
https://doi.org/10.1007/s11075-022-01268-0

ORIGINAL PAPER

Substructured two-grid andmulti-grid domain
decomposition methods

G. Ciaramella1 ·T. Vanzan2

Received: 31 August 2021 / Accepted: 26 January 2022
© The Author(s) 2022

Abstract
Two-level Schwarz domain decomposition methods are very powerful techniques for
the efficient numerical solution of partial differential equations (PDEs). A two-level
domain decomposition method requires two main components: a one-level precondi-
tioner (or its corresponding smoothing iterative method), which is based on domain
decomposition techniques, and a coarse correction step, which relies on a coarse
space. The coarse space must properly represent the error components that the cho-
sen one-level method is not capable to deal with. In the literature, most of the works
introduced efficient coarse spaces obtained as the span of functions defined on the
entire space domain of the considered PDE. Therefore, the corresponding two-level
preconditioners and iterative methods are defined in volume. In this paper, we use the
excellent smoothing properties of Schwarz domain decomposition methods to define,
for general elliptic problems, a new class of substructured two-level methods, for
which both Schwarz smoothers and coarse correction steps are defined on the inter-
faces (except for the application of the smoother that requires volumetric subdomain
solves). This approach has several advantages. On the one hand, the required com-
putational effort is cheaper than the one required by classical volumetric two-level
methods. On the other hand, our approach does not require, like classical multi-grid
methods, the explicit construction of coarse spaces, and it permits a multilevel exten-
sion, which is desirable when the high dimension of the problem or the scarce quality
of the coarse space prevents the efficient numerical solution. Numerical experiments
demonstrate the effectiveness of the proposed new numerical framework.

� T. Vanzan
tommaso.vanzan@epfl.ch

G. Ciaramella
gabriele.ciaramella@polimi.it

1 MOX Lab, Politecnico di Milano, Milan, Italy

2 CSQI Chair, École Polytecnique Fédérale de Lausanne, Lausanne, Switzerland

Numerical Algorithms (2022) 91:413–448

/ Published online: 13 March 2 022

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01268-0&domain=pdf
http://orcid.org/0000-0001-7554-4692
mailto: tommaso.vanzan@epfl.ch
mailto: gabriele.ciaramella@polimi.it

Numerical Algorithms (2022) 91:413–448

Keywords Domain decomposition methods · Schwarz methods · Substructured
methods · Two-level methods · Coarse correction · Multigrid methods · Elliptic
equations

1 Introduction

Domain decomposition (DD) methods are powerful divide-and-conquer strategies
that permit the solution of linear systems of equations, generally discrete partial dif-
ferential equation (PDE) problems, by efficient parallelization processes [20, 48,
52]. Over the course of the time, several different parallel DD strategies have been
developed; see [28] for an elegant review with a historical flavor. The first idea of
parallelizing a Schwarz method goes back to P.L. Lions, who introduced the classical
parallel Schwarz method [47]. This method is based on Dirichlet transmission con-
ditions and its discrete version is proved to be equivalent to the famous Restricted
Additive Schwarz (RAS) method [28], which was discovered much later in [6]. Sim-
ilar to RAS is the famous Additive Schwarz (AS) method introduced in [54]. Even
though both RAS and AS are based on Dirichlet transmission conditions, they are
not equivalent methods; see, e.g., [24] for a detailed comparison analysis. If different
transmission conditions are used, one obtains different DD methods, like the opti-
mized Schwarz method [27, 36], the Neumann-Neumann (or FETI) method [9, 52],
the Dirichlet-Neumann method [7, 48], etc. The main drawback of these classical
one-level DD methods is that they are not (weakly) scalable, since their convergence
generally deteriorates when the number of subdomains increases; see, e.g., [7, 20,
52]. Only in few cases a particular scalability behavior has been proved and investi-
gated [7, 10–12, 16, 17]. To overcome this scalability issue, a coarse correction step
is usually used. This leads to “two-level DD methods”. In the literature, with “two-
level DD method” one refers to either a two-level preconditioner [1–4, 19, 21, 23,
25, 26, 33, 39, 44, 45, 49, 50, 55], or to a two-level stationary method [8, 9, 14, 22,
30–32, 34, 35, 37]. While in the first class one seeks for a coarse space matrix to add
to the one-level DD preconditioner, in the second class the goal is to design a correc-
tion step, where the residual equation is solved on a coarse space. This second class
follows an idea similar to the one of multi-grid methods [42].

For any given one-level DD method (stationary or preconditioning), the choice
of the coarse space influences very strongly the convergence behavior of the cor-
responding two-level method. For this reason, the main focus of all the references
mentioned above is the definition of different coarse spaces and new strategies to
build coarse space functions, leading to efficient two-level DD stationary and precon-
ditioning methods. Despite that the mentioned references consider several one-level
DD methods and different partial differential equation (PDE) problems, it is still pos-
sible to classify them in two main groups. These depend on the idea governing the
definition of the coarse space. To explain it, let us consider a DD iterative method
(e.g., RAS) applied to a well-posed PDE problem. Errors and residuals of the DD
iterative procedure have generally very special forms. The errors are predominant in
the overlaps and are harmonic, in the sense of the underlying PDE operator, in the
interior of the subdomains (excluding the interfaces). The residuals are predominant

414

Numerical Algorithms (2022) 91:413–448

on the interfaces and zero outside the overlap. For examples and more details, see,
e.g., [14, 15, 32]. This difference motivated, sometimes implicitly, the construction
of different coarse spaces. On the one hand, many references use different techniques
to define coarse functions in the overlap (where the error is predominant), and then
extend them on the remaining part of the neighboring subdomains; see, e.g., [19, 21,
23, 25, 26, 44, 45, 49, 50]. On the other hand, in other works the coarse space is cre-
ated by first defining basis functions on the interfaces (where the residual is nonzero),
and then extending them (in different ways) on the portions of the neighboring sub-
domains; see, e.g., [1, 2, 8, 9, 14, 30, 32–35, 37, 44]. For a good, compact and
complete overview of several of the different coarse spaces, we refer to [44, Section
5]. For Helmholtz and time-harmonic equations, we refer to [3, 4, 39], where the
coarse space is based on a (volumetric) coarse mesh. For other different techniques
and other related discussions, see, e.g., [20, 22, 30, 31, 40, 55].

The starting point of this work is related to an important property of Schwarz meth-
ods: one-level Schwarz iterative methods are generally very efficient smoothers; see,
e.g., [10, 13, 27, 37] and references therein. This property was already discussed in
[42, Chapter 15], where Schwarz methods are used as classical smoothers in the con-
text of multi-grid methods or to define local defect corrections; see, e.g., [37, 41]. In
these frameworks, Schwarz methods are used to smooth and correct the approxima-
tion in some subdomains of the entire computational domain. However, as we already
mentioned, after one Schwarz smoothing iteration, the residuals are generally pre-
dominant on the interfaces and in some cases even zero outside the interfaces. This
remark is the key starting point of our work. We introduce for the first time so-called
two-level and multilevel DD substructured methods. We call these methods Geo-
metric 2-level Substructured (G2S) method and Geometric Multilevel Substructured
(GMS) method. The term “substructured” indicates that iterations and coarse correc-
tion steps are defined on the interfaces (or more precisely on the substructures1) of
the domain decomposition (note that volumetric subdomains solves are still required
to apply the smoother). With this respect, our methods are defined in the same spirit
as two-level methods whose coarse spaces are extensions in volume of interfaces
basis functions: they attempt to correct the residual only where it is truly necessary.
The G2S method is essentially a two-grid parallel Schwarz method defined on the
substructures, for which the coarse correction is performed on coarser interface grids.
The GMS is the extension of the G2S to a multilevel framework. In other words,
by the G2S and GMS methods, we propose a new methodology that attempts the
best use of Schwarz smoothers in the context of two-grid and multi-grid methods.
Direct numerical experiments show that these methods converge in less iterations
than classical two-grid methods defined in volume and using a Schwarz smoother.
In many cases, this improvement in terms of iteration number is significantly high.
Moreover, our new methods have, in addition, other advantages. On the one hand,

1Notice that the term “substructured” refers very often to DD methods that are defined on non-overlapping
subdomains; see, e.g., [48, 52]. However, in this work it indicates methods that are purely defined on the
interfaces, independently of the type of (overlapping or non-overlapping) decomposition of the domain;
see, e.g., [27, Section 5]. Here, we consider an overlapping domain decomposition.

415

Numerical Algorithms (2022) 91:413–448

like classical multi-grid methods, the G2S method does not require the explicit con-
struction of coarse spaces, and it permits a multilevel extension, which is desirable
when the dimension of the coarse space becomes too large. On the other hand, since
the entire solution process is defined on the substructures, less memory storage is
required and it is not necessary to store the entire approximation array on each point
of the (discrete) domain. For a three-dimensional problem with mesh size h, a dis-
crete substructure array is of size O(1/h2). This is much smaller than O(1/h3),
which is the size of an array corresponding to an approximation in volume. For this
reason, the resulting interface restriction and prolongation operations are generally
much cheaper and the dimension of the coarse space is much smaller.

This paper is organized as follows. In Section 2, we formulate the classical paral-
lel Schwarz method in a substructured form. This is done at the continuous level and
represents the starting point for the G2S method introduced in Section 3, where also
a convergence analysis is presented for two subdomains in 2d. In Section 4, we dis-
cuss implementation details and multilevel extensions of the G2S method. Extensive
numerical experiments are presented in Section 5, where the robustness of the pro-
posed methods with respect to mesh refinement and physical parameters is studied.
Finally, we present our conclusions in Section 6.

2 Substructured Schwarz domain decompositionmethods

Consider a bounded Lipschitz domain Ω ⊂ R
d for d ∈ {2, 3}, a general second-

order linear elliptic operator L and a function f ∈ L2(Ω). Our goal is to introduce
new domain decomposition-based methods for the efficient numerical solution of the
general linear elliptic problem

Lu = f in Ω , u = 0 on ∂Ω, (1)

which we assume to be uniquely solved by a u ∈ H 1
0 (Ω).

To formulate our methods, we need to fix some notation. Given a bounded set Γ

with boundary ∂Γ , we denote by ρΓ (x) the distance of x ∈ Γ from ∂Γ . The space
H

1/2
00 (Γ) is then defined as

H
1/2
00 (Γ) := {v ∈ H 1/2(Γ) : v/ρ

1/2
Γ ∈ L2(Γ)}, (2)

and it is also known as the Lions-Magenes space; see, e.g., [46, 48, 51]. Equiva-
lently, H 1/2

00 (Γ) can be defined as the space of functions in H 1/2(Γ) such that their
extensions by zero to a superset ˜Γ of Γ are in H 1/2(˜Γ); see, e.g., [51].

Next, consider a decomposition of Ω into N overlapping Lipschitz subdomains
Ωj , that is Ω = ∪j∈IΩj with I := {1, 2, . . . , N}. For any j ∈ I, we define the
set of neighboring indexes Nj := {� ∈ I : Ωj ∩ ∂Ω� �= ∅}. Notice that j /∈ Nj ,
and ∪j∈INj = I. Given a j ∈ I, we introduce the substructure of Ωj defined as
Sj := ∪�∈Nj

(

∂Ω� ∩ Ωj

)

, that is the union of all portions of ∂Ω� intersecting with

Ωj with � ∈ Nj .2 The sets Sj are open and their closures are Sj = Sj ∪ ∂Sj , with

2Notice that the substructure of a subdomain is sometimes called “skeleton”; see, e.g., [17].

416

Numerical Algorithms (2022) 91:413–448

Fig. 1 Decomposition of a rectangular Ω into nine overlapping subdomains (left), and representation of
the substructure Sj for the central subdomain (right)

∂Sj := ∪�∈Nj

(

∂Ωj ∩ ∂Ω�

)

. The substructure of Ω is defined as S := ∪j∈ISj .
Figure 1 provides an illustration of substructures corresponding to a commonly used
decomposition of a rectangular domain. We denote by E0

j : L2(Sj) → L2(S) the
extension by zero operator. Now, we consider a set of continuous functions χj :
Sj → [0, 1], j = 1, . . . , N , such that

χj (x) ∈

⎧

⎪

⎨

⎪

⎩

(0, 1] for x ∈ Sj ,

{1} for x ∈ Sj \ ∪�∈Nj
S�,

{0} for x ∈ ∂Sj \ ∂Ω,

and
∑

j∈I E0
j χj ≡ 1, which means that the functions χj form a partition of

unity. Further, we assume that the functions χj , j ∈ I, satisfy the condition

χj/ρ
1/2
Sj

∈ L∞(Sj). This is satisfied, for example, in the case of Fig. 1 with
piecewise linear partition of unity function χj .

