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Abstract
The present paper continues our investigation of an implementation of a least-
squares collocation method for higher-index differential-algebraic equations. In
earlier papers, we were able to substantiate the choice of basis functions and collo-
cation points for a robust implementation as well as algorithms for the solution of
the discrete system. The present paper is devoted to an analytic estimation of con-
dition numbers for different components of an implementation. We present error
estimations, which show the sources for the different errors.
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1 Introduction

In a series of papers [1–4], we were developing a new method for solving higher-
index differential algebraic equations (DAEs). In naturally given functional analytic
settings, higher index DAEs give rise to ill-posed problems [5, Section 3.9; 6].
Motivated by the well-known method of least-squares, or discretization on preim-
age space, for the approximation of ill-posed problems [7], this approach has been
adapted to the case of higher-index DAEs. In particular, the ansatz spaces for the
discrete least-squares problem have been chosen to be piecewise polynomials. Addi-
tionally, the integrals have been replaced by discrete versions based on simplified
integration rules, in the most simple approach by a version resembling well-known
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collocation methods for solving boundary value problems for systems of ordinary dif-
ferential equations (ODEs). The latter, extremely simplified version of the approach
proposed in [7], has been motivated by the success of collocations methods for
ODEs. This connection led us to coin the notion least-squares collocation method
and calling the integration nodes also as collocation points.

For our method, a number of convergence results for both linear and nonlinear
DAEs have been proven. Even our first attempts showed surprisingly accurate results
when applying the method to some linear examples [1]. More recently, we investi-
gated the algorithmic ingredients of the method in more detail [8, 9]. Not surprisingly,
the basis representation and the choice of the integration nodes showed an important
influence on the accuracy of the method.

The present note is intended to further quantify the conditioning of the individual
ingredients of the implementation of the proposed method and to better under-
stand the (high) accuracy of the computational results obtained so far. Taking the
ill-posedness of higher-index DAEs into account, we expect very sensitive discrete
problems for sufficiently fine discretizations.

The practical implementation of a projection method consists of two steps for a
given approximation space Xπ : Choice of a basis and formulation and solution of the
arising discrete system by a suitable method. This in turn gives rise to two different
operators, the first being the representation map connecting the elements of x ∈ Xπ

with their vector of coefficients with respect to the chosen basis. The other operator
is the discrete version of the the least-squares collocation method that becomes a
linearly equality constrained linear least-squares problem in our case. Both operators
are investigated in detail both analytically and numerically.

In particular, qualitative and quantitative estimations for the condition numbers
and norms of the representation map are proven for bases whose usefulness in the
present applications has been established earlier [8, 9].

For the constrained linear least-squares problem, a number of perturbation results
are well-known, e.g., [10–12]. However, in the present application, the constraints
play a special role: In the usual choices of the basis functions, some coefficient
vectors do not represent a function in the approximation space. A coefficient vec-
tor represents a function in the approximation space if and only if the constraints
are fulfilled. Therefore, a new error estimation is derived, which takes care of the
exceptional role of the constraints. The important ingredients in this estimate are
the condition number of the constraints and a restricted condition number for the
least-squares functional. For the former, a complete analytical characterization for
the chosen bases is provided. In a number of numerical examples, values for the
restricted condition number are presented.

In Section 2, the least-squares method for approximating linear DAEs is intro-
duced and the representation map is constructed. Section 3 is devoted to an in-depth
investigation of the representation map. Then we derive a perturbation result for
constrained linear least-squares problems in Section 4. Numerical examples for the
condition numbers of the different ingredients are given in Section 5. Section 6
contains some conclusions.
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2 The problem setting

2.1 The discrete functional

In this section, we repeat the problem setting from [8] for the reader’s conve-
nience. Consider a linear boundary-value problem for a DAE with properly involved
derivative,

A(t)(Dx)′(t) + B(t)x(t) = q(t), t ∈ [a, b], (1)

Gax(a) + Gbx(b) = d. (2)

with [a, b] ⊂ R being a compact interval, D = [I 0] ∈ R
k×m, k < m, with the

identity matrix I ∈ R
k×k . Furthermore, A(t) ∈ R

m×k , B(t) ∈ R
m×m, and q(t) ∈ R

m

are assumed to be sufficiently smooth with respect to t ∈ [a, b]. Moreover, Ga, Gb ∈
R

ldyn×m. Thereby, ldyn is the dynamical degree of freedom of the DAE, that is, the
number of free parameters that can be fixed by initial and boundary conditions. We
assume further that ker D ⊆ ker Ga and ker D ⊆ ker Gb.

Unlike regular ODEs where ldyn = k = m, for DAEs, it holds that 0 ≤ ldyn ≤
k < m, in particular, ldyn = k for index-one DAEs, ldyn < k for higher-index DAEs,
and ldyn = 0 can certainly happen.

The appropriate space for looking for solutions of (1)–(2) is (cf [2])

H 1
D(a, b) := {x ∈ L2((a, b),Rm : Dx ∈ H 1((a, b),Rm}.

Let PK denote the set of all polynomials of degree less than or equal to K ≥ 0.
Given the partition π ,

π : a = t0 < t1 < · · · < tn = b, (3)

with the stepsizes hj = tj − tj−1, h = max1≤j≤n hj , and hmin = min1≤j≤n hj . Let
Cπ([a, b],Rm) denote the space of piecewise continuous functions having break-
points merely at the meshpoints of the partition π . Let N ≥ 1 be a fixed integer.
We are looking for an approximate solution of our boundary value problem from the
ansatz space Xπ ⊂ H 1

D(a, b),

Xπ = {x ∈ Cπ([a, b],Rm) : Dx ∈ C([a, b],Rk),

xκ |[tj−1,tj )∈ PN, κ = 1, . . . , k,

xκ |[tj−1,tj )∈ PN−1, κ = k + 1, . . . , m, j = 1, . . . , n}. (4)

The continuous version of the least-squares method reads: Find an xπ ∈ Xπ that
minimizes the functional

�(x) =
∫ b

a

|A(t)(Dx)′(t) + B(t)x(t) − q(t)|2dt + |Gax(a) + Gbx(b) − d|2. (5)

Here and in the following, |·| denotes the Euclidean norm in the corresponding spaces
R

α for the appropriate α. Let 〈·, ·〉 denote the scalar product in R
α .

The functional values �(x), which are needed when minimizing for x ∈ Xπ ,
cannot be evaluated exactly and the integral must be discretized accordingly. Tak-
ing into account that the boundary-value problem is ill-posed in the higher index
case, perturbations of the functional may have a serious influence on the error of the
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approximate least-squares solution or even prevent convergence towards the exact
solution. Therefore, careful approximations of the integral in � are required. We take
over the options provided in [8], in which M ≥ N + 1 so-called collocation points

0 ≤ ρ1 < · · · < ρM ≤ 1. (6)

are used, and further, on the subintervals of the partition π ,

tj i = tj−1 + ρihj , i = 1, . . . , M, j = 1, . . . , n.

Introducing, for each x ∈ Xπ and w(t) = A(t)(Dx)′(t) + B(t)x(t) − q(t), the
corresponding vector W ∈ R

mMn by

W =
⎡
⎢⎣

W1
...

Wn

⎤
⎥⎦ ∈ R

mMn, Wj = h
1/2
j

⎡
⎢⎣

w(tj1)
...

w(tjM)

⎤
⎥⎦ ∈ R

mM, (7)

we turn to an approximate functional of the form

�π,M(x) = WT LW + |Gax(a) + Gbx(b) − d|2, x ∈ Xπ, (8)

with a positive definite symmetric matrix1

L = diag(L ⊗ Im, . . . , L ⊗ Im). (9)

As detailed in [8], we have different options for the positive definite symmetric
matrix L ∈ R

M×M , namely

L = LC = M−1IM, (10)

L = LI = diag(γ1, . . . , γM), (11)

L = LR = (V −1)T V −1, (12)

see [8, Section 3] for details concerning the selection of the quadrature weights
γ1, . . . , γM and the construction of the mass matrix V . We emphasize that the
matrices LC, LI , LR depend only on M , the node sequence (6), and the quadrature
weights, but do not depend on the partition π and its stepsizes at all.

In the context of the numerical experiments below, we denote each of the different
versions of the functional by �C

π,M , �I
π,M , and �R

π,M , respectively. The following
convergence result is known [8, Theorem 2]:

Theorem 1 Let the DAE (1) be regular with index μ ∈ N and let the boundary
condition (2) be accurately stated. Let x∗ be a solution of the boundary value problem
(1)–(2), and let A, B, q and also x∗ be sufficiently smooth.

Let all partitions π be such that h/hmin ≤ ρ, with a global constant ρ. Then, with

M ≥ N + μ,

the following statements are true:

1⊗ denotes the Kronecker product.
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(1) For sufficient fine partitions π and each sequence of arbitrarily placed nodes
(6), there exists exactly one xR

π ∈ Xπ minimizing the functional �R
π,M on Xπ ,

and

‖xR
π − x∗‖H 1

D(a,b) ≤ CRhN−μ+1.

(2) For each integration rule related to the interval [0, 1], with M nodes (6) and
positive weights γ1, . . . , γM , that is exact for polynomials with degree less than
or equal to 2M − 2, and sufficient fine partitions π , there exists exactly one
xI
π ∈ Xπ minimizing the functional �I

π,M on Xπ , and xI
π = xR

π , thus

‖xI
π − x∗‖H 1

D(a,b) ≤ CRhN−μ+1.

A corresponding result for �C
π,M is not known. Numerical tests showed excellent

convergence results even for cases not covered by Theorem 1. This holds in particular
for any M ≥ N +1 tested in all three cases of the functional �π,M . Thus, M = N +1
seems to be the preferable choice.

2.2 A basis representation of�π ,M

By choosing an appropriate basis for Xπ , the minimization of the functional (8) will
be reduced to a minimization problem for the coefficients of the elements x ∈ Xπ .
For the subsequent considerations, it is appropriate to introduce the space

X̃π = {x ∈ Cπ([a, b],Rm) :
xκ |[tj−1,tj )∈ PN, κ = 1, . . . , k,

xκ |[tj−1,tj )∈ PN−1, κ = k + 1, . . . , m, j = 1, . . . , n}. (13)

In particular, the elements x of X̃π are no longer required to have continuous com-
ponents Dx. Obviously, it holds Xπ ⊆ X̃π . In general, X̃π is not a subspace of
H 1

D(a, b). However, it holds

Xπ = {x ∈ X̃π : xκ ∈ C[a, b], κ = 1, . . . , k}
= X̃π ∩ H 1

D(a, b).

