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Abstract
With the purpose of examining biased updates in variance-reduced stochastic gradi-
ent methods, we introduce SVAG, a SAG/SAGA-like method with adjustable bias.
SVAG is analyzed in a cocoercive root-finding setting, a setting which yields the same
results as in the usual smooth convex optimization setting for the ordinary proximal-
gradient method. We show that the same is not true for SVAG when biased updates
are used. The step-size requirements for when the operators are gradients are signifi-
cantly less restrictive compared to when they are not. This highlights the need to not
rely solely on cocoercivity when analyzing variance-reduced methods meant for opti-
mization. Our analysis either match or improve on previously known convergence
conditions for SAG and SAGA. However, in the biased cases they still do not cor-
respond well with practical experiences and we therefore examine the effect of bias
numerically on a set of classification problems. The choice of bias seem to primarily
affect the early stages of convergence and in most cases the differences vanish in the
later stages of convergence. However, the effect of the bias choice is still significant
in a couple of cases.

Keywords Variance reduction · Stochastic gradient · Bias · SAG · SAGA ·
Monotone inclusion · Root finding

1 Introduction

Variance-reduced stochastic gradient (VR-SG) methods is a family of iterative opti-
mization algorithms that combine the low per-iteration computational cost of the
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ordinary stochastic gradient descent and the attractive convergence properties of gra-
dient descent. Just as ordinary stochastic gradient descent, VR-SG methods solve
smooth optimization problems on finite sum form,

min
x∈RN

1
n

∑n
j=1 fi(x) (1)

where, for all i ∈ {1, . . . , n}, fi : RN → R is a convex function that is L-smooth, i.e.,
fi is differentiable with L-Lipschitz continuous gradient. These types of problems
are common in model fitting, supervised learning, and empirical risk minimization
which, together with the nice convergence properties of VR-SG methods, has lead
to a great amount of research on VR-SG methods and the development of several
different variants, e.g., [1, 15, 16, 21–25, 27, 30, 33, 40, 41, 43, 45].

Broadly speaking, VR-SG methods form a stochastic estimate of the objective
gradient by combining one or a few newly evaluated terms of the gradient with all
previously evaluated terms. Classic examples of this can be seen in the SAG [27,
40] and SAGA [15] algorithms. Given some initial iterates x0, y0

1 , . . . , y0
n ∈ R

N and
step-size λ > 0, SAGA samples ik uniformly from {1, . . . , n} and then updates the
iterates as

xk+1 = xk − λ
(
∇fik (x

k) − yk
ik

+ 1
n

∑n
j=1 yk

j

)
,

yk+1
ik

= ∇fik (x
k),

yk+1
j = yk

j for all j �= ik,

for k ∈ {0, 1, . . . }. The update of xk+1 is said to be unbiased since the expected
value of xk+1 at iteration k is equal to an ordinary gradient descent update. This is
in contrast to the biased SAG, which is identical to SAGA except that the update of
xk+1 is

xk+1 = xk − λ
(

1
n

(∇fik (x
k) − yk

ik

) + 1
n

∑n
j=1 yk

j

)

and the expected value of xk+1 now includes a term containing the old gradients
1
n

∑n
i=1 yk

i . Although SAG shows that unbiasedness is not essential for the conver-
gence of VR-SG methods, the effects of this bias are unclear. The majority of VR-SG
methods are unbiased but existing works have not established any clear advantage
of either the biased SAG or the unbiased SAGA. This paper will examine the effect
of bias and its interplay with different problem assumptions for SAG/SAGA-like
methods.
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1.1 Problem and algorithm

Instead of solving (1) directly, we consider a closely related but more general root-
finding problem. Throughout the paper, we consider the Euclidean space RN and the
problem of finding x ∈ R

N such that

0 = Rx := 1
n

∑n
i=1 Rix (2)

where Ri : RN → R
N is 1

L
-cocoercive—see Section 2—for all i ∈ {1, . . . , n}. Since

L-smoothness of a convex function is equivalent to 1
L

-cocoercivity of the gradient
[2, Corollary 18.17], the smooth optimization problem in (1) can be recovered by
setting Ri = ∇fi for all i ∈ {1, . . . , n} in (2). Problem (2) is also interesting in its
own right with it and the closely related fixed point problem of finding x ∈ R

N such
that x = (Id − αR)x where α ∈ (0, 2L−1) both having applications in for instance
feasibility and non-linear signal recovery problems, see [8, 10, 13] and the references
therein. To solve this problem, we present the Stochastic Variance Adjusted Gradient
(SVAG) algorithm.

SVAG is heavily inspired by SAG and SAGA with both being special cases, θ = 1
and θ = n respectively. Just like SAG and SAGA, in each iteration, SVAG evaluates
one operator Rik and stores the results in yk+1

ik
. An estimate of the full operator is

then formed as

Rxk ≈ R̃k = θ
n
(Rikx

k − yk
ik

) + 1
n

∑n
j=1 yk

j . (3)

The scalar θ determine how much weight should be put on the new information
gained from evaluating Rikx

k . If the innovation, Rikx
k −yk

ik
, is highly correlated with

the total innovation, Rxk − 1
n

∑n
j=1 yk

j , a large innovation weight θ can be chosen
and vice versa. The innovation weight θ also determines the bias of SVAG. Taking
the expected value R̃k given the information at iteration k gives

E[R̃k|xk, yk
1 , . . . , yk

n] = θ
n
Rxk + (

1 − θ
n

) 1
n

∑n
j=1 yk

j
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which reveals that R̃k is an unbiased estimate of Rxk if θ = n, i.e., in the SAGA case.
Any other choice, for instance SAG where θ = 1, yields a bias towards 1

n

∑n
j=1 yk

j .

1.2 Contribution

The theory behind finding roots of monotone operators in general, and cocoercive
operators in particular, has been put to good use when analyzing first-order opti-
mization methods, examples include [2, 4, 14, 26, 38, 44]. For instance can both the
proximal-gradient and ADMM methods be seen as instances of classic root-finding
fixed point iterations and analyzed as such, namely forward-backward and Douglas–
Rachford respectively. The resulting analyses can often be simple and intuitive
and even though the root-finding formulation is more general—not all cocoercive
operators are gradients of convex functions—the analyses are not necessarily more
conservative. For example, analyzing proximal-gradient as forward-backward split-
ting yields the same rates and step-size conditions as analyzing it as a minimization
method in the smooth/cocoercive setting, see for instance [32, Theorem 2.1.14] and
[2, Example 5.18 and Proposition 4.39]. However, the main contribution of this paper
is to show that the same is not true for VR-SG methods, in particular it is not true for
SVAG when it is biased.