For any j ∈ I, we define Γ int
j := ∂Ωj ∩ (∪�∈Nj

Ω�

)

and introduce the following
trace and restriction operators

τj : H 1(Ωj) → H 1/2(Sj) and τ intj : H 1/2(S) → H 1/2(Γ int
j).

It is well known that (1) is equivalent to the domain decomposition system (see, e.g.,
[48])

Luj = fj in Ωj, uj =
∑

�∈Nj

E0
� (χ�τ�u�) on Γ int

j , uj = 0 on ∂Ωj \ Γ int
j , (3)

where fj ∈ L2(Ωj) is the restriction of f onΩj . Notice that χ�τ�u� lies inH
1/2
00 (S�),

E0
� (χ�τ�u�) ∈ H 1/2(S). Moreover, for � ∈ Nj , it holds that τ intj E0

� (χ�τ�u�) ∈
H

1/2
00 (Γ int

j) if Γ int
j � ∂Ωj , and τ intj E0

� (χ�τ�u�) ∈ H 1/2(Γ int
j) if Γ int

j = ∂Ωj .

417

Numerical Algorithms (2022) 91:413–448

Given a j ∈ I such that ∂Ωj \ Γ int
j �= ∅, we define the extension operator Ej :

H
1/2
00 (Γ int

j) × L2(Ωj) → H 1(Ωj) as w = Ej (v, fj), where w solves the problem

Lw = fj in Ωj, w = v on Γ int
j , w = 0 on ∂Ωj \ Γ int

j (4)

for a v ∈ H
1/2
00 (Γ int

j). Otherwise, if Γ int
j ≡ ∂Ωj , we define Ej : H 1/2(Γ int

j) ×
L2(Ωj) → H 1(Ωj) as w = Ej (v, fj), where w solves the problem

Lw = fj in Ωj, w = v on Γ int
j , (5)

for a v ∈ H 1/2(Γ int
j).

The domain decomposition system (3) can be then written as

uj = Ej (0, fj) + Ej

(

τ intj

∑

�∈Nj

E0
� (χ�τ�u�), 0

)

, j ∈ I. (6)

If we define vj := χjτjuj , j ∈ I, then system (6) becomes

vj = gj +
∑

�∈Nj

Gj,�(v�), j ∈ I, (7)

where gj := χj τjE(0, fj) and the operators Gj,� : H
1/2
00 (S�) → H

1/2
00 (Sj) are

defined as

Gj,�(·) := χj τjEj

(

τ intj E0
� (·), 0). (8)

System (7) is the substructured form of (3). The equivalence between (3) and (7) is
explained by the following theorem.

Theorem 1 (Relation between (3) and (7)) Let uj ∈ H 1(Ωj), j ∈ I, solve (3),

then vj := χj τjuj , j ∈ I, solve (7). Let vj ∈ H
1/2
00 (Sj), j ∈ I, solve (7), then

uj := Ej (τ
int
j

∑

�∈Nj
E0

� (v�), fj), j ∈ I, solve (3).

Proof The first statement is proved before Theorem 1, where the substructured sys-
tem (7) is derived. To obtain the second statement, we use (7) and the definition of
uj to write vj = χj τjEj (τ

int
j

∑

�∈Nj
E0

� (v�), fj) = χjτjuj . The claim follows by
using this equality together with the definitions of uj and Ej .

Take any function w ∈ H 1
0 (Ω) and consider the initialization u0j := w|Ωj

, j ∈ I.
The parallel Schwarz method (PSM) is then given by

Lun
j = fj in Ωj, un

j =
∑

�∈Nj

E0
� (χ�τ�u

n−1
�) on Γ int

j , un
j = 0 on ∂Ωj \ Γ int

j , (9)

for n ∈ N
+, and has the substructured form

vn
j = gj +

∑

�∈Nj

Gj,�(v
n−1
�), j ∈ I, (10)

418

Numerical Algorithms (2022) 91:413–448

initialized by v0j := χj τju
0
j ∈ H

1/2
00 (Sj). Notice that the iteration (10) is well posed

in the sense that vn
j ∈ H

1/2
00 (Sj) for j ∈ I and n ∈ N. Equations (10) and (7) allow

us to obtain the substructured PSM in error form, that is

en
j =

∑

�∈Nj

Gj,�(e
n−1
�), j ∈ I, (11)

for n ∈ N
+, where en

j := vj − vn
j , for j ∈ I and n ∈ N. Equation (7) can be written

in the matrix form Av = b, where v = [v1, . . . , vN]�, b = [g1, . . . , gN]� and the
entries of A are

[A]j,j = Id,j and [A]j,� = −Gj,�, j, � ∈ I, j �= �, (12)

where Id,j are the identities on L2(Sj), j ∈ I. Similarly, we define the operator G as

[G]j,j = 0 and [G]j,� = Gj,�, j, � ∈ I, j �= �,

which allows us to write (10) and (11) as vn = Gvn−1 + b and en = Gen−1, respec-
tively, where vn := [vn

1 , . . . , v
n
N]� and en := [en

1 , . . . , e
n
N]�. Notice that G = I− A,

where I := diagj=1,...,N (Id,j). Moreover, we wish to remark that neither the operator
A nor G is necessarily symmetric.

If the iteration vn = Gvn−1 + b converges, then the limit is the solution to the
problem Av = b. From a numerical point of view, this is not necessarily true if the
(discretized) subproblems (9) are not solved exactly. For this reason, we assume in
what follows that the subproblems (9) are always solved exactly.

3 G2S: geometric two-level substructured DDmethod

In this section, we introduce our G2S method. The main drawback of many two-
level DD methods (including our two-level G2S method) is that the dimension of the
coarse space can grow for increasing number of subdomains. This situation becomes
even worse if the basis functions are not “good enough”, a fact that would require an
even larger dimension of the coarse space. In this case, the extension from two-level
to multilevel framework would be suitable. These comments lead to the following
questions. Is it possible to avoid the explicit construction of a coarse space? Is there
any practical way to implicitly define a coarse space? Can one define a framework
in which an extension of the two-level method to a multilevel framework is possible
and easy?

In this section, we answer the above questions by introducing the so-called Geo-
metric 2-level Substructured (G2S) method, which is a two-grid-type method (allow-
ing a multi-grid generalization). This is detailed in Section 3.1. The corresponding
convergence analysis for a two-subdomain case is presented in Section 3.2.2.

419

Numerical Algorithms (2022) 91:413–448

Fig. 2 Left: The subdomain Ωj as in Fig. 1, its substructure Sj (blue lines) and the corresponding discrete

substructure SNj

j (black circles). Right: The coarse discrete substructure SMj

j is marked by red crosses

3.1 Description of the G2Smethod

Let us consider a discretization of the substructures such that Sj is approximated by

a mesh of Nj points, j ∈ I. The discrete substructures are denoted by SNj

j , j ∈ I.
An example is given in Fig. 2 (left).

Moreover, we set Ns := ∑

j∈I Nj . The corresponding finite-dimensional dis-

cretization of the operators Gj,� in (8) are denoted by Gh,j,� ∈ R
Nj ×N� . Similarly as

in (12), we define the block operators Ah ∈ R
Ns×Ns

and Gh ∈ R
Ns×Ns

as

[Ah]j,j = Ih,j , [Ah]j,� = −Gh,j,�, j, � ∈ I, j �= �,

[Gh]j,j = 0, [Gh]j,� = Gh,j,�, j, � ∈ I, j �= �,
(13)

where Ih,j ∈ R
Nj ×Nj are identity matrices. Notice that Ah = Ih − Gh, where Ih =

diag(Ih,1, . . . , Ih,N). Therefore, the substructured problem Av = b becomes

Ahv = bh,

where bh = [bh,1, . . . ,bh,N], and the PSM is then

vn = Ghvn−1 + bh. (14)

The matrices Gh and Ah = Ih − Gh are not necessarily symmetric and never assem-
bled explicitly. Instead their action of given vectors is computed directly. Notice that
the computation of the action of Gh,j,� on a given vector requires a subdomain solve.
We insist on the fact that this subdomain solve is performed exactly. Furthermore, if
the discrete PSM (14) converges, then ρ(Gh) < 1 and the matrix Ah is invertible.

Next, we introduce coarser discretizations SMj

j , j ∈ I, where the j th substructure
is discretized with Mj < Nj points. An example is given in Fig. 2 (right). The total
number of discrete coarse points is Ms := ∑

j∈I Mj . For each j ∈ I we introduce

restriction and prolongation matrices Rj ∈ R
Mj ×Nj and Pj ∈ R

Nj ×Mj . These could
be classical interpolation operators used, e.g., in multi-grid methods. If for example

420

Numerical Algorithms (2022) 91:413–448

Sj is a one-dimensional interval, then the prolongation matrix can be chosen as

Pj :=

⎡

⎢

⎢

⎢

⎢

⎣

1
2 1 1

2 · · ·
1
2 1 1

2 · · ·
1
2 · · ·

· · · 1
2· · · 1
2 1 1

2

⎤

⎥

⎥

⎥

⎥

⎦

�

, (15)

and the corresponding restriction matrix would be the full weighting restriction oper-
ator Rj := 1

2P
�
j . The global restriction and prolongation matrices are defined as

R := diag(R1, . . . , RN) ∈ R
Ms×Ns

and P := diag(P1, . . . , PN) ∈ R
Ns×Ms

. The
restriction of Ah on the coarse level is then defined as A2h := RAhP . Notice that
this matrix can be either precomputed exactly or assembled in an approximate way.
For more details see Section 4.1.

Remark 1 Notice that, for the definition of the G2S method, fine and coarse meshes
need not to be nested and the sets SMj

j need not to coincide on overlapping areas.
In this manuscript, we work with nested meshes. The case of non-nested meshes is
beyond the scope of this paper and will be the subject of future work. Moreover, it
is natural to include cross points in both fine and coarse discrete substructures, since
these are generally the corners of the (overlapping) subdomains (see, e.g., Figs. 2 and
7).

The G2S procedure is defined by the following Algorithm 1, where n1 and n2 are
the numbers of the pre- and post-smoothing steps.

This is a classical two-grid type iteration, but instead of having the classical
grids in volume, we consider two discrete levels on the substructures. This has
the advantage of performing all restriction and interpolation operations of smaller
coarse problems. More details are given in Section 4.1. We insist on the fact that the
G2S method does not require the explicit construction of a coarse space Vc, but it
exploits directly a discretization of the interfaces. Moreover, it is clear that a simple
recursion allows us to embed the G2S method into a multi-grid framework. Further
implementation details are discussed in Section 4.

421

Numerical Algorithms (2022) 91:413–448

Fig. 3 Two-subdomain decomposition, substructures and their discretizations

Formally, one iteration of our G2S method can be represented as

vnew = G
n2
h (Ih − PA−1

2h RAh)G
n1
h vold + ˜Mbh, (16)

where ˜M is a matrix which acts on the right-hand side vector bh and which can be
regarded as the preconditioner corresponding to our two-level method. In error form,
the iteration (16) becomes

enew = Theold with Th := G
n2
h (Ih − PA−1

2h RAh)G
n1
h ,

where enew := v − vnew and eold := v − vold.

3.2 Analysis of the G2Smethod

In this section, we analyze the convergence of the G2S method. To do so, we recall
our model problem (1) and assume a two-subdomain decomposition Ω = Ω1 ∪ Ω2
such that the two substructures S1 and S2 are two segments of the same length ˜L.
Notice that in this case the substructures coincide with the interfaces. An example for
Ω equal to a rectangle is given in Fig. 3.

For a given � ∈ N
+, � ≥ 2, we discretize (1) using a uniform grid of Nh = 2� − 1

points on each substructure (without counting the two points on ∂Ω) so that the grid

size is h = ˜L
Nh+1 . Notice that Nh = N1 = N2, where Nj are used in Section 3.1 to

denote the number of discretization points of the substructures. We also introduce a

coarser mesh ofNc = 2�−1−1 points on each substructure and mesh size hc = ˜L
Nc+1 .

