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Abstract
In this paper, the solution to a bivariate Appell interpolation problem proposed in
a previous work is given. Bounds of the truncation error are considered. Ten new
interpolants for real, regular, bivariate functions are constructed. Numerical examples
and comparisons with bivariate Bernstein polynomials are considered.

Keywords Interpolation · Polynomial sequences · Appell polynomials ·
Bivariate Appell sequence
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1 Introduction

Interpolation theory for real functions is a classic problem both in mathematical and
numerical analysis. In fact, on the one hand, it is connected to representability of

an analytic function f (x) as a series
∞∑

n=0

cnφn(x), where {φn}n∈IN is a prescribed

sequence of functions, called basis functions, and cn are real constants related to
the function f [3, 6]. On the other hand, interpolation is fundamental in numeri-
cal approximation of functions, numerical quadrature and cubature, boundary value
methods, etc. [12, 16, 17, 28]. In an interpolation problem the choice of basic
functions, that is the system {φn}n∈IN, is very important.
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In this paper we will consider the bivariate interpolation problem proposed in [11].
We will give the unique solution expressed in the basis of the so-called bivariate,
general Appell polynomial sequences [21]. It can be so formulated: letX be the linear
space of bivariate, real continuous functions having continuous partial derivatives of
all necessary orders, defined in a domain D ⊂ IR2. Usually, for simplicity, D =
[0, 1] × [0, 1]. We look for, if there exists, the bivariate polynomial in[f ], n ∈ IN,
such that, for any f ∈ X

L

(
∂kf

∂xk

)
= L

(
∂kin[f ]

∂xk

)
, k = 0, . . . , N, N ∈ IN,

where L is a linear functional on X such that L(1) �= 0.
Bivariate and, in general, multivariate interpolation has widely employed in the

literature (see for example [18, 19, 23, 24, 27, 29, 30] and the references therein).
This paper is organized as follows. In order to make the work as autonomous as

possible, Section 2 is a preliminary section. In fact, it includes some known defini-
tions and results that we need in the paper. In Section 3, we find the unique solution
of the bivariate interpolation problem mentioned above and give, also, a “comple-
mentary” polynomial interpolant. The remainder is analyzed in Section 4 by using
the well-known Sard’s formula. Then, in Section 5, we give some particular exam-
ples of interpolants that doesn’t appear in the literature. Section 6 contains numerical
examples of bivariate real functions approximations. Comparisons of the new inter-
polants with the bivariate Bernstein approximation is also given. Finally, in Section 7,
we provide some concluding remarks.

2 Preliminaries

Let A(t) and φ (y, t) be two power series such that

A(t) =
∞∑

k=0

αk

tk

k! , φ (y, t) =
∞∑

k=0

ϕk (y)
tk

k! , (1)

with α0 = ϕ0(y) = 1, αk ∈ IR, k ≥ 1 and ϕk(y) are real polynomials of degree k in
the variable y.

The sequences (αk)k∈IN and (ϕk)k∈IN generate the elements of the bivariate
polynomial sequence {rn}bn∈IN (the superscript b stands for bivariate) satisfying [11]

∂

∂x
rn (x, y) = n rn−1 (x, y) , n ≥ 1 (2a)

rn (0, y) =
n∑

k=0

(
n

k

)
αn−kϕn−k(y), (2b)

r0 (x, y) = 1. (2c)

Remark 1 Differential relation (2a) is known in the literature (see, for example,
[1, 11, 16] and references therein), but in different contexts and with different
approaches.
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It has been proved [11] that ∀n ∈ IN

rn(x, y) =
n∑

k=0

(
n

k

)
αn−kpk(x, y) =

n∑

k=0

k∑

i=0

(
n

k

)(
k

i

)
αk−ix

iϕn−k(y), (3)

where {pk}bk∈IN is the so-called elementary bivariate Appell sequence whose elements
are defined as

pn (x, y) =
n∑

k=0

(
n

k

)
xkϕn−k(y), ∀n ∈ IN. (4)

It is also known that the elements of the bivariate sequences {rk}bk∈IN and {pk}bk∈IN
have as generating functions

F (x, y; t) = A(t)extφ(y, t) and G (x, y; t) = extφ(y, t), (5)

respectively, that is,

A(t)extφ(y, t) =
∞∑

n=0

rn(x, y)
tn

n! , extφ(y, t) =
∞∑

n=0

pn(x, y)
tn

n! . (6)

For any k ∈ IN, let p̂k(x, y) be the following polynomial of degree k

p̂k(x, y) =
k∑

i=0

(
k

i

)
(x − 1)iϕk−i (y) =

k∑

i=0

(
k

i

)
(−1)k−ipi(x, y).

Furthermore, let (βk)k∈IN be the numerical sequence defined by

n∑

k=0

(
n

k

)
αn−kβk = δn0, (7)

that is, if A(t) is as in (1), then

1

A(t)
=

∞∑

k=0

βk

tk

k! . (8)

The determinant forms for rn(x, y) and pn(x, y) [11], respectively, are fundamen-
tal in the sequel:

rn (x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣

p0(x, y) p1(x, y) p2(x, y) · · · pn(x, y)

β0 β1 β2 · · · βn

0 β0
(2
1

)
β1 · · · (

n
1

)
βn−1

...
. . .

. . .
...

0 · · · 0 β0
(

n
n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣

, n > 0, (9)
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pn (x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣

p̂0(x, y) p̂1(x, y) p̂2(x, y) · · · p̂n(x, y)

1 −1 1 · · · (−1)n

0 1 −(2
1

) · · · (n1
)
(−1)n−1

...
. . .

. . .
...

0 · · · 0 1 −(
n

n−1

)

∣∣∣∣∣∣∣∣∣∣∣∣

, n > 0. (10)

Moreover, the following recurrence relation holds:

r0 (x, y) = 1, rn(x, y) = pn(x, y) −
n−1∑

j=0

(
n

j

)
βn−j rj (x, y), n ≥ 1. (11)

From (7) we get

α0 = 1

β0
,

αk = (−1)k

βk+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β0 0 · · · · · · 0
β2

(2
1

)
β1 β0 0 · · · 0

...
...

. . .
. . .

...
...

...
...

. . .
. . .

...