The results consist of two main convergence theorems for SVAG: one in the coco-
ercive operator case and one in the cocoercive gradient case, the later being equivalent
to the minimization of a smooth and convex finite sum. Both of these theorems match
or improve upon previously known results for the SAG and SAGA special cases.
Comparing the two settings reveal that SVAG can use significantly larger step-sizes,
with faster convergence as a result, in the cocoercive gradient case compared to the
general cocoercive operator case. In the operator case, an upper bound on the step-
size that scales as O(n−1) is found where n is the number of terms in (2). However,
the restrictions on the step-size loosen with reduced bias and the unfavorable O(n−1)

scaling disappears completely when SVAG is unbiased. In the gradient case, this
bad scaling never occurs, regardless of bias. We provide examples in which SVAG
diverges with step-sizes larger than the theoretical upper bounds in the operator case.
Since the gradient case is proven to converge with much larger step-sizes, this ver-
ifies the difference between the convergence behavior of cocoercive operators and
gradients.

These results indicate that it is inadvisable to only rely on the more general mono-
tone operator theory and not explicitly use the gradient property when analyzing
VR-SG methods meant for optimization. However, the large impact of bias in the
cocoercive operator setting also raises the question regarding its importance in other
non-gradient settings as well. One such setting of interest, where the operators are
not gradients of convex functions, is the case of saddle-point problems. These prob-
lems are of importance in optimization due to their use in primal-dual methods but
recently they have also gained a lot of attention due to their applications in the train-
ing of GANs in machine learning. Because of this, and due to the attractive properties
of VR-SG methods in the convex optimization setting, efforts have gone into apply-
ing VR-SG methods to saddle-point problems as well [5, 7, 34, 42, 46]. Most of these
efforts have been unbiased, something our analysis suggests is wise. With that said,
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it is important to note that our analysis is often not directly applicable due the fact
that saddle-point problems rarely are cocoercive.

The main reason for the recent rise in popularity of variance-reduced stochas-
tic methods is their use in the optimization setting, but, although bias plays a big
role in the cocoercive operator case, our results are not as clear in this setting. For
instance, the theoretical results for the SAG and SAGA special cases yield identical
rates and step-size conditions with no clear advantage to either special case. Fur-
ther experiments are therefore performed where several different choices of bias in
SVAG are examined on a set of logistic regression and SVM optimization problems.
However, the results of these experiments are in line with existing works with no
significant advantage of any particular bias choice in SVAG. Although the perfor-
mance difference is significant in some cases, no single choice of bias performs best
for all problems and all bias choices eventually converge with the same rate in the
majority of the cases. Furthermore, the theoretical maximal step-size can routinely
be exceeded in these experiments, indicating that there is room for further theoretical
improvements.

1.3 Related work

There is a large array of options for solving (2). For n ∈ {1, 2, 3, 4}, several operator
splitting methods exist with varying assumptions on the operator properties, see for
instance [4, 18, 19, 28, 29, 44] and the references therein. However, while these
methods also can be applied for larger n by simply regrouping the terms, they do
not utilize the finite sum structure of the problem. Algorithms have therefore been
designed to utilize this structure for arbitrary large n with the hopes of reducing the
total computational costs, e.g., [9–11, 36]. In particular the problem and method in
[10] is closely related to the root-finding problem and algorithm considered in this
paper.

Using the notation of [10], when T0 = Id, the fixed point problem of [10] can be
mapped to (2) via Ri = ωi(Id−Ti) and vice verse. 1 Many applications considered in
[10] can therefore, at least in part, be tackled with our algorithm as well. In particular,
the problem of finding common fixed points of firmly nonexpansive operators can
directly be solved by our algorithm. However, [10] is more general in that it allows
for T0 �= Id and works in general real Hilbert spaces. Looking at the algorithm of
[10] we see that, just as our algorithm is a generalization of SAG/SAGA, it can be
seen as a generalization of Finito [16], another classic VR-SG method. It generalize
Finito in several way, for instance it allows for an additional proximal/backward step
and it replaces the stochastic selection with a different selection criteria. However,
in the optimization setting it still suffers from the same drawback as Finito when
compared to SAG/SAGA-like algorithms. It still needs to store a full copy of the
iterate for each term in objective. Since SAG, SAGA, and SVAG only need to store
the gradient of each term, they can utilize any potential structure of the gradients to
reduce the storage requirements [27]. Although the differences above are interesting

1If Ti is αi -averaged, as assumed in [10], Ri is (2αiωi)
−1-cocoercive.
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in their own right, the notion of bias we examine in this paper is not applicable to
Finito-like algorithms.

SAG and SAGA were compared in [15] but with no direct focus on the effects of
bias. Other examples of research on SAG and SAGA include acceleration, sampling
strategy selection, and ways to reduce the memory requirement [20, 22, 31, 35, 39,
47]. However, none of these works, including [31] that was written by the authors,
analyze the biased case we consider in this paper. Even the works considering non-
uniform sampling of gradients [20, 31, 35, 39] perform some sort of bias correction in
order to remain unbiased. Furthermore, in order to keep the focus on the effects of the
bias we have refrained from bringing in such generalizations into this work, making
it distinct from the above research. To the authors’ knowledge, the only theoretical
convergence result for biased VR-SG methods are the ones for SAG [27, 40]. But,
since they only consider SAG, they fail to capture the breadth of SVAG and our proof
is the first to simultaneously capture SAG, SAGA, and more.

Since the release of the first preprint of this paper, [17] has also provided a proof
covering the gradient case of both SAG and SAGA, and some choices of bias in
SVAG. All though [17] does not consider cocoercive operators, it is some sense more
general with them considering a general biased stochastic estimator of the gradient.
This generality comes at the cost of a more conservative analysis with their step-size
scaling with O(n−1) in all cases.

2 Preliminaries and notation

Let R denote the real numbers and let the natural numbers be denoted N =
{0, 1, 2, . . . }. Let 〈·, ·〉 denote the standard Euclidean inner product and ‖·‖ = √〈·, ·〉
the standard 2-norm. The scaled inner product and norm we denote as 〈·, ·〉Σ =
〈Σ(·), ·〉 and ‖·‖Σ = √〈·, ·〉Σ where Σ is a positive definite matrix. If Σ is not
positive definite, ‖·‖Σ is not a norm but we keep the notation for convenience.

Let n be the number of operators in (2). The vector 1 is the vector of all ones in
R

n and ei is the vector in R
n of all zeros except the i:th element which contains a 1.

The matrix I is an identity matrix with the size derived from context and Ei = eie
T
i .

