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Abstract
An inverse central ordering of the nodes is proposed for the Newton interpolation
formula. This ordering may improve the stability for certain distributions of nodes.
For equidistant nodes, an upper bound of the conditioning is provided. This bound
is close to the bound of the conditioning in the Lagrange interpolation formula,
whose conditioning is the lowest. This ordering is related to a pivoting strategy of
a matrix elimination procedure called Neville elimination. The results are illustrated
with examples.
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1 Introduction

The Lagrange interpolation operator associates to each function its
Lagrange interpolating polynomial of degree less than or equal to at 1 distinct
nodes 0 on the interval . Using the Lagrange interpolation formula, the
Lagrange interpolation operator can be written in the form

0

where

0
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are the Lagrange fundamental polynomials. So, the Lagrange representation is

0 , where , 0 .
In formula (2) of [5], a conditioning associated to a representation of the form

0 is introduced,

cond
0

(1)

where 0 are functionals belonging to the space generated by the evaluation
functionals 0 and 0 is a basis of , the space of polynomials of
degree not greater than . By formula (4) and Theorem 4 of [5], we have

0

cond cond (2)

that is, the conditioning of the Lagrange representation coincides with the Lebesgue
function and it is lower than the conditioning of any other representation,
and in particular, than the Newton representation. This representation is given by

0 , where are the divided difference functionals

0 0

and

0 1 0 1 1 1. (3)

Since is the coefficient of in , we have

0 1
(4)

with 1 0 , 0 . (cf. formula (2.2) of [3]).
We are interested in the case of equidistant nodes 0 on

0 with .

In order to compare the conditionings of the Lagrange and the Newton representa-
tions, we recall the following asymptotic formula for the Lebesgue constant shown
by Schönhage in [10]

max
2 1

log
(5)

where 0.5772156649 is the Euler-Mascheroni constant. Newton’s formula is
sensitive to the ordering of the nodes in floating point arithmetic. An analysis of this
fact can be found in [4, 5]. In [5] it is shown that

max cond 3
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for equidistant nodes in increasing order. In [6], a central ordering of the nodes,
based on the distances of the nodes to a given center was considered. For equidistant
nodes and the choice of the center 2, it was proved that

max cond
1 2 1 2

2
.

In this paper, we propose the inverse central ordering, also based on the distance
of the nodes to a center. The bound for the conditioning of the Newton representa-
tion with this ordering is smaller than the two previous bounds. More precisely, in
Theorem 3, for a sequence of equidistant nodes in 2 2 of the form

2 for even
1

2 for odd
0 (6)

with , we show that

max cond 7 2 .

In Section 2, we introduce the inverse central ordering. Bounds for the condition-
ing of the Newton representation are provided. The bounds for the inverse central
ordering are close to the maximum conditioning of the Lagrange representation,
which has the best conditioning. In this sense, the inverse central ordering for equidis-
tant nodes is near optimal. Section 3 contains numerical experiments to illustrate the
properties of the conditioning of the Newton formula with nodes following an inverse
central ordering. In Section 4, Neville elimination, a matrix elimination procedure
alternative to Gaussian elimination, is considered. Neville elimination is especially
useful when dealing with some structured matrices (see [2, 7, 8]) including Vander-
monde matrices. We show that the inverse central ordering corresponds to partial
pivoting for Neville elimination in Vandermonde matrices.

2 Inverse central ordering and conditioning

The inverse central order consists in arranging a set of nodes, starting with the furthest
node to a given center and finishing with the closest one.

Definition 1 (Inverse central order) A sequence of nodes 0 follows a
inverse central ordering with respect to a center if the nodes satisfy

0 1 .