We define the geometric prolongation operator P ∈ R
2Nh×2Nc as P := diag(˜P , ˜P),

where ˜P = P1 = P2 is the matrix given in (15). The operator R ∈ R
2Nc×2Nh is

defined as R := diag(˜R, ˜R), where ˜R is the full weighting restriction matrix ˜R :=
1
2
˜P �. Due to the special decomposition into two subdomains, let us simplify the

notation defining Gh,1 := Gh,1,2 and Gh,2 := Gh,2,1, that is the action of Gh,j

represents a subdomain solution in the j th subdomain. We suppose that the operators
Gh,1 and Gh,2 have eigenvectors ψk with eigenvalues ρj (k), k = 1, . . . , Nh, j =

422

Numerical Algorithms (2022) 91:413–448

1, 2. Here, ψk are discrete Fourier modes given by (ψk)j = sin(kπhj), for j, k =
1, . . . , Nh. Notice that ψ�

� ψk = δ�,k
Nc+1
2 , with δ�,k the Kronecker delta.

It is well known that the actions of ˜R and ˜P on the combination of a low-frequency
mode ψk with its high-frequency companion ψ

˜k , with˜k = Nh − k + 1, are

˜R
[

ψk ψ
˜k

] = φk

[

c2k −s2k

]

, ˜Pφk = (c2kψk − s2kψ
˜k) = [

ψk ψ
˜k

]

[

c2k−s2k

]

,

(17)
where ck = cos(kπ h

2), sk = sin(kπ h
2) for k = 1, . . . , Nc and (φk)j = sin(kπ2hj),

for k = 1, . . . , Nh+1
2 − 1 and j = 1, . . . , Nh+1

2 − 1 = Nc (notice that the two points
on ∂Ω are excluded); see, e.g., [13, 42]. The vectors φk are Fourier modes on the
coarse grid. As before, the coarse matrix is A2h = RAhP , and the G2S iteration
operator is Th = G

n2
h (I − PA−1

2h RAh)G
n1
h .

In the following subsections, we prove that G2S method is well posed and conver-
gent. Well-posedness follows by the invertibility of the coarse matrix A2h, which is
proved in Section 3.2.1 along with an interpretation of the G2S method. A detailed
convergence analysis is presented in Section 3.2.2, where sharp estimates of the spec-
tral radius of Th are derived under certain assumptions. Finally, in Section 3.2.3 we
discuss the relations between our G2S method and a classical two-grid method in
volume using the PSM as a smoother.

3.2.1 Interpretation of G2S as a general two-level method

Let us begin by considering any invertible matrix U ∈ R
2Nc×2Nc and compute

Th = G
n2
h (I − PA−1

2h RAh)G
n1
h

= G
n2
h (I − PUU−1(RAhP)−1UU−1RAh)G

n1
h

= G
n2
h (I − PUU−1[U(U−1RAhPU)U−1]−1UU−1RAh)G

n1
h

= G
n2
h (I − PU(U−1RAhPU)−1U−1RAh)G

n1
h

= G
n2
h (I − ̂P ̂A−1

2h
̂RAh)G

n1
h =: ̂Th, (18)

where ̂P := PU , ̂R = U−1R and ̂A2h := ̂RAh
̂P .

Let us define the orthogonal matrices Φ = 2
Nc+1 [φ1, . . . , φNc

] and U :=
diag(Φ, Φ), and the operators ̂P := PU , ̂R = U�R3 and ̂A2h := ̂RAh

̂P . Notice
that the columns of ̂P := PU are the vectors spanning the space

Vc = (spank=1,...,Nc
{˜Pφk})2 = (spank=1,...,Nc

{c2kψk − s2kψ
˜k})2 ⊂ R

2Nh, (19)

where the relation (17) is used. This means that the G2S method can be written
as a two-level method characterized by an iteration operator ̂Th defined via the

3Notice that (̂P)� = U�P � = 2U�R = 2̂R, since ˜R = 1
2
˜P �.

423

Numerical Algorithms (2022) 91:413–448

prolongation and restriction operators ̂P and ̂R. Moreover, in this case the actions of
̂P and ̂R on two vectors can be expressed by

̂P

[

v
w

]

=
[

Nc
∑

k=1
(v)k˜Pφk,

Nc
∑

k=1
(w)k˜Pφk

]�
,

̂R

[

f
g

]

= [〈 12 ˜Pφ1, f〉, · · · , 〈 12 ˜PφNc
, f〉, 〈 12 ˜Pφ1, g〉, · · · , 〈 12 ˜PφNc

, g〉]� , (20)

for any v,w ∈ R
Nc and any f, g ∈ R

Nh , where 〈·, ·〉 denotes the usual Euclidean
scalar product.

Now, we turn our attention to the matrix A2h, whose invertibility is proved in the
following lemmas.

Lemma 1 (Invertibility of a coarse operator Ac) Let (Xj , 〈·, ·〉j), j = 1, 2 be two
inner-product spaces. Define the spaceX := X2×X1 endowed with the inner product
〈(a, b), (c, d)〉 := 〈a, c〉2 + 〈b, d〉1 for all (a, b), (c, d) ∈ X . Consider some bases
{ψj

� }�∈N ⊂ Xj , j = 1, 2. Let Vc be a finite-dimensional subspace of X given by the
span of the basis vectors (ψ2

1 , 0), . . . , (ψ2
m, 0) and (0, ψ1

1), . . . , (0, ψ1
m), for a finite

integer m > 0. Let PVc be the orthogonal projection operator onto Vc. Consider an
invertible operator A : X → X and the matrix Ac = RAP ∈ R

2m×2m, where P
and R are defined as

P
[

v
w

]

:=
[

m
∑

k=1
(v)kψ2

k ,
m
∑

k=1
(w)kψ

1
k

]�
,

R
[

f

g

]

:= [〈ψ2
1 , f 〉2, · · · , 〈ψ2

m, f 〉2, 〈ψ1
1 , g〉1, · · · , 〈ψ1

m, g〉1
]�

. (21)

Then Ac has full rank if and only if PVc (Av) �= 0 ∀v ∈ Vc \ {0}.

Proof We first show that if PVc (Av) �= 0 for any v ∈ Vc \ {0}, then Ac = RAP has
full rank. This result follows from the rank-nullity theorem, if we show that the only
element in the kernel of Ac is the zero vector. To do so, we recall the definitions of P
andR given in (21). Clearly, Pz = 0 if and only if z = 0. For any z ∈ R

2m the vector
Pz is in Vc. Since A is invertible, then APz = 0 if and only if z = 0. Moreover,
by our assumption it holds that PVc (APz) �= 0. Now, we notice that Rw �= 0 for
all w ∈ Vc \ {0}, and Rw = 0 for all w ∈ V ⊥

c , where V ⊥
c denotes the orthogonal

complement of Vc in X with respect to 〈·, ·〉. Since (X , 〈·, ·〉) is an inner-product
space, we have APz = PVc (APz) + (I − PVc)(APz) with (I − PVc)(APz) ∈ V ⊥

c .
Hence, RAPz = RPVc (APz) �= 0 for any nonzero z ∈ R

2m.
Now we show that, if Ac = RAP has full rank, then PVc (Av) �= 0 for any

v ∈ Vc \{0}. We proceed by contraposition and prove that if there exists a v ∈ Vc \{0}
such that Av ∈ V ⊥

c , then Ac = RAP has not full rank. Assume that there is a
v ∈ Vc\{0} such thatAv ∈ V ⊥

c . Since v is in Vc, there exists a nonzero vector z ∈ R
2m

such that v = Pz. Hence APz ∈ V ⊥
c . We can now write that Acz = R(APz) = 0,

which implies that Ac has not full rank.

424

Numerical Algorithms (2022) 91:413–448

Lemma 2 (Invertibility of A2h) Assume that ρ1(k), ρ2(k) ∈ [0, 1) for all k and that
ρ1(k) ≥ ρ1(˜k) and ρ2(k) ≥ ρ2(˜k) for any k = 1, . . . , Nc and˜k = Nh − k + 1. The
matrix A2h := RAhP ∈ R

2Nc×2Nc has full rank.

Proof Since A2h = U ̂A2hU
�, it is enough to show that ̂A2h is invertible. To do

so, we recall that ̂A2h = ̂RAh
̂P and we wish to prove that for any z ∈ Vc \ {0}

(with Vc defined in (19)) it holds PVc (Ahz) �= 0 and then invoke Lemma 1. Here the
orthogonality is understood with respect to the classical scalar product ofR2Nh . First,
it is possible to show that the orthogonal complement of Vc is

V ⊥
c = (spank=1,...,Nc

{c−2
k ψk + s−2

k ψ
˜k, ψ (Nh+1)/2})2.

Notice that dim(Vc) = 2Nc, dim(V ⊥
c) = 2(Nc + 1), and dim(Vc)+dim(V ⊥

c) = 2Nh,
since Nh = 2Nc + 1.

Since the vectors spanning Vc in (19) are orthogonal, we have PVc (w) = ̂P ̂P �w
for any w ∈ R

2Nh , Since ̂P has full rank, to prove that PVc (Ahz) �= 0 for any
z ∈ Vc \{0} it is sufficient to show that ̂P �Ahv �= 0 holds for any column v of ̂P , that
is any element of the form [(˜Pφk)

� , (˜Pφ�)
�]�. Therefore, we use (17) and compute

Ah

[

˜Pφk
˜Pφ�

]

= Ah

[

c2kψk − s2kψ
˜k

c2�ψ� − s2�ψ
˜�

]

=
[

c2kψk − s2kψ
˜k − (ρ1(�)c

2
�ψ� − ρ1(˜�)s

2
�ψ

˜�)

c2�ψ� − s2�ψ
˜� − (ρ2(k)c2kψk − ρ2(˜k)s2kψ

˜k)

]

=
[

˜Pφk − ρ1(�)˜Pφ� − (ρ1(�) − ρ1(˜�))s
2
�ψ

˜�
˜Pφ� − ρ2(k)˜Pφk − (ρ2(k) − ρ2(˜k))s2kψ

˜k

]

, (22)

for any k, � = 1, . . . , Nc, where˜k = Nh − k + 1 and ˜� = Nh − � + 1, for k, � =
1, . . . , Nc. Now, a direct calculation shows that

s2kψ
˜k = − s4k

s4k + c4k

˜Pφk

︸ ︷︷ ︸

PVc (s2k ψ
˜k)

+ 1

s−4
k + c−4

k

(c−2
k ψk + s−2

k ψ
˜k)

︸ ︷︷ ︸

P
V ⊥
c

(s2k ψ
˜k)

,

for any k = 1, . . . , Nc. Inserting this equality into (22), multiplying to the left with
[(˜Pφk)

� , (˜Pφ�)
�] and using (17) together with the orthogonality relation ψ�

� ψk =
δ�,k

Nc+1
2 , we obtain for k �= � that

[

˜Pφk
˜Pφ�

]�
Ah

[

˜Pφk
˜Pφ�

]

= ‖˜Pφk‖22 + ‖˜Pφ�‖22 �= 0.

Similarly, for k = � we obtain that
[

˜Pφk
˜Pφ�

]�
Ah

[

˜Pφk
˜Pφ�

]

=
(

2−(ρ1(k)−ρ2(k))+ s4k (ρ2(k) − ρ2(˜k) + ρ1(k) − ρ1(˜k))

s4k + c4k

)

‖˜Pφk‖22.

A direct calculation using the assumptions on ρj (k) shows that this is nonzero.

3.2.2 Convergence of the G2Smethod

The previous section focused on the well-posedness of the method. In particular, we
proved Lemma 2 that guarantees that A2h is invertible and that the G2S method is

425

Numerical Algorithms (2022) 91:413–448

well posed. In this section, our attention is turned to the analysis of the G2S con-
vergence behavior. This is performed by studying the spectral properties of the G2S
iteration operator. Our first key result is the following technical lemma.

Lemma 3 Consider the G2S matrix Th := G
n2
h (I − PA−1

2h RAh)G
n1
h . The action of

Th on

[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

is given by

Th

[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

=
[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

˜Gk, (23)

where ˜Gk := Dn2(k)(Dn1(k) − V (k)Λ−1
2 (k)Λ1(k)) with

Λ1(k) := V (k)�H(k)Dn1(k), Λ2(k) := V (k)�H(k)V (k),

V (k) :=

⎡

⎢

⎢

⎣

c2k 0
−s2k 0
0 c2k
0 −s2k

⎤

⎥

⎥

⎦

, H(k) :=

⎡

⎢

⎢

⎣

1 0 −ρ1(k) 0
0 1 0 −ρ1(˜k)

−ρ2(k) 0 1 0
0 −ρ2(˜k) 0 1

⎤

⎥

⎥

⎦

,

and Dn(k) is given by

Dn(k) :=

⎡

⎢

⎢

⎣

π(k)n 0 0 0
0 π(˜k)n 0 0
0 0 π(k)n 0
0 0 0 π(˜k)n

⎤

⎥

⎥

⎦

, Dn(k) :=

⎡

⎢

⎢

⎣

0 0 π21(k, n) 0
0 0 0 π21(˜k, n)

π12(k, n) 0 0 0
0 π12(˜k, n) 0 0

⎤

⎥

⎥

⎦

for n even and for n odd, respectively, whose entries are π(k) := (ρ1(k)ρ2(k))1/2,

π12(k, n) := ρ1(k)
n−1
2 ρ2(k)

n+1
2 , and π21(k, n) := ρ1(k)

n+1
2 ρ2(k)

n−1
2 .