Based on the analysis in [8, Section 4], we provide a basis of the ansatz space X̃π to
begin with. Assume that {p0, . . . , pN−1} is a basis of PN−1 defined on the reference
interval [0, 1]. Then, {p̄0, . . . , p̄N } given by

p̄i(τ ) =
{

1, i = 0,∫ τ

0 pi−1(σ )dσ, i = 1, . . . , N, τ ∈ [0, 1], (14)

form a basis of PN . The transformation to the interval (tj−1, tj ) of the partition π

(3) yields

pji(t) = pi((t − tj−1)/hj ), p̄ji(t) = hj p̄i((t − tj−1)/hj ). (15)
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and in particular

p̄j i(tj−1) = hj p̄i(0) = hj

{
1, i = 0,

0, i = 1, . . . , N,

p̄ji(tj ) = hj p̄i(1) = hj

{
1, i = 0,∫ 1

0 pi−1(σ )dσ, i = 1, . . . , N .

Next, we form the matrix functions

P̄j = [
p̄j0 . . . p̄jN

] : [tj−1, tj ] → R
1×(N+1), Pj = [

pj0 . . . pj,N−1
] : [tj−1, tj ] → R

1×N ,

such that

P̄j (tj−1) = hj

[
1 0 . . . 0

]
, j = 1, . . . , n, (16)

P̄j (tj ) = hj

[
1
∫ 1

0 p0(σ )dσ . . .
∫ 1

0 pN−1(σ )dσ

]
, j = 1, . . . , n. (17)

Following the discussions in [8], the following bases are suitable in applications:

Legendre basis Let Pi denote the Legendre polynomials. Then, pi is chosen to be
the shifted Legendre polynomial, that is

pi(τ ) = Pi(2τ − 1), i = 0, 1, . . . .

Modified Legendre basis In this case, we set

p̄0(τ ) = 1, p̄i(τ ) = Pi(2τ − 1) − (−1)i , i = 1, 2, . . . ,

such that pi = p̄′
i+1, i = 0, 1, . . .. This basis has not been considered in [8],

but later experiments indicated its usefulness. This is supported by considerations
later below.

Chebyshev basis Let Ti denote the Chebyshev polynomials of the first kind. Then
we define

pi(τ ) = Ti(2τ − 1), i = 0, 1, . . . .

Runge-Kutta basis Let 0 < τ1 < · · · < τN < 1 be interpolation nodes. Then we set

pi(τ ) =
∏

κ �=i+1(τ − τκ)∏
κ �=i+1(τi+1 − τκ)

. (18)

The latter are the usual Lagrange interpolation polynomials. In the implementa-
tion, it is advantageous to represent these polynomials in terms of Chebyshev poly-
nomials [8]. Of particular use is the Runge-Kutta basis if the shifted Chebyshev

nodes τκ = 1
2

(
1 + cos

(
2κ−1
2N

π
))

are chosen as interpolation nodes.

For x ∈ X̃π we use the denotations

x(t) = xj (t) =
⎡
⎢⎣

xj1(t)
...

xjm(t)

⎤
⎥⎦ ∈ R

m, Dxj (t) =
⎡
⎢⎣

xj1(t)
...

xjk(t)

⎤
⎥⎦ ∈ R

k, t ∈ [tj−1, tj ).
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Then, we develop each xj componentwise

xjκ(t) =
N∑

l=0

cjκlp̄j l(t) = P̄j (t)cjκ , κ = 1, . . . , k,

xjκ(t) =
N−1∑
l=0

cjκlpjl(t) = Pj (t)cjκ , κ = k + 1, . . . , m. (19)

with

cjκ =
⎡
⎢⎣

cjκ0
...

cjκN

⎤
⎥⎦ ∈ R

N+1, κ = 1, . . . , k, cjκ =
⎡
⎢⎣

cjκ0
...

cjκ,N−1

⎤
⎥⎦ ∈ R

N, κ = k + 1, . . . , m.

Introducing still


j(t) =
[

Ik ⊗ P̄j (t) O1
O2 Im−k ⊗ Pj (t)

]
∈ R

m×(mN+k), cj =
⎡
⎢⎣

cj1
...

cjm

⎤
⎥⎦ ∈ R

mN+k,

with O1 ∈ R
k×kN and O2 ∈ R

(m−k)×(m−k)(N+1) being matrices having only zero
entries we represent, for t ∈ Ij , j = 1, . . . , n,

xj (t) = 
j(t)cj , (20)

(Dxj )
′(t) = (D
j )

′(t)cj =
[
Ik ⊗ P̄ ′

j (t) O1

]
cj (21)

where P̄ ′
j (t) = [

0 pj0 . . . pj,N−1
]
. Now we collect all coefficients cjκ l in the

vector c,

c =
⎡
⎢⎣

c1
...
cn

⎤
⎥⎦ ∈ R

n(mN+k).

Definition 1 The mapping R : R
n(mN+k) → X̃π given by (20) is called the

representation map of X̃π with respect to the basis (15).

Fact 1 We observe that each x ∈ X̃π has a representation of the kind (20) and each
function of the form (20) is an element of X̃π . Since dim X̃π = n(mN + k), R is a
bijective mapping.

Consider an element x ∈ X̃π with its representation (20). This element belongs to
Xπ if and only if its first k components are continuous. Using the representation (19)
we see that x ∈ Xπ if and only if

Cc = 0. (22)
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where C ∈ R
k(n−1)×n(mN+k) and

C =

⎡
⎢⎢⎢⎢⎢⎣

Ik ⊗ P̄1(t1) O1 −Ik ⊗ P̄2(t1) O1

Ik ⊗ P̄2(t2) O1 −Ik ⊗ P̄3(t2) O1

. . .
. . .

Ik ⊗ P̄n−1(tn−1) O1 −Ik ⊗ P̄n(tn−1) O1

⎤
⎥⎥⎥⎥⎥⎦

.

Owing to the construction, C has full row rank, cf. (16), (17).

Fact 2 Let R̃ = R|kerC be the restriction of the representation map R onto the
kernel ker C of C. Since C has full row rank, dim ker C = n(mN + k) − k(n − 1) =
nmN + k = dim Xπ , and R is injective, R̃ is bijective. In particular, it holds also
R̃−1 = R−1

∣∣
imR̃.

The representations (20)–(21) can be inserted into the functional �π,M (8). The
result becomes a least-squares functional of the form

ϕ(c) = |Ac − r|2
R

nmM+ldyn
→ min! (23)

where A has the structure

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 · · · 0

0
. . .

...
...

. . .
. . . 0

0 An

Ga
1(t0) 0 · · · 0 Gb
n(tn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Aj ∈ R
mM×(mN+k) and Ga
1(t0), Gb
n(tn) ∈ R

ldyn×(mN+k).
So the discrete version of the least-squares method (8) becomes the linear least-

squares problem (23) under the linear equality constraint (22).
Note that it holds r ∈ R

nmM+ldyn and A ∈ R
(nmM+ldyn)×n(mN+k). The matrices A

and C are very sparse. More details of the construction of A and C can be found in [9].

2.3 Conditioning of the implementation

The implementation for solving the least-squares problem (8) consists of the follow-
ing steps:

1. Form A, C, and r .
2. Solve the constrained least-squares problem (23)–(22).
3. Form the approximation xπ .

What are the errors to be expected? Consider the individual steps:

1. The computation of C is not critical. Depending on the chosen basis, the entries
of C may be available analytically. So we expect at most rounding errors for the
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representation of the analytical data.2 While the components of A corresponding
to the boundary conditions are only subject to truncation errors when represent-
ing real numbers in floating point arithmetic, the DAE-related entries are subject
to rounding errors as well as certain amplification factors stemming from the
multiplication by the square root of the matrix L (9). The conditioning of the
versions (10) and (11) is easy to infer while that of (12) has been discussed exten-
sively in [8]. Under reasonable assumptions on the choice of collocation points,
they are rather small.

Similar considerations apply to the computation of r .
2. This algorithmic step corresponds to the solution of a linearly constrained linear

least-squares problem. A number of classical perturbation results are available,
e.g., [11–13]. Further below, we represent a modified version that is taking into
account the special role that the equality constraint Cc = 0 is playing in our
application.

3. This step is described by the representation map R, which assigns, to each solu-
tion c of the previous step, the corresponding solution xπ = Rc. If c ∈ ker C,
it holds xπ ∈ Xπ ⊆ H 1

D(a, b). However, due to the errors made in the previous
step, the condition c ∈ ker C cannot be guaranteed such that Rc ∈ X̃π but not
necessarily Rc ∈ H 1

D(a, b)! In the next section, we will discuss the properties
of R.

3 Properties of the representationmapR

In the present section, we will investigate the properties of the representation map
R : Rn(mN+k) → X̃π in more detail. Previously, we have established a representation
of R on each subinterval; see (20). We intend to derive a representation of R−1. The
main tool will be interpolation.