βk−1
(
k−1
k−2

)
βk−2

(
k−1
k−3

)
βk−3 · · · . . . β0

βk

(
k

k−1

)
βk−1

(
k

k−2

)
βk−2 · · · · · · (k1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k = 1, . . . , n,

(12)

and, by symmetry, we can obtain βk , k = 0, . . . , n.
We define

Sn := span {p0, . . . , pn} , n ∈ IN,

with pk as in (4) or in (10) for all k ∈ IN. Observe that ∀n ∈ IN, {p0, . . . , pn} is a
set of n + 1 linear independent bivariate polynomials.

In the sequel of the paper any fundamental notation and hypothesis introduced so
far will be used without references, unless otherwise specified.

3 Bivariate general Appell interpolation

LetX be the linear space of bivariate real functions defined inD ⊂ IR2 and belonging
to CN(D). Note that ∀n ∈ IN, Sn ⊂ X.

Let L be a linear functional on X with L(1) �= 0. ∀pk ∈ {pν}bν∈IN, we set
L (pk) = βk, k = 0, . . . , n, β0 = 1, βk ∈ IR, k ≥ 1. (13)

We consider the numerical sequence (αk)k∈IN defined in (7), (βk)k∈IN being as in (13).
In addition, we consider the general bivariate Appell polynomial sequence {rn}bn∈IN
defined equivalently as in (2a) or (9).

In this case we say that the bivariate polynomial sequence {rn}bn∈IN is associated

with the functional L and, when necessary, we denote it by
{
rL
n

}b

n∈IN.
The generating function of the bivariate Appell polynomial sequence

{
rL
n

}b

n∈IN is
connected to the linear functional L by means of the following result.

534 Numerical Algorithms (2022) 91:531–556



Proposition 1 For the generating function F (x, y; t) of the general bivariate Appell

sequence
{
rL
n

}b

n∈IN the following identity holds:

F (x, y; t) = extφ (y, t)

Lx,y (extφ (y, t))
, (14)

where Lx,y means that the linear functional L acts on extφ (y, t) with respect to the
variables x and y.

Proof Relation (14) follows from (5), (8), (13), the second equality in (6) and the
linearity of the functional:

F (x, y; t)= extφ(y, t)

1

A(t)

= extφ(y, t)
∞∑

k=0

βk

tk

k!

= extφ(y, t)

Lx,y

( ∞∑

k=0

pk(x, y)
tk

k!

) = extφ (y, t)

Lx,y
(
extφ(y, t)

) .

For every f ∈ X we look for, if there exists, the bivariate polynomial in[f ] such
that ∀k ∈ IN, k ≤ n,

L

(
∂k

∂xk
in[f ]

)
= L

(
∂kf

∂xk

)
.

We call this problem the general bivariate Appell interpolation problem. If, ∀n ∈ IN,
in[f ] exists, we call it the bivariate Appell interpolant of f of order n associated with
the functional L.

We note that this problem is very closely related to the corresponding univariate
problem in [10, p. 101]. Therefore, we say that it is its “natural” bivariate extension.

In the sequel we will adopt the following notation for the derivatives of a bivariate
function f :

f (i,j) = ∂i+j f

∂xi∂yj
, f (0,0) = f, f (i,j)(α, β) = f (i,j)(x, y)

∣∣∣
(x,y)=(α,β)

.

Theorem 1 (The main theorem) [11] For every f ∈ X the bivariate polynomial of
total degree n given by

in[f ](x, y) =
n∑

i=0

L
(
f (i,0)

) rL
i (x, y)

i! (15)

is the unique element of Sn such that

L
(
in[f ](j,0)

)
= L

(
f (j,0)

)
, j = 0, . . . , n, (16)

that is, in[f ] is the bivariate Appell interpolant of f associated with the functional L.

Proof Let’s define the linear functionals

L0(f ) = L(f ), Lk(f ) = L
(
f (k,0)

)
, k = 1, . . . , n.
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We get

Lj (pk) := L
(
p

(j,0)
k

)
= j !

(
k

j

)
βk−j , j ≤ k.

Then for the sequence
{
rL
n

}b

n∈IN, from (9) we haveLj

(
rL
k

)
= k!δkj , j = 0, . . . , k,

that is the systems {Ln}n∈IN and
{
rL
n

}b

n∈IN are biorthogonal [14]. Hence the polyno-
mial (15) satisfies the interpolation conditions (16). The uniqueness follows from the
linear independence of the linear functionals Lj , j = 0, . . . , n.

Corollary 1 For any f ∈ Sn, in[f ](x, y) = f (x, y), ∀(x, y) ∈ D.

Remark 2 In order to remove the calculation of L(f ) from the bivariate Appell inter-
polant of f (15), we consider an arbitrary fixed point (u, v) ∈ D. Then we get the
bivariate polynomial

i∗n[f ](x, y) = f (u, v) + in[f ](x, y) − in[f ](u, v)

= f (u, v) +
n∑

k=1

L
(
f (k,0)

) rL
k (x, y) − rL

k (u, v)

k! .
(17)

The polynomial i∗n[f ](x, y) satisfies the interpolation conditions:

i∗n[f ](u, v) = f (u, v), L
(
i∗n[f ](k,0)

)
= L

(
f (k,0)

)
, k = 1, . . . , n.

We note that the interpolant i∗n[f ] replaces the calculation of the functional
L(f ) by the evaluation of the function in a suitable point. Therefore, we call it
complementary Appell interpolant of f related to functional L.

Remark 3 We observe that the Appell interpolant and its complementary interpolant
can be considered finite Appell polynomial expansions of bivariate functions. They
are the natural extensions to the bivariate polynomial case of the following univariate
formulas, respectively, [10, Th. 7.1, p. 101]

PL,n[f ](x) =
n∑

i=0

L(f (i))

i! aL,i(x)

and [10, p. 103]

P̃L,n[f ](x) = f (z) +
n∑

i=1

L(f (i))

i!
[
aL,i(x) − aL,i(z)

]
,

where
{
aL,i

}
i∈IN is the univariate Appell polynomial sequence associated with the

functional L.
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4 Remainder for Appell interpolation

For the Appell bivariate interpolants in [f ] defined as in (15) and i∗n [f ] defined as in
(17), we consider the error at any (x, y) ∈ D.

Definition 1 For any f ∈ X, (x, y) ∈ D, the remainder for the interpolants (15)
and (17) are, respectively, the linear functionals

En [f ] (x, y) = f (x, y) − in [f ] (x, y) , (18)

and
E∗

n [f ] (x, y) = f (x, y) − i∗n [f ] (x, y) . (19)

Remark 4 We observe that for any q ∈ Sn, En [q] (x, y) = 0 and E∗
n [q] (x, y) = 0,

∀ (x, y) ∈ D. In this case we say that En [f ] and E∗
n [f ] have order n with respect to

ϕ.

