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Abstract
The unpreconditioned hybrid domain decomposition method was recently shown to
be a competitive solver for linear elliptic PDE problems discretized by structured
grids. Here, we plug H-TFETI-DP (hybrid total finite element tearing and intercon-
necting dual primal) method into the solution of huge boundary elliptic variational
inequalities. We decompose the domain into subdomains that are discretized and then
interconnected partly by Lagrange multipliers and partly by edge averages. After
eliminating the primal variables, we get a quadratic programming problem with a
well-conditioned Hessian and bound and equality constraints that is effectively solv-
able by specialized algorithms. We prove that the procedure enjoys optimal, i.e.,
asymptotically linear complexity. The analysis uses recently established bounds on
the spectrum of the Schur complements of the clusters interconnected by edge/face
averages. The results extend the scope of scalability of massively parallel algorithms
for the solution of variational inequalities and show the outstanding efficiency of the
H-TFETI-DP coarse grid split between the primal and dual variables.
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1 Introduction

Variants of the FETI (finite element tearing and interconnecting) methods introduced
by Farhat and Roux [23, 24] belong to the most powerful methods for a massively
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parallel solution of large discretized elliptic partial differential equations. The basic
idea is to decompose the domain into subdomains interconnected by Lagrange multi-
pliers and then eliminate the primal variables to get a small coarse problem and many
local problems solvable in parallel. After Farhat, Mandel, and Roux [25] proved that
the condition number of the dual stiffness matrix is uniformly bounded on the sub-
space defined by the kernels of subdomain stiffness matrices, FETI became the first
theoretically supported massively parallel scalable solver for elliptic PDE. The sub-
space is also called the natural coarse grid. Later, Farhat, Lesoinne, and Pierson [26]
introduced a modification of FETI called FETI-DP (dual-primal) that enforces some
constraints on the primal level and avoids manipulations with singular matrices. More
on FETI methods for linear systems can be found, e.g., in Tosseli and Widlund [40]
or Pechstein [38].

If we apply FETI to elliptic variational inequalities, such as those describing the
equilibrium of a system of ellastic bodies in contact, then the duality transforms the
inequality constraints into bound constraints. Moreover, the dual problem’s solution
is guaranteed to be in the subspace defined by the natural coarse grid. These obser-
vations led to the development of massively parallel scalable algorithms for solving
elliptic boundary variational inequalities [11] (currently tens of thousands of cores
for billions of nodal variables [18]).

The scope of scalability of the original FETI methods is limited by the coarse
problem’s dimension, which is proportional to the number of subdomains. A direct
solver typically solves the coarse problem at the cost proportional to the square of its
dimension—it starts to dominate when the number of subdomains is large, currently
some tens of thousands of subdomains. Klawonn and Rheinbach [30, 31], Klawonn et
al. [33] used the idea of FETI-DP to interconnect groups of subdomains into clusters
by enforcing some constraints on the primal level so that the defect of each cluster is
the same as that of each of its subdomains (see also Brzobohatý et al. [4] or Jungho
Lee [35, 36]). The latter authors used a variant of FETI called TFETI (total FETI) that
enforces the Dirichlet conditions by Lagrange multipliers [16] so that all subdomains
are floating and their stiffness matrices have a priori known kernels. The latter prop-
erties considerably simplify stable elimination of primal variables [3]. The methods
which combine FETI-DP with TFETI are called H-TFETI-DP (hybrid TFETI-DP).

Both original FETI-DP and H-FETI-DP were combined with preconditioners, and
their scalability was proved in the context of preconditioned methods. Though pre-
conditioning is a standard tool for the solution of linear problems, it becomes a
complication when we try to apply it to variational inequalities. The reason is that
the preconditioning turns the bound constraints into more general inequality con-
straints, destroying the favorable structure of the resulting quadratic programming
(QP) problem and excluding the possibility to use specialized QP solvers [10]. How-
ever, experimental results by Klawonn and Rheinbach [31] and Jungho Lee [35]
indicated that the scalability could be observed even without a special preconditioner,
using only the projector to the natural coarse grid. We recently confirmed these obser-
vations by establishing H/h-bounds on the spectrum of the Schur complements of
the clusters interconnected by edge averages [20] or face averages [21].

Here, we enhance the above results to the development of a scalable massively par-
allel H-TFETI-DP based algorithm. We introduce two variants of a model problem,
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coercive and semi-coercive scalar boundary variational inequalities proposed by Ivan
Hlaváček. Then, we describe their discretization and decomposition into subdomains
and clusters, use the duality to reduce the solution to bound and equality constrained
QP problems, and review relevant algorithms for solving the resulting QP problems.
Finally, we prove the algorithms’ numerical scalability and demonstrate their numeri-
cal and parallel scalability by experiments. The results extend the scope of scalability
of powerful massively parallel algorithms for the solution of variational inequali-
ties [18, Chap. 10] and confirm an outstanding efficiency of the H-TFETI-DP coarse
grid that is split between the primal and dual variables.

Throughout the paper, we shall use the following notation. For any matrix A ∈
R

m×n and subsets I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n}, we shall denote by AIJ a
submatrix of A with the rows i ∈ I and columns j ∈ J . The full set of indices can
be replaced by ∗, so that A = A∗∗ and Ai∗ denotes the ith row of A.

If m = n and A is symmetric, then λi(A), λmin(A), and λmax(A) denote the
eigenvalues of A,

λmax(A) = λ1(A) ≥ λ2(A) ≥ · · · λn(A) = λmin(A).

If λmin(A) = 0, then we denotes the regular condition number of A by

κ(A) = λmax(A)/λmin(A),

where λmin(A) denotes the least nonzero eigenvalue of A.
The same matrices and vectors can be indexed in various places alternatively by

lower and upper indices in order to simplify the notations, in particular to avoid
superfluous brackets. Thus,

vi = vi , Ki = Ki , etc.

The Euclidean norm is denoted by ‖ . ‖.