Proof We consider the case in which both n1 and n2 are even. The other cases can
be obtained by similar arguments. Since n1 is even, we have that

G
n1
h =

[

(Gh,1Gh,2)
n1/2 0

0 (Gh,2Gh,1)
n1/2

]

.

Because of the relation (Gh,1Gh,2)
n1/2ψk = (Gh,2Gh,1)

n1/2ψk = π(k)n1ψk , where
π(k) := (ρ1(k)ρ2(k))1/2, we get

G
n1
h

[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

=
[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

⎡

⎢

⎢

⎣

π(k) 0 0 0
0 π(˜k) 0 0
0 0 π(k) 0
0 0 0 π(˜k)

⎤

⎥

⎥

⎦

n1

=
[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

Dn1 (k).

Similarly, we obtain that G
n2
h

[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

=
[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

Dn2(k).

Moreover, direct calculations reveal that

Ah

[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

=
[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

⎡

⎢

⎢

⎢

⎣

1 0 −ρ1(k) 0
0 1 0 −ρ1(˜k)

−ρ2(k) 0 1 0
0 −ρ2(˜k) 0 1

⎤

⎥

⎥

⎥

⎦

=
[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

H(k)

(24)

426

Numerical Algorithms (2022) 91:413–448

and

R

[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

=
[

φk 0
0 φk

] [

c2k −s2k 0 0
0 0 c2k −s2k

]

=
[

φk 0
0 φk

]

V (k)�, (25)

where we used (17). It follows that RAhG
n1
h

[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

=
[

φk 0
0 φk

]

Λ1(k). Let

us now study the action of the coarse matrix A2h on

[

φk 0
0 φk

]

. We use (17), (24) and

(25) to write

A2h

[

φk 0
0 φk

]

= RAhP

[

φk 0
0 φk

]

= RAh

[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

V (k)

= R

[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

H(k)V (k) =
[

φk 0
0 φk

]

V (k)�H(k)V (k).

Thus, we have A2h

[

φk 0
0 φk

]

=
[

φk 0
0 φk

]

Λ2(k), and since A2h is invertible by

Lemma 2, we get
[

φk 0
0 φk

]

= A−1
2h

[

φk 0
0 φk

]

Λ2(k). (26)

A direct calculation reveals that the eigenvalues of Λ2(k) are λ1,2 = c4k + s4k ±
√

(c4kρ1(k) + s4k ρ1(˜k))(c4kρ2(k) + s4k ρ2(˜k)) and they are nonzero for k = 1, . . . , Nc.
Hence, Λ2(k) is invertible and, using (26), we get

A−1
2h

[

φk 0
0 φk

]

Λ1(k) = A−1
2h

[

φk 0
0 φk

]

Λ2(k)Λ−1
2 (k)Λ1(k) =

[

φk 0
0 φk

]

Λ−1
2 (k)Λ1(k),

Summarizing our results and using the definition of Th, we conclude that

Th

[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

=
[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

Dn2(k)

⎡

⎢

⎢

⎣

Dn1(k) −

⎡

⎢

⎢

⎣

c2k 0
−s2k 0
0 c2k
0 −s2k

⎤

⎥

⎥

⎦

Λ−1
2 (k)Λ1(k)

⎤

⎥

⎥

⎦

and our claim follows.

Using Lemma 3, it is possible to factorize the iteration matrix Th. This factoriza-
tion is obtained in the following theorem.

Theorem 2 (Factorization of the iteration matrix Th) There exists an invertible
matrix Q such that Th = Q˜GQ−1, where the G2S iteration matrix Th is defined in
Lemma 3 and

˜G =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

˜G1
. . .

˜GNc

γ1(
Nh+1

2)

γ2(
Nh+1

2)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

427

Numerical Algorithms (2022) 91:413–448

where the matrices ˜Gk ∈ R
4×4 are defined in Lemma 3 and γj (

Nh+1
2) depend on n1,

n2 and the eigenvalues ρj (
Nh+1

2) of Gh,j , for j = 1, 2.

Proof We define the invertible matrix

Q :=
[

ψ1 ψNh
0 0 · · · ψNc

ψNc+2 0 0 ψ Nh+1
2

0

0 0 ψ1 ψNh
· · · 0 0 ψNc

ψNc+2 0 ψ Nh+1
2

]

.

Equation (23) says that Th

[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

=
[

ψk ψ
˜k 0 0

0 0 ψk ψ
˜k

]

˜Gk , for every

k = 1, . . . , Nc = Nh+1
2 − 1 and˜k = Nh − k + 1. Moreover, the frequency ψ Nh+1

2
is

mapped to zero by the restriction operator, R

[

ψ Nh+1
2

0

0 ψ Nh+1
2

]

= 0, and we get

Th

[

ψ Nh+1
2

0

0 ψ Nh+1
2

]

= G
n2
h G

n1
h

[

ψ Nh+1
2

0

0 ψ Nh+1
2

]

=
⎡

⎣

γ1(
Nh+1

2)ψ Nh+1
2

0

0 γ2(
Nh+1

2)ψ Nh+1
2

⎤

⎦ ,

where the expressions of γ1(
Nh+1

2) and γ2(
Nh+1

2) depend on n1 and n2. For

instance, if n1 + n2 is an even number, then γ1(
Nh+1

2) = γ2(
Nh+1

2) :=
(ρ1(

Nh+1
2)ρ2(

Nh+1
2))

n1+n2
2 . Hence, we conclude that ThQ = Q˜G and our claim

follows.

The factorization of Th proved in Theorem 2 allows one to obtain accurate con-
vergence results of a G2S method. Clearly, an optimal result would be a direct
calculation of the spectral radii of the matrices ˜Gk . However, this is in general a dif-
ficult task that requires cumbersome calculations. Nevertheless, in Theorem 3 we
obtain an explicit expression for the spectral radii of ˜Gk under some reasonable
assumptions that are in general satisfied in case of Schwarz methods and symmetric
decompositions; see, e.g., [29, Section 3]. Notice also that Theorem 3 guarantees that
only one (pre- or post-) smoothing step is necessary for the G2S method to converge.

Theorem 3 Assume that 1 > ρ1(k) = ρ2(k) = ρ(k) ≥ 0 for any k and that ρ(k) is
a decreasing function of k. The convergence factor of the G2S method is

ρG2S(Th) = max
k∈{1,...,Nc,

Nh+1
2 }

(

c4k(1 − ρ(k))ρ(˜k)n1+n2 + s4k (1 − ρ(˜k))ρ(k)n1+n2

c4k(1 − ρ(k)) + s4k (1 − ρ(˜k))

)

< 1.

Proof The convergence factor of the G2S is given by the spectral radius of the
iteration matrix Th. Theorem 2 implies that

ρG2S(Th) = max
{

max
k∈{1,...,Nc}

ρ(˜Gk), γ1

(

Nh + 1

2

)

, γ2

(

Nh + 1

2

)

}

.

428

Numerical Algorithms (2022) 91:413–448

Regardless of the values of n1 and n2, direct calculations show that the matrices ˜Gk

have four eigenvalues:

λ1(k) = λ2(k) = 0,

|λ3(k)| = c4k(1 − ρ(k))ρ(˜k)n1+n2 + s4k (1 − ρ(˜k))ρ(k)n1+n2

c4k(1 − ρ(k)) + s4k (1 − ρ(˜k))
,

|λ4(k)| = c4k(1 + ρ(k))ρ(˜k)n1+n2 + s4k (1 + ρ(˜k))ρ(k)n1+n2

c4k(1 + ρ(k)) + s4k (1 + ρ(˜k))
.

Moreover, we observe that

|λ3(k)| − |λ4(k)| = 2c4ks
4
k (ρ(k) − ρ(˜k))(ρ(k)n1+n2 − ρ(˜k)n1+n2)

((ρ(k) + 1)c4k + s4k (ρ(˜k) + 1))((1 − ρ(k))c4k + s4k (1 − ρ(˜k)))
≥ 0,

where we used the monotonicity of ρ(k). On the other hand, since ρ1(k) = ρ2(k) =
ρ(k), we have γ1(

Nh+1
2) = γ2(

Nh+1
2) = ρ(

Nh+1
2)n1+n2 . Therefore, we have that

max

{

max
k∈{1,...,Nc}

ρ(˜Gk), ρ

(

Nh + 1

2

)n1+n2
}

= max

{

max
k∈{1,...,Nc}

|λ3(k)|, ρ
(

Nh + 1

2

)n1+n2
}

,

and the result follows by observing that λ3
(

Nh+1
2

)

= ρ
(

Nh+1
2

)n1+n2
, since ρ(˜k) =

ρ(k) for k = Nh+1
2 .

3.2.3 Two-level substructured and volumetric methods

At this stage, it is fair to pose the following questions: What is the difference between
our G2S and other two-level DD methods? Is our G2S different from a classical two-
grid method that uses a PSM as smoother? Is there any relation between these two
apparently similar approaches? The answers are given in this section.

Let Avu = f be a discretization of our problem (1). In particular, Av ∈ R
Nv×Nv

is the discretization of the elliptic operator L, while u ∈ R
Nv

and f ∈ R
Nv

are the
discrete counterparts of the solution u and the right-hand side function f . Consider
the following splittings of the matrix Av:

Av =
[

A1 E1̂R1
× ×

]

=
[× ×

E2̂R2 A2

]

,

where Aj ∈ R
Na

j ×Na
j for j = 1, 2. Notice that these correspond to a two-subdomain

decomposition. We assume that Av , A1 and A2 are invertible. The matrices ̂R1 ∈
R

N1×(Nv−Na
1) and ̂R2 ∈ R

N2×(Nv−Na
2) are restriction operators that take as input

vectors of sizes Nv − Na
1 and Nv − Na

2 and returns as output substructure vectors of
sizes N1 (substructure S1) and N2 (substructure S2). The two matrices E1 ∈ R

Na
1 ×N1

and E2 ∈ R
Na
2 ×N2 are extension by zero operators. In order to obtain a discrete

substructured problem, we introduce the augmented system

Aaua = fa, (27)

429

Numerical Algorithms (2022) 91:413–448

where Aa =
[

A1 E1R1
E2R2 A2

]

, ua =
[

u1
u2

]

, and fa =
[

f1
f2

]

, with Aj ∈ R
Na

j ×Na
j

and uj , fj ∈ R
Na

j , for j = 1, 2. The matrices R1 ∈ R
N1×Na

2 and R2 ∈ R
N2×Na

1 are
restriction operators that map volume vectors, of sizes Na

2 (second subdomain) and
Na
1 (first subdomain), respectively, to substructure vectors, of sizes N1 (substructure

S1) and N2 (substructure S2), respectively. Notice that RjR
�
j = INj

, with INj
the

identity of size Nj , for j = 1, 2. Moreover, we define Ns := N1 + N2 and Na :=
Na
1 + Na

2 .
The substructure vectors v21 := R1u2 and v12 := R2u1 solve the discrete

substructured system

Ah

[

v12
v21

]

=
[

R2A
−1
1 f1

R1A
−1
2 f2

]

, (28)

where Ah =
[

IN2 R2A
−1
1 E1

R1A
−1
2 E2 IN1

]

. The vectors v12 and v21 are restrictions on the

substructures S2 and S1 of the solution vectors u1 and u2, and (28) is the substruc-
tured form of (27). Notice that (28) is the discrete counterpart of the substructured
problem (10).

The block-Jacobi method applied to (27) and (28) leads to the iteration matrices

Ga =
[

0 −A−1
1 E1R1

−A−1
2 E2R2 0

]

and Gh =
[

0 −R2A
−1
1 E1

−R1A
−1
2 E2 0

]

,

where Gh is the discretization of G, as denoted in Sections 3.1 and 3.2.
Let us now introduce the matrices

D :=
[

A−1
1 0
0 A−1

2

]

, ˜T :=
[

R2 0
0 R1

]

and ˜E :=
[

0 E1
E2 0

]

.