The symbol ⊗ denotes the Kronecker product of two matrices. The Kronecker
product is linear in both arguments and the following properties hold

(A ⊗ B)T = AT ⊗ BT , (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

In the last property it is assumed that the dimensions are such that the matrix
multiplications are well defined. The eigenvalues of A ⊗ B are given by

τiμj for all i ∈ {1, . . . , m}, j ∈ {1, . . . , l} (4)

where τi and μj are the eigenvalues of A and B respectively.
The Cartesian product of two sets C1 and C2 is defined as

C1 × C2 = {(c1, c2) | c1 ∈ C1, c2 ∈ C2}.
From this definition we see that if C1 and C2 are closed and convex, so is C1 × C2.
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Let X� be the set of all solutions of (2),

X� = {x | 0 = 1
n

∑n
i=1Rix}

and define Z� as the set of primal-dual solutions

Z� = {(x, R1x, . . . , Rnx) | 0 = 1
n

∑n
i=1Rix}.

Assuming they exists, x� denotes a solution to (2) and z� denotes a primal-dual
solution, i.e., x� ∈ X� and z� ∈ Z�.

A single valued operator R : RN → R
N is 1

L
-cocoercive if

〈Rx − Ryx − y〉 ≥ 1

L
‖Rx − Ry‖2 (5)

holds for all x, y ∈ R
N . An operator that is 1

L
-cocoercive is L-Lipschitz continuous.

The set of zeros of a cocoercive operator R is closed and convex.
A differentiable convex function f : RN → R is called L-smooth if the gradient

is 1
L

-cocoercive. Equivalently, a differentiable convex function is L-smooth if

f (y) ≤ f (x) + 〈∇f (x)y − x〉 + L

2
‖y − x‖2 (6)

holds for all x, y ∈ R
N .

If fi : RN → R is a differentiable convex function for each i ∈ {1, . . . , n}, the
minimization of

∑n
i=1 fi(x) is equivalent to (2) with Ri = ∇fi .

For more details regarding monotone operators and convex functions see [2, 32].
To establish almost sure sequence convergence of the stochastic algorithm, the fol-

lowing propositions will be used. The first is from [37] and establishes convergence
of non-negative almost super-martingales. The second is based on [12] and provides
the tool to show almost sure sequence convergence.

Proposition 2.1 Let (Ω,F, P ) be a probability space and F0 ⊂ F1 ⊂ . . . be a
sequence of sub-σ -algebras ofF . For all k ∈ N, let zk , βk , ξk and ζ k be non-negative
Fk-measurable random variables. If

∑∞
i=0 βi < ∞,

∑∞
i=0 ξ i < ∞ and

E[zk+1|Fk] ≤ (1 + βk)zk + ξk − ζ k

hold almost surely for all k ∈ N, then zk converges a.s. to a finite valued random
variable and

∑∞
i=0 ζ i < ∞ almost surely.

Proof See [37, Theorem 1].

Proposition 2.2 Let Z be a non-empty closed subset of a finite dimensional Hilbert
space H , let φ : [0, ∞) → [0, ∞) be a strictly increasing function such that φ(t) →
∞ as t → ∞, and let (xk)k∈N be a sequence of H -valued random variables. If
φ(‖xk − z‖) converges a.s. to a finite valued non-negative random variable for all
z ∈ Z, then the following hold:

1. (xk)k∈N is bounded almost surely.
2. Suppose the cluster points of (xk)k∈N are a.s. in Z, then (xk)k∈N converge a.s.

to a Z-valued random variable.
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Proof In finite dimensional Hilbert spaces, these two statements are the same as
statements (ii) and (iv) of [12, Proposition 2.3]. Hence, consider the proof of [12,
Proposition 2.3] restricted to finite dimensional Hilbert spaces. The proof of (ii) in
[12, Proposition 2.3] only relies on the a.s. convergence of φ(‖xk − z‖) and hence is
implied by the assumptions of this proposition. This proves our first statement. The
proof of (iv) in [12, Proposition 2.3] only relies on (iii) of [12, Proposition 2.3] which
in turn is implied by (ii) of [12, Proposition 2.3], i.e., our first statement. This proves
our second statement.

3 Convergence

Throughout the analysis we will use the following two assumptions on the operators
in (2).

Assumption 3.1 For each i ∈ {1, . . . , n}, let Ri be
1
L
-cocoercive and X� �= ∅, i.e.,

(2) has at least one solution.

Assumption 3.2 For each i ∈ {1, . . . , n}, let Ri = ∇fi for some differentiable
function fi and define F = 1

n

∑n
i=1 fi . Furthermore, let Assumption 3.1 hold, i.e.,

fi is L-smooth and convex and argmin F(x) exists.

3.1 Reformulation

We begin by formalizing and reformulating Algorithm 1 into a more convenient
form. Let (Ω,F, P ) be the underlying probability space of Algorithm 1. The index
selected at iteration k is then a uniformly distributed random variable ik : Ω →
{1, . . . , n}. For each k ∈ N, define the random variable zk : Ω → R

N(n+1) as
zk = (xk, yk

1 , . . . , yk
n) where xk and yk

i for i ∈ {1, . . . , n} are the iterates of Algo-
rithm 1. Let F0 ⊂ F1 ⊂ . . . be a sequence of sub-σ -algebras of F such that zk

are Fk-measurable and ik is independent of Fk . With the operator B : RN(n+1) →
R

2Nn defined as B(x, y1, . . . , yn) = (R1x, . . . , Rnx, y1, . . . , yn), one iteration of
Algorithm 1 can be written as

zk+1 = zk − (Uik ⊗ I )Bzk (7)

where z0 ∈ R
N(n+1) is given and

Ui =
[

λ
n
θeT

i −λ
n
θeT

i + λ
n
1T

−Ei Ei

]

for all i ∈ {1, . . . , n}. The vector ei and the matrix Ei are defined in Section 2.
The following lemma characterizes the zeros of (Ui ⊗ I )B and hence the fixed

points of (7) and Algorithm 1.
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Lemma 3.3 Let Assumption 3.1 hold, each z� in Z� is then a zero of (Ui ⊗ I )B for
all i ∈ {1, . . . , n}, i.e.,

∀z� ∈ Z�, ∀i ∈ {1, . . . , n} : 0 = (Ui ⊗ I )Bz�.

Furthermore, the set Z� is closed and convex and Rix
� = Rix̄

� for all x�, x̄� ∈ X�

and for all i ∈ {1, . . . , n}.
Proof of Lemma 3.3 The zero statement, 0 = (Ui ⊗ I )Bz�, follows from definition
of z�. For closedness and convexity of Z�, we first prove that Rix

� is unique for each
i ∈ {1, . . . , n}. Taking x, y ∈ X�, which implies

∑n
i=1Rix = ∑n

i=1Riy = 0, and
using cocoercivity (5) of each Ri gives

0 = 〈∑n
i=1Rix − ∑n

i=1Riy, x − y〉 = ∑n
i=1〈Rix − Riyx − y〉

≥ ∑n
i=1

1

L
‖Rix − Riy‖2 ≥ 0,

hence must Rix = Riy for all i ∈ {1, . . . , n}. The set Z� is a Cartesian product of
X� and the points ri = Rix

� for i ∈ {1, . . . , n} for any x� ∈ X�. A set consisting of
only one point is closed and convex and X� is closed and convex since 1

n

∑n
i=1 Ri is

cocoercive [2, Proposition 23.39], hence is Z� closed and convex.