Choose two sets of interpolation nodes

0 ≤ σ̄1 < · · · < σ̄N+1 ≤ 1 and 0 ≤ σ1 < · · · < σN ≤ 1, (24)

and shifted ones

τ̄j i = tj−1 + σ̄ihj , τji = tj−1 + σihj

such that the integration formulae

∫ 1

0
f (σ)dσ ≈

N+1∑
i=1

γ̄if (σ̄i), and

∫ 1

0
f (σ)dσ ≈

N∑
i=1

γif (σi)

2In the case of the Legendre and modified Legendre bases, all entries are integers weighted by the
stepsizes.
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have positive weights and so that they are exact for polynomials up to degree 2N and
2N − 2, respectively. With matrices

V̄j =
⎡
⎢⎣

p̄j0(τ̄j1) · · · p̄jN (τ̄j1)

...
...

p̄j0(τ̄j,N+1) · · · p̄jN (τ̄j,N+1)

⎤
⎥⎦= hj

⎡
⎢⎣

p̄0(σ̄1) · · · p̄N (σ̄1)

...
...

p̄0(σ̄N+1) · · · p̄N (σ̄N+1)

⎤
⎥⎦=: hj V̄ ,(25)

Vj =
⎡
⎢⎣

pj0(τj1) · · · pj,N−1(τj1)

...
...

pj0(τjN ) · · · pj,N−1(τjN )

⎤
⎥⎦ =

⎡
⎢⎣

p0(σ1) · · · pN−1(σ1)

...
...

p0(σN) · · · pN−1(σN)

⎤
⎥⎦ =: V, (26)

and

V̄ ′
j =

⎡
⎢⎢⎣

p̄′
j0(τ̄j1) · · · p̄′

j N (τ̄j1)

...
...

p̄′
j0(τ̄j,N+1) · · · p̄′

jN (τ̄j,N+1)

⎤
⎥⎥⎦ =

⎡
⎢⎣

0 p0(σ̄1) · · · pN−1(σ̄1)

...
...

...
0 p0(σ̄N+1) · · · pN−1(σ̄N+1)

⎤
⎥⎦ =: V̊ , (27)

we represent, for κ = 1, . . . , k,

Xjκ :=
⎡
⎢⎣

xjκ(τ̄j1)
...

xjκ(τ̄j,N+1)

⎤
⎥⎦ = V̄j cjκ = hj V̄ cjκ ,

X′
jκ :=

⎡
⎢⎣

x′
jκ (τ̄j1)

...
x′
jκ (τ̄j,N+1)

⎤
⎥⎦ = V̄ ′

j cjκ = V̊ cjκ ,

and, for κ = k + 1, . . . , m,

Xjκ :=
⎡
⎢⎣

xjκ(τj1)
...

xjκ(τjN)

⎤
⎥⎦ = Vjcjκ = V cjκ .

The matrices V̄ and V are nonsingular. This amounts to the relation

cj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cj1
...

cjk

cj,k+1
...

cjm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
Ik ⊗ V̄ −1

Im−k ⊗ V −1

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
hj

Xj1

...
1
hj

Xjk

Xj,k+1
...

Xjm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, j = 1, . . . , n. (28)

Owing to the fact, that polynomials of degree N and N − 1 are uniquely determined
by their values at N + 1 and N different nodes, respectively, formula (28) provides
c = R−1x for each arbitrary given x ∈ X̃π .
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Next, we equip X̃π with the norms

‖x‖2
L2 =

n∑
j=1

⎧⎨
⎩

k∑
κ=1

∫ tj

tj−1

|xjκ (t)|2dt +
m∑

κ=k+1

∫ tj

tj−1

|xjκ (t)|2dt

⎫⎬
⎭ , (29)

‖x‖2
H 1

D,π

=
n∑

j=1

⎧⎨
⎩

k∑
κ=1

∫ tj

tj−1

(|xjκ (t)|2 + |x′
jκ (t)|2)dt +

m∑
κ=k+1

∫ tj

tj−1

|xjκ (t)|2dt

⎫⎬
⎭ . (30)

The latter norm reduces, for x ∈ Xπ , to ‖x‖H 1
D,π

= ‖x‖H 1
D(a,b). Moreover,

‖·‖L2 = ‖·‖L2((a,b),Rm). On R
n(mN+k), we use the Euclidean norm. Then R

becomes a homeomorphism in each case, and we are interested in the respec-
tive operator norms ‖R‖

Rn(mN+k)→L2 , ‖R‖
Rn(mN+k)→H 1

D,π
, ‖R−1‖L2→Rn(mN+k) , and

‖R−1‖H 1
D,π→Rn(mN+k) . Regarding the properties of the related integration formulae

and introducing the diagonal matrices

�̄ = diag(γ̄
1/2
1 , · · · , γ̄

1/2
N+1), � = diag(γ

1/2
1 , · · · , γ

1/2
N ) (31)

we compute for any x = Rc, and κ = 1, . . . , k,

∫ tj

tj−1

|xjκ(t)|2dt = hj

N+1∑
i=1

γ̄i |xjκ(τ̄j i)|2 = hj

N+1∑
i=1

|γ̄ 1/2
i xjκ (τ̄j i)|2 = hj |�̄Xjκ |2

= hj |�̄V̄j cjκ |2 = hj |�̄hj V̄ cjκ |2,

∫ tj

tj−1

(|xjκ(t)|2 + |x′
jκ (t)|2)dt = hj

N+1∑
i=1

γ̄i (|xjκ(τ̄j i)|2 + |x′
jκ (τ̄j i)|2)

= hj

N+1∑
i=1

(|γ̄ 1/2
i xjκ (τ̄j i)|2 + (|γ̄ 1/2

i x′
jκ (τ̄j i)|2) = hj |�̄Xjκ |2 + hj |�̄X′

jκ |2

= hj |�̄V̄j cjκ |2 + hj |�̄V̊ cjκ |2 = hj |�̄hj V̄ cjκ |2 + hj |�̄V̊ cjκ |2

= hj

∣∣∣∣
[
hj �̄V̄

�̄V̊

]
cjκ

∣∣∣∣
2

,

and, in addition, for κ = k + 1, . . . , m,

∫ tj

tj−1

|xjκ(t)|2dt = hj

N∑
i=1

γi |xjκ(τji)|2 = hj

N∑
i=1

|γ 1/2
i xjκ (τji)|2 = hj |�Xjκ |2

= hj |�V cjκ |2.

Summarizing, the following representations result:

‖x‖2
L2=

n∑
j=1

⎧⎨
⎩

k∑
κ=1

|h3/2
j �̄V̄ cjκ |2 +

m∑
κ=k+1

|h1/2
j �V cjκ |2

⎫⎬
⎭ =

n∑
j=1

|Ujcj |2 = |Uc|2, (32)
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with matrices

U = diag(U1, · · · , Un) ∈ R
n(mN+k)×n(mN+k), (33)

Uj =
[
Ik ⊗ h

3/2
j �̄V̄

Im−k ⊗ h
1/2
j �V

]
∈ R

(mN+k)×(mN+k),

and

‖x‖2
H 1

D,π

=
n∑

j=1

⎧⎨
⎩

k∑
κ=1

∣∣∣∣∣
[
h

3/2
j �̄V̄

h
1/2
j �̄V̊

]
cjκ

∣∣∣∣∣
2

+
m∑

κ=k+1

|h1/2
j �V cjκ |2

⎫⎬
⎭ =

n∑
j=1

|Ûj cj |2 = |Ûc|2, (34)

with matrices

Û = diag(Û1, · · · , Ûn) ∈ R
n(mN+k+k(N+1))×n(mN+k), (35)

Ûj =
⎡
⎢⎣Ik ⊗

[
h

3/2
j �̄V̄

h
1/2
j �̄V̊

]

Im−k ⊗ h
1/2
j �V

⎤
⎥⎦ ∈ R

(mN+k+k(N+1))×(mN+k).

Proposition 1 The singular values of U and Û are independent of the choice of the
nodes σi and σ̄i . Moreover, all singular values are positive.

Proof Uj and Ûj have full column-rank. Consequently, UT U and ÛT Û are symmet-
ric and positive definite. Hence, their eigenvalues are all positive and, thus, also their
singular values being the square root of the eigenvalues. The eigenvalues are inde-
pendent of the choice of the nodes σi and σ̄i since, owing to the properties of the
involved integration formulae, it holds that

(V T �2V )αβ =
∫ 1

0
pα−1pβ−1(σ )dσ, α, β = 1, · · · , N,

(V̄ T �̄2V̄ )αβ =
∫ 1

0
p̄α−1p̄β−1(σ )dσ, α, β = 1, · · · , N + 1,

(V̊ T �̄2V̊ )αβ =
∫ 1

0
p̄′

α−1p̄
′
β−1(σ )dσ, α, β = 1, · · · , N + 1,

such that the entries of UT U and ÛT Û are independent of the choice of the integration
formulae.

Theorem 2 Let σmin(U) and σmax(U) denote the maximal and minimal singular
values of U . Similarly, let σmin(Û) and σmax(Û) denote the maximal and minimal
singular values of Û . Then it holds

‖R‖
Rn(mN+k)→L2 = σmax(U), ‖R−1‖L2→Rn(mN+k) = σmin(U)−1,

‖R‖
Rn(mN+k)→H 1

D,π
= σmax(Û), ‖R−1‖H 1

D,π→Rn(mN+k) = σmin(Û)−1.
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Proof It holds Û ∈ R
ν×λ with ν = n(mN + k + k(N + 1)) and λ = n(mN + k). Let

Û = U�V T be the singular value decomposition of U . Here,

� =

⎡
⎢⎢⎢⎣

s1
. . .

sν
0 · · · 0

⎤
⎥⎥⎥⎦ ∈ R

ν×λ

with s1 = σmax(Û) and sν = σmin(Û). According to Proposition 1, σmin(Û) > 0. By
(34), this leads to

‖R‖
Rn(mN+k)→H 1

D,π
= sup

c �=0

‖Rc‖H 1
D,π

|c|Rλ

= sup
c �=0

|Ûc|Rν

|c|Rλ

= sup
χ �=0

|�χ |Rν

|χ |Rλ

= σmax(Û)

and

‖R−1‖H 1
D,π →Rn(mN+k) = sup

x �=0

|R−1x|Rλ

‖x‖H 1
D,π

= sup
c �=0

|c|Rλ

‖Rc‖H 1
D,π

= sup
χ �=0

|χ |Rλ

|�χ |Rν
= σmin(Û)−1.

The statements concerning ‖R‖
Rn(mN+k)→L2 and ‖R−1‖H 1

D,π→Rn(mN+k) follow simi-

larly.

Using the structure (33) of U , we obtain

σmax(U) = max
j=1,...,n

max{h3/2
j σmax(�̄V̄ ), h

1/2
j σmax(�V )}

= max
j=1,...,n

h
1/2
j max{hjσmax(�̄V̄ ), σmax(�V )},

σmin(U) = min
j=1,...,n

min{h3/2
j σmin(�̄V̄ ), h

1/2
j σmin(�V )}

= min
j=1,...,n

h
1/2
j min{hjσmin(�̄V̄ ), σmin(�V )}.

