
https://doi.org/10.1007/s11075-021-01245-z

ORIGINAL PAPER

A null-space approach for large-scale symmetric
saddle point systems with a small and non zero (2, 2)
block

Jennifer Scott1,2 ·Miroslav Tůma3

Received: 9 March 2021 / Accepted: 15 December 2021 /
© The Author(s) 2022

Abstract
Null-space methods have long been used to solve large sparse n×n symmetric saddle
point systems of equations in which the (2, 2) block is zero. This paper focuses on
the case where the (1, 1) block is ill conditioned or rank deficient and the k × k

(2, 2) block is non zero and small (k � n). Additionally, the (2, 1) block may be
rank deficient. Such systems arise in a range of practical applications. A novel null-
space approach is proposed that transforms the system matrix into a nicer symmetric
saddle point matrix of order n that has a non zero (2, 2) block of order at most 2k and,
importantly, the (1, 1) block is symmetric positive definite. Success of any null-space
approach depends on constructing a suitable null-space basis. We propose methods
for wide matrices having far fewer rows than columns with the aim of balancing
stability of the transformed saddle point matrix with preserving sparsity in the (1, 1)
block. Linear least squares problems that contain a small number of dense rows are an
important motivation and are used to illustrate our ideas and to explore their potential
for solving large-scale systems.

Keywords Sparse matrices · Dense rows · Null-space method ·
Linear least squares problems · Saddle point systems

� Jennifer Scott
jennifer.scott@stfc.ac.uk

Miroslav Tůma
mirektuma@karlin.mff.cuni.cz

1 Rutherford Appleton Laboratory, Science and Technology Facilities Council,
Didcot, Oxfordshire, OX11 0QX, UK

2 School of Mathematical, Physical and Computational Sciences, University of Reading,
Reading, RG6 6AQ, UK

3 Department of Numerical Mathematics, Faculty of Mathematics and Physics,
Charles University, Sokolovská 49/83, Prague, 18675, Czech Republic

Published online: 12 January 2022

Numerical Algorithms (2022) 90:1639–1667

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-021-01245-z&domain=pdf
http://orcid.org/0000-0003-2130-1091
mailto: jennifer.scott@stfc.ac.uk
mailto: mirektuma@karlin.mff.cuni.cz

1 Introduction

Our interest is in solving symmetric saddle point systems of equations of the form

A
(

u

v

)
=

(
H BT

B −C

) (
u

v

)
=

(
f

g

)
, (1)

in which H ∈ R
n×n is large, sparse and symmetric positive semidefinite (SPSD),

B ∈ R
k×n (n > k) and C ∈ R

k×k is SPSD. Our focus is on k � n (the saddle point
matrix may then be referred to as a “bordered” matrix) and the “wide” matrix B may
contain one or more dense rows. Such systems arise in a range of scientific appli-
cations, including the finite element approximation of PDEs in which a constraint is
enforced on a subset of unknowns via a global scalar Lagrange multiplier, numerical
continuation methods for large nonlinear systems of equations, electronic circuit sim-
ulation, constrained optimization, and linear least squares problems (see the paper of
Benzi, Golub and Liesen [1], which describes a wide range of real life problems that
are dependent on the solution of saddle point systems and see also [2, 3]). We are
particularly concerned with large-scale least squares problems that have a few dense
rows. They can be expressed in the form (1) and provide an important motivation for
the null-space approach proposed in this paper. In this application, the (1, 1) block
can be ill conditioned or rank deficient.

There has been considerable work over many years and in different research areas
into null-space methods for saddle point problems with a zero (2, 2) block. The basic
idea is to characterize the null space of the constraint (off-diagonal) blocks and use
that characterization to reduce the system to two smaller linear systems of order
(n − k) × (n − k) and k × k that have nice properties and are thus straightforward to
solve. Consequently, applications of null-space methods are usually geared towards
problems for which n − k is small. An attractive feature of null-space methods that
widens their applicability is that the (1, 1) blockH need not be invertible. However, a
key problem is the need to construct a null-space basisN (B) for the matrixB. In gen-
eral, this is challenging, particularly if it is desirable that the matrix whose columns
form a basis for N (B) has additional properties, such as bandedness, sparsity or
orthogonality. Moreover, the classical null-space method is restricted to C = 0.