2 Model problem

We shall reduce our analysis to two simple model problems, but our reasoning is also
valid for more general cases. Let Ω = Ω1 ∪ Ω2, Ω1 = (0, 1) × (0, 1), and Ω2 =
(1, 2) × (0, 1) denote open domains with boundaries Γ 1, Γ 2 and their parts Γ i

U , Γ
i
F ,

Γ i
C = ΓC formed by the sides of Ωi, i = 1, 2, as in Fig. 1. Let H 1(Ωi), i = 1, 2,

denote the Sobolev spaces of the first order in the space L2(Ωi) of the functions on
Ωi whose squares are integrable in the sense of Lebesgue. Let

V i =
{
vi ∈ H 1(Ωi) : vi = 0 on Γ i

U

}

denote the closed subspaces of H 1(Ωi), i = 1, 2. LetH = H 1(Ω1)×H 1(Ω2), and
let

V = V 1 × V 2 and K =
{
(v1, v2) ∈ V : v2 − v1 ≥ 0 on ΓC

}
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denote the closed subspace and the closed convex subset of H, respectively. The
relations on the boundaries are in terms of traces. OnH, we shall define a symmetric
bilinear form

a(u, v) =
2∑

i=1

∫

Ωi

(
∂ui

∂x

∂vi

∂x
+ ∂ui

∂y

∂vi

∂y

)
dΩ

and a linear form

�(v) =
2∑

i=1

∫

Ωi

f ividΩ,

where f i ∈ L2(Ωi), i = 1, 2, are the restrictions of

f (x, y) =
⎧⎨
⎩

−1 for (x, y) ∈ (0, 1) × [0.75, 1)
0 for (x, y) ∈ (0, 1) × [0, 0.75) ∪ (1, 2) × [0.25, 1)

−3 for (x, y) ∈ (1, 2) × [0, 0.25)
Thus, we can define a problem to find

min q(u) = 1

2
a(u, u) − �(u) subject to u ∈ K. (2.1)

We shall consider two variants of the Dirichlet data. In the first case, both mem-
branes are fixed on the outer edges as in Fig. 1 left, so that

Γ 1
U = {(0, y) ∈ R

2 : y ∈ [0, 1]}, Γ 2
U = {(2, y) ∈ R

2 : y ∈ [0, 1]}.
Since the Dirichlet conditions are prescribed on the parts of the boundaries of both
membranes with positive measure, the quadratic form a is positive definite, which
guarantees the existence and the uniqueness of the solution [27]. In the second case,
only the left membrane is fixed on the outer edge, and the right membrane has no
prescribed displacement as in Fig. 1 right, so that

Γ 1
U = {(0, y) ∈ R

2 : y ∈ [0, 1]}, Γ 2
U = ∅.

Even though a is in this case only semidefinite, the cost function q is still coercive
due to the choice of f , so the solution exists; it can be proved unique [27].

The model problem’s solution may be interpreted as the displacement of two mem-
branes under the traction f . The left edge of the right membrane cannot penetrate
below the right edge of the left membrane.

Fig. 1 Coercive (left) and semicoercive (right) model problems
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3 Domain decomposition

So far, we have used only the natural decomposition of the spatial domain Ω into Ω1

and Ω2. However, to enable efficient application of domain decomposition methods,
we can optionally decompose each Ωi into p=1/Hs ×1/Hs , i =1, 2, square subdo-
mains Ωi1, . . . , Ωip as in Fig. 2. We shall call Hs a decomposition parameter.

The continuity of a global solution inΩ1 andΩ2 can be enforced by the conditions

uij (x) = uik(x), (3.1)

∇uij · nij = −∇uik · nik, (3.2)

which should be satisfied by relevant traces of uij and uik on

Γ ij,ik = Γ ij ∩ Γ ik .

Let us simplify the notation by assigning to each subdomain and its boundary
number k = 1, . . . , s = 2p,

Ωk = Ωij , Γk = Ωij , k = k(i, j) = (i − 1)p + j .

The boundary between Ωi and Ωj is denoted by Γij . Let

V k
D =

{
vk ∈ H 1(Ωk) : vk = 0 on ΓU ∩ Γk

}
, k = 1, . . . s,

denote the closed subspaces of H 1(Ωi), and let

VD = V 1
D × · · · × V s

D,

KC
D =

{
v ∈ VD : vj − vi ≥ 0 on ΓC ∩ Γij , i ≤ p < j

}
,

KD =
{
v ∈ KC

D : vi = vj on Γij

}
. (3.3)

Fig. 2 Domain decomposition and discretization
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The relations on the boundaries are again in terms of traces. On VD , we define the
broken scalar product

(u, v)D =
s∑

i=1

∫

Ωi

uividΩ,

the symmetric bilinear form

aD(u, v) =
s∑

i=1

∫

Ωi

(
∂ui

∂x1

∂vi

∂x1
+ ∂ui

∂x2

∂vi

∂x2

)
dΩ,

and the linear form

�D(v) = (f, v)D =
s∑

i=1

∫

Ωi

f ividΩ,

where f i ∈ L2(Ωi) denotes the restriction of f to Ωi .
Using the above notation, it is a standard exercise (see, e.g., the book [18,

Sect. 10.2]) to prove that (2.1) is equivalent to the problem to find u ∈ KD such that

qD(u) ≤ qD(v), qD(v) = 1

2
aD(v, v) − �D(v), v ∈ KD . (3.4)

4 Discretization

To reduce (3.4) to a finite-dimensional problem, let us introduce on each subdo-
main Ωi a regular grid with the step h as in Fig. 2 so that the grids match across the
interfaces Γij of the adjacent subdomains, index contiguously the nodes and entries
of corresponding vectors in the subdomains, and define piece-wise linear functions

φi
�, � = 1, . . . , ns,

where ns = (Hs/h + 1)2 denotes a number of nodes in Ωi, i = 1, . . . , s. We shall
look for an approximate solution uh in a trial space Vh which is spanned by the basis
functions φi

� (Fig. 3),

Vh = V 1
h × · · · × V s

h ,

V i
h = Span{φi

� : � = 1, . . . , ns}.
Decomposing uh into the components which comply with the decomposition, i.e.,

uh = (u1h, . . . , u
s
h),

ui
h =

ns∑
�=1

ui
�φ

i
�(x),

we get

a(uh, vh) =
s∑

i=1

ai(u
i
h, v

i
h), (4.1)

778 Numerical Algorithms (2022) 91:773–801



Fig. 3 Subdomain Ωi and its
triangularization

ai(ui
h, v

i
h) =

ns∑
�=1

ns∑
m=1

ai(φ
i
�, φ

i
m)vi

�v
i
m = uT

i Kivi , (4.2)

[Ki]�m = ai(φ
i
�, φ

i
m), [ui]� = ui

�, [vi]� = vi
�. (4.3)

Similarly

�(uh) =
s∑

i=1

(f i, ui
h),

(f i, ui
h) =

ns∑
�=1

(f i, ui
�φ

i
�) = fTi ui ,

[fi]� = (f i, φi
�).

Using the above notation, we get the discretized version of problem (3.4) with
auxiliary domain decomposition

min
1

2
uT Ku − fT u s.t. BIu ≤ o and BEu = o. (4.4)

In (4.4), K ∈ R
n×n, n = sns, denotes a block diagonal symmetric positive semidefi-

nite (SPS) stiffness matrix, the full rank matrices BI and BE describe the discretized
non-penetration and gluing conditions, respectively, and f represents the discrete ana-
log of the linear form �(u). We can write the stiffness matrix and the vectors in the
block form

K =

⎡
⎢⎢⎣
K1 O . . . O
O K2 . . . O
. . . . . . . . . . . .