In order to estimate errors (18) and (19), in the following theorem we remember
Sard’s formula [17, 29].

Theorem 2 (Sard’s formula for bivariate functions) Let f ∈ Cn+1
(
D
)
. Then for

odd n, n = 2k + 1,

f (x, y) =
n∑

ν=0

ν∑

μ=0

1

ν!
(

ν

μ

)
xν−μyμf (ν−μ,μ)(0, 0)

+ 1

n!
k∑

μ=0

(
n

μ

){
yμ

∫ x

0
(x − u)n−μf (n+1−μ,μ)(u, 0) du

+ xμ

∫ y

0
(y − v)n−μf (μ,n+1−μ)(0, v) dv

}

+ 1

k!k!
∫ x

0

∫ y

0
(x − u)k(y − v)kf (k+1,k+1)(u, v) du dv,

and for even n, n = 2k,

f (x, y) =
n∑

ν=0

ν∑

μ=0

1

ν!
(

ν

μ

)
xν−μf (ν−μ,μ)(0, 0)

+ 1

n!
k∑

μ=0

′
(

n

μ

){
yμ

∫ x

0
(x − u)n−μf (n+1−μ,μ)(u, 0) du

+ xμ

∫ y

0
(y − v)n−μf (μ,n+1−μ)(0, v) dv

}

+ 1

2(k − 1)!k!
∫ x

0

∫ y

0
(x − u)k−1(y − v)k−1

[
(x − u)f (k+1,k)(u, v)

+(y − v)f (k,k+1)(u, v)
]

du dv,

537Numerical Algorithms (2022) 91:531–556



where
k∑

μ=0

′aμ = 1

2
a0 + · · · + ak−1 + ak .

Now, let Tn [f ] = En [f ] or E∗
n [f ].

Theorem 3 Let f ∈ Cn+1
(
D
)
. For the remainder Tn [f ] the following representa-

tion holds:

Tn [f ] = 1

n!
ρ∑

μ=0




(
n

μ

)[∫ τ

0
K

μ
1 (u) f (n+1−μ,μ) (u, 0) du

+
∫ σ

0
K

μ
2 (v) f (μ,n+1−μ) (0, v) dv

]

+ 1

ρ!ρ!
∫∫

D

Kρ,ρ(u, v)f (ρ+1,ρ+1)(u, v) du dv

for n = 2ρ + 1;

Tn [f ] = 1

n!
ρ∑

μ=0




(
n

μ

)[∫ τ

0
K

μ
1 (u) f (n+1−μ,μ) (u, 0) du

+
∫ σ

0
K

μ
2 (v) f (μ,n+1−μ) (0, v) dv

]

+ 1

2(ρ − 1)!ρ!
{∫∫

D

Kρ,ρ−1(u, v)f (ρ+1,ρ)(u, v) du dv

+
∫∫

D

Kρ−1,ρ(u, v)f (ρ,ρ+1)(u, v) du dv

}

for n = 2ρ, where
∑


 =
{∑

, n = 2ρ + 1
∑′, n = 2ρ,

τ = τ(y) > 0, σ = σ(x) > 0 are numbers such that (τ, y), (x, σ ) ∈ ∂D. K
μ
1 (u),

K
μ
2 (v), Ki,j (u, v) are the Sard kernel functions of Tn [f ] [17] defined as

K
μ
1 (u) = T

x,y
n

[
yμ(x − u)

n−μ
+

]
, μ = 0, . . . , ρ, (x, y) ∈ D

K
μ
2 (v) = T

x,y
n

[
xμ(y − v)

n−μ
+

]
, μ = 0, . . . , ρ, (x, y) ∈ D

Kρ,ρ(u, v) = T
x,y
n

[
(x − u)

ρ
+(y − v)

ρ
+
]
, n = 2ρ + 1, (x, y) ∈ D

Kρ,ρ−1(u, v) = T
x,y
n

[
(x − u)

ρ
+(y − v)

ρ−1
+

]
, n = 2ρ, (x, y) ∈ D,

Kρ−1,ρ(u, v) = T
x,y
n

[
(x − u)

ρ−1
+ (y − v)

ρ
+
]
, n = 2ρ, (x, y) ∈ D,

where T
x,y
n is the functional Tn with respect to the variables x and y.
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Proof The error functional Tn [f ] vanishes at each element of Sn, according to
Remark 4. The result follows from Th. 3.2.2 in [17, p. 105].

If all the Sard kernels have constant sign, from the general mean value theorem,
there exist points (ξi, 0) , (0, ζi) and (η, θ) , (η1, θ1) , (η2, θ2) in D such that, for f ∈
Cn+1

(
D
)
,

Tn[f ] = 1

n!
ρ∑

μ=0




(
n

μ

)[
f (n+1−μ,μ)

(
ξμ, 0

)∫ 1

0
K

μ
1 (u) du + f (μ,n+1−μ)

(
0, ζμ

) ∫ 1

0
K

μ
2 (v) dv

]

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ρ!ρ!f
(ρ+1,ρ+1)(η, θ)

∫∫

D

Kρ,ρ(u, v) du dv, n = 2ρ + 1,

1

2(ρ − 1)!ρ!
{
f (ρ+1,ρ)(η1, θ1)

∫∫

D

Kρ,ρ−1(u, v) du dv

+f (ρ,ρ+1)(η2, θ2)

∫∫

D

Kρ−1,ρ(u, v) du dv

}
, n = 2ρ.

In order to get error bounds for En [f ] we can apply Holder’s inequality, for
example in the case of the sup norm ‖ · ‖. Let f ∈ Cn+1

(
D
)
. We set

Mi,j = sup
(x,y)∈D

∣∣∣ f (i,j)(x, y)

∣∣∣ . (20)

Then we get

∣∣ Tn[f ] ∣∣ ≤ 1

n!
ρ∑

μ=0




(
n

μ

)[
Mn+1−μ,μ

∫ 1

0

∣∣∣Kμ
1 (u)

∣∣∣ du + Mμ,n+1−μ

∫ 1

0

∣∣∣Kμ
2 (v)

∣∣∣ dv

]

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mρ+1,ρ+1

ρ!ρ!
∫∫

D

∣∣∣Kρ,ρ(u, v)

∣∣∣ du dv, n = 2ρ + 1,

1

2(ρ − 1)!ρ!
[
Mρ+1,ρ

∫∫

D

∣∣∣Kρ,ρ−1(u, v)

∣∣∣ du dv

+Mρ,ρ+1

∫∫

D

∣∣∣Kρ−1,ρ(u, v)

∣∣∣ du dv

]
, n = 2ρ.