We now consider equidistant nodes and, for the sake of simplicity, we take
symmetric intervals and the center 0. Therefore, the interval has the form

2 2 , where is the degree and is the distance between neighboring
nodes. This ordering may not be unique. So, we propose the following choice: in
the case where two nodes lie at the same distance from the center, we take first the
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least of both nodes, leading to the ordering defined in (6). With formula (6), we can
compute the difference between two nodes,

2 2 0
2

2 1 2 1 0
1

2

2 1 2 0
2

0
1

2
. (7)

We note

0 0 (8)

where 0 are given by (6).
Let us introduce the falling factorial symbol and the generalized binomial coeffi-

cient

1 1 .

Remark 1 The polynomial is an increasing function of for 1. In

particular, we have that

1 (9)

and 1, for 1.

In order to obtain an explicit expression for the norm of the divided difference
functionals, we derive recurrence formulae.

Proposition 1 Let 0 be nodes given by (6) and , 0 , the
divided difference functionals (8). We have

2
1 1

2 1 1
2

and

2 1
2 1

2 0
1

2
.

Proof Using formula (4) and Proposition 2 of [5], we have

0

1

1
.
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Using (7), we compute

2 2

1

0

2 2

1

0

2 2 1

2 1
1

0

1

0

2 1 1

2 2 1

1

0

2 1 2

1

0

2 1 2 1

2 1
1

0

1

0

2 1 1 .

Similarly, for the rest of the cases

2 1 2
2

2 1 2 1
2 1 1 .

Therefore, we have

2

2

0

1

2 1 0

1

2 1 2

1

0

1

2 1 2 1

1
2

0

1
1

0

1

1 1
. (10)

Analogously, we have that

2 1

2 1

0

1

2 2

2
2 1

0

1
1
. (11)

By formula (10), we have

2
2

0

1
1

0

1
1
.

Using Pascal’s identity,

1 1
1

(12)
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and formula (11) we obtain

2
2

1

0

1 1

1

1
1

1

1

0

1
1

1

0

1
1

2
1

0

1

1 1
1 2 1 1

2 1 .

We proceed in a similar way for the divided difference functionals of odd order. By
formulae (11) and (10), we have

2 1

2 2 1
0

1
0

1

0

1

1
1

1

1 1
2 1

2

and the result follows.

We obtain in the following result explicit formulae for the -norm of the divided
difference functionals.

Theorem 1 Let 0 be the nodes given by (6) and , 0 , the
divided difference functionals (8). We have

2
1

2 1
2

0
2

(13)

and

2 1
1

2 1
2

1
0

1

2
. (14)

Proof Let us prove the result by induction on . Since 0 0 , we have
that 0 1 and (13) follows for 0. For 1 , we have

1
1

2 0

1

2 1

2

0 1

2
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and (14) follows for 0. Assuming that (13) and (14) hold for , let us prove them
for 1. By Proposition 1 and the induction hypothesis, we have

2 1
1

1
1

2 1
1

1

1

2 1 1
2

1

1

2 1 1 1
2

1

and (13) follows. Let us show (14) for 1. By Proposition 1 and the induction
hypothesis, we have

2 1 1
2 1

2 1
2 1

2 1 1 2
2

1

1

2 1 1 1 2
2

and the result follows.

Next we derive some formulae for the conditioning of the Newton formula with
equidistant nodes and inverse central ordering.

Lemma 1 For any 0 2 , we have

cond
2

0
1 2

1
2

0

1

2
1

where
2

and for any with 0 1
2 ,

cond
2

0
1 2

1
2

0

1

2
1

where 2 1 .

Proof In order to compute

cond
0

let us derive some formulae for

2

1

0

2

1

0

2 1 0
2
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and

2 1

0

2

1

0

2 1 0
1

2
.

First consider the case 2 , for some 0 2 . Substituting
2 , 2 1 in 2 , we can write

2 2
2

1

0

1

0

2

and

2 2 2
1

2
1 2

.

Similarly, we have

2 1 2
2 1

0

1

0

2 1 1

and

2 1 2 2 1

1

2
1

1

2
1

.

Hence the first formula in the statement of Lemma 1 holds.
Now assume that 2 1 , for some 0 1

2 . Substituting

2 , 2 1 , we can write

2 2 1
2

1

0

1

0

2

and

2 2 1 2 1
1

2
1 2

.