O O . . . Ks

⎤
⎥⎥⎦ , u =

⎡
⎣

u1
. . .

us

⎤
⎦ , f =

⎡
⎣

f1
. . .

fs

⎤
⎦ .

The rows of BE and BI are filled with zeros except 1 and −1 in the positions corre-
sponding to the nodes on the subdomain boundaries. We get three types of equality
constraints.
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If bi denotes a row of BI or BE , then bi does not have more than four nonzero
entries. The continuity of the solution in the “wire basket” (displacements ui , uj ,
uk , and ul of four corners of adjacent subdomains), on the interface (displacements
ui and uj of adjacent nodes in the interior of adjacent edges), or on the Dirichlet’s
boundary satisfy

ui = uj , uk = u�, ui + uj = uk + ul; ui = uj ; ui = 0;
respectively. The identification can be be expressed by the vectors

bij = (si − sj ), bk� = (sk − s�), bijkl = (si + sj − sk − sl); bi = si;
where si denotes the ith column of the identity matrix In. The continuity of the
solution across the interior of subdomains interface is implemented by

bT
iju = 0,

The non-penetration is enforced similarly. If i and j are the indices of matching
nodes on Γ 1

C and Γ 2
C , respectively, then any feasible nodal displacements satisfy

bT
iju ≤ 0.

If ui, uj and uk, u� introduced above are the displacement of the adjacent corners on
Γ 1

C and Γ 2
C , respectively, then we place b

T
ij and bT

kl into the rows of BE and bT
ijkl into

the rows of BI .

5 TFETI problem

Our next step is to simplify the problem by using the duality theory; in particular, we
replace the general inequality constraints

BIu ≤ o

by the nonnegativity constraints. To this end, let us define the Lagrangian associated
with problem (4.4) by

L(u, λI , λE) = 1

2
uT Ku − fT u + λT

I BIu + λT
EBEu, (5.1)

where λI and λE are the Lagrange multipliers associated with the inequalities and
equalities, respectively. Introducing the notation

λ =
[

λI

λE

]
and B =

[
BI

BE

]
,

we can observe that B ∈ R
m×n is a full rank matrix and write the Lagrangian briefly

as

L(u, λ) = 1

2
uT Ku − fT u + λT Bu.

The solution satisfies the KKT conditions, including

Ku − f + BT λ = o. (5.2)
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Equation (5.2) has a solution if and only if

f − BT λ ∈ ImK, (5.3)

which can be expressed more conveniently by means of a matrix R the columns of
which span the null space of K as

RT (f − BT λ) = o. (5.4)

The matrix R can be formed directly so that each floating subdomain is assigned to
a column of R with ones in the positions of the nodal variables that belong to the
subdomain and zeros elsewhere. It may be checked that RT BT is a full rank matrix.

Now assume that λ satisfies (5.3), so that we can evaluate λ from (5.2) by means
of any (left) generalized matrix K+ which satisfies

KK+K = K. (5.5)

It may be verified directly that if u solves (5.2), then there is a vector α such that

u = K+(f − BT λ) + Rα. (5.6)

For the effective evaluation of the action of the generalized inverse, notice that Ki

can be written in the form

Ki =
[

ai bT
i

bi Ai

]

with symmetric positive definite Ai , so that we can use

K+ = diag(K+
1 , . . . ,K+

s ), K+
i =

[
0 oT

o A−1
i

]
.

After eliminating the primal variables u, we can find λ by solving the minimization
problem

min θ(λ) s.t. λI ≥ o and RT (f − BT λ) = o, (5.7)

where

θ(λ) = 1

2
λT Fλ − λT BK+f, F = BK+BT . (5.8)

Once the solution λ̂ of (5.7) is known, the vector û which solves (4.4) can be
evaluated by (5.6) and

α = −(RT B̂T B̂R)−1RT B̂T B̂K+(f − B̂T λ̂), (5.9)

where B̂ = [B̂T
I ,BT

E]T , and the matrix B̂I is formed by the rows bi of BI that corre-
spond to the positive components of the solution λ̂I characterized by λ̂i > 0. A more
effective procedure avoiding manipulation with B̂ can be found in Horák, Dostál, and
Sojka [19].

Using the orthogonal projectors on the kernel of G = RT BT and its complement,
we can modify (5.7) into the form that can be solved very efficiently by a combination
of the active set strategy and the augmented Lagrangian method. We shall give the
details with the description of H-TFETI-DP in Section 7.
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6 Connecting subdomains into clusters

The bottleneck of classical FETI methods is the dual coarse grid dimension, which is
equal to the defect of the stiffness matrixK, in our case, to the number of subdomains.
To increase the rank of K, we shall use the idea of Klawonn and Rheinbach [30]
to interconnect some subdomains on the primal level into clusters so that the defect
of the stiffness matrix of the cluster is equal to the defect of one of the subdomain
stiffness matrices.

6.1 Prolog: interconnecting four subdomains in a common corner

For example, to join four adjacent subdomains in the only common node

x ∈ Ωi ∩ Ωj ∩ Ωk ∩ Ω�,

we can transform the nodal variables associated with

Ω̃q = Ωi × Ωj × Ωk × Ω�

by the expansion matrix

Lq ∈ R
nc×ñc , LT

q Lq = I, ñc = nc − 3, nc = 4ns.

The matrix Lq can be obtained by replacing appropriate four columns of the identity
matrix by their normalized sum. Feasible variables uq of the cluster are related to
global variables ũq by

uq = Lq ũq .

The stiffness matrix K̃q of such cluster in global variables is defined by

K̃q = LT
q diag(Ki ,Kj ,Kk,K�)Lq .

The kernel of K̃q is spanned by a vector ẽq which can be obtained from the unit
vector eq ∈ ImLq using

ẽq = LT
q e

q .

Assuming that the set of all subdomains is decomposed into c clusters comprising
four adjacent subdomains with a common vertex, we can use the global expansion
matrix with orthonormal columns

L = diag(L1, · · · ,Lc)

to get partially assembled global stiffness matrix

K̃ = LT KL = diag(K̃1, · · · K̃c)

and the matrices
B̃ = EBL, R̃ = diag(̃e1, . . . , ẽc),

where E denotes a matrix obtained from the identity matrix by deleting the rows cor-
responding to zero rows of BEL. However, the procedure made the regular condition
number of F̃ to deteriorate to

κ
(
F̃|Ker(R̃T B̃T )

)
≤ CHs

(
1 + ln

Hs

h

)
/h
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with C independent of H and h (see Vodstrčil et al. [41]). In the next two subsections
we show how to interconnect the subdomains by edge averages.