The estimation of the singular values of Û leads to slightly more involved expres-

sions. Let Uj,red =
[

hj �̄V̄

�̄V̊

]
. Then, it holds

σmax(Û) = max
j=1,...,n

h
1/2
j max{σmax(Uj,red), σmax(�V )},

σmin(Û) = min
j=1,...,n

h
1/2
j min{σmin(Uj,red), σmin(�V )}.

We note that σmin(�̄V̊ ) = 0 and σmax(�V ) = σmax(�̄V̊ ). This follows immediately
from the construction of the basis for the differential components (14). The definition
of singular values and Weyl’s Theorem [14, Theorem III.2.1] provides us with

λmax(V̊
T �̄2V̊ ) ≤ λmax(h

2
j V̄

T �̄2V̄ + V̊ T �̄2V̊ ) = σmax(Uj,red )2

≤ h2
j λmax(V̄

T �̄2V̄ ) + λmax(V̊
T �̄2V̊ ),

h2
j λmin(V̄

T �̄2V̄ ) ≤ λmin(h
2
j V̄

T �̄2V̄ + V̊ T �̄2V̊ ) = σmin(Uj,red )2 ≤ h2
j λmax(V̄

T �̄2V̄ )
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since λmin(V̊
T �̄2V̊ ) = 0. Then,

σmax(�V ) = λmax(V
T �2V )1/2

≤ max{σmax(Uj,red), σmax(�V )}
≤ σmax(�V ) + O(h).

Moreover,

min{hjσmin(�̄V̄ ), σmin(�V )} ≤ min{σmin(Uj,red), σmin(�V )}
≤ min{hjσmax(�̄V̄ ), σmin(�V )}

Collecting all estimates ,Theorem 2 provides

Theorem 3 Let the grid (3) have the maximal stepsize h and the minimal stepsize
hmin. Furthermore, let � and �̄ be given by (31) and let V , V̄ , and V̊ be given by
(26), (25), (27). Then it holds, for sufficiently small h,

‖R‖
Rn(mN+k)→L2 = h1/2σmax(�V ) = O(h1/2),

‖R−1‖L2→Rn(mN+k) = h
−3/2
min σmin(�̄V̄ )−1 = O(h

−3/2
min ),

‖R‖
Rn(mN+k)→H 1

D,π
= h1/2σmax(�V ) + O(h3/2) = O(h1/2),

and
h

−3/2
min σmax(�̄V̄ )−1 ≤ ‖R−1‖H 1

D,π→Rn(mN+k) ≤ h
−3/2
min σmin(�̄V̄ )−1.

In particular, ‖R‖
Rn(mN+k)→H 1

D,π
= ‖R‖

Rn(mN+k)→L2 + O(h3/2).

In these estimates, we used the fact σmin(�V ) > 0. Note that the constants hidden
in the big-O notation in this theorem depend on both N and the chosen basis. For the
restriction R̃ of R onto ker C we obtain, obviously,

‖R̃‖ ≤ ‖R‖, ‖R̃−1‖ ≤ ‖R−1‖.

For some special cases, the singular values can be easily derived.

Proposition 2 Let V , V̄ , and V̊ be given by (25)–(27) and �, �̄ by (31). Then it
holds:

(1) Let p0, . . . , pN−1 be an orthogonal basis in L2(0, 1). Then

σmin(�V ) = min
{‖pα‖L2(0,1) : α = 0, . . . , N − 1

}
,

σmax(�V ) = max
{‖pα‖L2(0,1) : α = 0, . . . , N − 1

}
.

In particular, if p0, . . . , pN−1 is the Legendre basis, σmin(�V ) = (2N −1)−1/2

and σmax(�V ) = 1.
(2) For an orthonormal basis p0, . . . , pN−1 in L2(0, 1), σmin(�V ) = σmax(�V ) =

1.
(3) If p0, . . . , pN−1 is the modified Legendre basis, it holds σmin(�̄V̄ ) ≥ (2N +

1)−1/2 and σmax(�̄V̄ ) ≤ (N + 2)1/2. Furthermore, the estimates

σmin(�V ) ≥
(

1

2 − 2 cos N
N+2 π

)1/2

≥ 1

2
, σmax(�V ) ≤

(
2N − 1

2 − 2 cos 1
N+2 π

)1/2
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hold true.

Proof First, we observe that (V T �2V )αβ = ∫ 1
0 pα−1(ρ)pβ−1(ρ)dρ =

δαβ‖pα−1‖2
L2(a,b)

. This provides (1) and (2) as special cases.

Consider the modified Legendre basis now. It holds
∫ 1

0 p̄2
0(ρ)dρ = 1 and∫ 1

0 p̄0(ρ)p̄α(ρ)dρ = ∫ 1
0 (Pα(2ρ − 1) − (−1)α)dρ = (−1)α+1 for α = 1, 2, . . ..

Moreover, for α, β = 1, 2, . . . , we have∫ 1

0
p̄α(ρ)p̄β(ρ)dρ =

∫ 1

0
(Pα(2ρ − 1) − (−1)α)(Pβ(2ρ − 1) − (−1)β)dρ

=
∫ 1

0
Pα(2ρ − 1)Pβ(2ρ − 1)dρ + (−1)α+β

= (2α + 1)−1δαβ + (−1)α+β.

Collecting these expressions, we obtain the compact representation

V̄ T �̄2V̄ = diag(1,
1

3
, . . . , (2N + 1)−1) + ff T

with f T = [1, 1, −1, +1, −1, . . . , ±1] ∈ R
N+1. ff T is a rank-1 matrix having,

therefore, the N-fold eigenvalue 0. Moreover, f is an eigenvector to the eigenvalue
f T f = N + 1. In particular, ff T is positive semidefinite. Invoking Weyl’s theorem
again, we obtain

(2N + 1)−1 = λmin(diag(1,
1

3
, . . . , (2N + 1)−1)) ≤ λmin(V̄

T �̄2V̄ )

λmax(V̄
T �̄2V̄ ) ≤ λmax(diag(1,

1

3
, . . . , (2N + 1)−1)) + λmax(ff T ) = N + 2.

This proves the first assertion of (3).
The relation (V̊ T �̄2V̊ )αβ = ∫ 1

0 p̄′
α−1p̄

′
β−1(σ )dσ shows that K = V̊ T �̄2V̊ is the

stiffness matrix of the basis functions. For the modified Legendre basis, it has been
investigated in [1, cp Eq. (31)]. According to the proof of Proposition A.2 of [1], the
nonvanishing eigenvalues can be estimated by3

λmin(K) ≥ 1

2 − 2 cos N
N+2π

, λmax(K) ≤ 2N − 1

2 − 2 cos 1
N+2π

.

K ′ = V T �2V is the submatrix of K obtained by omitting the first row and column
of K , which consist entirely of zeros. This provides the final relations of assertion
(3).

An asymptotic analysis shows that σmax(�V ) ≤ 2√
π
N3/2 + O(N1/2) in the case

of the modified Legendre basis.

3In [1], the stiffness matrix is scaled to the interval (−1, 1) in contrast to the interval (0, 1) used here.
Therefore, an additional factor of 1/2 appears in the present estimations.
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Remark 1 We are able to estimate the size of the jump of elements of X̃π at the grid
points. For any x̃ ∈ X̃π and c̃ = R−1x̃, it holds

‖x̃jκ‖C[tj−1,tj ) ≤ Chj
‖x̃jκ‖H 1(tj−1,tj ) = Chj

h
1/2
j |Uj,red c̃jκ |

≤ Chj
h

1/2
j σmax(Uj,red)|c̃|

with Chj
= (

max{2/hj , hj }
)1/2. Here, we used [15, Lemma 3.2]. For sufficiently

small hj , this estimate reduces to

‖x̃jκ‖C[tj−1,tj )≤
√

2σmax(�̄V̊ )|c̃| = √
2σmax(�V )|c̃|.

Let x be any element of Xπ and c = R−1x. Replacing c̃ by �c = c̃ − c in the last
estimate, we obtain

|x̃κ (tj−0) − x̃κ (tj+0)| = |x̃κ (tj−0) − xκ(tj−0) + xκ(tj+0) − x̃κ (tj+0)|
≤ ‖x̃κj − xκj‖C[tj−1,tj ) + ‖x̃κ,j+1 − xπ,κ,j+1‖C[tj ,tj+1)

≤ 2
√

2σmax(�V )|�c|.
Proposition 2 provides estimations for the factor σmax(�V ). In particular, for some
bases, it does not depend on the polynomial degree N .

4 Error estimation for the constrainedminimization problem

The aim of this section is the derivation of bounds for perturbations of the solution c

for the problem (23)–(22), that is,

ϕ(z) = |Az − r|2 → min!
subject to Cz = 0,

under perturbation of the data A, C, r . Such bounds are known for a long time, e.g.,
[11, 12]. However, we will provide different bounds in this section. The reason for
this is that the constraint Cc = 0 has an exceptional meaning in the present context:
It holds Cc = 0 if and only if Rc ∈ H 1

D(a, b). If a perturbation �C of C changes
the kernel of C, it does no longer hold Rc ∈ H 1

D(a, b) in general! Therefore, we will
consider the two cases ker(C + �C) = ker C and ker(C + �C) �= ker C separately.

Let c̃ the solution of the perturbed problem

min{|(A + �A)z − (r + �r)|2 : (C + �C)z = 0}. (36)

Then, let �c = c − c̃ denote the error. We are interested in deriving an error bound
on �c in terms of the perturbations of the data.

Let us for a matrix M, denote the Moore-Penrose inverse by M+. Moreover, let
‖M‖ be its spectral norm.

Let D be an orthonormal basis of ker C. Then, P = In(mN+k) −C+C is the orthog-
onal projector onto ker C and PD = D. Some more properties are collected in the
following proposition.

Proposition 3 It holds, for any matrix M ∈ R
ν×n(mN+k), ν ∈ N,
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1. DT D = InmN+k and DDT = P .
2. If c = Dd, then |c| = |d|.
3. ‖AD‖ = ‖AP ‖.
4. (AP)+ = D(AD)+.
5. ‖(AP)+‖ = ‖(AD)+‖.