Now we consider some important examples of functionals L. For each func-
tional we determine the two interpolants in[f ] and i∗n[f ], and an error bound in the
case of in[f ] (for i∗n[f ] an analogous bound can be obtained). In the expressions
of the error bound we set M = max

i,j≥0
i+j≤n+1

Mi,j , with Mi,j defined as in (20) and

R = max
1≤k≤n

(x,y)∈D

∣∣∣rL
k (x, y)

∣∣∣.

Example 1 (Evaluating functional) Assuming

L (f ) = f (x0, y0) , (x0, y0) ∈ D f ixed,
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the bivariate Appell interpolating polynomial becomes

in[f ](x, y) = f (x0, y0) +
n∑

k=1

f (k,0)(x0, y0)
rL
k (x, y)

k! . (21)

Remembering that rL
k (x, y) =

k∑

i=0

(
k

i

)
αk−ipi(x, y), where αk are related to βk by

the relation (7) and by substituting in (21), we get

in[f ](x, y) =
n∑

i=0

f (i,0) (x0, y0)

i! αi +
n∑

k=1

I
n,α
k

pk(x, y)

k! , I
n,α
k =

n∑

i=k

f (i,0)(x0, y0)

(i − k)! αi−k .

(22)

From Theorem 3 we get the following estimate:

∣∣En[f ] ∣∣ ≤ M

(n + 1)!
[
3 + R

(
2n+1 − 1

)]
+ M (2 + R )

(n + 1)!
ρ∑

μ=1

(
n + 1

μ

)

+ M

(ρ + 1)!(ρ + 1)!
[
1 + R

(
2ρ+1 − 1

)]
,

n = 2ρ + 1

and

∣∣En[f ] ∣∣ ≤ M

2(n + 1)!
[
3 + R

(
2n+1 − 1

)]
+ M

(n + 1)!
ρ∑

μ=1

(
n + 1

μ

)
(2 + R )

+ M

(ρ + 1)!ρ!
[
1 + R

(
2ρ + 2ρ−1 − 1

)]
,

n = 2ρ.

We call polynomial (21), or equivalently (22), general partial Taylor formula for
f at the initial point (x0, y0).

Example 2 (Integral functional) Assuming

L (f ) =
∫ 1

0

∫ 1

0
f (x, y) dx dy, (23)

the bivariate Appell interpolating polynomial related to the integral functional (23)
becomes

in[f ](x, y) =
∫ 1

0

∫ 1

0
f (x, y)dxdy +

n∑

k=1

rL
k (x, y)

k!
∫ 1

0

[
f (k−1,0) (1, y) − f (k−1,0) (0, y)

]
dy.

(24)
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After easy calculations we get

in[f ](x, y) =
n∑

k=0

pk(x, y)

k! I
n,α
k , I

n,α
k =

n∑

i=k

αi−k

(i − k)!
∫ 1

0
�f (i−1,0)(y) dy,

(25)
being �f (y) = f (1, y) − f (0, y).
From Theorem 3 we obtain the following estimate:

∣∣En[f ] ∣∣ ≤ M 22ρ

(2ρ + 1)!
[

2

ρ + 2
+ 22ρ+1 R + 2ρ+1 R

(ρ + 2)(ρ + 3)

]
+

+ M

(ρ + 1)!ρ!
[

1

ρ + 1
+ 2ρ+1 R

ρ + 2

]
,

n = 2ρ +1

and

∣∣En[f ] ∣∣ ≤ M 22ρ

(2ρ)!
[

2

ρ + 1
+ 22ρ R + 2ρ+1 R

(ρ + 1)(ρ + 2)

]
+

+ M

2(ρ − 1)!(ρ + 1)!
[
2

ρ
+ 2ρ+1 R

ρ
+ 2ρ R

(ρ + 2)

]
,

n = 2ρ.

We call the interpolant (24) (or (25)) integral of first forward difference.
The complementary interpolant associated with the functional (23) is

i∗n[f ](x, y)=f (u, v)+
n∑

k=1

rL
k (x, y)−rL

k (u, v)

k!
∫ 1

0

[
f (k−1)(1, y)−f (k−1) (0, y)

]
dy.

Example 3 (Arithmetic mean functional) Let (x0, y0) be an arbitrary fixed point of
D. Assuming

L (f ) = f (x0+1, y0+1)+f (x0 + 1, y0)+f (x0, y0 + 1)+f (x0, y0)

4
= M0 (f ) ,

(26)
we get the bivariate Appell interpolating polynomial

in[f ](x, y) = M0 (f ) +
n∑

k=1

M0

(
f (k,0)

) rL
k (x, y)

k! .

After easy calculations we obtain

in[f ](x, y) =
n∑

k=0

pk(x, y)

k! K
n,α
k ,

where

K
n,α
k = 1

4

∑n
i=k

αi−k

(i−k)!
[
f (i,0) (x0 + 1, y0 + 1) + f (i,0) (x0 + 1, y0)

+f (i,0) (x0, y0 + 1) + f (i,0) (x0, y0)
]

and αi are as in (1).
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From Theorem 3 we get the following estimate:

∣∣En[f ] ∣∣ ≤ M

(n+1)!
ρ∑

μ=0

(
n+1

μ

)[
2+ R

(
2n−μ+1+2μ−1− 1

2

) ]

+ M
(
(ρ + 1)!

)2

[
1 + R

(
2ρ+1 − 1

) ]
,

n = 2ρ+1

and

∣∣En[f ] ∣∣ ≤ M

2(n + 1)!
[
3 + R

(
2n+1 − 1

) ]

+ M

(n + 1)!
ρ∑

μ=1

(
n+1

μ

)[
2+ R

(
2n−μ+1+2μ−1− 1

2

) ]

+ M

ρ!(ρ + 1)!
[
1 + R

(
2ρ + 2ρ−1 − 1

) ]
,

n = 2ρ.

The complementary interpolant is

i∗n[f ](x, y) = f (u, v) +
n∑

k=1

pk(x, y) − pk(u, v)

k! K
n,α
k .