It is easy to verify the relations

˜T ˜T � = INs , Ah
˜T = ˜T DAa, Ga = −D˜E˜T and Gh

˜T = ˜T Ga . (29)

In particular, the relation ˜T ˜T � = INs is trivial, and Ah
˜T = ˜T DAa can be obtained

by calculating

˜T DAa =
[

R2 0
0 R1

] [

A−1
1 0
0 A−1

2

] [

A1 E1R1
E2R2 A2

]

=
[

R2 0
0 R1

]

[

INa
1

A−1
1 E1R1

A−1
2 E2R2 INa

2

]

=
[

R2 R2A
−1
1 E1R1

R1A
−1
2 E2R2 R1

]

=
[

IN2 R2A
−1
1 E1

R1A
−1
2 E2 IN1

] [

R2 0
0 R1

]

= Ah
˜T .

A similar calculation allows us to obtain that Gh
˜T = ˜T Ga .

Since the matrices Gh and Ga are two different representations of the PSM, one
expects that their spectra coincide. This is shown in the next lemma.

Lemma 4 The matrices Gh ∈ R
Ns×Ns

and Ga ∈ R
Na×Na

have the same nonzero
eigenvalues, that is σ(Gh) = σ(Ga) \ {0}.

430

Numerical Algorithms (2022) 91:413–448

Proof Recalling the structure of Ga , one can clearly see that rank(Ga) = Ns ,
because the matrices EjRj have rank Nj for j = 1, 2. Hence, Ga has Ns nonzero
eigenvalues. Take any eigenvector v ∈ R

Na
of Ga with eigenvalue λ �= 0. We note

that ˜T v �= 0, otherwise we would have Gav = −D˜E˜T v = 0, which contradicts the
hypothesis λ �= 0. Using the last relation in (29), we write Gh

˜T v = ˜T Gav = λ˜T v.
Hence (˜T v, λ) is an eigenpair of Gh. Since this holds for any eigenpair (v, λ) of Ga ,
the result follows.

Let us now consider arbitrary restriction and prolongation operators Rs and Ps

(with Rs = P �
s). The corresponding discrete substructured two-level iteration matrix

is then given by
G2L

h := [

INs − Ps(RsAhPs)
−1RsAh

]

Gh. (30)

Our goal is to find a volumetric two-level iteration operator G2L
a that has the same

spectrum of G2L
h . Such a volumetric operator must be formulated for the augmented

system (27) and based on the iteration matrix Ga . Let us recall (29) and compute

G2L
h
˜T = [

INs − Ps(RsAhPs)
−1RsAh

]

Gh
˜T

= [

INs − Ps(RsAhPs)
−1RsAh

]

˜T Ga

= [

˜T − Ps(RsAhPs)
−1RsAh

˜T
]

Ga

= ˜T
[

INa − ˜T �Ps(RsAhPs)
−1RsAh

˜T
]

Ga

= ˜T
[

INa − ˜T �Ps(RsAh
˜T ˜T �Ps)

−1Rs
˜T DAa

]

Ga

= ˜T
[

INa − ˜T �Ps(Rs
˜T DAa

˜T �Ps)
−1Rs

˜T DAa

]

Ga

= ˜T
[

INa − Pa(RaDAaPa)
−1RaDAa

]

Ga = ˜T G2L
a ,

where Pa := ˜T �Ps , Ra := Rs
˜T = P �

a and

G2L
a := [

INa − Pa(RaDAaPa)
−1RaDAa

]

Ga . (31)

We obtained that G2L
h
˜T = ˜T G2L

a . Similarly as in the proof of Lemma 4, one
can show that σ(G2L

h) = σ(G2L
a) \ {0}. This means that we have found a two-level

volumetric iteration operator that is spectrally equivalent to our substructured two-
level operator. Moreover, for any invertible matrix U ∈ R

Na×Na
we can repeat the

calculations done in (18), to obtain

G2L
a = [

INa − ˜Pa(˜RaDAa
˜Pa)

−1
˜RaDAa

]

Ga, (32)

where ˜Pa = PaU and ˜Ra = U−1Ra (with ˜Ra = ˜P �
a if U is orthogonal). This

means that there exist many two-level DD methods in volume that are equivalent to
our substructured two-level methods. We can summarize the obtained result in the
following theorem.

Theorem 4 (Volumetric formulation of substructured methods) Consider the sub-
structured two-level iteration operator G2L

h given in (30) and denote its spectrum by
σ(G2L

h). For any invertible matrix U ∈ R
Na×Na

, the spectrum of the matrix G2L
a

given in (32) satisfies the relation σ(G2L
h) = σ(G2L

a) \ {0}.

431

Numerical Algorithms (2022) 91:413–448

Fig. 4 Spectral radii of the matrices G2L
h , ̂G2L

a and G2L
RAS and corresponding to � = 5 (left) and � = 6

(right)

The matrixG2L
a has a special structure. SinceD is the block-Jacobi preconditioner

for the augmented system (27), one can say that G2L
a corresponds to a two-level

method applied to the preconditioned system DAaua = Dfa , in a similar spirit of
the smoothed aggregation method defined in [5, Section 2].

Let us now focus on the question: what is the relation between our G2S method
and a two-grid (volumetric) method that uses the same smoother (PSM)? A two-grid
method in volume applied to the augmented system (27) would correspond to an
iteration operator ̂G2L

a of the form

̂G2L
a = [

INa − ̂Pa(̂RaAa
̂Pa)

−1
̂RaAa

]

Ga .

Natural choices for ̂Pa and ̂Ra are the usual (volumetric) restriction and prolongation
operators. For example, for a one-dimensional problem a natural choice is the prolon-
gation matrix ̂Pa given in (15) and ̂Ra = 1

2P
�
a . On the other hand, our prolongation

operator Pa := ˜T �Ps is an extension by zero of a coarse substructure vector to a
fine volumetric vector. Moreover, Ra := Rs

˜T restricts a fine volumetric vector v to a
coarse substructure vector by only interpolating the components of v belonging to the
(fine) substructures. Another crucial difference is that G2L

a is constructed on DAa ,
while ̂G2L

a is obtained using the matrix Aa . Therefore, ̂G2L
a is constructed on the

original augmented system Aaua = fa , while G2L
a is defined over the preconditioned

system DAaua = Dfa .
These facts indicate clearly that our method is by far distant from a classical volu-

metric two-grid method that uses the PSM as smoother. This is also confirmed by the
numerical results shown in Fig. 4, where the spectral radii of three different two-level
iteration matrices are depicted.

In particular, we consider the Laplace problem defined on a unit square Ω (of
side ˜L = 1). This domain is decomposed into two overlapping rectangles of width
L = 1

2 + δ. Hence, the length of the overlap is 2δ. This problem is discretized using a
classical second-order finite difference scheme with a uniform grid of size h = 1

Nh+1 ,

whereNh = 2�−1. The length of the overlap is δ = (Nov+1)h, for some positive odd
integer Nov . We consider three different two-level iterations matrices G2L

h , ̂G2L
a and

432

Numerical Algorithms (2022) 91:413–448

G2L
RAS . The first one G2L

h is the iteration matrix corresponding to our G2S method.
The second one ̂G2L

a is the iteration matrix of a two-level method applied on the
augmented volumetric system (27). In both cases, the same classical Schwarz method
is used as smoother. The third matrix G2L

RAS is the iteration operator of a classical
two-grid method applied to the volumetric system Avu = f and using as smoother
the RAS method. In all cases, restriction and prolongation operators correspond to
linear interpolation matrices (as in (15)) and to the full weighting restriction matrices,
respectively. Indeed, for our G2S method these are one-dimensional operators, while
for the other two methods they are two-dimensional operators. In particular, for the
augmented system these interpolation and restriction operators take into account the
nonzero values of the discrete functions on the substructures. For the two-level RAS
method, they are obtained by a two-dimensional extension of (15).

In Fig. 4, we show the spectral radii of G2L
h , ̂G2L

a and G2L
RAS , obtained by a direct

numerical computation, as a function of Nov , hence the size of the overlap. The two
figures correspond to two different discretizations. It is clear that our G2S method
outperforms the other two methods, which have also very small contraction factors.
Moreover, by comparing the two plots, we observe that the coarse correction makes
all the methods very robust with respect to the number of discretization points.

4 Implementation details andmultilevel algorithm

In Section 4.1, after having explained pro and cons of substructured and volume two-
level methods, we reformulate Algorithm 1 in equivalent forms, which are essential
to make our method computationally efficient. In Section 4.2, we explain how to
extend our G2S method to a multi-grid strategy.

4.1 A practical form of two-level substructuredmethods

One of the advantages of our new substructured framework is that a large part of
the computations are performed with objects (vectors, matrices, arrays, etc.) that are
defined on the substructures and hence have very small sizes if compared to their
volumetric counterparts. This is clear if one carefully studies Algorithm 1, where
for example the products Rr and P vc are performed on substructure vectors. In vol-
umetric two-level methods, the same prolongation and restriction operators involve
volume entities, thus their application is more costly and they might be generally
more difficult to implement due to the higher dimensions.

We now compare the computational costs of one iteration of the G2S and of a
2-grid method in volume that uses the same smoother. Let Nv be the size of the
volume problem and Ns the size of the substructured problem (Ns � Nv). The size
of each subdomain volume problem is Nsub. The coarse spaces are of dimension Ms

for the G2S method and Mv for the volume method. The restriction and prolongation
operators in volume are denoted by Rv and Pv . For simplicity we assume n1 = 1,
n2 = 0.

The computational costs of one iteration are reported in Table 1.

433

Numerical Algorithms (2022) 91:413–448

Table 1 Computational cost (C.C.) per iteration. Notice that the smoother in volume is written as a
standard stationary method based on the splitting Av = M − N

G2S G2S C.C. Volume two-level Volume C.C.

vn+ 1
2 = Ghvn + bh O(γc(Nsub)) u

n+ 1
2

v = Nun
v + M−1bv O(γc(Nsub))

rn+ 1
2 = bh − Ahvn+ 1

2 O(γc(Nsub)) r
n+ 1

2
v = bv − Avu

n+ 1
2

v O((Nv)γm)

vn+1
c = A−1

2h (Rrn+ 1
2) O(γs(M

s)) un+1
vc = A−1

vc (Rvr
n+ 1

2
v) O(γv(M

v))

vn+1 = vn+ 1
2 + Pvn+1

c O(Ns) un+1
v = u

n+ 1
2

v + Pvun+1
vc O(Nv)

The first row of this table corresponds to the smoothing step performed by G2S
and a DD method in volume. Since we assumed that both strategies use the same DD
smoother, their computational costs coincide and are equal to O(γc(Nsub)), where γc

depends on the choice of the linear solver. For example, for a Poisson problem, one
has γc(Nsub) = Nsub log(Nsub) if a fast Poisson solver is used, or γc(Nsub) = bNsub
for sparse banded matrices with bandwidth b; see, e.g., [38]. For a general problem,
the complexity of sparse direct solvers is a power of Nsub, which depends on the
dimension. Moreover, one could consider the precomputation of the factorization of
the subdomain matrices and just using forward and backward substitutions along the
iterations.

For simplicity, we assume that restriction and prolongation operations are classical
nodal operations whose computational costs are supposed to grow linearly with the
dimension of the problem. Notice that since Ns � Nv , assuming that the same
interpolation method is used, the cost in the substructured case is much lower than
the corresponding cost in volume; see last row in Table 1.

Let us now discuss the third row of Table 1, which corresponds to the solution
of the coarse problems. Since the dimension of the substructured coarse space is
smaller, the G2S could require much less computational effort in the solution of the
coarse problem. We remark that on the one hand, the coarse matrix A2h is typically
block sparse, where the block structure is related to the connectivity among the sub-
domains (namely the j th block-row of Gh has a sparsity pattern governed by the
set Nj). Furthermore, for a large class of PDE problems, these blocks admit very
accurate low-rank approximations that can make the solution process more efficient;
see, e.g., [43] and references therein. On the other hand, Avc is typically a sparse
matrix, whose sparsity pattern depends on the discretization method used (e.g., finite
differences, finite elements, etc). In both cases there exist sophisticated algorithms
for the solution of the corresponding linear systems; see, e.g., [18, 38, 43] and ref-
erences therein. For this reason, we use the two functions γs and γv to indicate the
computational cost of the coarse solvers. A general direct comparison in this sense is
problem dependent, it could be very complicated, and it is beyond the scope of this
paper. Nevertheless, we provide in Section 5.1 a detailed analysis for a specific test
case.