The proofs are obvious. For the following, we note that the matrix AD has full
column rank [9, Proposition 1].

4.1 ker(C + �C) = kerC

Each element c of ker C has a unique representation c = Dd with d ∈ R
nmN+k .

Therefore, (23)–(22) is equivalent to the unconstrained minimization problem

min
d∈RnmN+k

‖ADd − r‖ (37)

while (36) becomes the unconstrained minimization problem

min
d∈RnmN+k

‖(A + �A)Dd − (r + �r)‖. (38)

Since AD has full column rank, standard perturbation results for unconstrained least
squares problems apply. As a consequence of [16, Satz 8.2.7] and Proposition 3, we
obtain

Theorem 4 Let ω = ‖(AP)+‖‖�AP ‖ < 1. Then it holds

|�c| ≤ ‖(AP)+‖
1 − ω

{‖�AP ‖ [|c| + ‖(AP)+‖|r| + |�r|]}

and

|�c|
|c| ≤ 1

1−ω

{[
κC(A) + |r|

‖AP ‖|c|κC(A)2
] ‖�AP ‖

‖AP ‖

+‖(AP)+‖|r|
|c| · |�r|

|r|
}

.

Here, r = r − Ac and

κC(A) = ‖AP ‖‖(AP)+‖.

Theorem 4 corresponds to classical results for unconstrained minimization prob-
lems (e.g., [10], [13, Theorem 9.12] and is a small generalization of them. Let us
emphasize that the estimation is independent of the perturbations of C as long as the
null space of C is not changed by the perturbation.

Remark 2 In the case of the Legendre basis, the elements of C consist only of three
nonzero elements being equal to 1 and −1, respectively, possibly scaled by the step-
sizes, cf. (16), (17). So we expect �C = 0 such that the estimates of this section
apply.
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4.2 ker(C + �C) �= kerC

The estimation of the error becomes much more involved than in the previous case.
In a first step, we will construct a basis for the kernel of the perturbed constraint
(C + �C)z = 0.

Lemma 1 Let κ = ‖C+‖‖�C‖ < 1/2. Then C + �C has full rank and P� =
In(mN+k) − (C + �C)+(C + �C) is a projector onto ker(C + �C). Furthermore,
D� = P�D is a basis of ker(C + �C). Moreover, the estimates

‖(C + �C)+‖ ≤ ‖C+‖
1 − κ

and

‖(C + �C)+ − C+‖ ≤
√

2‖C+‖2

1 − κ
‖�C‖

hold true.

Proof The proposition of C + �C having full rank as well as the error estimates
follow from [16, Satz 8.2.5].

For showing that D� is a basis of ker(C + �C) consider

(I − P�)P = (C + �C)+(C + �C)(I − C+C)

= (C + �C)+�C(I − C+C).

It holds

‖(I − P�)P ‖ ≤ ‖(C + �C)+‖‖�C‖ ≤ ‖C+‖
1 − κ

‖�C‖ ≤ κ

1 − κ
< 1.

Therefore, the assumptions of [17, Theorem I-6.34] are fulfilled. Since dim ker(C +
�C) = dim ker C,the first alternative of that theorem applies and P� is a one-to-one
mapping of ker C onto ker(C + �C). Hence, D� is a basis of the latter space.

By using the bases D and D�, the unperturbed and the perturbed least squares
problems become (37) and

min
d∈RnmN+k

‖(A + �A)D�d − (r + �r)‖. (39)

In a first step, the deviations of the bases shall be estimated. It holds

P� − P = C+C − (C + �C)+(C + �C)

= C+C − (C + �C)+C − (C + �C)+�C
= [

C+ − (C + �C)+
]
C − (C + �C)+�C.
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Invoking Lemma 1, we obtain4

‖P� − P ‖ ≤
[√

2‖C+‖2

1 − κ
‖C‖ + ‖C+‖

1 − κ

]
‖�C‖ = ‖C+‖

1 − κ

[√
2κ(C) + 1

]
‖�C‖

with κ(C) = ‖C+‖‖C‖. Consequently,

‖D�−D‖ = ‖(P�−P)D‖ ≤ ‖P�−P ‖‖D‖ ≤ ‖C+‖
1 − κ

[√
2κ(C) + 1

]
‖�C‖. (40)

Let us transform (39) now. It holds

(A + �A)D� = (A + �A)D + (A + �A)(D� − D)

= AD + R

where R = �AD + (A + �A)(D� − D). The representation of R provides the
estimate

‖R‖ ≤ ‖�AP ‖ + ‖A + �A‖ ‖C+‖
1 − κ

[√
2κ(C) + 1

]
‖�C‖. (41)

Denote ω� = ‖(AP)+‖‖R‖. The condition ω� < 1 is obviously fulfilled if

‖(AP)+‖
{
‖�AP ‖ + ‖A + �A‖ ‖C+‖

1 − κ

[√
2κ(C) + 1

]
‖�C‖

}
< 1. (42)

Let d + �d be the solution of (39). Using the fact that AD has full rank, Theorem
8.2.7 of [16] provides the estimates

|�d| ≤ ‖(AP)+‖
1 − ω�

{‖R‖ [|d| + ‖(AP)+‖|r|]+ |�r|} (43)

and
|�d|
|d| ≤ 1

1−ω�

{[
κC(A) + |r|

‖AD‖|d|κC(A)2
] ‖R‖

‖AD‖

+‖(AD)+‖|r|
|d| · |�r|

|r|
}

. (44)

with r = r − Ac.

Theorem 5 Let ‖�A‖ and ‖�C‖ be sufficiently small such that (42) and κ =
‖C+‖‖�C‖ < 1/2 hold true. Then it holds

|�c| ≤ ‖(AP)+‖
1 − ω�

{‖R‖ [|c| + ‖(AP)+‖|r|]+ |�r|}+ ‖C+‖
1 − κ

[√
2κ(C) + 1

]
‖�C‖|c|

and
|�c|
|c| ≤ 1

1 − ω�

{[
κC(A) + |r|

‖AP ‖|c|κC(A)2
] ‖R‖

‖AP ‖
+‖(AP)+‖|r|

|c| · |�r|
|r|

}
+ ‖C+‖

1 − κ

[√
2κ(C) + 1

]
‖�C‖.

4In case that ker(C + �C) = kerC we obtain P� −P = 0 and D� = D such that the present estimations
coincide with those of the previous section.
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Proof It holds c = Dd and �c = D��d + (D� − D)d such that |�c| ≤ |�d| +
‖P� − P ‖|d|. Inserting this estimate in (43) and (44) and using |c| = |Dd| = |d|
provides the claim.

Remark 3 |r| is a measure for the accuracy of the discrete solution. Let xπ ∈ Xπ

denote the discrete solution obtained by minimizing �π,M (8). Its representation
becomes c = R−1xπ . Then it holds |r|2 = |Ac − r|2 = �π,M(xπ). Hence,
�π,M(xπ) ≤ 2(�π,M(x∗) + �π,M(xπ − x∗)). Under the conditions of Theorem 1, it
holds, therefore, |r| ≤ chN−μ+1.

The critical quantities to estimate the influence of perturbations are κC(A) and
‖C+‖, κ(C) as well as ‖(AP)+‖. The norms of C and its pseudoinverse depend
only on the choice of Xπ and the basis chosen for it, but not on the DAE. It holds
‖C‖ = σmax(C) and ‖C+‖ = σmin(C)−1 with σmin(C) being the smallest nonvanish-

ing singular value of C. Since C has full row rank, σmin(C) = (
λmin(CCT )

)1/2
and

σmax(C) = (
λmax(CCT )

)1/2
.

With C from (22) we observe that

C = �1 [Ik ⊗ Cs|Os] �2

with

Cs =

⎡
⎢⎢⎢⎢⎢⎢⎣

P̄1(t1) −P̄2(t1)

P̄2(t2) −P̄3(t2)

. . .
. . .
. . .

. . .
P̄n−1(tn−1) −P̄n(tn−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
(n−1)×n(N+1)

and Os ∈ R
k(n−1)×nN(m−k) consists entirely of zero elements. The permutation

matrices �1 and �2 are constructed as follows: Let x = [x1, x2, . . . , xm]T ∈ X̃π .
First, the equations in Cc = 0 are reordered such that first all equations related to the
first component x1, then those of x2, and so on until xk are available. This reorder-
ing is expressed via �1. The column permutation �2 reorders the coefficients such
that the ones describing the differential components are taken first, and then the ones
belonging to the algebraic components. In particular, the coefficients cκ describing
xκ are given by cκ = [c1κ0, c1,κ1, . . . , c1κN , c2κ0, . . . , cnκN ]T . Then we have

CCT = �1 [Ik ⊗ Cs|Os] �2�
T
2

[
Ik ⊗ CT

s
OT

s

]
�T

1 = �1(Ik ⊗ CsCT
s )�T

1 , (45)

Using (16) and (17), it holds

Cs = Csdiag(h1, . . . , hn)

1740 Numerical Algorithms (2022) 91:1721–1754



with

Cs =

⎡
⎢⎢⎢⎢⎢⎣

f −eT
1

f −eT
1

. . .
. . .

f −eT
1

⎤
⎥⎥⎥⎥⎥⎦

(46)

where e1 is the first unit vector and f = [1,
∫ 1

0 p0(σ )dσ, . . . ,
∫ 1

0 pN−1(σ )dσ ]. This
leads to

CsCT
s =

⎡
⎢⎢⎢⎢⎢⎣

h2
1|f |2 + h2

2 −h2
2−h2

2 h2
2|f |2 + h2

3 −h2
3

. . .
. . .

. . .

−h2
n−1 h2

n−1|f |2 + h2
n

⎤
⎥⎥⎥⎥⎥⎦

. (47)

The eigenvalues of CCT are those of (47).

Proposition 4 Let the grid (3) have the maximal stepsize h and the minimal stepsize
hmin. Then it holds

(1) |f | > 1.
(2) 0 < h2

min(|f |2 − 1) ≤ λmin(CsCT
s ) and λmax(CsCT

s ) ≤ h2(|f |2 + 3).