The operator B in the reformulated algorithm can be used to enforce the following
property on the sequence (zk)k∈N.

Lemma 3.4 Let (Ω,F, P ) be a probability space and (zk)k∈N be a sequence of
random variables zk : Ω → R

N(n+1). If Bzk → Bz� a.s. where z� ∈ Z�, then any
cluster point of (zk)k∈N will almost surely be in Z�.

Proof of Lemma 3.4 Let z be a cluster point of (zk)k∈N. Take an ω ∈ Ω such that
Bzk(ω) → Bz�. For this ω and for all k ∈ N, we define the realizations of z and zk as

z(ω) = (x̄, ȳ1, . . . , ȳn), zk(ω) = (x̄k, ȳk
1 , . . . , ȳk

n)

where x̄, ȳ1, . . . , ȳn ∈ R
N and x̄k, ȳk

1 , . . . , ȳk
n ∈ R

N for all k ∈ N.
Since Bz̄k → Bz� we directly have ȳk

i → Rix
� for x� ∈ X� and hence must

ȳi = Rix
� for all i ∈ {1, . . . , n}. Note, Rix

� is independent of which x� ∈ X� was
chosen, see Lemma 3.3. Furthermore, Bz̄k → Bz̄� implies that Rix̄

k → Rix
� for all

i ∈ {1, . . . , n}. Let (x̄k(l))l∈N be a subsequence converging to x̄, then

‖ 1
n

∑n
i=1 Rix̄‖ ≤ ‖ 1

n

∑n
i=1 Rix̄

k(l) − 1
n

∑n
i=1 Rix̄‖ + ‖ 1

n

∑n
i=1 Rix̄

k(l)‖
≤ L‖x̄k(l) − x̄‖ + ‖ 1

n

∑n
i=1 Rix̄

k(l)‖ → ‖ 1
n

∑n
i=1 Rix

�‖ = 0

as l → ∞ where L-Lipschitz continuity of 1
n

∑n
i=1 Ri was used. This concludes that

x̄ ∈ X� and since ȳi = Rix
� = Rix̄ for all i ∈ {1, . . . , n} by Lemma 3.3, we have

that z(ω) ∈ Z�. Since this hold for any ω such that Bzk(ω) → Bz� and the set in F
of all such ω have probability one due to the almost sure convergence of Bzk → Bz�,
we have z ∈ Z� almost surely.

The reformulation (7) further allows us to concisely formulate two Lyapunov
inequalities.
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Lemma 3.5 Let Assumption 3.1 hold, the update (7) then satisfies

E[‖zk+1 − z�‖2
H⊗I |Fk]

≤ ‖zk − z�‖2
H⊗I − ‖Bzk − Bz�‖2

(2M−E[UT

ik
HU

ik
]−ξI )⊗I

−ξnL〈Rxkxk − x�〉
for all k ∈ N and ξ ∈ [0, 2λ

nL
], where the matrices H and M are given by

H =
[

1 −λ
n
(n − θ)1T

−λ
n
(n − θ)1 λ

L
I + λ2

n2 (n − θ)211T

]

and

M =
[

2 −1
−1 2

]

⊗ 1

2n

λ

L
I −

[
0 1
1 0

]

⊗ λ2

2n2
(n − θ)11T .

Lemma 3.6 Let Assumption 3.2 hold, the update (7) then satisfies

E[F((K ⊗ I )zk+1)|Fk] ≤ F((K ⊗ I )zk) − ‖Bzk − Bz�‖2
1
2 S⊗I

for all k ∈ N, where K = [
1 λ

n
1T

]
and

S =
[

2 −1
−1 0

]

⊗ (θ − 1)
λ

n3
11T −

[
1 −1

−1 1

]

⊗ (θ − 1)2 Lλ2

n3
I

+
[

0 1
1 0

]

⊗ λ

n2
11T .

Proof of Lemma 3.5 Take k ∈ N, note that since Uik is independent of Fk and zk is
Fk-measurable we have

E[〈(Uik ⊗ I )(Bzk − Bz�)zk − z�〉H⊗I |Fk]
= 〈(HE[Uik ] ⊗ I )(Bzk − Bz�)zk − z�〉.

The matrix HE[Uik ] is given by

HE[Uik ] =
[

λ
n
1T 0

−λ2

n2 (n − θ)11T − λ
nL

I λ
nL

I

]

,

see the supplementary material for verification of this and other matrix identities. We
also note that

〈Rxk − Rx�xk − x�〉 = 〈(
[

1
n
1T 0
0 0

]

⊗ I )(Bzk − Bz�)zk − z�〉.

Taking ξ ∈ [0, 2λ
nL

] and putting these two expression together yield

E[〈(Uik ⊗ I )(Bzk − Bz�)zk − z�〉H⊗I |Fk] − ξnL

2
〈Rxk − Rx�xk − x�〉

= 〈(
[

( λ
n

− ξL
2 )1T 0

−λ2

n2 (n − θ)11T − λ
nL

I λ
nL

I

]

⊗ I )(Bzk − Bz�)zk − z�〉.
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Using 1
L

-cocoercivity of Ri for each i ∈ {1, . . . , n} gives

E[〈(Uik ⊗ I )(Bzk − Bz�)zk − z�〉H⊗I |Fk] − ξnL

2
〈Rxk − Rx�xk − x�〉

≥ 〈(
[

( λ
nL

− ξ
2 )I 0

−λ2

n2 (n − θ)11T − λ
nL

I λ
nL

I

]

⊗ I )(Bzk − Bz�)Bzk − Bz�〉

Setting

M̄ =
[

λ
nL

I 0

−λ2

n2 (n − θ)11T − λ
nL

I λ
nL

I

]

gives

E[〈(Uik ⊗ I )(Bzk − Bz�)zk − z�〉H⊗I |Fk] − ξnL

2
〈Rxk − Rx�xk − x�〉

≥ 〈(M̄ ⊗ I )(Bzk − Bz�)Bzk − Bz�〉
−〈(

[
ξ
2 I 0
0 0

]