6.2 Coupling two subdomains by edge averages

In what follows, we shall denote by e and e the vectors with all components equal
to 1 and 1/‖e‖, respectively, where ‖ . ‖ denotes the Euclidean norm. To simplify the
notations, we shall often avoid specification of the dimension of vectors and matrices
when we can deduce it from the assumption that they appear in well-defined expres-
sions or when we introduce a generic object as above. It is thus possible that one
symbol can represent in one formula two objects of different dimensions.

To describe the coupling by averages, we shall use the transformation of bases
proposed by Klawonn and Widlund [32], see also Klawonn and Rheinbach [29] and
Li and Widlund [37]. The basic idea is a rather trivial observation that if x ∈ R

p

denotes any vector, then

xT e =
p∑

i=1

xi,

so if

[c1, . . . , cp−1, e], e = 1√
p
e,

denote an orthonormal basis of Rp, then the last coordinate of a vector x ∈ R
p in this

basis is given by xp = eT x.
To find the basis and transformation, denote by T ∈ R

p×p an orthogonal matrix
that can be obtained by the application of the Gram–Schmidt procedure to the
columns of

T0 =
[

I e
−eT 1

]
∈ R

p×p,

starting from the last one. We get

T = [C, e] , CT C = I, CT e = o, ‖e‖ = 1, C ∈ R
p×(p−1), e ∈ R

p, (6.1)

and if x = Ty, y ∈ R
p, then

yp = eT x = 1√
p

p∑
i=1

xi, e = 1√
p
e.

If we apply the transformation to variables associated with the interiors of adjacent
edges, we can join them by the extension mathrix L as in Section 6.1.

Let us first show how to join two subdomains Ω1 and Ω2 by the averages of vari-
ables associated with the interior of adjacent edges. The basis normalized constant
vectors associated with the interior of edge Γ ij of Ωi adjacent to Ωj will be denoted
by eij as in Fig. 4, eij ∈ R

ne .
On the interiors of edges Γ 12 and Γ 21, we shall introduce the transformation

matrices T12,T21 ∈ R
ne×ne ,

x12 = T12 y12, x21 = T21 y21, Tij = [Cij , eij ] ∈ R
ne×ne , (Tij )T Tij = I,
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Fig. 4 Joining two subdomains by the edge averages

so that we can define orthogonal transformations T1, T2 ∈ R
ns×ns acting on Ω1

and Ω2 by

T1 =
[
I O
O T12

]
=

[
I O o
O C12 e12

]
, T2 =

[
I O
O T21

]
=

[
I O o
O C21 e21

]
.

The identity matrix is associated with the variables that are not affected by coupling.
The global transformation T ∈ R

n×n, n = 2ns, then reads

T =
[
T1 O
O T2

]
=

⎡
⎢⎢⎣

I O O O
O T12 O O
O O I O
O O O T21

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

I O o O O o
O C12 e12 O O o
O O o I O o
O O o O C21 e21

⎤
⎥⎥⎦ .

Since we are especially interested in the columns corresponding to averages, it is
convenient to move the columns with eij to the right to get

T� =

⎡
⎢⎢⎣

I O O O o o
O C12 O O e12 o
O O I O o o
O O O C21 o e21

⎤
⎥⎥⎦ =

[
C1 O ẽ12 o
O C2 o ẽ21

]
∈ R

n×n.

The coupling can then be implemented by the normalized expansion matrix

L =

⎡
⎢⎢⎣

I O o
O I o
oT oT 1/

√
2

oT oT 1/
√
2

⎤
⎥⎥⎦ =

⎡
⎣

I o
oT 1/

√
2

oT 1/
√
2

⎤
⎦ ∈ R

n×(n−1).

Using T� and L, we can define

Z = T�L =

⎡
⎢⎢⎣

I O O O o
O C12 O O 1/

√
2e12

O O I O o
O O O C21 1/

√
2e21

⎤
⎥⎥⎦ =

[
C1 O 1/

√
2̃e12

O C2 1/
√
2̃e21

]
= [C E],
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Z ∈ R
n×(n−1), C ∈ R

n×(n−2), E ∈ R
n, the columns of which span the subspace of

feasible vectors. Indeed, using (6.1) and the definition of T�, we can check that the
interior edge variables x12 and x21 of any vector x = Zy,

x =

⎡
⎢⎢⎣

x1

x12

x2

x21

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

I O O O o
O C12 O O 1/

√
2e12

O O I O o
O O O C21 1/

√
2e21

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y1

y12

y2

y21

yn−1

⎤
⎥⎥⎥⎥⎦

,

satisfy (with e ∈ R
ne , eT e = 1)

eT x12 = eT
(
C12y12 + 1/

√
2yn−1e12

)
= 1/

√
2yn−1,

eT x21 = eT
(
C21y21 + 1/

√
2yn−1e21

)
= 1/

√
2yn−1.

Recall that eij ∈ R
ne denotes a vector with ne entries equal 1/

√
ne associated with

the interior of the part of Γ ij and Cij ∈ R
ne×(ne−1). Notice that the feasible vectors

can be described in a much simpler way using

ImZ = {x ∈ R
n : xT Z⊥ = 0} = (ImZ⊥)⊥ , Z⊥ =

[
1/

√
2̃e12

−1/
√
2̃e21

]
.

The latter observation is a key ingredient of the analysis of bounds on the spectra of
H-TFETI-DP clusters [20].

6.3 Connecting square clusters by edge averages

The procedure can be generalized to specify the feasible vectors of any cluster con-
nected by the averages of any set of adjacent edges. Here, we consider the clusters
formed by m2 square subdomains joined by edge averages. Using a proper number-
ing of variables by subdomains, in each subdomain setting first the variables that are
not affected by the interconnecting, then the variables associated with the averages
ordered by edges, we get

Z = [
C E

]
, C = diag(C1, . . .Csc), E = 1/

√
2

⎡
⎢⎢⎢⎢⎣

. . .

. ẽij .

. . .

. ẽji .

. . .

⎤
⎥⎥⎥⎥⎦

, (i, j) ∈ C, (6.2)

where C denotes a set of ordered couples of the subdomains’ indices that define
connecting of the interiors of adjacent edges by averages, and sc here denotes the
number of subdomains in the cluster.

For example, let us show how to interconnect four adjacent subdomains Ωi , Ωj ,
Ωk , and Ωl of the left membrane of Fig. 2, i = 11, j = 12, k = 13, l = 14. The
corresponding coupling set is defined by

C = {(i, j), (k, l), (i, k), (j, l)}.
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The cluster is defined on

Ω̃q = Ω
i × Ω

j × Ω
k × Ω

�
.