Proof Since the first component of f is equal to 1, we have |f | ≥ 1 and |f | = 1
if and only if

∫ 1
0 p0(σ )dσ = · · · = ∫ 1

0 pN−1(σ )dσ = 0. Assume that the lat-
ter condition holds true. This means in particular that p0, . . . , pN−1 are orthogonal
to the polynomial p(τ) ≡ 1 ∈ PN−1. The latter space has dimension N . Since
p0, . . . , pN−1 ∈ PN−1 are N polynomials being orthogonal to p, they must be lin-
early dependent in contradiction to the assumption that they form a basis. This proves
(1).

In order to prove (2), we observe that CsCT
s is symmetric such that all eigenvalues

are real. Invoking Gershgorin’s circle theorem [16, Theorem 1.2.10], the eigenvalues
λ of CsCT

s fulfill

min
j=1,...,n−1

h2
j (|f |2 − 1) ≤ λ ≤ max

j=1,...,n−1
h2

j (|f |2 + 1) + 2h2
j+1.

This proves (2).

We obtain immediately the following corollary. Note that f depends only on N

and the chosen basis, but not on the grid.

Corollary 1 Let the grids (3) be quasiuniform, that is h/hmin ≤ ρ < ∞ with ρ

independent of π . Then it holds κ(C) ≤ ρ
( |f |2+3

|f |2−1

)1/2
and ‖C+‖ ≤ hmin(|f |2 −

1)−1/2.
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For constant stepsize h, we have CsCT
s = h2CsC

T
s , which is a Toeplitz tridiagonal

matrix. In this case, the eigenvalues of CsC
T
s are given by [18, Theorem 2.2]

λj = 1 + |f |2 − 2 cos

(
jπ

n

)
, j = 1, . . . , n − 1. (48)

Proposition 5 Let the grid (3) be equidistant with stepsize h, and Cs be given by
(46). Then it holds

• For the Legendre basis 1 ≤ λmin(CsC
T
s ) ≤ λmax(CsC

T
s ) ≤ 5;

• For the modified Legendre basis 2N ≤ λmin(CsC
T
s ) ≤ λmax(CsC

T
s ) ≤ 2N + 6;

• For the Chebyshev basis 1 ≤ λmin(CsC
T
s ) ≤ λmax(CsC

T
s ) ≤ 4 + 2 ln 2.

• For the Runge-Kutta basis assume additionally that
∫ 1

0 pi(σ )dσ ≥ 0, i =
0, 1, . . . , N − 1. Then N−1 ≤ λmin(CsC

T
s ) ≤ λmax(CsC

T
s ) ≤ 5.

Proof In the case of the Legendre basis, it holds f = [1, 1, 0, . . . , 0]. Hence, |f |2 =
2 such that the statement follows.

For the modified Legendre basis, we have f = [1, 2, 0, 2, 0, . . .] such that

|f |2 =
{

2N + 1, N even,

2N + 3, N odd.

For the Chebyshev basis, we observe
∫ 1

0
pi(σ )dσ =

{
1
2

1+(−1)i

1−i2 , i �= 1,

0, i = 1.

This leads to f = [1, 1, 0, − 1
3 , 0, − 1

8 , 0, . . .]. Hence,

2 ≤ |f |2 ≤ 2 +
∞∑
i=1

(
1

1 − (2i)2

)2

≤ 2 +
∞∑
i=1

1

i(4i2 − 1)
= 2 + 2 ln 2 − 1.

For the sum of the series, cf. [19, p. 269, series 110.d]. This provides the estimate for
the Chebyshev basis.

In case of the Runge-Kutta basis, it holds
∑N−1

i=0 pi(σ ) ≡ 1. With f =
[1, f2, . . . , fN+1] it holds then fi ≥ 0 and

∑N+1
i=2 fi = 1. Hence,

1

N
= 1

N

(
N+1∑
i=2

fi

)2

≤
N+1∑
i=2

f 2
i ≤

N+1∑
i=2

fi = 1.

This yields 1 + N−1 ≤ |f |2 ≤ 2 and the claim follows.

Remark 4 For the Runge-Kutta basis, the values fi = ∫ 1
0 pi−1(σ )dσ are just the

weights of the interpolatory quadrature rule corresponding to the nodes τ1, . . . , τN

of (18). For a number of common choices of nodes, these weights are known to be
positive. Examples are the Gauss-Legendre nodes, Radau nodes, and Lobatto nodes
[20, Section 2.7]. It holds also true for Chebyshev nodes and many others; see, e.g.,
[20, pp. 85f].
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Note that the claims of Proposition 5 could also be shown using Gershgorin’s
theorem. This indicates that the estimates of Proposition 4 are rather tight.

Corollary 2 For equidistant grids (3), it holds

• For the Legendre basis κ(C) ≤ √
5 and ‖C+‖ ≤ h−1;

• For the modified Legendre basis κ(C) ≤
(

2N+6
2N

)1/2
and ‖C+‖ ≤ (2N)−1/2h−1;

• For the Chebyshev basis κ(C) ≤ (4 + 2 ln 2)1/2 ≈ 2.32 and ‖C+‖ ≤ h−1.
• For the Runge-Kutta basis κ(C) ≤ (5N)1/2 and ‖C+‖ ≤ N1/2h−1 provided that∫ 1

0 pi(σ )dσ ≥ 0, i = 0, 1, . . . , N − 1.

It should be emphasized again that, if ker(C+�C) �= ker C, it cannot be guaranteed
that the solution of the perturbed problem R(c + �c) belongs to Xπ . Instead, it
belongs to X̃π , only. Simple projection algorithms of elements of X̃π onto Xπ can be
derived. In our experiments so far, these projections did not lead to a better accuracy
than the unprojected numerical solutions.

5 Some examples

5.1 Conditioning of the representationmapR

For each selection {p0, . . . , pN−1} of basis polynomials, the conditioning of the rep-
resentation map depends both on the grid and on N . For simplicity, we assume here
that an equidistant grid with stepsize h is used for defining Xπ . Besides the bases
introduced before, we will additionally consider the Runge-Kutta basis with uniform
interpolation points as used in our very first paper on the subject [1].

The norms of the representation map and its inverse have been computed for both
settings (mapping into L2((a, b),Rm) and H 1

D(a, b)) and for polynomial degrees
N = 3, 5, 10, 20 and h = n−1 where N = 10, 20, 40, 80, 160, 320. These are the
first observations:

• σmin(Û) is independent of the chosen basis and independent of N for h ≤ 0.1.
However, this is not true for larger stepsizes, cf. Table 2.

• For every basis, σmax(U) ≈ σmax(Û) up to a relative error below 10−3. This
coincides with the findings of Theorem 3.

In Tables 1, 2, 3, 4, 5, and 6, we present more detailed results. From these tables, we
can draw the following conclusions:

• The asymptotic behavior with respect to the stepsize h as indicated in Theorem 3
is clearly visible.

• For both the Legendre and the Chebyshev bases, σmax(U) and σmax(Û) do not
depend on N . This is reasonable for the Legendre basis if Proposition 2 is taken
into account.

• The asymptotics of σmin(U) coincides with the results of Theorem 3 and
Proposition 2 for the modified Legendre basis.
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Table 1 σmin(Û)
n = 1/h σmin(Û)

10 3.16e-2

20 1.12e-2

40 3.95e-3

80 1.40e-3

160 4.94e-4

320 1.75e-4

• The norm of the representation map behaves similarly for all considered bases.
Not unexpectedly, an exception is the Runge-Kutta basis for uniform nodes,
which has a much larger norm than that for other bases. When comparing
σmin(U) and σmax(U) for different bases, we observe that the difference between
the Legendre basis and the Chebyshev basis on one hand and the modified Leg-
endre basis on the other hand it seems that they have different scaling only, but
their conditioning (being the product of the norms of the representation map and
its inverse) is similar. A similar property holds for Û .

• The Runge-Kutta basis has surprisingly good properties. However, this property
depends on the representation with respect to an orthogonal polynomial basis (in

Table 2 σmin(Û). The column headings denote the Legendre basis (L), the modified Legendre basis (mL),
the Chebyshev basis (Ch), the Runge-Kutta basis (RK), and the Runge-Kutta basis with uniform nodes
(RKu)

n = 1/h L mL Ch RK RKu

N = 3

1 4.47e-1 8.56e-1 5.52e-1 4.05e-1 5.57e-1

3 1.88e-1 1.89e-1 1.88e-1 1.87e-1 1.88e-1

5 8.88e-2 8.88e-2 8.88e-2 8.88e-2 8.88e-2

N = 5

1 3.33e-1 8.56e-1 4.31e-1 2.54e-1 4.12e-1

3 1.88e-1 1.89e-1 1.88e-1 1.46e-1 1.85e-1

5 8.88e-2 8.88e-2 8.88e-2 8.86e-2 8.87e-2

N = 10

1 2.29e-1 8.56e-1 2.93e-1 1.31e-1 2.33e-1

3 1.32e-1 1.89e-1 1.69e-1 7.57e-2 1.35e-1

5 8.88e-2 8.88e-2 8.88e-2 5.86e-2 8.84e-2

N = 20

1 1.60e-1 8.56e-1 2.10e-1 6.65e-2 1.50e-1

3 9.24e-2 1.89e-1 1.21e-1 3.84e-2 8.68e-2

5 7.16e-2 8.88e-2 1.21e-1 3.84e-2 8.68e-2
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Table 3 σmin(U). The column headings denote the Legendre basis (L), the modified Legendre basis (mL),
the Chebyshev basis (Ch), the Runge-Kutta basis (RK), and the Runge-Kutta basis with uniform nodes
(RKu)