Similarly

2 1 2 1
2 1

0

1

0

2 1 1
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and

2 1 2 2 1

1

2
1

.

Taking into account that

1

1 , we deduce that
1

if

and only if 1
2 and we have the following auxiliary result.

Lemma 2 For 0 1
2 , we have

1
and for 1

2 ,

1
.

In order to obtain a bound for cond 0 , we will use the
well-known Vandermonde identity

0

0 . (15)

We will also use the following relation between generalized binomial coefficients:

1 2
2 2 2

. (16)

Let us obtain an upper bound for cond at the interpolation nodes.

Theorem 2 Let 0 be the nodes given by (6). Then, we have

cond
1

1 2
0

and so we have

max
0

cond
1
1

2
.

Proof Let us start by bounding cond 2 , 0 2 . By Lemma 1 we have
that

cond 2

0
1 2

1

0

1

2
1
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because 0 for any integer .

By (9), all denominators are greater than or equal to 1 in the above formula, except
in the case where is even and 2. We use (9) again to show that

1 2
2

1 1 2
2 2

1
.

So taking 2, we obtain

cond
2 1

0

2 2
2 1

0

2
1

2
.

Using Pascal’s identity (12) and Vandermonde identity (15), we deduce that

cond
2 1

0

2 2 1
1

1
2

1 .

For the rest of the cases, 1 2, all the binomial coefficients in the denom-
inators are larger than or equal to 1 by (9). Applying Pascal’s identity (12) and (15),
we have

cond 2

0 0
1

0

1
1

0

1 1
.

Analogously, for nodes of odd indices

cond 2 1
0 1 2 0

1
2
1

.

If 1 2, we can apply (9), Pascal’s identity (12) and formula (15) to deduce
that

cond 2 1

0 0
1

1

1

1
1

1

1

1
1

1
1 .

If is odd and 1 2, there is a term with denominator

2
1 2

1

1
2
1 2

1

1
.
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Then we deduce from (12) and (15) that

cond
1 2

0

1 2 1 2
3 2

0

1 2
1

1 2

1
1 2

0

3 2
1

1 2

1 2

0

3 2
1 2

1 2 1
1 2 .

So, the first formula follows. The second one follows from the fact that the sequence
1

1 2
, 0 , is nondecreasing by Lemma 2.

Remark 2 Recall that the Lagrange representation is optimal in the sense that it pro-
vides the least conditioning (see (2)). Corollary 6 of [5] shows that the ratio between
the conditioning of the Newton representation and the conditioning of the Lagrange
representation is attained at a node. Using this result and Theorem 2, we obtain the
following inequality for equidistant nodes arranged according to the inverse central
ordering (6):

max
cond

max
0

cond
1
1

2
.

We observe that the maximum bound for the condition number at the nodes is attained
for the nodes closest to the origin.

In the following theorem we bound cond .

Theorem 3 Let 0 be nodes given by (6). Then

cond 7 2 .

Proof First assume that 2 2 , 0 2 , and let us define
1

2 0 1 . Using Lemma 1, we can write

cond
2

0
1 2

1
2

0

1

2
1

.

(17)
If 1, we deduce, by Remark 1, that

1
1
1

1

1
1
1

1

1

1

. (18)
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Observe that, by (9), the binomial coefficients
1 2

are always larger than

or equal to 1, except if 2 and is even. Using (16), the corresponding term
can be bounded from above by

2 2

1 2
2

2
2 2

2

.

If 2, we can deduce that

2
2

2
2

2 1

0

2 2

2 2

2 1

0

2 2 2

2 2
1

and so

2

2
2

2
2

2

2

2

.

If 2 1, we deduce from Remark 1 that
2 2

and, by (18),

2
2 2

2

2
2

2

2
1

.

Analogously, the binomial coefficients
2
1

are always larger than 1, except

if 1 2 and is odd. Using (16), the corresponding term can be written as

1 2 1 2

2
1 2

2 1
1 2 1 2

1
1 2

2
1 2 1 2

1 2

.