⊗ I )(Bzk − Bz�)Bzk − Bz�〉

≥ ‖Bzk − Bz�‖2
1
2 (M̄+M̄T )⊗I

− ξ

2
‖Bzk − Bz�‖2

= ‖Bzk − Bz�‖2
(M− ξ

2 I )⊗I

where M = 1
2 (M̄ + M̄T ) is the matrix in the statement of the lemma. Finally, using

this inequality and 0 = (Uik ⊗ I )Bz� from Lemma 3.3 gives

E[‖zk+1 − z�‖2
H⊗I |Fk]

= E[‖(zk − (Uik ⊗ I )Bzk
) − (

z� − (Uik ⊗ I )Bz�
)‖2

H⊗I |Fk]
= ‖zk − z�‖2

H⊗I + E[‖(Uik‖ ⊗ I )(Bzk − Bz�)
2
H⊗I |Fk]

−2E[〈(Uik ⊗ I )(Bzk − Bz�)zk − z�〉H⊗I |Fk]
≤ ‖zk − z�‖2

H⊗I + ‖Bzk − Bz�‖2
E[UT

ik
HU

ik
]⊗I

−‖Bzk − Bz�‖2
(2M−ξI )⊗I − ξnL〈Rxk − Rx�xk − x�〉

= ‖zk − z�‖2
H⊗I − ‖Bzk − Bz�‖2

(2M−E[UT

ik
HU

ik
]−ξI )⊗I

−ξnL〈Rxkxk − x�〉.

Proof of Lemma 3.6 Take k ∈ N and note that

(K ⊗ I )zk+1 = (K ⊗ I )(zk − (Uik ⊗ I )Bzk) = xk − (Qik ⊗ I )Bzk
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where Qik = λ
n

[
(θ − 1)eT

ik
−(θ − 1)eT

ik

]
. Furthermore, with G = 1

n

[
1T 0

]
, we

have ∇F(xk) = (G ⊗ I )Bzk . From the definition of z� we have 0 = (G ⊗ I )Bz� =
(Qik ⊗ I )Bz�. Using L-smoothness, (6), of F yields

E[F((K ⊗ I )zk+1)|Fk]
= E[F(xk − (Qik ⊗ I )Bzk)|Fk]
≤ F(xk) − 〈∇F(xk)(E[Qik ] ⊗ I )Bzk〉 + L

2 E[‖(Qik ⊗ I )Bzk‖2|Fk]
= F(xk) − 〈(G ⊗ I )Bzk(E[Qik ] ⊗ I )Bzk〉 + ‖Bzk‖2

L
2 E[QT

ik
Q

ik
]⊗I

= F(xk) − ‖Bzk‖2
1
2E[QT

ik
G+GT Q

ik
]⊗I

+ ‖Bzk‖2
L
2 E[QT

ik
Q

ik
]⊗I

= F(xk) − ‖Bzk − Bz�‖2
1
2 SL⊗I

where SL = E[QT
ik

G + GT Qik − LQT
ik

Qik ].
With D = [

0 1T
]

we have (K ⊗ I )zk = xk + λ
n
(D ⊗ I )Bzk . Using the first-order

convexity condition on F and 0 = (D ⊗ I )Bz� = (G ⊗ I )Bz� yields

F((K ⊗ I )zk) = F(xk + λ

n
(D ⊗ I )Bzk)

≥ F(xk) + 〈∇F(xk)
λ

n
(D ⊗ I )Bzk〉

= F(xk) + 〈(G ⊗ I )Bzk λ

n
(D ⊗ I )Bzk〉

= F(xk) + ‖Bzk‖2
1
2

λ
n
(DT G+GT D)⊗I

= F(xk) + ‖Bzk − Bz�‖2
1
2 SC⊗I

(8)

where SC = λ
n
(DT G + GT D). Combining these two inequalities gives

E[F((K ⊗ I )zk+1)|Fk] ≤ F((K ⊗ I )zk) − ‖Bzk − Bz�‖2
1
2 S⊗I

where S = SL + SC .

3.2 Convergence theorems

We are now ready to state the main convergence theorems for SVAG. They are stated
with the notation from Algorithm 1 but are proved at the end of this section with the
help of the reformulation in (7) and the lemmas above.

Theorem 3.7 For all i ∈ {1, . . . , n}, let (xk)k∈N and (yk
i )k∈N be the sequences

generated by Algorithm 1. If Assumption 3.1 hold and the step-size, λ > 0, and
innovation weight, θ ∈ R, satisfy

1

L(2 + |n − θ |) > λ,
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then xk → x� and yk
i → Rix

� almost surely for all i ∈ {1, . . . , n}, where x� is a
solution to (2). For all i ∈ {1, . . . , n}, the residuals converge a.s. as

min
k∈{0,...,t}E[‖Rix

k − Rix
�‖2] ≤ n

λ(L−1 − λc)

1

t + 1
CR,

min
k∈{0,...,t}E[‖yk

i − Rix
�‖2] ≤ n

λ(L−1 − λc)

1

t + 1
CR

where c = 2 + |n − θ | and

CR = min
x∈X�

‖x0 − x‖2 + λ

L

∑n
i=1‖y0

i ‖ − Rix
�2 + λ2(n − θ)2‖1

n

∑n
i=1y

0
i ‖2

−2λ(n − θ)〈x0 − x
1

n

∑n
i=1y

0
i 〉

for any x� ∈ X�.

Theorem 3.8 For all i ∈ {1, . . . , n}, let (xk)k∈N and (yk
i )k∈N be the sequences

generated by Algorithm 1. If Assumption 3.2 hold and the step-size, λ > 0, and
innovation weight, θ ∈ [0, n], satisfy

1

L

1

2 + (n − θ) θ−1
n

(
θ−1
n

− 1 + θ−1
|θ−1|

√
2
) > λ,

then xk → x� and yk
i → ∇fi(x

�) almost surely, where x� is a solution to (2). For all
i ∈ {1, . . . , n}, the residuals converge a.s. as

min
k∈{0,...,t}E[‖∇fi(x

k) − ∇fi(x
�)‖2] ≤ n

λ(L−1 − λc)

1

t + 1
(CR + CF ),

min
k∈{0,...,t}E[‖yk

i − ∇fi(x
�)‖2] ≤ n

λ(L−1 − λc)

1

t + 1
(CR + CF ),

min
k∈{0,...,t}E[F(xk) − F(x�)] ≤ 1

λ(1 − Lλc)

1

t + 1
(CR + CF )

where

c = 2 + (n − θ)
θ − 1

n

(θ − 1

n
− 1 + θ − 1

|θ − 1|
√

2
)
,

CR = min
x∈X�

‖x0 − x‖2 + λ

L

∑n
i=1‖y0

i ‖ − Rix
�2 + λ2(n − θ)2‖1

n

∑n
i=1y

0
i ‖2

− 2λ(n − θ)〈x0 − x
1

n

∑n
i=1y

0
i 〉,

CF = 2λ(n − θ)
(
F(x0 + λ

n

∑n
i=1y

0
i ) − F(x�)

)

for any x� ∈ X�.

