathbb{R} \times \mathbb{R} \)

$$ \begin{array}{@{}rcl@{}} |f(t,y,z)| &\leq& A+B\cdot |h_{1}(y)|+C\cdot |h_{2}(y)|\cdot |z|^{\gamma} + |D||y||z|^{\gamma} \\ &\leq& A+B (1+|y|)+C (1+|y|)(1+|z|) + |D|(1+|y|)(1+|z|) \\ &\leq& (A+B+C+|D|)(1+|y|)(1+|z|), \end{array} $$

and therefore f satisfies (F2).

For all \(t\geq 0,z,y_{1},y_{2}\in \mathbb {R}\)

$$ \begin{array}{@{}rcl@{}} &&(y_{1}-y_{2})\Bigl(f(t,y_{1},z)-f(t,y_{2},z)\Bigr) \\ &=& B (y_{1}-y_{2}) \Bigl(h_{1}(y_{1})-h_{1}(y_{2})\Bigr) +C\cdot |z|^{\gamma} (y_{1}-y_{2})\Bigl(h_{2}(y_{1})-h_{2}(y_{2})\Bigr)\\&& + D \cdot |z|^{\gamma} (y_{1}-y_{2})^{2} \end{array} $$

Since h1, h2 are decreasing, it holds for all y1, y2 ∈ ℝ, i = 1, 2 that (y1y2)(hi(y1) − hi(y2)) ≤ 0. Moreover B, C,|z|γ ≥ 0, hence

$$ (y_1-y_2)\Bigl(f(t,y_1,z)-f(t,y_2,z)\Bigr) \leq D \cdot |z|^{\gamma} (y_1-y_2)^2 \leq |D| \cdot (1+|z|) (y_1-y_2)^2, $$

and f satisfies (F3).

For all y1, y2 ∈ ℝ we have that |h1(y1) − h1(y2)| = |y1y2|. We now justify that h2 satisfies for all y1, y2 ∈ ℝ

$$ |h_{2}(y_{1})-h_{2}(y_{2})| \leq 2|y_{1} - y_{2}|^{{\varrho}}. $$
(A.31)

When y1, y2 < 0 or y1, y2 ≥ 0, by Lemma A1.3, we have

$$ |h_2(y_1)-h_2(y_2)| = \big| |y_1|^{{\varrho}} - |y_2|^{{\varrho}} \big| \leq |y_1 - y_2|^{{\varrho}} \leq 2 |y_1 - y_2|^{{\varrho}}. $$

For the case when y1 < 0, y2 ≥ 0 (the case y1 ≥ 0, y2 < 0 is analogous) we have

$$ |h_2(y_1)-h_2(y_2)| = ||y_1|^{{\varrho}}+y_2^{{\varrho}}|=|y_1|^{{\varrho}}+y_2^{{\varrho}}\leq 2|y_1-y_2|^{{\varrho}}, $$

since − y1 > 0, |y1y2| = y2 + (−y1) ≥ y2 ≥ 0, |y1y2| = y2 + (−y1) ≥−y1 = |y1|≥ 0, and \([0,+\infty )\ni x\to x^{{\varrho }}\) is increasing. Combining the facts above we obtain for all t1, t2 ≥ 0, \(y_{1},y_{2},z_{1},z_{2}\in \mathbb {R}\)

$$ \begin{array}{@{}rcl@{}} &&|f(t_{1},y_{1},z_{1})-f(t_{2},y_{2},z_{2})| \\ &\leq& B|h_{1}(y_{1})-h_{1}(y_{2})| + C\left||z_{1}|^{\gamma}\cdot h_{2}(y_{1}) - |z_{2}|^{\gamma}\cdot h_{2}(y_{2})\right| + |D|\cdot \left|y_{1} |z_{1}|^{\gamma} - y_{2} |z_{2}|^{\gamma}\right|\\ &\leq& B|y_{1}-y_{2}|+C\cdot |z_{1}|^{\gamma}\cdot |h_{2}(y_{1})-h_{2}(y_{2})|+C\cdot |h_{2}(y_{2})|\cdot \left||z_{1}|^{\gamma}-|z_{2}|^{\gamma}\right| \\ &&+ |D|\cdot |y_{2}| \cdot\left| |z_{1}|^{\gamma} - |z_{2}|^{\gamma}\right| + |D|\cdot |z_{1}|^{\gamma} \cdot |y_{1} - y_{2}| \\ &\leq& B|y_{1}-y_{2}|+2 C (1+|z_{1}|) |y_{1} - y_{2}|^{{\varrho}} +C(1+|y_{2}|)\cdot |z_{1}-z_{2}|^{\gamma} \\ &&+ |D|\cdot |y_{2}|\cdot |z_{1} - z_{2}|^{\gamma} + |D|\cdot (1+|z_{1}|)\cdot |y_{1} - y_{2}| \\ &\leq& \max\{B+|D|, 2C, C+|D|\} \left[ (1+|z_{1}|+|z_{2}|)(1+|y_{1}|+|y_{2}|)|t_{1}-t_{2}| \right.\\ &&+ (1+|z_{1}|+|z_{2}|)\cdot |y_{1}-y_{2}|+(1+|z_{1}|+|z_{2}|)\cdot |y_{1}-y_{2}|^{{\varrho}}\\ &&\left.+ (1+|y_{1}|+|y_{2}|)\cdot |z_{1}-z_{2}|^{\gamma} \right]. \end{array} $$

That ends the proof. □

The proof of the fact below is analogous to the proof of Fact A.4 and is omitted.

Fact A.5

Let A, B, C ≥ 0, D ∈ ℝ, ϱ, γ ∈ (0, 1] and define a function \(f:[0,+\infty )\times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) as follows

$$ f(t,y,z)=A-B\cdot \text{sgn} (y)\cdot |y|-C\cdot \text{sgn}(y)\cdot |y|^{{\varrho}}\cdot |z| +D \cdot y \cdot z. $$

Then the function f satisfies the assumptions (F1)–(F4).

The proof of the following fact is straightforward.

Fact A.6

For all \(h \in (0,\frac {1}{2})\) it holds

$$ 0 < \frac{1}{1-h} \leq 1 + 2h \leq 2. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czyżewska, N., Morkisz, P.M. & Przybyłowicz, P. Approximation of solutions of DDEs under nonstandard assumptions via Euler scheme. Numer Algor 91, 1829–1854 (2022). https://doi.org/10.1007/s11075-022-01324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01324-9

Keywords

Mathematics Subject Classification 2010

Navigation