Let us now turn our attention to the second row of Table 1, which corresponds
to the computation of the residual. Here, a volumetric method requires O((Nv)γm)

operations, where γm depends on the sparsity structure of Av . For example, if Av is

434

Numerical Algorithms (2022) 91:413–448

a second-order finite difference matrix, then γm = 1. In contrast to this favorable
situation, the computation of the residual for a G2S method requires the action of

Ah on a vector vn+ 1
2 , which in turn requires a subdomain solve that is assumed to

cost O(γc(Nsub)) (as discussed above). Hence, two smoothing steps are needed by
the G2S method. If we could avoid this extra cost, then all the other steps of the
G2S methods are cheaper since they are performed on arrays of much smaller sizes.
Moreover, we wish to remark that, as we are going to see in Section 5, the G2S
method requires in general less iterations than the corresponding method in volume.
Hence, if we could avoid one of the two smoothing applications in each iteration, we
would get a method which is faster in terms of iterations and computational cost per
iteration. To avoid one of the two applications of the smoother in the G2S method, we
exploit the special form of the matrix Ah = Ih −Gh and propose two new versions of
Algorithm 1. These are called G2S-B1 and G2S-B2 and given by Algorithms 2 and 3.

These substructured algorithms require only one smoothing step per iteration.
Hence, they are potentially cheaper than a two-grid method using the same smoother.
Moreover, it turns out that G2S and G2S-B1 are equivalent and they have the same
spectral properties of G2S-B2. These relations are proved in the following theorem.

Theorem 5 (Equivalence between G2S, G2S-B2 and G2S-B1)
(a) Algorithm 2 generates the same iterates of Algorithm 1.

435

Numerical Algorithms (2022) 91:413–448

(b) Algorithm 3 corresponds to the stationary iterative method

vn = Gh(Ih − PA−1
2h RAh)vn−1 + ˜Mbh,

where Gh(Ih − PA−1
2h RAh) is the iteration matrix and ˜M the relative precon-

ditioner. Moreover, Algorithm 3 and Algorithm 2 have the same convergence
behavior.

Proof For simplicity, we suppose to work with the error equation and thus bh = 0.
We call ṽ0 the output of the first five steps of Algorithm 2 and v̂0 the output of
Algorithm 1. Then given an initial guess v0, we have

ṽ0 = v1 + P vc = v1 + PA−1
2h R(−v1 + w)

= Ghv0 + PA−1
2h R(−AhGhv0) = (Ih − PA−1

2h RAh)Ghv0 = v̂0.

To verify that steps 6-10 of G2S-B1 are equivalent to an iteration of Algorithm 1, let
v0,k−1 := v1,k−1 + P vc be the output on line 10 of the (k − 1)-th iteration of the
G2S-B1 algorithm. Then the smoothing step on line 6 of the k-iteration reads

v1,k = Ghv0,k−1 + bh = Ghv1,k−1 + GhP vc + bh = wk−1 + ˜P vc + bh,

where we use the definition of ˜P and the quantity wk−1 computed at the previous
iteration. Steps 7–8 are just the residual computation using the identity Ah = I −Gh

and the remaining steps are standard. For the second part of the Theorem, we write
one iteration of Algorithm 3 as

v1 = w + ˜P vc = Ghv0 + GhPA−1
2h R(−Ahv0) = Gh(Ih − PA−1

2h RAh)v0.

Hence, Algorithm 3 performs a post-smoothing step instead of a pre-smoothing step
as Algorithm 2 does. The method still has the same convergence behavior since the
matrices Gh(Ih −PA−1

2h RAh) and (Ih −PA−1
2h RAh)Gh have the same eigenvalues4.

Notice that Algorithm 2 requires for the first iteration two applications of the
smoothing operator Gh. The next iterations, given by Steps 6-10, need only one
application of the smoothing operator Gh. Theorem 5 (a) shows that Algorithm 2 is
equivalent to Algorithm 1. This means that each iteration of Algorithm 2 after the
first one is computationally less expensive than one iteration of a volume two-level
DD method. Since two-level DD methods perform generally few iterations, it could
be important to get rid of the expensive first iteration. For this reason, we introduce
Algorithm 3, which overcomes the problem of the first iteration. Theorem 5 (b) guar-
antees that Algorithm 3 is exactly a G2S method with no pre-smoothing and one
post-smoothing step. Moreover, it has the same convergence behavior of Algorithm
2.

We wish to remark that, the reformulations G2S-B1 and G2S-B2 require to store
the (substructured) matrix ˜P := GhP . This matrix is anyway computed in a pre-
computation phase to assemble the coarse matrix A2h = RAhP = RP − RGhP =

4Given two matrices A and B, AB and BA share the same nonzero eigenvalues.

436

Numerical Algorithms (2022) 91:413–448

RP − R˜P . Hence, no extra cost is required. These implementation tricks can be
readily generalized to a general number of pre- and post-smoothing steps.

Concerning the specific implementation details for the G2S, we remark that one
can lighten the off-line assembly of the matrix A2h = RAhP , using instead the
matrix

˜A2h :=
[

I2h,2 −G2h,1
−G2h,2 I2h,1

]

, (33)

which corresponds to a direct discretization of A on the coarse level. Moreover, since
our two-level method works directly on the interfaces, we have more freedom in the
discretization of the smoothing operators on each level. For instance, one could keep
the corresponding volume mesh close to the substructures, while having a coarser
grid away from them. This strategy would follow a similar idea of the methods
discussed in, e.g., [15] and references therein.

4.2 GMS: extension tomultilevel framework

The solution of large problems can be challenging using classical two-level methods
in volume. This is mainly due to the dimension of the coarse space, which can still
be too large in volume to be solved exactly. In our substructured framework, the size
of the substructured coarse matrix corresponds to the number of degrees of freedom
on the coarse substructures, and thus it is already much smaller if compared to the
volume case (see Section 5.1 for a comparison of their sizes in a concrete model
problem). However, there might be problems for which the direct solution of the
coarse problem is inconvenient also in our substructured framework. For instance, if
we considered multiple subdomains, then we would have several substructures and
therefore the size of the substructured coarse matrix increases.

The G2S is suitable to a multilevel generalization following a classical multigrid
strategy [42]. Given a sequence of grids on the substructures labeled from the coars-
est to the finest by {�min, �min + 1, . . . , �max}, we denote by P �

�−1 and R�
�−1 the

interpolation and restriction operators between grids � and � − 1. To build the sub-
structured matrices on the different grids we have two possible choices. The first
one corresponds to the standard Galerkin projection. Being A�max the substructured
matrix on the finest grid, we can define the coarse matrices A� := R�+1

� A�+1P
�+1
� ,

for � ∈ {�min, �min + 1, . . . , �max − 1}. The second choice consists in defining
A� directly as the discretization of (12) on the grid labeled by �, and corresponds
exactly to (33) for the two-grid case. The two choices are not equivalent. On the one
hand, the Galerkin approach leads to a faster method in terms of iterations. However,
the Galerkin matrices A� do not have the block structure as in (12). For instance,
A�max−1 = R

�max
�max−1A�maxP

�max
�max−1 = R

�max
�max−1P

�max
�max−1 − R

�max
�max−1G�maxP

�max
�max−1. Thus,

the identity matrix is replaced by the sparse matrix R
�max
�max−1P

�max
�max−1. On the other

hand, definingA� directly on the current grid � as in (33) leads to a minimum increase
of the iteration number, but it permits to preserve the original block-diagonal struc-
ture (which is important if one wants to use G2S-B1 and G2S-B2). The difference
between the two approaches is also studied by numerical experiments in Section 5.

437

Numerical Algorithms (2022) 91:413–448

In spite of the choice for A�, we define the geometric multilevel substructured DD
method (GMS) in Algorithm 4, which is a substructured multi-grid V-cycle.

5 Numerical experiments

In this section, we demonstrate the effectiveness of our new computational frame-
work by extensive numerical experiments. These experiments have two main pur-
poses. On the one hand, we wish to validate the theoretical results of Section 3.1,
while discussing the implementation details of Section 4.1 and comparing our new
method with other classical existing methods, like a two-grid method in volume using
RAS as smoother. This is the focus of Section 5.1, where a Poisson problem on two-
dimensional and three-dimensional boxes is considered. Both convergence rates and
computational times are studied.

On the other hand, we wish to show the effectiveness of our new methods in case
of multiple-subdomain decompositions and for classical test problems. In particu-
lar, in Section 5.2 we consider a multiple-subdomain decomposition for a classical
Poisson problem, while in Section 5.3 a diffusion problem with highly jumping diffu-
sion coefficients is solved. For the efficient solution of these two problems different
discretization methods are required. These are the finite difference method, for the
classical Poisson problem, and the finite-volume method, in case of jumping diffu-
sion coefficients. These two methods require different definitions of restriction and
prolongation operators. We thus sketch some implementation details of our algo-
rithms for a regular decomposition. In both cases, the robustness of our methods for
increasing number of subdomains is studied and compared to classical two-grid and
multi-grid methods defined in volume and using RAS as smoother. The obtained
numerical results show clearly, and particularly for the jumping diffusion coeffi-
cient case, that our methods converge in less iterations than the classical two-level
RAS method. In Sections 5.1 and 5.2, all the methods are used as iterative solvers,
without any Krylov acceleration, while in Section 5.3 we test their efficiency as
preconditioners for GMRES.

438

Numerical Algorithms (2022) 91:413–448

0 5 10 15
10 -15

10 -10

10 -5

10 0

0 5 10 15
10 -15

10 -10

10 -5

10 0

0 2 4 6 8
10 -15

10 -10

10 -5

10 0

0 5 10 15
10 -15

10 -10

10 -5

10 0

0 5 10 15
10 -15

10 -10

10 -5

10 0

0 2 4 6
10 -15

10 -10

10 -5

10 0

Fig. 5 Convergence curves for � = 6, Nov = 4 (top row), Nov = 8 (bottom row)

5.1 Laplace equation on 2D and 3D boxes

We first consider the Poisson equation −�u = f with homogeneous Dirichlet
boundary condition. The geometry of the domain and its decomposition are shown in
Fig. 3, whereΩ is decomposed into two overlapping rectanglesΩ1 = (−1, δ)×(0, 1)
and Ω2 = (−δ, 1) × (0, 1). The length of the overlap is 2δ. On each subdomain,
we use a standard second-order finite difference scheme based on a uniform grid of
Ny = 2� − 1 interior points in direction y and Nx = Ny interior points in direction
x. Here, � is a positive integer. The grid size is denoted by h. The overlap is assumed
to be δ = hNov , where Nov represents the number of interior points in the overlap in
direction x.

The results of our numerical experiments are shown in Fig. 5. All figures show
the decay of the relative errors with respect to the number of iterations. To study
the asymptotic convergence behavior of the G2S and compare it with the theoretical
results of Section 3.2, all methods are stopped if the relative error is smaller than the
very low tolerance 10−12.

The problem is solved by the classical parallel Schwarz method, a classical two-
grid and a three-grid method using RAS as smoother (“2L-RAS” and “3L-RAS” in
the figures), the G2S method, and its extension to three-grid denoted by G3S. For
the G2S method, we further distinguish two cases: “G2S” indicates the G2S method
using the coarse matrix A2h := RAhP , while “˜G2S” refers to the G2S method using
the coarse matrix obtained by a direct discretization of A on the coarse grid (instead
of A2h := RAhP), see (33) and the discussion in Section (4.2). For the G2S and ˜G2S
methods, we use the one-dimensional linear interpolation operator P = diag(P1, P2),
where the expression of Pj , j = 1, 2 is given in (15), and R = 1

2 (P)� (as explained
in Section 3.1 and Fig. 3). For 2L-RAS, we use the classical full weighting restriction
and interpolation operators, PV = kron(Px, Py), RV = 1

4P
�
V , where Px , Py are

one-dimensional interpolation operators of the same form of (15).

439

Numerical Algorithms (2022) 91:413–448

The left panels of Fig. 5 validate the theoretical convergence factor obtained in
Theorem 3. The center panels compare the classical one-level PSM, the G2S and
˜G2S method and the 2L-RAS method. The slower performance of 2L-RAS with
respect to G2S can be traced back to the interpolation step. This operation breaks
the harmonicity of the obtained correction, which therefore does not lie any more
in the space of the error; see, e.g., [34]. One could use interpolators which extend
harmonically the correction inside the overlapping subdomains although this would
increase significantly the computational cost of each iteration. We refer also to [37]
for a similar observation. Further notice that, while the G2S coarse space has dimen-
sion about Ny , the one corresponding to the 2L-RAS method has dimension about
NxNy/4 ≈ N2

y /2 � Ny . In the setting of Fig. 5, the dimensions of the coarse spaces
of G2S and 2L-RAS are about 60 and 1900, respectively. Notice that the convergence
of ˜G2S is comparable to 2L-RAS, hence a little slower than G2S, but the assembly
of the coarse matrix is cheaper.