The procedure is very similar to that described in Section 6.1; the only difference is
that we shall replace the expansion matrix Lq by the basis of feasible displacements
of the cluster Zq . The feasible variables of the cluster are related to global variables
ũq by

uq = Zq ũq

and the stiffness matrix K̃q of such cluster in global variables can be obtained by

K̃q = (Zq)T diag(Ki ,Kj ,Kk,K�)Zq .

The kernel of K̃q is spanned by a vector ẽq which can be obtained from the unit
vector eq ∈ ImZq using

ẽq = (Zq)T eq .

Assuming that the set of all subdomains is decomposed into c clusters intercon-
nected by the edge averages, we can use the matrix

Z = diag(Z1, · · · ,Zc)

with orthonormal columns to connect the groups of m × m subdomains into clusters
to get the stiffness matrix

K̃ = ZT KZ = diag(K̃1, · · · K̃c). (6.3)

7 H-TFETI-DP problem

To define H-TFETI-DP problem, we shall proceed as in Section 6.1. The matrix B̃
can be assembled in the same way as the matrix B which enforces the constraints on
variables x, so we can achieve that

B̃B̃T = I. (7.1)

Notice that B̃ enforces both constraints that connect the subdomains into clusters
and those connecting the clusters. Moreover, KerB̃ =KerBZ, but BZ need not have
orthonormal rows.

The kernel R̃ is defined by

R̃ = diag(̃e1, . . . , ẽc), ẽi = ‖ZT
i e‖−1ZT

i e, e = (1, . . . , 1) ∈ ImZi .

Let us denote

F̃ = B̃K̃+B̃T , d̃ = B̃K̃+f,
G̃ = R̃T B̃T , ẽ = R̃T f,

and let N denote a regular matrix that defines orthonormalization of the rows of G̃ so
that the matrix

G̃ = NG̃

has orthonormal rows. After denoting

ẽ = Nẽ,
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problem (5.7) reads

min
1

2
λT F̃λ − λT d̃ s.t. λI ≥ o and G̃λ = ẽ. (7.2)

Next, we shall transform the problem of minimization on the subset of the affine
space to that on the subset of a vector space by looking for the solution of (7.2) in the
form

λ = μ + λ̃, where G̃λ̃ = ẽ.

Notice that λ̃ which satisfies λ̃I ≥ o exists and can be obtained by

λ̃ = arg min
1

2
‖λ‖2 s.t. λI ≥ o and G̃λ = ẽ.

To carry out the transformation, denote λ = μ + λ̃, so that

1

2
λT F̃λ − λT d̃ = 1

2
μT F̃μ − μT (d̃ − F̃̃λ) + 1

2
λ̃

T
F̃̃λ − λ̃

T
d̃,

and problem (7.2) is, after returning to the old notation, equivalent to

min
1

2
λT F̃λ − λT d̃ s.t. G̃λ = o and λI ≥ −λ̃I (7.3)

with d̃ = d̃ − F̃̃λ and we can achieve that λ̃I ≥ o.
Our final step is based on the observation that problem (7.3) is equivalent to

min θ̃�(λ) s.t. G̃λ = o and λI ≥ −λ̃I , (7.4)

where � is a positive constant and

θ̃�(λ) = 1

2
λT H̃�λ − λT P̃̃d, H̃� = P̃F̃P̃ + �Q̃, (7.5)

Q̃ = G̃T G̃, P̃ = I − Q̃. (7.6)

The matrices P̃ and Q̃ are the orthogonal projectors on the kernel of G̃ and the image
space of G̃T , respectively. The regularization term is introduced in order to enable the
reference to the results on strictly convex QP problems. In what follows, we assume
that

� ≈ ‖F̃‖. (7.7)

Notice that the number of rows of G is m2 times larger that that of G̃.

8 Bounds on the spectrum of ˜P˜F˜P

Using that ImP̃ and ImQ̃ are invariant subspaces of H̃�, it is easy to check that

σ(H̃�) = σ (̃PF̃P̃|ImP̃) ∪ {�},
and

min{λmin(̃PF̃P̃), �} ≤ λi(H̃�) ≤ max{‖F̃‖, �}. (8.1)

We shall look for the bounds on P̃F̃P̃ in two steps.
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8.1 Reducing the problem to subdomain boundaries

Notice that B̃ has zero columns in the positions corresponding to the variables in
the interiors of Ωi . To enhance this observation, let us decompose the set of indices
into two sets corresponding to the subdomains boundary and interior nodes B and I,
respectively. Then, it is easy to check that

[K̃+]BB = S̃+, S̃ = K̃BB − K̃BIK̃
−1
IIK̃IB.

The matrix S̃ is called the Schur complement of K̃ with respect to the block interior
variables. A similar formula holds for the clusters, i.e.,

[K̃+
i ]BiBi

= S̃+
i , S̃i = K̃BiBi

− K̃BiIi
K̃−1
IiIi

K̃IiBi
,

where Bi and Ii denote the sets of indices of the global variables on the boundaries
and in the interiors of the subdomains assembled into the cluster, respectively. Notice
that the multiplication by Z does not change the variables associated with the interior
of subdomains as

Z =
[
III O
O Z̃

]
,

where Z̃ maps the global variables to the feasible ones. It follows that

[K̃+]BB = S̃+ = (Z̃T SZ̃)+, S = diag(S1, . . . ,Ss). (8.2)

Thus, we can define the H-TFETI-DP dual problem by the matrices

B̃∗B and R̃B∗,

obtained by deleting the entries corresponding to the interior variables to get

F̃ = B̃K̃+B̃T = B̃∗BS̃+B̃T
∗B. (8.3)

The following lemma shows that R̃B∗ is the the kernel of S.

Lemma 1 Let ImR̃ be the kernel of K̃. Then,

ImR̃B∗ = KerS. (8.4)

Proof By the assumption

KIIRI∗ + KIBRB∗ = O, i.e., KIBRB∗ = −KIIRI∗.

It follows that

SRB∗ =
(
KBB − KBIK

−1
IIKIB

)
RB∗ = KBBRB∗ + KBIRI∗ = O.

In what follows, we consider only the objects defined on the boundaries of sub-
domains and simplify the notation by omitting the specification of related index sets,
e.g., we use R̃ and B̃ to denote R̃B∗ and R̃B∗.
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8.2 The spectrum of Schur complements of subdomains and clusters

The bounds on the spectrum of P̃F̃P̃ can be estimated by those of the Schur
complements.