Both Theorems 3.7 and 3.8 give the step-size condition λ ∈ (0, 1
2L

) for the SAGA
special case, i.e., θ = n. This is the same as the largest upper bound found in the
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literature [15] and appears to be tight [31]. Theorem 3.8 also give this step-size con-
dition when θ = 1, i.e., SAG in the optimization case. This bound improves on upper
bound of 1

16L
≤ λ presented in [40].

In the cocoercive operator setting with θ �= n, Theorem 3.7 gives a step-size
condition that scales with n−1. This step-size scaling is significantly worse compared
to the gradient case in Theorem 3.8 in which the step-size’s dependence on n is O(1)

for all θ . This difference is indeed real and not an artifact of the analysis since we
in Section 4 present a problem for which the cocoercivity result appears to be tight.
A consequence of this unfavorable step-size scaling in the operator setting is slow
convergence. There is therefore little reason to use anything else than θ = n in SVAG
when Ri is not a gradient of a smooth function for all i ∈ {1, . . . , n}.

The rates of Theorem 3.7 and 3.8 are of O( 1
t+1 ) type with two sets of multiplica-

tive factors. One factor which only depend on the algorithm parameters, n

λ(L−1−λc)
,

and one set which depend on how the algorithm initialization relates to the solu-
tion set, CR and CR + CF . The initialization dependent factors also depend on the
algorithm parameters, but, since knowing the exact dependency requires knowing
the solution set, we will not attempt to tune the parameters to decrease this factor.
Only considering the first factor, the rate becomes better if c is decreased and, since
c is independent of λ, the best choice of step-size is λ = (2Lc)−1. This means that
λ = (4L)−1 and θ = n are the best parameter choices in the cocoercive operator set-
ting. In the optimization case the best step-size is also λ = (4L)−1 but the innovation
weight can be selected as either θ = n or θ = 1.

However, in the optimization case we do not believe that these theoretical rates
reflects real world performance and parameter choices based on them might therefore
not perform particularly well. We base this belief on our experience with numerical
experiments. For θ �= n and θ �= 1, we have not found any optimization prob-
lem where the step-size condition in Theorem 3.8 appears to be tight. Also, using
λ = (2Lc)−1 as suggested by Theorem 3.8 can in some cases lead to impracti-
cally small step-sizes. For instance, if λ = (2Lc)−1 was used in the experiments in
Section 4, a couple of the experiments would have step-sizes over 1000 times smaller
than the ones used now. One can of course not disprove a worst case analysis with
experiments but we still feel they indicate a conservative analysis, even though the
analysis improves on the previous best results.

Proof of Theorem 3.7 Apply Lemma 3.5 with ξ = 0, the iterates given by (7) then
satisfy the following for all z� ∈ Z�,

E[‖zk+1 − z�‖2
H⊗I |Fk]

≤ ‖zk − z�‖2
H⊗I − ‖Bzk − Bz�‖2

(2M−E[UT

ik
HU

ik
])⊗I

.
(9)

Assuming H � 0 and 2M − E[UT
ik

HUik ] � 0, Proposition 2.1 can be applied.
We will later prove that this assumption indeed does hold. Proposition 2.1 gives a.s.
summability of ‖Bzk − Bz�‖2

(2M−E[UT

ik
HU

ik
])⊗I

and hence will Bzk → Bz� almost

surely. Lemma 3.4 then gives that all cluster points of (zk)k∈N are in Z� almost surely.
Finally, since Proposition 2.1 ensures the a.s. convergence of ‖zk − z�‖2

H⊗I and since
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R
N(n+1) with the inner product 〈(H ⊗ I )·, ·〉 is a finite dimensional Hilbert space,

Proposition 2.2 gives the almost sure convergence of zk → z� ∈ Z�.
There always exists a λ such that 2M − E[UT

ik
HUik ] and H are positive definite.

First we show that H � 0 always holds for λ > 0. Taking the Schur complement of
1 in H gives

λ

L
I + λ2

n2
(n − θ)211T − λ2

n2
(n − θ)211T = λ

L
I � 0.

Hence is H � 0 since the Schur complement is positive definite.
We now show 2M − E[UT

ik
HUik ] � 0. Straightforward algebra, see the supple-

mentary material, yields

2M − E[UT
ik

HUik ] =
[

1 0
0 1

]

⊗ λ

nL
I −

[
1 0
0 1

]

⊗ λ2

n
I +

[
0 1
1 0

]

⊗ λ2

n
(I − 1

n
11T )

−
[

0 1
1 0

]

⊗ (n − θ)
λ2

n2
11T +

[
0 0
0 1

]

⊗ λ2

n2
11T .

Positive definiteness of this matrix is established by ensuring positivity of the small-
est eigenvalue σmin. The smallest eigenvalue σmin is greater than the sum of the
smallest eigenvalue of each term. For the eigenvalues of the Kronecker products, see
(4). This gives that

σmin ≥ λ

nL
− λ2

n
− λ2

n
− λ2

n
|n − θ | + 0 = λ

n

(
L−1 − λ(2 + |n − θ |)).

Since λ > 0 by assumption, if

1

L(2 + |n − θ |) > λ.

we have σmin > 0 and 2M − E[UT
ik

HUik ] is positive definite.
Rates are gotten by taking the total expectation of (9) and adding together the

inequalities from k = 0 to k = t , yielding

‖z0 − z�‖2
H⊗I = E[‖z0 − z�‖2

H⊗I ] − E[‖zt+1 − z�‖2
H⊗I ]

≥ ∑t
k=0E

[‖Bzk − Bz�‖2
(2M−E[UT

ik
HU

ik
])⊗I

]

≥ ∑t
k=0σminE[‖Bzk − Bz�‖2]

≥ σmin(t + 1) min
k∈{0,...,t}E[‖Bzk − Bz�‖2].

Putting in the lower bound on σmin and rearranging yield

min
k∈{0,...,t}E[‖Bzk − Bz�‖2] ≤ n

λ(L−1 − λ(2 + |n − θ |))(t + 1)
‖z0 − z�‖2

H⊗I .