5 Some particular examples of bivariate Appell interpolation

Now we will give some particular examples of interpolants in the case D = [0, 1] ×
[0, 1].
A. Let φ (y, t) = eyt .

It is known [11] that the related bivariate elementary Appell sequence is
{pk}bk∈IN, with

pk(x, y) = (x + y)k, ∀k ∈ IN. (27)

In the literature [4, 5, 7, 15] pk(x, y) is denoted also by H
(1)
n (x, y) and called

bivariate Hermite polynomial.
Now we consider different functionals.

A1. Evaluating functional.
Let L(f ) be defined as

L(f ) = f (0, 0), ∀f ∈ X.

In this case ∀k ∈ IN we get

βk = L (pk) = L
(
(x + y)k

)
=
{
1 k = 0

0 k > 0.
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Consequently, from (7),

αk =
{
1 k = 0

0 k > 0.

Then the general partial Taylor formula, that in this case we denote by
tn[f ], becomes

tn[f ](x, y) = f (0, 0) +
n∑

k=1

f (k,0)(0, 0)
(x + y)k

k! .

We call this polynomial partial-Taylor formula at starting point (0, 0).
We observe that this formula is quite different from the generalized

Taylor formula in [16].
From Example 1 we get the following estimate:

∣∣En[f ] ∣∣ ≤ 2M

(n+1)!
(
2n+2+

ρ∑

μ=1

(
n+1

μ

)(
2μ−1+1

))

+ 2M

(ρ + 1)!(ρ + 1)!
(
2ρ + 1

)
,

n = 2ρ+1,

and

∣∣En[f ] ∣∣ ≤ 2M

(n+1)!
(
2n−1+1+

ρ∑

μ=1

(
n+1

μ

)(
2μ−1+1

))

+ 2M

(ρ + 1)!ρ!
(
2ρ−1 + 2ρ−2 + 1

)
,

n = 2ρ,

where M = max
i,j≥0,i+j≤n+1

Mi,j , with Mi,j defined as in (20).

A2. Integral functional.
For any f ∈ X let’s consider the integral functional L as in (23). From

(13) we have

∀k ∈ IN, βk = L (pk) =
∫ 1

0

∫ 1

0
(x + y)k dx dy = 2

(
2k+1 − 1

)

(k + 1)(k + 2)
.

The bivariate Appell sequence associated with L is given by the recur-
rence formula (see (11))

r0 (x, y) = 1, rk(x, y) = (x+y)k−2
k−1∑

j=0

k! (2k−j+1−1
)

j !(k−j+2)! rj (x, y), k > 0,
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or, equivalently, by the determinant form

r0 (x, y)=1, rk (x, y)=(−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x + y (x + y)2 · · · (x + y)k

1 1 7
6 · · · 2

(
2k+1−1

)

(k+1)(k+2)

0 1 2 · · · 2
(
2k−1

)

k+1
...

. . .
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 1 k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k > 0.

From Proposition 1, the generating function of the sequence {rn}bn∈IN is

F (x, y; t) = ext eyt

∫ 1

0

∫ 1

0
e(x+y)t dx dy

= t2

(
et − 1

)2 e(x+y)t . (28)

In order to give an explicit expression of rn, from (28) we can write

(
t

et − 1

)2

e(x+y)t =
∞∑

n=0

rn(x, y)
tn

n! .

Hence

rn(x, y) =
n∑

k=0

(
n

k

)
B

(2)
k (x)yn−k, (29)

B
(2)
n (x) being the Bernoulli polynomial of order 2 [8, 13, 22, 26] defined

by the generating function

(
t

et − 1

)2

ext =
∞∑

n=0

B(2)
n (x)

tn

n! .

Bernoulli polynomial of order 2 can be written also in terms of Bernoulli
numbers of order 2, as follows

B(2)
n (x) =

n∑

k=0

(
n

k

)
B

(2)
k xn−k, (30)

with B
(2)
k given by

(
t

et − 1

)2

=
∞∑

k=0

B
(2)
k

tk

k! . (31)

From (31) we get

B
(2)
k =

k∑

i=0

(
k

i

)
BiBk−i ,
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where Bj is the j th Bernoulli number. Finally, from (29), (30) and (31),
after calculations, we get

rn(x, y) =
n∑

k=0

(
n

k

)
B

(2)
k (x)yn−k =

n∑

k=0

(
n

k

)
Bk(x)Bn−k(y). (32)

We note that
{
B

(2)
n

}

n∈IN is a univariate Appell sequence; therefore, from

(29), according to Theorem 6.13 in [10, p. 90], we get

rn(x, y) = B(2)
n (x + y).

The bivariate Appell sequence {rk}bk∈IN defined in (29) or, equiv-
alently in (32), does not appear in the literature. We call it natural
bivariate Bernoulli polynomial sequence of order 2 and we denote it by{
B(2)

k

}b

k∈IN. Hence, we have

B(2)
n (x, y) =

n∑

k=0

(
n

k

)
Bk(x)Bn−k(y) = B(2)

n (x + y). (33)

The first natural bivariate Bernoulli polynomials of order 2 are

B(2)
0 (x, y) = 1, B(2)

1 (x, y) = x + y − 1,

B(2)
2 (x, y) = (x + y)2 − 2(x + y) + 5

6
,

B(2)
3 (x, y) = (x + y)3 − 3(x + y)2 + 5

2
(x + y) − 1

2
,

B(2)
4 (x, y) = (x + y)4 − 4(x + y)3 + 5(x + y)2 − 2(x + y) + 1

10
.

Other properties of these polynomials will be studied in a future work.
The integral Appell interpolant is

in[f ](x, y) = ∫ 1
0

∫ 1
0 f (x, y)dxdy

+∑n
k=1

B(2)
k (x,y)

k!
∫ 1
0

[
f (k−1) (1, y) − f (k−1) (0, y)

]
dy.
(34)

Formula (34) can be called, also, polynomial expansion of a bivariate
real function in natural bivariate Bernoulli polynomials of order 2.

The complementary integral Appell interpolant is

i∗n[f ](x, y) =f (0, 0)

+∑n
k=1

B(2)
k (x,y)−B(2)

k (0,0)
k!