Lemma 2 Let there be constants 0 < c < C such that for each λ ∈ R
m

c‖λ‖2 ≤ ‖B̃T λ‖2 ≤ C‖λ‖2. (8.5)

Then, there are constants 0 < c1 < C1 that are independent of h and Hs such that

c1

(
max

i
{‖̃Si‖}

)−1

≤ λmin(̃PF̃P̃) ≤ ‖P̃F̃P̃‖ ≤ C1

(
min

i
{λmin(̃Si )}

)−1

. (8.6)

Proof The proof of this lemma is rather trivial; it uses only the observations that if
λ ∈ ImP̃, then G̃λ = R̃T B̃T λ = o, i.e., B̃T λ is orthogonal to the kernel of S̃, so that
B̃T λ ∈ ImS̃, and that the nonzero eigenvalues of S̃ are reciprocal to the corresponding
eigenvalues of S̃+.

Lemma 2 reduced the problem to find bounds on the spectrum of H̃ to the problem
to find bounds on the spectrum of S̃i . Some bounds were proved recently (see [20]):

Theorem 1 For each integerm > 1, let S̃ denote the Schur complement of the cluster
with the side-length Hc comprising m × m square subdomains of the side-length
Hs = Hc/m discretized by the regular grid with the step-length h and interconnected
by the edge averages. Let λmin(S) denote the smallest nonzero eigenvalue of

S = diag(S1, . . . ,Ss),

where Si denote the Schur complements of the subdomain stiffness matrices Ki , i =
1, . . . , s = m2, with respect to the interior variables. Then,

‖S‖ = λmax(S) ≥ λmax(̃S), (8.7)

λmin(S) ≥ λmin(̃S) ≥ 2ne

ns
λmin(Si ) sin

2
( π

2m

)
≈ 1

2
λmin(Si )

( π

2m

)2
. (8.8)

8.3 Hs − h bounds on Si

The following lemma gives bounds on the Schur complements Si in terms of h and Hs ,

Lemma 3 Let Si denote the Schur complement of subdomain Ωi with the sidelength
Hs that is discretized with the steplength h. Then, there are constants 0 < c < C,
independent of h and Hs , such that

c
h

Hs

≤ λmin(Si ) ≤ ‖Si‖ ≤ C, i = 1, . . . , s, (8.9)

and there are constants 0 < c1 < C1, independent of h and Hs , such that

c1
h

Hsm2
≤ min

i
{λmin(̃Si )} ≤ max

i
{‖̃Si‖} ≤ C1. (8.10)
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Proof See, e.g., Brenner [2] or Pechstain [38, Lemma 1.59]).

Now, we can formulate the main result, which is at the core of the proof of optimality
of the presented algorithms.

Proposition 1 Let Ω be decomposed into s square subdomains Ωi with the side-
length Hs and discretized with the parameter h as in Sections 3 and 4. Let the
subdomains be interconnected by the edge averages into c = s/m2 square clusters
with the sidelength Hc = mHs , each cluster comprising m × m subdomains. Let
� > 0 and let there be constants 0 < c < C such that for each λ ∈ R

m

c‖λ‖2 ≤ ‖B̃T λ‖2 ≤ C‖λ‖2. (8.11)

Then, there are constants 0 < c1 < C1 such that

c1 ≤ λmin(̃PF̃P̃) ≤ ‖P̃F̃P̃‖ ≤ C1
Hcm

h
. (8.12)

Proof Use Lemma 2, and Lemma 3, in particular the inequalities (8.10).

9 Optimal solvers to bound and equality constrained problems

Here, we shall present two algorithms that can be combined to solve approximately a
class of problems (7.4) in a uniformly bounded number of matrix-vector multiplica-
tions. We shall formulate the optimality results in the next section. For simplicity, we
formulate the algorithms without the stopping criteria, which are presented sepa-
rately.

9.1 SMALBE-M

The first algorithm is the semi-monotonic augmented Lagrangian method called
SMALBE-M [18, Chapter 9]. It generates the approximations for the Lagrange mul-
tipliers for equality constraints in the outer loop using the active set based algorithm
for bound constrained auxiliary minimization problems in the inner loop.

SMALBE-M is a variant of the algorithm proposed by Conn, Gould, and Toint
[5] for identifying stationary points of more general problems. Its early modification
called SMALBE (semi-monotonic augmented Lagrangians for bound and equality
constrained problems) by Dostál, Friedlander and Santos [15] and Dostál, Friedlander
and Santos [14] was later shown to be in a sense optimal for the solution of a class of
problems with uniformly bounded spectrum [8]. Dostál and Horák used SMALBE-M
to develop scalable FETI based algorithms for variational inequalities [11].

A unique feature of SMALBE-M is the adaptive precision control of auxiliary
problems that guarantees the increase of Lagrangian that is sufficient for the optimal-
ity results. The algorithm was implemented in PERMON [39] and ESPRESO [22]
software. Recent improvement with adaptive reorthogonalization is described in [13].
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If we introduce a newLagrangemultiplier vectorμ to enforce the equality constraints,
the corresponding augmented Lagrangian for problem (7.4) can be written as

L(λ, μ, ρ) = 1

2
λT H̃�λ − λT P̃̃d + μT G̃λ,

where H̃�, P̃, and G̃ are defined by (7.5) and (7.6). The gradient of L(λ, μ, ρ) is
given by

g̃(λ, μ, ρ) = H̃�λ − P̃̃d + G̃T μ.

Let I denote the set of the indices of the inequality constrained entries of λ, λI ≥
−λ̃I . The projected gradient

g̃P = g̃P (λ, μ, ρ)

of L at λ is given componentwise by

g̃P
i =

{
g̃i for λi > −̃λi or i /∈ I,

g̃−
i for λi = −̃λi and i ∈ I,

where g̃−
i = min{g̃i , 0}. It can be verified directly that (λ,μ, �) solves problem (7.4)

if and only if

g̃P (λ,μ, �) = o.

The above condition is a quantitative refinement of the Karush–Kuhn–Tucker condi-
tions [10, Section 6.2.1].

The algorithm that implements the outer loop reads as follows.

Step 1 can be implemented by any algorithm for minimization of the augmented
Lagrangian L with respect to λ subject to λI ≥ −λ̃I which guarantees convergence of
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the projected gradient to zero. To get a bound on the number of matrix multiplication
that are necessary to get λ = λk which satisfies

‖gP (λk, μk, �)‖ ≤ ε and ‖G̃λk‖ ≤ ε, (9.3)

it is necessary to carry out Step 1 in a uniformly bounded number of matrix–vector
multiplications, i.e., to solve the problem

min L(λ, μ, ρ) subject to λI ≥ −λ̃I (9.4)

with the rate of convergence in terms of bounds on the spectrum of the Hessian matrix
of L.