From the definition of H in Lemma 3.5 we have

‖z0 − z�‖2
H⊗I = ‖x0 − x�‖2 + λ

L

∑n
i=1‖y0

i − Rix
�‖2 + λ2(n − θ)2‖ 1

n

∑n
i=1y

0
i ‖2

−2λ(n − θ)〈x0 − x� 1
n

∑n
i=1y

0
i 〉
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where z� = (x�, R1x
�, . . . , Rnx

�). Since this hold for any z� ∈ Z� and hence any
x� ∈ X�, the results of theorems follows by minimizing the RHS over x� ∈ X�. Note,
since Rix

� constant for all x� ∈ X�, the objective is convex and, since X� is closed
and convex, the minimum is then attained.

Proof of Theorem 3.8 Combining Lemma 3.5 and 3.6 yield

E [‖zk+1 − z�‖2
H⊗I + 2λ(n − θ)(F ((K ⊗ I )zk+1) − F(x�))|Fk]

≤ ‖zk − z�‖2
H⊗I + 2λ(n − θ)(F ((K ⊗ I )zk) − F(x�))

− ‖Bzk − Bz�‖2
(2M−E[UT

ik
HU

ik
]+λ(n−θ)S−ξI )⊗I

− ξnL〈∇F(xk)xk − x�〉

which holds for all k ∈ N, ξ ∈ [0, 2λ
nL

], and z� ∈ Z�. Since H � 0 for λ > 0,
see the proof of Theorem 3.7, the first term is non-negative while the second term
is non-negative if θ ≤ n. From cocoercivity of ∇F , the last term is non-positive
and we assume, for now, that there exists λ > 0 and 2λ

nL
≥ ξ > 0 such that 2M −

E[UT
ik

HUik ] + λ(n − θ)S − ξI � 0, making the third term non-positive.
Applying Proposition 2.1 gives the a.s. summability of

‖Bzk − Bz�‖2
(2M−E[UT

ik
HU

ik
]+λ(n−θ)S−ξI )⊗I

+ ξnL〈∇F(xk) − ∇F(x�)xk − x�〉.

Since both term are positive, both terms are a.s. summable. From the first term we
have the a.s. convergence of Bzk → Bz� and Lemma 3.4 then gives that all clus-
ter points of (zk)k∈N are almost surely in Z�. For the second term we note that by
convexity we have

〈∇F(xk) − ∇F(x�)xk − x�〉 ≥ F(xk) − F(x�) ≥ 0

and F(xk) − F(x�) then is summable a.s. since ξnL > 0. Using smoothness of F ,
(6) and the notation from (8) gives

F(x�) ≤ F((K ⊗ I )zk)

= F(xk + λ

n
(D ⊗ I )Bzk)

≤ F(xk) + 〈(G ⊗ I )Bzk λ

n
(D ⊗ I )Bzk〉 + L

2
‖λ

n
(D ⊗ I )Bzk‖2

≤ F(xk) + ‖(G ⊗ I )Bzk‖‖λ

n
(D ⊗ I )Bzk‖ + L

2
‖λ

n
(D ⊗ I )Bzk‖2

→ F(x�) a.s.

since (G ⊗ I )Bzk → (G ⊗ I )Bz� = 0 and (D ⊗ I )Bzk → (D ⊗ I )Bz� = 0 almost
surely. Therefore we have the a.s. convergence of F((K ⊗ I )zk) − F(x�) → 0.

From Proposition 2.1 we can also conclude that ‖zk − z�‖2
H⊗I +2λ(n−θ)(F ((K⊗

I )zk)−F(x�)) a.s. converge to a non-negative random variable. Since F((K⊗I )zk)−
F(x�) → 0 a.s. we have that ‖zk − z�‖2

H⊗I also must a.s. converge to a non-negative
random variable. Proposition 2.2 then give the almost sure convergence of (zk)k∈N to
Z�.
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We now show that there exists λ > 0 and ξ > 0 such that

2M − E[UT
ik

HUik ] + λ(n − θ)S − ξI

=
[

1 0
0 1

]

⊗ λ

nL
I −

[
1 0
0 1

]

⊗ λ2

n
I +

[
0 1
1 0

]

⊗ λ2

n
(I − 1

n
11T )+

[
0 0
0 1

]

⊗ λ2

n2
11T

+
[

2 −1
−1 0

]

⊗ (n − θ)(θ − 1)
λ2

n3
11T −

[
1 −1

−1 1

]

⊗ (n − θ)(θ − 1)2 Lλ3

n3
I

−
[

1 0
0 1

]

⊗ ξI � 0.

We show positive definiteness by ensuring that the smallest eigenvalue is positive.
The smallest eigenvalue σmin is greater than the sum of the smallest eigenvalues of
each term,

σmin ≥ λ

nL
− λ2

n
− λ2

n
+ 0 + (1 − θ − 1

|θ − 1|
√

2)(n − θ)(θ − 1)
λ2

n2

−2(n − θ)(θ − 1)2 Lλ3

n3
− ξ .

Assuming λ ≤ 1
2L

yields the following lower bound on the smallest eigenvalue

σmin ≥ λ

nL
− 2λ2

n
+ (1 − θ − 1

|θ − 1|
√

2)(n − θ)(θ − 1)
λ2

n2
− (n − θ)(θ − 1)2 λ2

n3
− ξ

= λ

n

(
L−1 − λ

(
2 + (n − θ)

θ − 1

n

(θ − 1

n
− 1 + θ − 1

|θ − 1|
√

2
))) − ξ .

Selecting

ξ = λ

2n

(
L−1 − λ

(
2 + (n − θ)

θ − 1

n

(θ − 1

n
− 1 + θ − 1

|θ − 1|
√

2
)))

,

which satisfy the assumption 2λ
nL

≥ ξ > 0, yield σmin ≥ ξ . Since λ > 0 by
assumption, if

1

L

1

2 + (n − θ) θ−1
n

( θ−1
n

− 1 + θ−1
|θ−1|

√
2)

> λ

we have that σmin ≥ ξ > 0 and hence that the examined matrix is positive definite.
Furthermore, if λ satisfies the above inequality it also satisfies the assumption λ ≤

1
2L

.
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Rates are gotten in the same way as for Theorem 3.7, the total expectation is taken
of the Lyapunov inequality at the beginning of the proof and the inequalities are
summed from k = 0 to k = t .

‖z0 − z�‖2
H⊗I + 2λ(n − θ)(F ((K ⊗ I )z0) − F(x�))

≥ ∑t
k=0

(
σminE[‖Bzk − Bz�‖2] + E[σminnL〈∇F(xk)xk − x�〉])

≥ σmin(t + 1) min
k∈{1,...,t}

(
E[‖Bzk − Bz�‖2] + E[nL〈∇F(xk)xk − x�〉])

≥ σmin(t + 1) min
k∈{1,...,t}

(
E[‖Bzk − Bz�‖2] + nLE[F(xk) − F(x�)]).

Inserting the lower bound on σmin, rearranging and minimizing over x� ∈ X� yield
the results of the theorem.