∫ 1
0

[
f (k−1)(1, y)−f (k−1)(0, y)

]
dy.
(35)
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Remark 5 Formulas (34) and (35) are the bivariate extensions of univari-
ate formulas (8.68) and (8.77) in [10] that are, respectively,

Pn(x) =
∫ 1

0
Pn(x) +

n∑

k=1

P
(k−1)
n (1) − P

(k−1)
n (0)

k! Bk(x),

and

f (x) = f (0) +
n∑

k=1

Bk(x) − Bk

k!
[
f (k−1)(1) − f (k−1)(0)

]
+ Rn[f ](x).

A3. Arithmetic mean functional.
For any f ∈ X let’s consider the functional M0 (f ) defined in (26).
In particular, for (x0, y0) = (0, 0), we get

M0 (f ) = f (1, 1) + f (1, 0) + f (0, 1) + f (0, 0)

4
. (36)

Therefore, β0 = 1 and ∀k ∈ IN, k ≥ 1,

βk = M0

(
(x + y)k

)
= 1 + 2k−1

2
.

Then, the bivariate Appell sequence associated with the functional M0
is given by the recurrence formula

r0 (x, y) = 1, rn(x, y)=(x+y)n−
n−1∑

j=0

(
n

j

)
1+2n−j−1

2
rj(x, y), n≥1,

or, equivalently, by

rn (x, y)=(−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x + y (x + y)2 (x + y)3 · · · (x + y)n

1 1 3
2

5
2 · · · 2n−1+1

2

0 1 2 3 · · · n 2n−2+1
2

0 0 1 1
(
n
2

) 2n−3+1
2

...
. . .

. . .
. . .

. . .
...

0 · · · · · · 0 1
(

n
n−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n > 0.

To give the series expansion of rM
k (x, y), from Proposition 1 we have

F (x, y; t) = e(x+y)t

M0

(
e(x+y)t

) = 4
(
et + 1

)2 e(x+y)t .

Hence
(

2

et + 1

)2

e(x+y)t =
∞∑

n=0

rn(x, y)
tn

n! . (37)
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In order to give an explicit expression of rn, from (37) we get

rn(x, y) =
n∑

k=0

(
n

k

)
E

(2)
k (x)yn−k, (38)

E
(2)
n (x) being the Euler polynomial of order 2 [2, 9] defined by the

generating function

(
2

et + 1

)2

ext =
∞∑

n=0

E(2)
n (x)

tn

n!
or by

E(2)
n (x) =

n∑

k=0

(
n

k

)
E

(2)
k (0)xn−k, (39)

with E
(2)
k (0) given by

(
2

et + 1

)2

=
∞∑

k=0

E
(2)
k (0)

tk

k! . (40)

From Corollary 1.9 in [2] we get

E
(2)
k (0) =

k∑

i=0

(
k

i

)
Ei(0)Ek−i (0),

where Ej(0) is the value of the j th univariate Euler polynomial Ej(x) at
x = 0.

Finally, from (38), (39) and (40), after calculations, we get

rn(x, y) =
n∑

k=0

(
n

k

)
E

(2)
k (x)yn−k =

n∑

k=0

(
n

k

)
Ek(x)En−k(y). (41)

{
E

(2)
n

}

n∈IN is a univariate Appell sequence; therefore, from (38), accord-

ing to Theorem 6.13 in [10, p. 90], we get

rn(x, y) = E(2)
n (x + y).

To the authors knowledge the bivariate sequence {rk}bk∈IN defined in
(38) or, equivalently in (41), does not appear in the literature. We call it

bivariate natural Euler polynomial of order 2 and denote it by
{
E (2)

n

}b

k∈IN:

E (2)
n (x, y) =

n∑

k=0

(
n

k

)
Ek(x)En−k(y) = E(2)

n (x + y). (42)
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The first bivariate natural Euler polynomials of order 2 are

E (2)
0 (x, y) = 1, E (2)

1 (x, y) = x + y − 1,

E (2)
2 (x, y) = (x + y)2 − 2(x + y) + 1

2
,

E (2)
3 (x, y) = (x + y)3 − 3(x + y)2 + 3

2
(x + y) + 1

2
,

E (2)
4 (x, y) = (x + y)4 − 4(x + y)3 + 3(x + y)2 + 2(x + y) − 1.

The mean Appell interpolant is

in [f ] (x, y) = M0 (f ) +
n∑

k=1

M0

(
f (k,0)

) E (2)
k (x, y)

k!
= f (1, 1) + f (1, 0) + f (0, 1) + f (0, 0)

4

+
n∑

k=1

f (k,0)(1, 1)+f (k,0)(1, 0)+f (k,0)(0, 1)+f (k,0)(0, 0)

4

E (2)
k (x, y)

k! .

(43)

It is also the polynomial expansion of a bivariate real function in bivari-
ate natural Euler polynomials of order 2. We note that interpolant (43)
approximates a functions by only boundary values. In addition, it is the
natural extension to the bivariate case of the univariate polynomial [10, p.
133]

Pn[f ](x) = f (1) + f (0)

2
+

n∑

i=1

f (i)(1) + f (i)(0)

2

Ei(x)

2
.

The complementary Appell interpolant is

i∗n[f ](x, y) = f (0, 0) +
n∑

k=1

M0

(
f (k,0)

) E (2)
k (x, y) − E (2)

k (0, 0)

k! .

B. Let φ(y, t) = eyt2 .
It is known [11] that in this case the elementary Appell sequence is {pn}bn∈IN,

with

pn(x, y) = H(2)
n (x, y) = n!

� n
2 
∑

k=0

xn−2kyk

k!(n − 2k)! . (44)

The polynomials H
(2)
n (x, y) are called Hermite-Kampé de Fériet (HKF) poly-

nomials [4, 5, 7, 13, 20].

B1. Evaluating functional
Assuming L (f ) = f (0, 0), ∀k ∈ IN we have

βk = L
(
H

(2)
k

)
=
{
1 k = 0
0 k �= 0.
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The Appell interpolant is

in[f ](x, y) = f (0, 0) +
n∑

k=1

f (k,0)(0, 0)
H

(2)
k (x, y)

k! .

This means that the partial Taylor HKF-based polynomial provides also
an expansion for a bivariate function in terms of HKF polynomials.

B2. Integral functional.
∀f ∈ X let’s consider the integral functional as in (23). In order to

determine the bivariate Appell sequence associated with functional (23),
we get

∀k ∈ IN, βk = L
(
H(2)

n

)
= k!