9.2 MPRGP

Step 1 of SMALBE-M requires an approximate solution of the convex bound con-
strained QP problem. Here, we implement Step 1 of SMALBE-M by MPRGP (mod-
ified proportioning with reduced gradient projections) (see Dostál and Schöberl [12]
and Dostál [7], [10, Chap. 5], and [18, Chap. 8]). To describe it, let us recall that the
unique solution λ = λ(μ, ρ) of (9.4) satisfies the Karush-Kuhn-Tucker conditions

gP (λ, μ, ρ) = o. (9.5)

Let A(λ) and F(λ) denote the active set and free set of the indices of λ,
respectively, i.e.,

A(λ) = {i ∈ I : λi = −λ̃i} and F(λ) = {i : λi > −λ̃i or i /∈ I}.
To enable an alternative reference to the KKT conditions, let us define the free
gradient ϕ(λ) and the chopped gradient β(λ) by

ϕi(λ) =
{

gi(λ) for i ∈ F(λ)

0 for i ∈ A(λ)
and βi(λ) =

{
0 for i ∈ F(λ)

g−
i (λ) for i ∈ A(λ)

so that the KKT conditions are satisfied if and only if the projected gradient gP (λ) =
ϕ(λ) + β(λ) is equal to zero. We call λ feasible if λi ≥ −λ̃i for i ∈ I. The projector
� to the set of feasible vectors is defined for any λ by

�(λ)i = max{λi, −λ̃i} for i ∈ I, �(λ)i = λi for i /∈ I.
Recall that H̃� is the Hessian of L with respect to λ. The expansion step is defined

by

λk+1 = �
(
λk − αϕ(λk)

)
(9.6)

with the steplength α ∈ (0, 2‖H̃�‖−1) (see [9], recommended α = 1.90‖H̃�‖−1).
This step can expand the current active set. To describe it without �, let ϕ̃(λ) be the
reduced free gradient for any feasible λ, with entries

ϕ̃i = ϕ̃i (λ) = min{λi/α, ϕi} for i ∈ I, ϕ̃i = ϕi for i ∈ F(λ)

such that
�(λ − αϕ(λ)) = λ − αϕ̃(λ). (9.7)

If the inequality
||β(λk)||2 ≤ Γ 2ϕ̃(λk)T ϕ(λk) (9.8)
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holds, then we call the iterate λk strictly proportional. The test (9.8) is used to decide
which component of the projected gradient gP (λk) will be reduced in the next step.

The proportioning step is defined by

λk+1 = λk − αcgβ(λk).

The steplength αcg is chosen to minimize L(λk − αβ(λk),μk, ρk) with respect to α,
i.e.,

αcg = β(λk)T g̃(λk)

β(λk)T H̃�β(λk)
.

The purpose of the proportioning step is to remove indexes from the active set.
The conjugate gradient step is defined by

λk+1 = λk − αcgpk, (9.9)

where pk is the conjugate gradient direction [1] which is defined recurrently. The
recurrence starts (or restarts) with pk = ϕ(λk) whenever λk is generated by the
expansion step or the proportioning step. If pk is known, then pk+1 is given by the
formulae [1]

pk+1 = ϕ(λk) − γpk, γ = ϕ(λk)T H̃�pk

(pk)T H̃�pk
. (9.10)

The conjugate gradient steps are used to carry out the minimization in the faceWJ =
{λ : λi = 0 for i ∈ J } given by J = A(λs) efficiently. The algorithm that we use
may now be described as follows.

The MPRGP algorithm has a linear rate of convergence in terms of the bounds on
the spectrum of the Hessian H̃� of L [12]. The norm of projected gradient converges
to zero with qualitatively the same rate of convergence. More about the properties
and implementation of SMALBE and MPRGP algorithms may be found in the books
[10, Chap. 5, 6] and [18, Chaps. 8,9].
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10 Optimality of H-TFETI-DP

To plug these observations into optimality analysis, notice that the discretized prob-
lem (7.4) is fully specified by the regularization parameter � > 0 and parametrs Hc,
m, and h,

0 < Hc = mHs ≤ 1/2, m ≥ 2, h ≤ 1/8, 1/Hc, 1/Hs, Hs/h ∈ N.

More formally, let us denote by D the set of all triples d = (Hs, m, h) that
define some discretized problem, so the smallest dicretized H-TFETI-DP problem is
characterized by the triple d = (1/2, 2, 1/8). For any D ≥ 2, let us define

DD =
{
d ∈ D : Hcm

h
≤ D

}
.

Theorem 2 Let D ≥ 2 and let each (Hs, m, h) ∈ DD specifies a problem (7.4) with
B̃ which satisfies (7.1) and � ≈ ‖F̃‖.

Then, there are constants c, C > 0 independent of (Hc, m, h) such that

c ≤ λmin(H̃�) ≤ ‖H̃�‖ ≤ C
mHc

h
≤ CD. (10.1)

Proof Combine the assumptions � ≈ ‖F̃‖ and (Hs, m, h) ∈ DD with Proposition 1.

To show that Algorithm 1 with the inner loop implemented by Algorithm 2 is
optimal for the solution of the class of problems (7.4), let us consider a class of
problems defined by d ∈ DD and �d , D ≥ 2 and �d ≈ ‖F̃‖. For any d ∈ D, we shall
define

Ad = H̃�, bd = P̃̃d

Cd = G̃, �d,I = −λ̃I and �d,E = −∞
by the vectors and matrices generated with the parameters Hc, h, and m, so that the
problem (7.4) is equivalent to the problem

minimize �d(λd) s.t. Cdλd = o and λd ≥ �d (10.2)

with

�d(λ) = 1

2
λT Adλ − bT

d λ.

Using these definitions, G̃G̃T = I, and assuming λ̃ ≥ o, we obtain

‖Cd‖ = 1 and ‖�+
d ‖ = 0. (10.3)

Moreover, using (8.1) and Theorem 2, we get that there are positive constants amin
and amax such that

amin ≤ λmin(Ad) ≤ λmax(Ad) ≤ amax (10.4)
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for any d ∈ DD . It follows that the assumptions of [18, Theorem 9.4](i.e., the
inequalities (10.3) and (10.4)) are satisfied for any discretization spacified by
parameters d ∈ DD , D ≥ 2 and we have the following result:

Theorem 3 Let D ≥ 2 denote a given constant, d ∈ DD , and let {λk
d}, {μk

d}, and
{Mk

d } be generated by Algorithm 1 (SMALBE-M) for the solution of problem (10.2)
arising from the discretization and decomposition of problem (2.1) with parameters
Hc, h, and m with

‖bd‖ ≥ ηd > 0, 1 > β > 0, Mt
0 = M0 > 0, �d ≈ ‖Ad‖, and μ0

d = o.