The right panels compare the convergence behavior of the two-grid methods, G2S
and 2L-RAS, with their three-level variants. We remark that the addition of a third
level does not result in a noticeable convergence deterioration.

Next, we are interested in computational times and in numerically validating the
computational cost presented in Table 1. To do so, we consider a three-dimensional
box Ω = (−1, 1) × (0, 1) × (0, 1) decomposed into two overlapping subdomains
Ω1 = (−1, δ) × (0, 1) × (0, 1) and Ω2 = (−δ, 1) × (0, 1) × (0, 1). We solve the
problem (up to a tolerance of 10−6 on the relative error) using the G2S method,
its equivalent forms G2S-B1 and G2S-B2, introduced in Section 4.1, and 2L-RAS.
The length of the overlap is δ = hNov , where h is the grid size and Nov is fixed
to 4. Hence the overlap is proportional to the grid size. The experiments have been
performed on a workstation with a processor Intel Core i9-10900X CPU 3.7GHz
and with 32GB of RAM. The subdomain problems are solved sequentially using the
MATLAB backslash command, which calls a direct solver for sparse banded matrices
(with small band density threshold) with almost linear complexity. The smoothing
steps have the same cost for both 2L-RAS and G2S implementations, and it permits
to better remark the advantages of the substructured methods in the coarse step and
the prolongation/restriction steps. The results are shown in Tables 2 and 3.

The G2S method outperforms 2L-RAS in terms of iteration numbers and com-
putational times. To better understand why the G2S method is faster and to validate
the computational cost analysis presented in Table 1, Fig. 6 shows the computational

Table 2 Number of iterations performed by the different methods and for different number of degrees of
freedom

(volume) G2S G2S-B1 G2S-B2 2L-RAS

539 4 4 4 6

6075 5 5 5 6

56699 5 5 4 6

488187 4 4 4 6

440

Numerical Algorithms (2022) 91:413–448

Table 3 Computational times performed by the different methods. In parentheses we indicate the
computational time per iteration

(volume) G2S G2S-B1 G2S-B2 2L-RAS

539 0.014 (0.004) 0.008 (0.002) 0.006 (0.002) 0.009 (0.005)

6075 0.1346 (0.027) 0.082 (0.016) 0.083 (0.016) 0.106 (0.03)

56699 2.040 (0.408) 1.2282 (0.246) 0.818 (0.204) 1.367 (0.228)

488187 53.2873 (13.321) 33.309 (6.662) 26.687 (6.671) 43.635 (7.272)

time spent by the G2S and 2L-RAS methods in the different steps of a two-level
method. As expected, the smoothing step requires the same effort in both methods.
This is shown in Fig. 6 (left). In Fig. 6 (right) we compare the computational times
required by one coarse correction step performed by the two methods. The two curves
correspond to the same volumetric dimensions of the problem (as in Table 3), but
the coarse space dimensions corresponding to G2S and 2L-RAS are different. This
means that, the kth point (circle) from the left of the G2S curve has to be compared
with the kth point (cross) from the left of the 2L-RAS curve. It must also be said that
for both cases we use the Matlab backslash command. This is clearly a choice more
favorable for the 2L-RAS coarse problem (which is sparse and banded). A different
and more appropriate solver for the G2S coarse matrix exploiting the block-sparse
structure (see, e.g., [38]) could lead to further improvement of these computational
times.

5.2 Decompositions intomany subdomains

In this section, we consider a square domain Ω decomposed into M × M non-
overlapping square subdomains ˜Ωj , j = 1, . . . , M2 = N . Each subdomain ˜Ωj

10 2 10 3 10 4 10 5 10 6

Nsub

10 -3

10 -2

10 -1

10 0

10 1

S
ec

on
ds G2S

2L-RAS
Linear
Quadratic

10 1 10 2 10 3 10 4 10 5

Size coarse problems

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

S
ec

on
ds

G2S
2L-RAS
Linear
Quadratic

Fig. 6 Time in seconds spent by the G2S and 2L-RAS methods in the smoothing step (left) and in the
coarse solver step (right)

441

Numerical Algorithms (2022) 91:413–448

Fig. 7 An interior non-overlapping subdomain ˜Ωj is enlarged by Nov = 2 points in each direction. The

discrete substructure SNj

j is denoted by a blue line. On the right panel, the coarse discrete substructure

SMj

j is marked by red crosses

contains Nsub = (2�−1)2 interior degrees of freedom. Extending the subdomains ˜Ωj

by Nov points, we obtain the overlapping subdomains Ωj with overlap δ = 2Novh.

On each subdomain Ωj , we locate the discrete substructure S
Nj

j , marked with blue
lines in Fig. 7, which is made by four (one-dimensional) segments.

For each discrete substructure SNj

j , the interpolation operator Pj acts block-wise

on each one-dimensional interval, i.e., Pj = diag{˜P1, ˜P2, ˜P3, ˜P4}, where each ˜Pk ,
k = 1, . . . , 4, corresponds to the prolongation matrix (15). We remark that using ˜Pk

implies assuming that on the boundary of Sj the function attains zero. This holds

since on each substructure vj ∈ H
1
2
00(Sj), due to the partition of unity.

The results of our numerical experiments are reported in Fig. 8. The left panel
shows the dependence of the spectral radius on the size of the overlap for the different
methods andN = 16, � = 5. We then study the robustness of the method with respect
to an increasing number of subdomains. We first keep the size of each subdomain
fixed, Nsub = (25 − 1)2, and thus we consider larger global problems as N grows.

5 10 15 20
10 -3

10 -2

10 -1

10 0

0 20 40 60
10 -3

10 -2

10 -1

10 0

0 20 40 60
10 -3

10 -2

10 -1

10 0

Fig. 8 Dependence of spectral radius on the overlap (left) and robustness of the two-level methods when
increasing the number of subdomains for subdomains with same size (center) and global problem fixed
(right)

442

Numerical Algorithms (2022) 91:413–448

Table 4 Number of iterations and seconds (in brackets) required by the G2S, 2L-RAS and GMG methods
to reach a tolerance of 10−6. The left table refers to N = 9, while the right table to N = 16

� − Nv G2S 2L-RAS GMG1-4 � − Nv G2S 2L-RAS GMG

7—146689 3 (0.31) 3 (0.42) 6 (0.22) 7—261121 3 (0.50) 3 (0.72) 6 (0.44)

8—588289 3 (0.68) 3 (1.34) 6 (0.97) 8—1046529 3 (1.64) 3 (2.57) 6 (1.73)

9—2356225 3 (2.29) 3 (5.94) 6 (4.06) 9—4190209 3 (5.98) 3 (11.38) 6 (7.30)

Then, we fix a global domain Ω with approximately 17 · 103 interior degrees of
freedom, and we get smaller subdomains as N grows. In both cases, we observe that
the spectral radius of both 2L-RAS and G2S does not deteriorate as the number of
subdomains increases.

We further compare G2S, 2L-RAS and Geometric MultiGrid (GMG) for the solu-
tion of the Poisson equation −�u = 1. We decompose Ω into N = 9 and N = 16
subdomains and set Nov = 2. Table 4 reports the number of iterations and com-
putational times to reach a relative tolerance of 10−6. For the G2S method, we
preassembled the coarse matrix.

Concerning GMG, we implemented a V-cycle with two pre- and post-smoothing
steps using a damped Jacobi smoother with optimal damping parameter ω = 4/5
[53]. The coarsest level of GMG corresponds to � = 3 and the size of the coarse
matrix is 961. Concerning the implementation of the DD methods, the subdomain
problems are solved in parallel, using the Matlab parallel Toolbox. The G2S method
is implemented according to Algorithm 3. The sizes of the G2S coarse matrices are
3096, 6168, 12312 for � = 7, 8, 9, respectively. For both G2S and GMG, we compute
once for all the LU decompositions of the corresponding coarse matrices as their size
is small. The cost of the LU decompositions is included in the computational times
reported. Table 4 shows the G2S is competitive with GMG.

5.3 Diffusion problemwith jumping diffusion coefficients

In this section, we test our method for the solution of a diffusion equation
−div(α∇u) = f in a square domain Ω := (0, 1)2 with f := sin(4πx) sin(2πy)

sin(2πxy). The domain Ω is decomposed into 16 non-overlapping subdomains.
We suppose α = 1 everywhere except in some channels where α takes the values

102, 104 and 106. We consider two configurations represented in Fig. 9.
We use a finite-volume discretization, where each non-overlapping subdomain

is discretized with Nsub = 22� cells and it is enlarged by Nov cells to create an
overlapping decomposition with overlap δ = 2Novh. We further assume that the
discontinuities of the diffusion coefficient are aligned with the edges of the cells
and they do not cross any cell. The mapping between the fine and coarse mesh is
illustrated in Fig. 10.

At the volume level, the restriction operator maps four fine cells to a single coarse
cell by averaging the four cell values and the interpolation operator is its transpose. At
the substructured level, the restriction operator maps two fine cells to a single coarser

443

Numerical Algorithms (2022) 91:413–448

-4

-3

-2

-1

0

1

2

10 -3

Fig. 9 Decomposition of Ω into 16 subdomains with two different patterns of channels (left and center).
The yellow regions correspond to large values of the diffusion coefficient. The blue-green area shows the
non-overlapping decomposition. The right panel shows the solution of the equation with the central pattern

Fig. 10 Illustration of the action of the restriction operator in volume (left) and of the restriction and
interpolation operators on a one-dimensional substructure (right)

Table 5 Number of iterations performed by the G2S and 2L-RAS (in brackets) methods with Nov = 2
and for different values of jumps of α and different numbers of degrees of freedom Nv . The dimension
of the substructured coarse space is dimVc . The left table refers to the two channels configuration and the
right table to the multiple channels one

dimVc 456 840 1608 dimVc 456 840 1608

4096 16384 65536 4096 16384 65536

102 4 (17) 4 (16) 4 (16) 102 4 (19) 4 (19) 4 (18)

104 4 (18) 4 (16) 4 (16) 104 5 (20) 5 (19) 4 (18)

106 6 (17) 5 (17) 5 (16) 106 6 (20) 6 (19) 7 (18)

444

Numerical Algorithms (2022) 91:413–448

10 20 30
Iterations

10 -10

10 -5

10 0

R
el

at
iv

e
er

ro
r

G2S
2L-RAS

10 20 30
Iterations

10 -10

10 -5

10 0

R
el

at
iv

e
er

ro
r

G2S
2L-RAS

10 20 30
Iterations

10 -10

10 -5

10 0

R
el

at
iv

e
er

ro
r

G2S
2L-RAS

Fig. 11 Convergence curves for � = 5, Nov = 2 for the two channels configuration. The parameter α is
equal to 102 (left), 104 (center), 106 (right)

cell by averaging. The interpolation operator splits one coarse cell to two fine cells
assigning the same coarse value to each new cell. It still holds that the interpolation
operator is the transpose of the restriction operator.

In this setting, we study the robustness of the G2S method with respect to the mesh
size and the amplitudes of the jumps of α and we compare it to the 2L-RAS method.
In Table 5 we report the number of iterations to reach a relative error of Tol = 10−6.

Both methods are used as iterative solvers. The iterations performed by the G2S
method are the numbers on the left in each cell of the table, while the iterations of
the 2L-RAS are the numbers in brackets on the right. We can observe that the G2S
outperforms 2L-RAS. Figure 11 show the convergence curves for a fixed mesh size
and three different values of α.

These results show that the G2S method is robust both with respect to the jumps
of the diffusion coefficient and the mesh size, and that it outperforms the 2L-RAS
method.

Now, we study the performance of G2S and 2L-RAS as preconditioners for
GMRES. Table 6 reports the number of iterations when both methods are used
to accelerate GMRES. We further specify the final size of the Krylov subspaces.
GMRES preconditioned by the G2S method builds a much smaller Krylov sub-
space as the system and preconditioner have dimensions equal to the size of the
substructured space.