If 1 2, we have

1 2
1 2

1 2
1 2

1 2

1 2

1 2 1

0

1 2 1 1 2 1

1 2 2

1 2

1 2

1 2 1

0

1 2 2 1 2

1 2 2
1

1702 Numerical Algorithms (2022) 90:1691–1713



and so

2

1 2
1 2

1 2
1 2

1 2

2

1 2

.

If 3 2, we deduce from Remark 1 that
1 2 1 2

and, by (18),

2
1 2 1 2

1 2

2
1 2

2

1 2
1

.

Using Remark 1 and (18) we have that

1
1

1

1

1
2 2

and we deduce the following inequality from (17)

cond
1

0 2

1

1 2

1

2

2

2 2
1 2

0 1 2

1
1

2
1

1

2

1 2

1 1 2
2
1

2 .

By (9), all binomial coefficients in the denominators are larger than or equal to 1 and
we derive the following inequality

cond
1

0

1 1

2

1 2

2

0

1
1

1

2

2 2

1

2

1

0

2
1

2 1

2
2 .
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Using Vandermonde’s identity (15) we have

1

0

2
1

1

0

2
1

2
1

and we obtain

cond
2
1

2 1

2
2 .

Now, we take 2 1 2 1 , 0 1
2 , and we proceed in an

analogous way. We take 2 1 0 1 . By Lemma 1, we have

cond
2

0
1 2

1
2

0

1

2
1

.

(19)
The terms corresponding to binomial coefficients in the denominators smaller than

1 in the first sum can be bounded again by 2 . For the second sum, we first consider
the case where is odd and 1 2, 1 2. By (16) and (18), we
bound the term in the form

1 2 1 2

2
1 2

2 1 1 2 1 2

1
1 2

2 1
1 2

2 1

1 2
1

.

If is odd, 1 2, we have that

1 2
1 2

1 2
1 2

1 2

1 2

1 2 1

0

1 2 1 2

1 2 2
1

and then

1 2
1 2

1 2
1 2

2
1 2

2 1

1 2
1 2

1 2
1 2

1
1 2

2 1

1
1 2

.
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Similarly to the previous case, we can obtain, by (19), an upper bound for
cond in terms of binomial coefficients:

cond
1

0 2

1

1 2

1

2

2

2 2
1 2

1

0 1 2

1
1

2
1

1

2

1 2

2 1 2

1

2
1

2 1.

Since, by (9), all binomial coefficients in the denominators are larger than or equal
to 1, we deduce that

cond
1

0

1 1

2

2

2

1

0
1

1 1

2

1 2

2
1

2 1.

Applying Pascal’s identity (12) and Vandermonde identity (15), we obtain the bound

1

0

1
1

1 2 1

2
2

1

0

1
1

1
1

2 1

2
2 2

2 2 1 2 1

2
.

Observe that the bound obtained in Theorem 3 is close to the formula (5) for the
Lebesgue constant. Therefore, the inverse central ordering is a convenient strategy to
order the nodes in the Newton formula, in addition to easy implementation.

3 Numerical experiments

We have computed the conditioning of the Newton formula for the inverse central
ordering. Figures 1 and 2 show a comparison between the Lebesgue function and
cond at equidistant nodes in the inverse central ordering.We see that cond
is close to the Lebesgue function at the extremities of the intervals but the difference
between both functions grows in a neighborhood of the origin. We can also see that
the maximum of the conditioning is attained in a neighborhood of the center for

10 and that the largest value is attained in a neighborhood of the extremities of
the interval for 19.
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Fig. 1 log2 and log2 cond at equidistant nodes following a inverse central ordering for 10
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Fig. 2 log2 and log2 cond at equidistant nodes following an inverse central ordering for
19
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Let us compare the condition of the Newton formula for equidistant nodes for
the increasing ordering and an inverse central ordering. Figure 3 (left) shows the
condition for nodes in increasing order for degree 70. Figure 3 (right) shows the
condition for nodes following an inverse central ordering for the same degree. We see
that the condition is much lower for the inverse central ordering. In each case, we have
also computed the numerical error for interpolating the smooth function

1 sin 2 , where 2 24 is the unit roundoff in single precision. The numerical
error has been computed subtracting the value of and the computed value
of by Newton’s formula in single precision arithmetic. We see in both cases
that the error is lower than the bound and even imitates its shape. We also see that
the highest numerical error is found for the increasing order in a neighborhood of the
right extremity of the interval.