Let Step 1 of algorithm 9.1 (SMALBE-M) be implemented by Algorithm 2 (MPRGP)
with the parameters

Γ > 0 [Γ ≈ 1] and α ∈
(
0, 2a−1

max

)

to generate iterates λ
k,0
d , λ

k,1
d , . . . , λ

k,l
d = λk

d for the solution of (9.1) starting from

λ
k,0
d = λk−1

d with λ−1
d = o, where l = ld,k is the first index satisfying

‖gP (λ
k,l
d , μk

d , ρd)‖ ≤ Md
k ‖Cdλ

k,l
d ‖ (10.5)

or
‖gP (λ

k,l
d , μk

d , ρd)‖ ≤ ε‖bd‖min{1, M−1
k }. (10.6)

Then, Algorithm 1 generates an approximate solution λk which satisfies

‖gP (λk
d , μk

d , ρd)‖ ≤ ε‖bd‖ and ‖Cdλk
d‖ ≤ ε‖bd‖ (10.7)

at O(1) matrix-vector multiplications by the Hessian of the augmented Lagrangian
Ld for (10.2).

11 Numerical experiments

We implemented H-TFETI-DP into the PERMON package [39] developed at the
Department of Applied Mathematics of the Technical University of Ostrava and the
Institute of Geonics AS CR Ostrava. We carried out the computations on the Salomon
cluster, which consists of 1008 compute nodes; each node contains 24 core Intel
Xeon E5-2680v3 processors with 128 GB RAM, interconnected by 7D Enhanced
hypercube InfiniBand. We carried out some numerical experiments to compare the
performance of H-TFETI-DP and TFETI and to get information about the effect
of clustering. The experiments were limited to the semicoercive problem. In all
experiments, we use the relative precision stopping criterion with ε = 1e−4.

11.1 Effect of clustering

To understand the effect of clustering, we decomposed the domain of each membrane
into 1024 square subdomains discretized by 100×100 degrees of freedom each. The
subdomains were interconnected into m × m clusters, m ∈ {1, 2, 4, 8}, with m = 1
corresponding to the standard TFETI method. The (primal) dimension of the resulting
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Table 1 Performance of H-TFETI-DP with m × m clusters

Cores Clusters m SMALBE-M iterations Matrix×vector Time (s)

32 32 8 12 218 142.87

128 128 4 16 186 37.79

512 512 2 25 252 24.30

2048 2048 1 52 243 74.51

discretized problem was 20,480,000, 3169 inequalities enforced the nonpenetration.
We allocated each cluster one computational core.

The results in Table 1 indicate a positive effect of clustering on the rate of conver-
gence of the outer loop. At least a partial explanation provided Jarošová et al. [28],
who proved that we could interpret the interconnecting of subdomains into clusters
as the preconditioning by conjugate projector [6]. The clustering reduces the number
of equality constraints m2-times, so it is not surprising that the number of the outer
iterations decreases with m.

11.2 Scalability

The purpose of the second set of numerical experiments was to demonstrate the per-
formance of the algorithms and numerical scalability supported by Theorem 3. We
used

Hc/h = mHs/h = 255, m ∈ {1, 2, 4, 8}
to decompose the domain into 338, 648, 968, and 1250 clusters discretized by
22,151,168 to 81,920,000 nodal variables. The numbers of the most expensive oper-
ations, the multiplication by the matrix PF, are depicted in Fig. 5. We can see that the

Fig. 5 Matrix–vector multiplications for m = 1, 2, 4, 8

796 Numerical Algorithms (2022) 91:773–801



Table 2 Variational inequality with 4 × 4 clusters and Hs/h = 99

Primal Dual SMALBE-M SMALBE-M Matrix×vector Time

dimension dimension clusters iterations (s)

169,280,000 1,670,305 1058 36 350 42.95

327,680,000 3,243,199 2048 50 416 81.08

677,120,000 6,685,639 4032 70 549 276.83

number of matrix-vector multiplications increases very mildly in agreement with the
theory. Notice that the expansion step requires two matrix–vector multiplications.

11.3 Clusters with fine grid

To see the performance of the algorithm on larger problems, we fixed the number
of nodes on the edge of subdomains to 100 and carried out the computation with
relatively large 4 × 4 clusters. The results are in Table 2.

We can see that the number of iterates of the H-TFETI-DP algorithm without pre-
conditioning increases still rather slowly in agreement with the theory. The number
of iterations can be affected by large subdomains and a very fine grid that gener-
ates many nodes on the contact interface that touch the support. The performance
of the algorithms can be improved by using a recently proposed adaptive reorthog-
onalization [13]. It is also possible to improve the performance of MPRGP [34].

11.4 3D Elastic cube on rigid support

Our final benchmark indicates the importance of the small coarse grid. We resolved
the obstacle problem defined by a clumped elastic cube over the sinus-shaped obsta-
cle as in Fig. 6, loaded down by its weight, decomposed into 4 × 4 × 4 clusters,
Hs/h = 14. We used the ESPRESO [22] implementation of H-TFETI-DP for contact
problems developed in a National Supercomputer Center IT4Innovations of VSB-TU

Fig. 6 Elastic body on rigid
support
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Table 3 Elastic body on the sinus-shaped support, m=4, Hs/h = 14

Clusters Subdomains Unknowns × 106 H-TFETI-DP TFETI

(iter/s) (iter/s)

64 4,096 13 169/23.9 117/24.9

512 72,900 99 208/30.2 152/115.1

1,000 656,100 193 206/42.6 173/279.9

Ostrava. We can see in Table 3 that TFETI needs a much smaller number of itera-
tions, but H-TFETI-DP is still faster due to 64-times smaller coarse space and better
exploitation of the node-core memory organization. In general, if we use m × m × m

clusters, the hybrid strategy reduces the dimension and the cost of the coarse problem
by m3 and m6, respectively.

12 Comments and conclusions

We have used recently established bounds on the regular condition number of the
Schur complements of floating clusters arising from the interconnecting of square
subdomains by edge averages [17] to develop a theoretically supported massively
parallel algorithm for the solution of variational inequalities. The performance of the
algorithms was demonstrated by solving an academic benchmark and a 3D obsta-
cle problem discretized by hundreds of millions of nodal variables. In particular, the
results show that joining the subdomains into m × m clusters increases only slowly
the number of iterations necessary to achieve a prescribed relative precision and
reducesm4-times (m6 for 3D problems) the cost of preparation of the coarse problem.
The theoretical results and numerical experiments indicate that unpreconditioned H-
TFETI-DP with large clusters can be a competitive computational engine for solving
huge systems of variational inequalities discretized by sufficiently regular structured
grids. Using the reorthogonalization-based preconditioning [17], we can achieve the
same performance for the problems with variable coefficients provided they are con-
stant on the clusters. The methods of proofs can be used to get similar results for liner
elasticity and more general grids, particularly those obtained by the deformation of a
structured grid.
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Oldřich Vlach1

David Horák
david.horak@vsb.cz

Jakub Kružı́k
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