4 Numerical experiments

A number of experiments, outlined below, were performed to verify the tightness of
the theory in the cocoercive operator case and examine the effect of bias in the coco-
ercive gradient case. The experiments were implemented in Julia [3] and, together
with several other VR-SG methods, can be found at https://github.com/mvmorin/
VarianceReducedSG.jl.

4.1 Cocoercive operators case

In order for the difference between cocoercive operators and cocoercive gradients to
not be an artifact of our analysis, the results in the operator case can not be overly
conservative. We therefore construct a cocoercive operator problem for which the
results appear to be tight, thereby verifying the difference. Consider problem (2)
where the operator Ri : R2 → R

2 is an averaged rotation

Ri = 1

2

[
1 0
0 1

]

+ 1

2

[
cos τ − sin τ

sin τ cos τ

]

for all i ∈ {1, . . . , n} and some τ ∈ [0, 2π). The operators are 1-cocoercive and the
zero vector is the only solution to (2) if τ �= π . The step-size condition from Theorem
3.7 appears to be tight for θ ∈ [0, n] when the angle of rotation τ approaches π .
We therefore let τ = 179

180π and solve the problem with different configurations of
step-size λ and innovation weight θ .

Figure 1 displays the relative distance to the solution after 100n iterations of SVAG
together with the upper bound on the step-size. When θ ∈ [0, n] and λ exceeds the
upper bound, the distance to the solution increases for both n = 100 and n = 10000,
i.e., the method does not converge. Hence, for θ ∈ [0, n], the step-size bound in
Theorem 3.7 appears to be tight. However, it is noteworthy that for this particular
problem it seems beneficial to exceed the step-size bound when θ > n.
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Fig. 1 Root-finding of averaged rotations: Relative distance to the solution after 100n iterations of SVAG
together the step-size upper bound, λL < (2 + |n − θ |)−1. Note how well the 0th level, i.e., the boundary
between convergence and divergence, follow the upper bound on the step-size

4.2 Cocoercive gradients case

Since, as we stated in Section 3.2, we do not believe that the theoretical rates are
particularly tight in the optimization case, we examine the effects of the bias numer-
ically. These experiments can of course not be exhaustive and we choose to focus on
only the bias parameter θ and therefore perform all experiments with the same step-
size. This also demonstrate why we believe the analysis to be conservative since the
chosen step-size in some cases are a 1000 times larger than upper bound from The-
orem 3.8. Convergence with this large of a step-size have also been seen elsewhere
with both [40] and [17] disregarding their own the theoretical step-size conditions.

Fig. 2 Logistic regression: Expected gradient norm for each iteration. The expected value is estimated
with the sample average of 100 runs. A step-size of λ = 1

2L
was used in all cases
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The experiments are done by performing a rough parameter sweep over the inno-
vation weight θ on two different binary classification problems and we will look for
patterns in how the convergence is affected. ’
The first problem is logistic regression,

min
x∈RN

1
n

∑n
i=1 log(1 + e−yia

T
i x).

The second is SVM with a square hinge loss,

min
x∈RN

1
n

∑n
i=1

(
max(0, 1 − yia

T
i x)2 + γ

2 ‖x‖2
)

where γ > 0 is a regularization parameter. In both problems are yi ∈ {−1, 1} the
label and ai ∈ R

N the features of the ith training data point. Note, although not
initially obvious, max(0, ·)2 is convex and differentiable with Lipschitz continuous
derivative and the second problem is therefore indeed smooth. The logistic regression
problem does not necessarily have a unique solution and the distance to the solution
set is therefore hard to estimate. For this reason, we examine the convergence of
‖∇F(xk)‖ → 0 instead of the distance to the solution set.

The datasets for both these classification problems are taken from the LibSVM [6]
collection of datasets. The number of examples in the datasets varies between
n = 683 and n = 60, 000 while the number of features is between N = 10 and
N = 5, 000. Two of the datasets, mnist.scale and protein, consist of more
than 2 classes. These are converted to binary classification problems by grouping the
different classes into two groups. For the digit classification dataset mnist.scale,
the digits are divided into the groups 0–4 and 5–9. For the protein data set, the

Fig. 3 Square hinge loss SVM: Expected gradient norm for each iteration. The expected value is estimated
with the sample average of 100 runs. A step-size of λ = 1

2L
was used in all cases
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classes are grouped as 0 and 1–2. The results of solving the classification problems
above can be found in Figs. 2 and 3.

From Figs. 2 and 3 it appears like the biggest difference between the innovation
weights are in the early stages of the convergence. Most innovation weight choices
appear to eventually converge with the same rate. In the cases where this does not
happen, the fastest converging choice of innovation weight actually reaches machine
precision. It is therefore not possible to say whether these cases would eventually
reach the same rate as well. Since none of the choices of θ appears to consistently be
at a significant disadvantage, even though the step-size used exceeds the upper bound
in Theorem 3.8 when θ = 0.1n and θ = 0.01n, we conjecture that the asymptotic
rates for a given step-size is independent of θ .

The initial phase can clearly have a large impact on the convergence and it can
therefore still be beneficial to tuning the bias. However, comparing the different
choices of innovation weight yields no clear conclusion since no single choice of
innovation weight consistently outperforms another. In most cases do the lower bias
choices—θ = n (SAGA) or θ = 0.1n—seem perform best but, when they do not,
the high bias choices—θ = 1 (SAG) and θ = 0.01n—perform significantly better.
Another observation is that lowering θ increases any oscillations. We speculate that
it is due to the increased inertia and we also believe that this inertia is what allows
the lower innovation weights to sometimes perform better.

5 Conclusion

We presented SVAG, a variance-reduced stochastic gradient method with adjustable
bias and with SAG and SAGA as special cases. It was analyzed in two scenarios, one
being the minimization of a finite sum of functions with cocoercive gradients and
the other being finding a root of a finite sum of cocoercive operators. The analysis
improves on the previously best known analyses in both settings and, more signif-
icantly, the two different scenarios gave different convergence conditions for the
step-size. In the cocoercive operator setting a much more restrictive condition was
found and it was verified numerically. This difference is not present in ordinary gra-
dient descent and can therefore easily be overlooked, however, these results suggest
that is inadvisable in the variance-reduced stochastic gradient setting.

The theoretical results in the minimization case was further examined with numer-
ical experiments. Several choices of bias were examined but we did not find the same
dependence on the bias that the theory suggests. In fact, the asymptotic convergence
behavior was similar for the different choices of bias, indicating that further improve-
ments of the theory is still needed. The bias mainly impacted the early stages of the
convergence and in a couple of cases this impact was significant. There might there-
fore still be benefits to tuning the bias to the particular problem but further work is
needed to efficiently do so.
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