We have also checked other distributions of nodes. Generally the conditioning of
the Newton formula near the extremities of the interval is lower with the inverse cen-
tral ordering that with other orderings. In Fig. 4, we have compared the conditioning
of the Newton formula for Chebyshev nodes using different orderings. The worst
condition corresponds to the nodes in increasing order. The inverse central ordering
leads to a relatively worse conditioning in the center of the interval as compared with
the Lebesgue function. In contrast, the Leja order remains closer to the Lebesgue
function.

4 Inverse central ordering and Neville elimination

In this section, we interpret the inverse central ordering in terms of a matrix elimina-
tion with a pivoting strategy. Specifically, we show a connection between the inverse
central ordering for equidistant nodes and Neville elimination with partial pivoting.
Neville elimination (NE) is an elimination algorithm alternative to Gaussian elimi-
nation where one subtracts to each row a multiple of the previous one (see [7]). Let

 0

 20
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-1 -0.5  0  0.5  1

Condition Increasing
Error Increasing
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 20

 40
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 100

 120

-1 -0.5  0  0.5  1

Condition Inverse Central
Error Inverse Central

Fig. 3 log2 cond and log2 at equidistant nodes for 70 in increasing order (left) or
following an inverse central ordering (right)
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Fig. 4 log2 cond for different orderings and log2 corresponding to Chebyshev nodes for
degree 19

0 be a nonsingular matrix. The NE of consists of steps that give
rise to a sequence of matrices

0 0 1 1

where is an upper triangular matrix. For each , 1 , the matrix

0 has zeros under the main diagonal in the first columns, that is,

0, , 0 1. For 0 1, the matrix is obtained from
by reordering the rows with indices 1 of so that the zero

entries of the -th column are placed at the end. At this stage pivoting strategies can
be applied. To compute 1 from one subtracts a multiple of the -th row
from the 1 -th one, 1 1 , in order to produce zeros in the
-th column under the main diagonal. The pivot of the NE of is defined

by

0 .

Let us denote by

0
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the 1 1 submatrix of corresponding to rows with indices
1 and columns with indices 1 . If all the pivots are

nonzero, then NE does not require row interchanges and, by Lemma 2.6 of [7], we
have

0 0 0
det 0

det 1 0 1
0 . (20)

The number

1
1

if 1 0

0 if 1 0
(21)

is the -multiplier of the NE of , for 0 .
The NE with partial pivoting is a strategy (see [1]) in which the pivots correspond-

ing to the -th column of form a nonincreasing sequence:

1 0 1

or equivalently,

1 0 1 1 . (22)

This condition is analogous to the property obeyed by the multipliers of Gaussian
elimination with partial pivoting.

Recall that the Vandermonde matrix is the collocation matrix of the monomial
basis at the nodes 0 ,

0

1 0 0
1 1 1
...

...
1

0 . (23)

Let us calculate the pivots and the multipliers of NE for 0 with distinct
nodes. By formula (20), 0 0 1 for 0 , and, using the well-known
formula for the Vandermonde determinant, we have

det

det 1 1
. (24)

We have that NE does not require row interchanges of 0 because the
nodes are distinct. Then, by formula (21), we have 0 1, 1 , and

1
1

1 1
(25)

for 0 . Observe that by (25) the multipliers (21) are invariant under any
affine transformation of the nodes.