� k
2 
∑

j=0

1

(j + 1)!(k − 2j + 1)! . (45)

Thus we obtain the bivariate Appell sequence {rn}bn∈IN such that

r0 (x, y) = 1, rn(x, y) = H(2)
n (x, y)−

n−1∑

j=0

(
n

j

)
βn−j rj (x, y), n ≥ 1.

For the generating function of {rn}bn∈IN, from Proposition 1 we get

F (x, y; t) = ext+yt2

∫ 1

0

∫ 1

0
ext+yt2 dx dy

= t3ext+yt2

(et − 1)
(
et2 − 1

) . (46)

Hence
t3ext+yt2

(et − 1)
(
et2 − 1

) =
∞∑

n=0

rn(x, y)
tn

n! . (47)

We call {rn}bn∈IN bivariate Bernoulli HKF-based polynomial sequence
associated with functional (23) and denote it by {Hk}bk∈IN. The first
polynomials of this sequence are

H0(x, y) = 1, H1(x, y) = x − 1

2
, H2(x, y) = x2 − x + 2y − 5

6
,

H3(x, y) = x3 − 3

2
x2 − 5

2
x − 3y + 6xy + 3

2
,

H4(x, y) = x4 − 2x3 − 5x2 + 6x + 12y2 + 12x2y−12xy−10y + 29

30
.

From (47),

Hn(x, y) =
n∑

j=0

(
n

j

)
αn−jH

(2)
j (x, y), n ≥ 1, (48)

where
t3

(et − 1)
(
et2 − 1

) =
∞∑

k=0

αk

tk

k!
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and

αk = k!
� k
2 
∑

j=0

Bk−2jBj

j !(k − 2j)! ,

with Bs the sth Bernoulli number.

Remark 6 From (7) and (12), for k = 1, . . . , n, we get the following
identity:

k!
� k
2 
∑

j=0

Bk−2jBj

j !(k − 2j)! = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 1 0 · · · · · · 0
β2

(2
1

)
β1 1 0 · · · 0

...
...

. . .
. . .

...
...

...
...

. . .
. . .

...

βk−1
(
k−1
k−2

)
βk−2

(
k−1
k−3

)
βk−3 · · · . . . 1

βk

(
k

k−1

)
βk−1

(
k

k−2

)
βk−2 · · · · · · (k1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where βj , j = 1, . . . , k, are defined as in (45).

We note that the numbers αj , j = 0, . . . , n, and the sequence {Hn}bn∈IN
appear in [13], but in a different context.

The bivariate Appell interpolant related to the sequence {Hk}bk∈IN is

in[f ](x, y)=
∫ 1

0

∫ 1

0
f (x, y) dx dy+

n∑

k=1

Hk (x, y)

k!
∫ 1

0

∫ 1

0
f (k,0)(x, y)dx dy,

which provides an expansion of a bivariate function in terms of HKF
polynomials.

The complementary Appell interpolant is

i∗n[f ](x, y)=f (x0, y0)+
n∑

k=1

Hk(x, y)−Hk (x0, y0)

k!
∫ 1

0

∫ 1

0
f (k,0)(x, y)dx dy.

B3. Arithmetic mean functional
Let’s consider the functional as in (36). In this case

β0 = 1, βk = M0

(
H

(2)
k

)
= 1

4

⎛

⎜⎜⎝1 +

[
k
2

]

∑

j=0

k!
j !(k − 2j)! +

{
n!

( n
2 )!

n even

0 n odd

⎞

⎟⎟⎠ , k ≥ 1.
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Then the bivariate Appell sequence associated with the functional M0 is
given by the recurrence formula

rn(x, y) = H(2)
n (x, y) −

n−1∑

k=0

(
n

k

)
βn−krk(x, y).

From Proposition 1 the generating function is

F(x, y; t) = ext+yt2

M0
(
ext+yt2

) .

Since M0

(
ext+yt2

)
=

(
et + 1

) (
et2 + 1

)

4
, then

4 ext+yt2

(et + 1)
(
et2 + 1

) =
∞∑

n=0

rn(x, y)
tn

n! .

Setting

4

(et + 1)
(
et2 + 1

) =
∞∑

k=0

αk

tk

k! ,

we have

αk = k!

[
k
2

]

∑

s=0

Es(0)Ek−2s(0)

s!(k − 2s)! ,

where En(x) is the classic Euler polynomial of degree n. Then, from (3)
we obtain

rn(x, y) =
n∑

k=0

(
n

k

)
αn−kH

(2)
k (x, y). (49)

Remark 7 The bivariate Appell sequence {rn}bn∈IN appears in [13], but in
a different context. We call it bivariate Euler HKF-based polynomial

sequence of order 2 and denote it by
{
K (2)

n

}b

n∈IN.

The first bivariate Euler HKF-based polynomials of order 2 are:

K (2)
0 (x, y)=1, K (2)

1 (x, y)=x− 1

2
, K (2)

2 (x, y) = x2−x+2y − 1,

K (2)
3 (x, y) = x3 − 3

2
x2 − 3x − 3y + 6xy + 7

4
,

K (2)
4 (x, y) = x4 − 2x3 − 6x2 + 7x + 12y2 + 12x2y − 12xy − 12y.
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Finally, the bivariate Appell interpolant is

in [f ] (x, y) = M0 (f ) +
n∑

k=1

M0

(
f (k,0)

) K (2)
k (x, y)

k! .

The complementary interpolant is

i∗n[f ](x, y) = f (0, 0) +
n∑

k=1

M0

(
f (k,0)

) K (2)
k (x, y) − K (2)

k (0, 0)

k! .

Remark 8 All the bivariate HKF-based Appell interpolants satisfy the
known heat equation.

Remark 9 All the bivariate Appell interpolants connected to the arithmetic
mean linear functional use only boundary values.

Table 1 contains the list of the considered polynomial sequences and the related
Appell interpolants.

6 Numerical results

In order to verify the previous theoretical results we consider the comparison between
some functions and the related bivariate Appell interpolant. Particularly, we consider
the following functions

– f1(x, y) = sin (x + y)

– f2(x, y) = ln (x + y + 5)

– f3(x, y) = e
− x+2

4y+9

and their interpolants. For every function we calculate the maximum error

EQ = max
(x,y)∈[0,1]×[0,1]

∣∣∣fk(x, y) − in[fk](x, y)

∣∣∣,

with n = 1, . . . , 10, k = 1, 2, 3 and Q∈ {
A1, A2, A3, B1, B2, B3

}
.