Table 6 Number of iterations performed by GMRES preconditioned by G2S and 2L-RAS (in brackets)
with Nov = 2 and for different values of jumps of α and different numbers of degrees of freedom Nv . The
dimension of the final Krylov subspace is dim K and expressed in megabytes. The left table refers to the
two channels configuration and the right table to the multiple channels one

dim K 0.03 (0.38) 0.05 (1.17) 0.1 (4.71) dim K 0.03 (0.38) 0.05 (1.17) 0.1 (4.71)

4096 16384 65536 4096 16384 65536

102 3 (8) 3 (8) 3 (8) 102 3 (9) 3 (8) 3 (8)

104 3 (8) 3 (8) 3 (8) 104 3 (9) 3 (8) 3 (8)

106 3 (8) 3 (8) 3 (8) 106 3 (9) 3 (8) 3 (8)

445

Numerical Algorithms (2022) 91:413–448

6 Conclusions

In this work we introduced a new framework of two-level and multilevel substruc-
tured DD methods, namely the G2S method and its extension called GMS method.
These are formulated on the substructures of the considered overlapping domain
decomposition. Under certain reasonable hypotheses, for 2 subdomains in 2d, we
proved that the G2S method is well posed and convergent, and we also estimated
the corresponding convergence factor. The effectiveness of our new methods is
confirmed by extensive numerical experiments, where elliptic PDE problems with
possibly highly jumping diffusion coefficients are efficiently solved.

Acknowledgements Gabriele Ciaramella and Tommaso Vanzan are members of GNCS (Gruppo
Nazionale per il Calcolo Scientifico) of INdAM.

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

Data availability No datasets were generated or analyzed during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aarnes, J., Hou, T.Y.: Multiscale domain decomposition methods for elliptic problems with high
aspect ratios. Acta Math. Appl. Sin. 18(1), 63–76 (2002)

2. Bjorstad, P., Gander, M.J., Loneland, A., Rahman, T.: Does SHEM for Additive Schwarz work better
than predicted by its condition number estimate? Domain Decomposition Methods in Science and
Engineering XXIV, LNCSE, Springer –(–), 129–138 (2018)

3. Bonazzoli, M., Dolean, V., Graham, I., Spence, E., Tournier, P.H.: Domain decomposition precon-
ditioning for the high-frequency time-harmonic maxwell equations with absorption. Math. Comput.
88(320), 2559–2604 (2019)

4. Bonazzoli, M., Dolean, V., Graham, I.G., Spence, E.A., Tournier, P.H.: Two-Level Preconditioners
for the Helmholtz Equation. In: Domain Decomposition Methods in Science and Engineering XXIV.
Springer International Publishing (2018)

5. Brezina, M., Manteuffel, T., McCormick, S., Ruge, J., Sanders, G.: Towards adaptive smoothed
aggregation (αSA) for nonsymmetric problems. SIAM J. Sci. Comput. 32(1), 14–39 (2010)

6. Cai, X.C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems.
SIAM J. Sci. Comp. 21(2), 792–797 (1999)

7. Chaouqui, F., Ciaramella, G., Gander, M.J., Vanzan, T.: On the scalability of classical one-level
domain-decomposition methods. Vietnam J. Math. 46(4), 1053–1088 (2018)

446

http://creativecommons.org/licenses/by/4.0/

Numerical Algorithms (2022) 91:413–448

8. Chaouqui, F., Gander, M.J., Santugini-Repiquet, K.: A Coarse Space to Remove the Logarithmic
Dependency in Neumann–Neumann Methods. In: Domain decomposition methods in science and
engineering XXIV, pp. 159–167. Springer International Publishing, Cham (2018)

9. Chaouqui, F., Gander, M.J., Santugini-Repiquet, K.: A local coarse space correction leading to a well-
posed continuous Neumann-Neumann method in the presence of cross points. In: Domain decompo-
sition methods in science and engineering XXV, pp. 83–91. Springer International Publishing, Cham
(2020)

10. Ciaramella, G., Gander, M.J.: Analysis of the parallel Schwarz method for growing chains of fixed-
sized subdomains: Part I. SIAM J. Numer. Anal. 55(3), 1330–1356 (2017)

11. Ciaramella, G., Gander, M.J.: Analysis of the parallel Schwarz method for growing chains of fixed-
sized subdomains: Part II. SIAM J. Numer. Anal. 56(3), 1498–1524 (2018)

12. Ciaramella, G., Gander, M.J.: Analysis of the parallel Schwarz method for growing chains of fixed-
sized subdomains: Part III. Electron. Trans. Numer. Anal. 49, 201–243 (2018)

13. Ciaramella, G., Gander, M.J.: Iterative Methods and Preconditioners for Systems of Linear Equations.
Fundamentals of Algoriths. SIAM (2022)

14. Ciaramella, G., Gander, M.J., Halpern, L., Salomon, J.: Methods of reflections: relations with Schwarz
methods and classical stationary iterations, scalability and preconditioning. The SMAI J. Comput.
Math. 5, 161–193 (2019)

15. Ciaramella, G., Gander, M.J., Mamooler, P.: The Domain Decomposition Method of Bank and Jimack
as an Optimized Schwarz Method. In: Domain Decomposition Methods in Science and Engineering
XXV, pp. 285–293. Springer International Publishing, Cham (2020)

16. Ciaramella, G., Hassan, M., Stamm, B.: On the Scalability of the Parallel Schwarz Method in One-
Dimension. In: Domain Decomposition Methods in Science and Engineering XXV, pp. 151–158.
Springer International Publishing, Cham (2020)

17. Ciaramella, G., Hassan, M., Stamm, B.: On the scalability of the Schwarz method. The SMAI J.
Comput. Math. 6, 33–68 (2020)

18. Davis, T.A.: Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2). Society for
Industrial and Applied Mathematics, USA (2006)

19. Dohrmann, C.R., Klawonn, A., Widlund, O.B.: A family of energy minimizing coarse spaces for over-
lapping Schwarz preconditioners. In: Domain Decomposition Methods in Science and Engineering
XVII, pp. 247–254 (2008)

20. Dolean, V., Jolivet, P., Nataf, F.: An introduction to domain decomposition methods. SIAM,
Philadelphia PA (2015)

21. Dolean, V., Nataf, F., Scheichl, R., Spillane, N.: Analysis of a two-level Schwarz method with coarse
spaces based on local dirichlet-to-Neumann maps. Comput. Meth. in Appl. Math. 12(4), 391–414
(2012)

22. Dubois, O., Gander, M.J., Loisel, S., St-Cyr, A., Szyld, D.B.: The optimized Schwarz method with a
coarse grid correction. SIAM J. Sci. Comput. 34(1), 421–458 (2012)

23. Efendiev, Y., Galvis, J., Lazarov, R., Willems, J.: Robust domain decomposition preconditioners for
abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer. Anal. 46(5), 1175–
1199 (2012)

24. Efstathiou, E., Gander, M.J.: Why restricted additive Schwarz converges faster than additive Schwarz.
BIT Numer. Math. 43(5), 945–959 (2003)

25. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high-contrast
media. Multiscale Model. Sim. 8(4), 1461–1483 (2010)

26. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high contrast
media: reduced dimension coarse spaces. Multiscale Model Sim. 8(5), 1621–1644 (2010)

27. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)
28. Gander, M.J.: Schwarz methods over the course of time. Electron. Trans. Numer. Anal. 31, 228–255

(2008)
29. Gander, M.J.: On the influence of geometry on optimized schwarz methods. SeMA Journal 53(1),

71–78 (2011)
30. Gander, M.J., Halpern, L., Repiquet, K.: A new coarse grid correction for RAS/AS. In: Domain

Decomposition Methods in Science and Engineering XXI, pp. 275–283. Springer (2014)
31. Gander, M.J., Halpern, L., Santugini-Repiquet, K.: On optimal coarse spaces for domain decomposi-

tion and their approximation. In: Domain Decomposition Methods in Science and Engineering XXIV,
pp. 271–280. Springer International Publishing, Cham (2018)

447

Numerical Algorithms (2022) 91:413–448

32. Gander, M.J., Loneland, A.: SHEM: an optimal coarse space for RAS and its multiscale approxima-
tion. In: Domain Decomposition Methods in Science and Engineering XXIII, pp. 313–321. Springer
(2017)

33. Gander, M.J., Loneland, A., Rahman, T.: Analysis of a new harmonically enriched multiscale coarse
space for domain decomposition methods. arXiv:1512.05285 (2015)

34. Gander, M.J., Song, B.: Complete, optimal and optimized coarse spaces for additive Schwarz. In:
Domain Decomposition Methods in Science and Engineering XXIV. Springer (2018)

35. Gander, M.J., Van Criekingen, S.: New coarse corrections for optimized restricted additive Schwarz
using PETSc. In: Domain Decomposition Methods in Science and Engineering XXV, pp. 483–490.
Springer International Publishing, Cham (2020)

36. Gander, M.J., Vanzan, T.: Heterogeneous optimized Schwarz methods for second order elliptic PDEs.
SIAM J. Sci. Comput. 41(4), A2329–A2354 (2019)

37. Gander, M.J., Vanzan, T.: Multilevel optimized Schwarz methods. SIAM J. Sci. Comput. 42(5),
A3180–A3209 (2020)

38. Golub, G.H., Van Loan, C.F. Johns Hopkins Studies in the Mathematical Sciences, Fourth Edition.
Johns Hopkins University Press, Baltimore, MD (2013)

39. Graham, I., Spence, E., Vainikko, E.: Domain decomposition preconditioning for high-frequency
helmholtz problems with absorption. Math. Comput. 86(307), 2089–2127 (2017)

40. Graham, I.G., Lechner, P.O., Scheichl, R.: Domain decomposition for multiscale PDEs. Numer. Math.
106(4), 589–626 (2007)

41. Hackbusch, W.: Local Defect Correction Method and Domain Decomposition Techniques, pp. 89–
113. Vienna (1984)

42. Hackbusch, W.: Multi-Grid Methods and Applications. Series in Computational Mathematics.
Springer, Berlin (2013)

43. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis, 1st Edn. Springer Publishing
Company, Incorporated (2015)

44. Heinlein, A., Klawonn, A., Knepper, J., Rheinbach, O.: Multiscale coarse spaces for overlapping
Schwarz methods based on the ACMS space in 2D. Electron. Trans. Numer. Anal. 48, 156–182 (2018)

45. Klawonn, A., Radtke, P., Rheinbach, O.: FETI-DP Methods with an adaptive coarse space. SIAM J.
Numer. Anal. 53(1), 297–320 (2015)

46. Lions, J., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications (Vol I). Die
Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1972)

47. Lions, P.L.: On the Schwarz alternating method. I. First international symposium on domain
decomposition methods for partial differential equations, pp. 1–42 (1988)

48. Quarteroni, A., Valli, A.: Domain decomposition methods for partial differential equations. Numerical
mathematics and scientific computation oxford science publications (1999)

49. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: A robust two-level domain
decomposition preconditioner for systems of PDEs. C. R. Math. 349(23), 1255–1259 (2011)

50. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: Abstract robust coarse spaces
for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126(4), 741–770
(2014)

51. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione
Matematica Italiana. Springer, Berlin (2007)

52. Toselli, A., Widlund, O.: Domain Decomposition Methods: Algorithms and Theory Series in
Computational Mathematics, vol. 34. Springer, New York (2005)

53. Trottenberg, U., Ulrich Trottenberg, C., Oosterlee, C., Schuller, A., Brandt, A., Oswald, P., Stüben,
K.: Multigrid elsevier science (2001)

54. Widlund, O., Dryja, M.: An additive variant of the Schwarz alternating method for the case of many
subregions. Tech. rep., Department of Computer Science Courant Institute (1987)

55. Zampini, S., Tu, X.: Multilevel balancing domain decomposition by constraints deluxe algorithms
with adaptive coarse spaces for flow in porous media. SIAM J. Sci. Comput. 39(4), A1389–A1415
(2017)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

448

http://arxiv.org/abs/1512.05285

	Substructured multi-grid DD methods
	Abstract
	Introduction
	Substructured Schwarz domain decomposition methods
	G2S: geometric two-level substructured DD method
	Description of the G2S method
	Analysis of the G2S method
	Interpretation of G2S as a general two-level method
	Convergence of the G2S method
	Two-level substructured and volumetric methods

	Implementation details and multilevel algorithm
	A practical form of two-level substructured methods
	GMS: extension to multilevel framework

	Numerical experiments
	Laplace equation on 2D and 3D boxes
	Decompositions into many subdomains
	Diffusion problem with jumping diffusion coefficients

	Conclusions
	References