n = 1/h L mL Ch RK RKu

N = 3

10 1.17e-3 6.83e-3 1.35e-3 9.81e-4 1.93e-3

20 4.12e-4 2.42e-3 4.78e-4 3.47e-4 6.84e-4

40 1.46e-4 8.54e-4 1.69e-4 1.23e-4 2.42e-4

80 5.15e-5 3.02e-4 5.98e-5 4.33e-5 8.55e-5

160 1.82e-5 1.07e-4 2.11e-5 1.53e-5 3.02e-5

320 6.44e-6 3.78e-5 7.47e-6 5.42e-6 1.07e-5

N = 5

10 4.51e-4 4.76e-3 5.06e-4 2.96e-4 1.00e-3

20 1.59e-4 1.68e-3 1.79e-4 1.04e-4 3.54e-4

40 5.63e-5 5.95e-4 6.32e-5 3.69e-5 1.25e-4

80 1.99e-5 2.10e-4 2.23e-5 1.31e-5 4.43e-5

160 7.04e-6 7.44e-5 7.90e-6 4.62e-6 1.56e-5

320 2.49e-6 2.63e-5 2.79e-6 1.63e-6 5.53e-6

N = 10

10 1.08e-4 2.73e.3 1.10e-4 4.94e-5 2.35e-4

20 3.83e-5 9.59e-4 3.90e-5 1.75e-5 8.29e-5

40 1.36e-5 3.39e-4 1.38e-5 6.17e-6 2.93e-5

80 4.79e-6 1.20e-4 4.88e-6 2.18e-6 1.04e-5

160 1.69e-6 4.24e-5 1.72e-6 7.71e-7 3.66e-6

320 5.99e-7 1.50e-5 6.10e-7 2.73e-7 1.30e-6

N = 20

10 2.28e-5 1.46e-3 2.30e-5 7.26e-6 5.73e-5

20 8.06e-6 5.16e-4 8.12e-6 2.57e-6 2.03e-5

40 2.85e-6 1.82e-4 2.87e-6 9.08e-7 7.17e-6

80 1.01e-6 5.45e-5 1.01e-6 3.21e-7 2.53e-6

160 3.56e-7 2.28e-5 3.59e-7 1.13e-7 8.96e-7

320 1.26e-7 8.06e-6 1.27e-7 4.01e-8 3.17e-7

the present example, Chebyshev polynomials). Thus, it is much more expensive
to work with it compared to using Legendre or Chebyshev bases directly.

5.2 Conditioning of the constrainedminimization problems

In order to provide a first insight into the conditioning of the constrained mini-
mization problem (23)–(22), we computed the condition numbers κC(A) which have
crucial importance for the behavior of the computational error. Discussions of κ(C)
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Table 4 σmax(Û) = σmax(U). The column headings denote the Legendre basis (L), the modified Legen-
dre basis (mL), the Chebyshev basis (Ch), the Runge-Kutta basis (RK), and the Runge-Kutta basis with
uniform nodes (RKu)

n = 1/h L mL Ch RK RKu

N = 3

10 3.16e-1 1.57e+0 3.41e-1 2.19e-1 2.64e-1

20 2.24e-1 1.11e+0 2.41e-1 1.55e-1 1.86e-1

40 1.58e-1 7.87e-1 1.70e-1 1.10e-1 1.32e-1

80 1.12e-1 5.56e-1 1.20e-1 7.74e-2 9.32e-2

160 7.91e-2 3.93e-1 8.52e-2 5.48e-2 6.59e-2

320 5.59e-2 2.78e-1 6.02e-2 3.87e-2 4.66e-2

N = 5

10 3.16e-1 2.69e+0 3.41e-1 1.74e-1 3.96e-1

20 2.24e-1 1.90e+1 2.41e-1 1.23e-1 2.80e-1

40 1.58e-1 1.35e+1 1.70e-1 8.70e-2 1.98e-1

80 1.12e-1 9.51e-1 1.20e-1 6.15e-2 1.40e-1

160 7.91e-2 6.73e-1 8.52e-2 4.35e-2 9.90e-2

320 5.59e-2 4.76e-1 6.02e-2 3.08e-2 7.00e-2

N = 10

10 3.16e-1 6.26e+0 3.41e-1 1.25e-1 3.86e+0

20 2.24e-1 4.43e+0 2.41e-1 8.81e-2 2.73e+0

40 1.58e-1 3.13e+0 1.70e-1 6.23e-2 1.93e+0

80 1.12e-1 2.21e+0 1.20e-1 4.40e-2 1.36e+0

160 7.91e-2 1.57e+0 8.52e-2 3.11e-2 9.64e-1

320 5.59e-2 1.11e+0 6.02e-2 2.20e-2 6.82e-1

N = 20

10 3.16e-1 1.60e+1 3.41e-1 8.85e-2 1.47e+3

20 2.24e-1 1.13e+1 2.41e-1 6.26e-2 1.04e+3

40 1.58e-1 7.98e+0 1.70e-1 4.43e-2 7.37e+2

80 1.12e-1 5.64e+0 1.20e-1 3.13e-2 5.21e+2

160 7.91e-2 3.99e+0 8.52e-2 2.21e-2 3.68e+2

320 5.59e-2 2.82e+0 6.02e-2 1.56e-2 2.61e+2

and ‖C+‖ have been provided earlier (Proposition 5 and Corollary 2). The exam-
ples below are chosen from our earlier investigations that led to surprisingly accurate
results.

As done before, we use the bases as introduced in Section 5.1. We abandon the
use the Runge-Kutta basis with uniform nodes since this basis has a bad condition-
ing. We choose M = N + 1 and the Gauss-Legendre nodes as collocation points
(6). For this choice, �R

π,M = �I
π,M (see (12), (11)) and κC(A) is identical for both

choices.
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Table 5 κ(Û) = σmax(Û)/σmin(Û). The column headings denote the Legendre basis (L), the modified
Legendre basis (mL), the Chebyshev basis (Ch), the Runge-Kutta basis (RK), and the Runge-Kutta basis
with uniform nodes (RKu)

n = 1/h L mL Ch RK RKu

N = 3

10 1.03e+1 4.98e+1 1.08e+1 6.95e+0 8.35e+0

20 2.00e+1 9.95e+1 2.16e+1 1.39e+1 1.67e+1

40 4.00e+1 1.99e+2 4.31e+1 2.77e+1 3.34e+1

80 8.00e+1 3.98e+2 8.62e+1 5.54e+1 6.67e+1

160 1.60e+2 7.96e+2 1.72e+2 1.11e+2 1.33e+2

320 3.20e+2 1.59e+3 3.45e+2 2.22e+2 2.67e+2

N = 5

10 1.00e+1 8.53e+1 1.08e+1 5.52e+0 1.25e+1

20 2.00e+1 1.70e+2 2.16e+1 1.10e+1 2.51e+1

40 4.00e+1 3.40e+2 4.31e+1 2.20e+1 5.01e+1

80 8.00e+1 6.81e+2 8.62e+1 4.40e+1 1.00e+2

160 1.60e+2 1.36e+3 1.72e+2 8.80e+1 2.00e+2

320 3.20e+2 2.72e+3 3.45e+2 1.76e+2 4.01e+2

N = 10

10 1.00e+1 1.98e+2 1.08e+1 3.95e+0 1.22e+2

20 2.00e+1 3.96e+2 2.16e+1 7.88e+0 2.44e+2

40 4.00e+1 7.92e+2 4.31e+1 1.58e+1 4.88e+2

80 8.00e+1 1.58e+3 8.62e+1 3.15e+1 9.76e+2

160 1.60e+2 3.17e+3 1.72e+2 6.30e+1 1.95e+3

320 3.20e+2 6.34e+3 3.45e+2 1.26e+2 3.90e+3

N = 20

10 1.00e+1 5.05e+2 1.08e+1 4.21e+0 4.67e+4

20 2.00e+1 1.01e+3 2.16e+1 5.60e+0 9.32e+4

40 4.00e+1 2.02e+3 4.31e+1 1.12e+1 1.86e+5

80 8.00e+1 4.04e+3 8.62e+1 2.24e+1 3.73e+5

160 1.60e+2 8.07e+3 1.72e+2 4.48e+1 7.46e+5

320 3.20e+2 1.61e+4 3.45e+2 9.00e+1 1.49e+6

Example 1 The first example is an index-3 DAE without dynamic degrees of free-
dom. It has been used before in numerous papers, e.g., [1, 2, 8]. The problem is given
by

x′
2(t) + x1(t) = q1(t),

tηx′
2(t) + x′

3(t) + (η + 1)x2(t) = q2(t),

tηx2(t) + x3(t) = 7q3(t), t ∈ [0, 1].
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Table 6 κ(U) = σmax(U)/σmin(U). The column headings denote the Legendre basis (L), the modified
Legendre basis (mL), the Chebyshev basis (Ch), the Runge-Kutta basis (RK), and the Runge-Kutta basis
with uniform nodes (RKu)

n = 1/h L mL Ch RK RKu

N = 3

10 2.71e+2 2.30e+2 2.52e+2 2.23e+2 1.36e+2

20 5.43e+2 4.61e+2 5.04e+2 4.47e+2 2.73e+2

40 1.09e+3 9.21e+2 1.01e+3 8.93e+2 5.45e+2

80 2.17e+3 1.84e+3 2.01e+3 1.79e+3 1.09e+3

160 4.34e+3 3.68e+3 4.03e+3 3.57e+3 2.18e+3

320 8.68e+3 7.37e+3 8.06e+3 7.15e+3 4.36e+3

N = 5

10 7.03e+2 5.65e+2 6.74e+2 5.89e+2 3.96e+2

20 1.40e+3 1.13e+3 1.35e+3 1.18e+3 7.91e+2

40 2.81e+3 2.26e+3 2.70e+3 2.36e+3 1.58e+3

80 5.61e+3 4.52e+3 5.39e+3 4.71e+3 3.16e+3

160 1.12e+4 9.05e+3 1.08e+4 9.42e+3 6.33e+3

320 2.25e+4 1.81e+4 2.16e+4 1.88e+4 1.27e+4

N = 10

10 2.92e+3 2.31e+3 3.09e+3 2.53e+3 1.65e+4

20 5.83e+3 4.62e+3 6.18e+3 5.05e+3 3.29e+4

40 1.17e+4 9.23e+3 1.24e+4 1.01e+4 6.58e+4

80 2.33e+4 1.85e+4 2.47e+4 2.02e+4 1.32e+5

160 4.67e+4 3.69e+4 4.94e+4 4.04e+4 2.63e+5

320 9.33e+4 7.39e+4 9.88e+4 8.07e+4 5.26e+5

N = 20

10 1.39e+4 1.09e+4 1.48e+4 1.22e+4 2.57e+7

20 2.78e+4 2.19e+4 2.97e+4 2.44e+4 5.14e+7

40 5.55e+4 4.37e+4 5.94e+4 4.87e+4 1.03e+8

80 1.11e+5 8.74e+4 1.19e+5 9.75e+4 2.06e+8

160 2.22e+5 1.75e+5 2.37e+5 1.95e+5 4.11e+8

320 4.44e+5 3.50e+5 4.75e+5 3.90e+5 8.22e+8

For unique solvability, no boundary or initial conditions are necessary. We choose
the exact solution

x∗,1(t) = e−t sin t,

x∗,2(t) = e−2t sin t,

x∗,3(t) = e−t cos t

and adapt the right-hand side q accordingly. In Table 7, the values of κC(A) for
�R

π,M and �C
π,M are provided. It turns out that the behavior for different functionals
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is comparable. Therefore, in the following examples, we present only the values for
�R

π,M .