In order to compare the numerical results of our interpolant with other approxi-
mants, we consider the well-known bivariate Bernstein polynomial [25].

Tables 2, 3, and 4 show the results for f1, f2 and f3 respectively. The last column
of each table contains the maximum error in the case of approximation by means of
bivariate Bernstein polynomials.

From the previous tables we can observe that the results obtained by the inter-
polants based on H

(1)
n (cases A1, A2, A3) are satisfactory and comparable favorably

with those obtained by Bernstein approximations. The interpolants based on H
(2)
n

(cases B1, B2, B3) need a more in depth study from a computational point of view,
particularly taking into account stability and accuracy.
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Table 2 EQ for f1(x, y) = sin (x + y)

n EA1 EA2 EA3 EB1 EB2 EB3 EBern

1 1.09e+00 3.61e-01 2.31e-01 8.41e-01 5.25e-01 4.40e-01 2.01e-01

2 1.09e+00 4.54e-02 7.32e-02 8.41e-01 8.47e-01 7.64e-01 1.05e-01

3 2.42e-01 5.26e-03 3.52e-02 1.07e+00 7.31e-01 6.42e-01 7.13e-02

4 2.42e-01 8.51e-04 9.63e-03 1.07e+00 8.03e-01 6.55e-01 5.41e-02

5 2.40e-02 1.65e-04 4.78e-03 8.42e-01 7.97e-01 6.47e-01 4.35e-02

6 2.40e-02 2.28e-05 1.22e-03 8.42e-01 8.00e-01 6.23e-01 3.64e-02

7 1.36e-03 5.81e-06 6.07e-04 8.66e-01 8.00e-01 6.27e-01 3.13e-02

8 1.36e-03 1.21e-06 1.51e-04 8.66e-01 7.99e-01 6.25e-01 2.75e-02

9 5.00e-05 8.40e-07 7.40e-05 8.57e-01 7.99e-01 6.25e-01 2.45e-02

10 5.00e-05 6.85e-07 1.80e-05 8.57e-01 7.99e-01 6.28e-01 2.21e-02

Table 3 EQ for f2(x, y) = ln (x + y + 5)

n EA1 EA2 EA3 EB1 EB2 EB3 EBern

1 6.35e-02 1.25e-02 7.85e-03 1.82e-01 9.62e-02 9.15e-02 7.13e-03

2 1.64e-02 8.07e-04 1.20e-03 2.22e-01 1.08e-01 1.06e-01 3.57e-03

3 4.86e-03 3.33e-05 2.34e-04 2.22e-01 1.10e-01 1.08e-01 2.38e-03

4 1.53e-03 6.82e-06 6.16e-05 2.27e-01 1.10e-01 1.08e-01 1.79e-03

5 5.09e-04 2.19e-06 2.01e-05 2.27e-01 1.10e-01 1.08e-01 1.43e-03

6 1.73e-04 1.76e-06 7.70e-06 2.28e-01 1.10e-01 1.07e-01 1.19e-03

7 6.04e-05 1.70e-06 3.46e-06 2.28e-01 1.10e-01 1.07e-01 1.02e-03

8 2.14e-05 1.70e-06 1.77e-06 2.28e-01 1.10e-01 1.07e-01 8.93e-04

9 7.69e-06 1.70e-06 1.01e-06 2.28e-01 1.10e-01 1.07e-01 7.94e-04

10 2.79e-06 1.69e-06 6.54e-07 2.29e-01 1.10e-01 1.07e-01 7.14e-04

Table 4 EQ for f3(x, y) = e
− x+2

4y+9

n EA1 EA2 EA3 EB1 EB2 EB3 EBern

1 1.71e-02 7.27e-03 7.57e-03 8.21e-03 3.87e-03 3.87e-03 6.11e-04

2 1.51e-02 7.22e-03 7.39e-03 6.73e-03 3.61e-03 3.51e-03 3.11e-04

3 1.53e-02 7.22e-03 7.38e-03 6.86e-03 3.63e-03 3.53e-03 2.08e-04

4 1.53e-02 7.22e-03 7.38e-03 6.85e-03 3.62e-03 3.53e-03 1.56e-04

5 1.52e-02 7.22e-03 7.38e-03 6.85e-03 3.62e-03 3.53e-03 1.25e-04

6 1.52e-02 7.22e-03 7.38e-03 6.85e-03 3.62e-03 3.53e-03 1.04e-04

7 1.52e-02 7.22e-03 7.38e-03 6.85e-03 3.62e-03 3.53e-03 8.94e-05

8 1.52e-02 7.22e-03 7.38e-03 6.85e-03 3.62e-03 3.53e-03 7.82e-05

9 1.52e-02 7.22e-03 7.38e-03 6.85e-03 3.62e-03 3.53e-03 6.95e-05

10 1.52e-02 7.22e-03 7.38e-03 6.85e-03 3.62e-03 3.53e-03 6.26e-05
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7 Conclusions

In this paper we proposed a new type of linear interpolation for bivariate functions,
called bivariate Appell interpolation. The interpolant conditions are not usual, but
they are expressed in terms of a linear functional L, with L(1) �= 0, on the space
CN(X), N > 1, where X is a linear space of bivariate real functions defined in
D ⊂ IR2. We proved that for every f ∈ CN(X) there exists a unique bivariate
polynomial in[f ](x, y) such that L

(
in[f ](j,0)) = L

(
f (j,0)

)
, j = 0, . . . , n. To the

bivariate Appell interpolant in[f ], which depends on the functional L, is associated
the complementary interpolant i∗n[f ], in which L(f ) is substituted by f (u, v), being
(u, v) an arbitrary fixed point. The truncation error for the bivariate interpolants are
defined and bounds are given by Sard’s Theorem. As examples we considered the
bivariate Appell polynomials based on H

(i)
n (x, y), i = 1, 2, and, for every family,

three different linear functionals. So we obtained ten new bivariate interpolants for
real, regular bivariate functions. We gave also numerical examples and comparisons
with the bivariate Berstein polynomial. The comparison is advantageous except in
the case of H

(2)
n (x, y), for which further investigations are needed.

Further developments are possible. Beside the aforementioned computational
aspects, the study of interpolant series for analytic functions with particular proper-
ties seems to be of interest. Other developments can be applications of interpolants,
such as numerical cubature and numerical solution of boundary value problems for
partial differential equations. Furthermore, theoretical attention can be given to the
role of two variables in the definition of bivariate Appell extension.
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