In the following we show that, for certain ordering of the nodes, NE with partial
pivoting does not require row interchanges of the associated Vandermonde matrix.
The Leja order satisfies a similar property for the Gaussian elimination with partial
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pivoting. In fact, Gaussian elimination with partial pivoting leads to an ordering of
rows corresponding essentially to the Leja order (see Section 22.3.3 of [9]).

Theorem 4 NE with partial pivoting of a Vandermonde matrix 0 with
distinct nodes 0 does not require row interchanges if and only if

1 , 0 1, form a nonincreasing sequence.

Proof Let us assume that NE with partial pivoting does not require row interchanges.
Then, by (25),

1
1

2
1 2 .

Conversely, we compute

1

1

1

. (26)

Taking into account that the nodes form an increasing sequence, as well as (25) and
(26), we have

1 1 1 1

1

1 1
.

Because the sequence 0 1 is nonincreasing, 1 1 1 ,
and 1.

If the nodes are equidistant, 1 , 0 1, and then
Theorem 4 implies that NE of 0 with partial pivoting does not require
row interchanges. In the next result, we do not impose the condition that the nodes
form an increasing sequence.

Theorem 5 Let 0 be the Vandermonde matrix (23) with nodes
0 such that there is an 1 1 with

1 1 1 0 0 1.

If 0 1 and 1 0 1 are nonincreasing sequences, then NE with
partial pivoting does not require row interchanges of 0 .

Proof Observe that

1

0

1

1

0

1 1
1

1 1
1

0

1 1.
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Taking into account that the distances form a nonincreasing sequence, we have

1

0

1 1 0. (27)

We note 1 , 0 1. Since 1, we have that
0 1 is a nonincreasing sequence. Using (27), we obtain

1
2
1 1 2 odd

2
1 2 even.

(28)

Now, by (28), the sequence is nonincreasing in for each fixed
. So, 1 1 1 1 . Therefore, by (25), we deduce that

1.

If the distances between adjacent nodes are greater in the center than close to the
extremities, as in the case of Chebyshev nodes, then the hypotheses of Theorem 5 do
not hold. This fact suggests that the inverse central ordering is not a good ordering
for dealing with Chebyshev nodes, in agreement with the observations on the condi-
tioning illustrated by Fig. 4. If the distances between adjacent nodes decrease as we
approach the center of the interval, then the hypotheses of Theorem 5 hold, which
implies more stable computations.

In the following result we consider nodes following the inverse central order-
ing (6). We show that NE with partial pivoting does not require row interchanges.
Furthermore, we prove that the double sequence 0 is bimonotonically
nonincreasing or, equivalently,

1 2 0 1 (29)

and

0 1 1 1 . (30)

Recall that a double sequence , with 2, is bimonotonically nonin-
creasing if for all pairs of indices such that ,

.

Theorem 6 Let 0 be the Vandermonde matrix (23) at equidistant
nodes 0 following the inverse central ordering given by (6). Then NE
with partial pivoting of 0 does not require row interchanges and,
furthermore, the double sequence 0 is bimonotonically nonincreasing.

Proof We note , 0 . Using (6), we have that the

1 1 0 1

form a nonincreasing sequence. With defined in the proof of Theorem 5, we
also have that , 0 1. Hence, by Theorem 5, NE with partial
pivoting does not require row interchanges of 0 .
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Let us analyze the distance between two nodes. If the indices have the same parity,
by (6), we have

2
mod 2 (31)

and, otherwise,

1

2
mod 2 . (32)

By (31) and (32), the multipliers are in this case

1 2

1

2

1 2

1

1 2

2

1

1 2

1

2 1 2
. (33)

Hence, by (33), we can explicitly compute the absolute value of the multipliers as

1

2
1 1

1 2 1

1 1 2

1

1 1 2
1 (34)

which shows, again, that NE with partial pivoting does not require row interchanges.
Observe that, by (34),

1 1
1 2

1
0 .

Clearly, the 1 form a nondecreasing sequence in each of the indices and
and, so, 0 is a bimonotonically nonincreasing sequence.
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