Example 2 We continue with an example of a Hessenberg index-2 system used
previously in [1]. Consider the DAE system

x′
1(t) + λx1(t) − x2(t) − x3(t) = q1(t),

x′
2(t) + (ηt (1 − ηt) − η)x1(t) + λx2(t) − ηtx3(t) = q2(t),

(1 − ηt)x1(t) + x2(t) = q3(t), t ∈ [0, 1],
with the right-hand side q chosen in such a way that

x1(t) = e−t sin t,

x2(t) = e−2t sin t,

x3(t) = e−t cos t,

Table 7 κC(A) for �R
π,M and �C

π,M . Here, L denotes the Legendre basis, mL the modified Legendre basis,
Ch the Chebyshev basis, and RK the Runge-Kutta basis. The smallest values are set in boldface

n = 1/h κC(A) for �R
π,M κ(A) for �C

π,M

L mL Ch RK L mL Ch RK

N = 3

10 5.77e+4 5.76e+4 6.22e+4 4.96e+4 6.01e+4 7.04e+4 6.04e+4 4.53e+4

20 2.37e+5 2.40e+5 2.55e+5 2.03e+5 2.47e+5 2.93e+5 2.48e+5 1.85e+5

40 9.62e+5 9.79e+5 1.04e+6 8.25e+5 1.00e+6 1.20e+6 1.01e+6 7.52e+5

80 3.88e+6 3.96e+6 4.18e+6 3.32e+6 4.05e+6 4.86e+6 4.06e+6 3.03e+6

N = 5

10 4.41e+5 2.79e+5 4.69e+5 3.84e+5 4.58e+5 4.06e+5 4.43e+5 3.33e+5

20 1.80e+6 1.23e+6 1.91e+6 1.56e+6 1.86e+6 1.68e+6 1.80e+6 1.34e+6

40 7.25e+6 5.02e+6 7.71e+6 6.32e+6 7.52e+6 6.85e+6 7.27e+6 5.39e+6

80 2.92e+7 2.03e+7 3.10e+7 2.54e+7 3.02e+7 2.77e+7 2.92e+7 2.16e+7

N = 10

10 7.16e+6 3.92e+6 7.71e+6 6.50e+6 7.02e+6 6.09e+6 6.73e+6 5.11e+6

20 2.89e+7 1.59e+7 3.11e+7 2.64e+7 2.84e+7 2.46e+7 2.71e+7 2.04e+7

40 1.16e+8 6.39e+7 1.25e+8 1.06e+8 1.14e+8 9.92e+7 1.09e+8 8.17e+7

80 4.67e+8 2.57e+8 5.02e+8 4.27e+8 4.58e+8 3.98e+8 4.37e+8 3.27e+8

N = 20

10 1.34e+8 6.79e+7 1.49e+8 1.23e+8 1.17e+8 1.21e+8 1.13e+8 8.40e+7

20 5.39e+8 2.25e+8 5.99e+8 4.98e+8 4.71e+8 4.89e+8 4.56e+8 3.34e+8

40 2.16e+9 1.10e+9 2.41e+9 2.01e+9 1.89e+9 1.97e+9 1.83e+9 1.34e+9

80 8.67e+9 4.42e+9 9.65e+9 8.06e+9 7.59e+9 7.89e+9 7.34e+9 5.34e+9

1749Numerical Algorithms (2022) 91:1721–1754



is a solution. It has one dynamical degree of freedom. We choose the special condition

x1(0) = 0.

The results for η = −25 and λ = −1 are provided in Table 8.

Example 3 Our next example is a linearized problem proposed by Campbell and
More [21]. It has been used previously in the experiments in [2, 8, 9] and others. Let

A(Dx)′(t) + B(t)x(t) = q(t), t ∈ [0, 5],
where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Table 8 κC(A) for �R
π,M . Here, L denotes the Legendre basis, mL the modified Legendre basis, Ch the

Chebyshev basis, and RK the Runge-Kutta basis. The smallest values are set in boldface

n = 1/h κC(A)

L mL Ch RK

N = 3

10 1.95e+5 3.42e+5 2.00e+5 1.96e+5

20 2.56e+5 6.90e+5 2.65e+5 2.48e+5

40 4.01e+5 1.58e+6 4.22e+5 3.50e+5

80 8.17e+5 3.82e+6 8.73e+5 6.06e+5

N = 5

10 6.23e+5 5.25e+5 6.13e+5 7.05e+5

20 8.54e+5 1.19e+6 8.48e+5 9.32e+5

40 1.31e+6 2.75e+6 1.32e+6 1.26e+6

80 2.36e+6 6.61e+6 2.41e+6 2.03e+6

N = 10

10 3.06e+6 1.33e+6 3.02e+6 4.45e+6

20 4.28e+6 3.02e+6 4.19e+6 5.98e+6

40 6.63e+6 6.85e+6 6.55e+6 7.78e+6

80 1.19e+7 1.61e+7 1.19e+7 1.14e+7

N = 20

10 1.68e+7 4.73e+6 1.71e+7 3.05e+7

20 2.12e+7 1.03e+7 2.18e+7 3.77e+7

40 3.23e+7 2.23e+7 3.35e+7 4.76e+7

80 6.12e+7 4.93e+7 6.37e+7 6.74e+7
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B(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 sin t 0 1 − cos t −2ρ cos2 t

0 0 − cos t −1 0 − sin t −2ρ sin t cos t

0 0 1 0 0 0 2ρ sin t

2ρ cos2 t 2ρ sin t cos t −2ρ sin t 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ρ = 5,

subject to the initial conditions

x2(0) = 1, x3(0) = 2, x5(0) = 0, x6(0) = 0.

This problem has index 3 and dynamical degree of freedom ldyn = 4. The right-hand
side q has been chosen in such a way that the exact solution becomes

x∗,1 = sin t, x∗,4 = cos t,

x∗,2 = cos t, x∗,5 = − sin t,

x∗,3 = 2 cos2 t, x∗,6 = −2 sin 2t,

x∗,7 = −ρ−1 sin t .

Table 9 κC(A) for �R
π,M . Here, L denotes the Legendre basis, mL the modified Legendre basis, Ch the

Chebyshev basis, and RK the Runge-Kutta basis. The smallest values are set in boldface

n = 5/h κC(A)

L mL Ch RK

N = 3

10 4.64e+2 1.97e+3 5.00e+2 4.12e+2

20 1.43e+3 5.06e+3 1.54e+3 1.21e+3

40 5.543e+3 1.38e+4 5.96e+3 4.70e+3

80 2.19e+4 4.12e+4 2.36e+4 1.86e+4

N = 5

10 1.63e+3 3.74e+3 1.70e+3 1.46e+3

20 6.26e+3 1.21e+4 6.55e+3 5.60e+3

40 2.48e+4 4.63e+4 2.60e+4 2.22e+4

80 9.88e+4 1.83e+5 1.04e+5 8.85e+4

N = 10

10 3.27e+4 4.69e+4 3.58e+4 3.20e+4

20 1.29e+5 1.89e+5 1.42e+5 1.18e+5

40 5.14e+5 7.58e+5 5.65e+5 4.69e+5

80 2.06e+6 3.03e+6 2.26e+6 1.88e+6

N = 20

10 7.30e+5 8.64e+5 8.16e+5 9.69e+5

20 2.91e+6 3.63e+6 3.26e+6 2.71e+6

40 1.17e+7 1.50e+7 1.31e+7 1.09e+7

80 4.69e+7 6.10e+7 5.25e+7 4.36e+7
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The results are shown in Table 9. Note that, in the present example, h = 5/n in
contrast to all previous computations where h = 1/n.

The numerical experiments give rise to the following observations:

• The condition numbers of the discrete problem have almost the same size for
given polynomial degree N and stepsize h.

• The experiments indicate that the Runge-Kutta basis seems to provide the low-
est condition number for smaller stepsizes. In the case of higher order ansatz
functions and larger stepsizes, the modified Legendre basis seems to provide the
smallest condition numbers.

• In order to obtain a complete picture of the relative merits of the different bases,
in the case discussed in Theorem 5, not only the condition number κ(C) of C
but the term ‖C+‖κ(C) has to be taken into account. Corollary 2 shows that the
modified Legendre basis is well-suited for higher orders N .

• If the perturbed solution c̃ of (36) is projected back onto the nullspace ker C, we
can assume that the conditions of Theorem 4 are fulfilled. In this case, C does
not have any influence on the error estimation.

6 Conclusions

In this paper, we investigated the conditioning of the discrete problems arising in
the least-squares collocation method for DAEs. In particular, the solution algorithm
has been split into a representation mapping that connects the coefficients of the
basis representation to the function to be represented, and a linearly equality con-
strained linear least-squares problem. A careful investigation of the representation
map allowed for a characterization of errors in the function spaces by those made in
the solution of the discrete problem.

The perturbation estimates for the constrained least-squares problem have been
derived with the application in mind: the approximation of a DAE. The constraints
play an exceptional role. If they are satisfied, the resulting numerical solution belongs
to the solution space H 1

D(a, b). If this cannot be guaranteed, the convergence theory
for the least-squares method does not apply. Some of the characterizing quantities
could be estimated analytically for reasonable choices of bases while others have
been estimated numerically in certain examples. We believe that these considerations
contribute to a robust and efficient implementation of the proposed method, which
seems to provide surprisingly accurate numerical solutions to higher-index DAEs.
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