The objectives of this paper are twofold. Firstly, we present a null-space based
approach for symmetric saddle point systems in which the (1, 1) block is SPSD and
the small k×k blockC is non zero. The new approach preserves symmetry and results
in a transformed symmetric saddle point system of the same order but with favourable
numerical properties, namely a sparse symmetric positive definite (SPD) (1, 1) block
and a non zero (2, 2) block of size k + r , where r ≤ k is the rank of B. Having an
SPD (1, 1) block allows the use of block (possibly incomplete) factorization methods
to be used to solve the system. Secondly, we propose techniques for constructing
a null-space basis N (B) when k is small, with an emphasis on balancing sparsity
in the transformed problem with stability through the use of QR factorizations with
threshold pivoting. Novel contributions are the underlying theory that we present
in Section 2 (Theorem 1 and the transformation of the sparse-dense least squares
problem described by Lemma 2) as well as the main algorithmic approach based on

1640 Numerical Algorithms (2022) 90:1639–1667

the threshold QR factorization of the off-diagonal block of the transformed saddle-
point system. While the composite approaches we propose for constructing the null-
space bases are a straightforward generalization of the idea of Howell [3], the pivoted
algorithmic approach based on right oblique conjugation is new, building on work
done in the 1990s by Benzi, Meyer and Tůma [4–6].

This paper is organized as follows. In Section 2, we first recall the standard null-
space approach for saddle point systems with a zero (2, 2) block and the recent
method of Howell [3] that allows for a non zero C but sacrifices symmetry. We
then propose a new symmetry preserving null-space approach for the case of a non
zero C and discuss how it can be used to solve large-scale linear least squares prob-
lems that have a small number of dense rows. Null basis construction is considered
in Section 3. A brief review of methods for building null-space bases for sparse
matrices is given before we focus on the case of interest to us: null-space bases for
wide matrices that may include some dense rows. A number of approaches are pro-
posed, with an emphasis on ensuring sparsity within the transformed saddle point
system while also guaranteeing numerical stability through the use of pivoting. In
Section 4, numerical examples from practical applications demonstrate the effective-
ness of the approaches and illustrate their potential strengths and limitations. Finally,
some concluding remarks and pointers to future research directions area given in
Section 5.

1.1 Test environment

The numerical experiments reported on in this paper are performed on an Intel(R)
Core(TM) i5-4590 CPU running at 3.30 GHz with 12 GB of internal memory. The
software for the null-space computations is written in Fortran and compiled using
GNU Fortran 6.3.0. The algorithms we present are complex to implement and the
software developed for our experiments is not optimized for efficiency, but is writ-
ten for robustness at the expense of speed. Having obtained a null-space basis, we
employ the sparse direct solver HSL MA87 [7] from the HSL mathematical soft-
ware library (available at http://www.hsl.rl.ac.uk) to compute the sparse Cholesky
factorization within the block matrix factorization. This package is also written in
Fortran. The experimental results are processed by MATLAB R2020a. In particular,
the presented condition numbers are computed using the MATLAB 1-norm condition
number estimator condest.

1.2 Notation

We end this section by introducing notation that we use throughout. Let x ∈ R
n be

a vector. We denote the i-th entry of x by (x)i and (x)j :l denotes entries j to l of x

(1 ≤ j < l ≤ n). x⊥ denotes the (n − 1)-dimensional space of all vectors w ∈ R
n

such that xT w = 0. ei denotes the i-th unit vector. Let B ∈ R
k×n be a matrix.

The (i, j)-th entry of B is given by (B)i,j . (B):,l denotes column l of B and (B):,1:l
denotes a matrix comprising columns 1 to l of B. (B)1:l,1:l denotes the principal
leading submatrix of B of order l. The rows of B are bT

1 , . . . , bT
k . N (B) and R(B)

1641Numerical Algorithms (2022) 90:1639–1667

http://www.hsl.rl.ac.uk

denote the null space and range space of B, respectively. Z is used to denote a null-
space basis matrix (that is, its columns form a null-space basis). P (with or without
a subscript and/or superscript) is used for a permutation matrix. Ik denotes the k × k

identity matrix and 0n,k denotes the n × k null matrix.

2 Null-space approach for solving saddle point systems

2.1 Null-space approach for zero C

Consider the case that B is of full rank and C = 0k,k , that is,(
H BT

B 0k,k

) (
u

v

)
=

(
f

g

)
. (2)

Such systems frequently arise in practical applications, particularly when solving
constrained optimization problems (where they are usually referred to as reduced
Hessian methods); a null-space approach is one possible method of solution (see, for
example, [1, Section 6]). Assume we have a matrix Z ∈ R

n×(n−k) whose columns
form a basis for N (B) i.e., BZ = 0k,n, and that we have a particular solution for the
second equation in (2), that is, a vector û such that

Bû = g.

Then solving (2) is equivalent to solving(
H BT

B 0k,k

)(
ū

v

)
=

(
f − Hû

0k,1

)
,

where ū = u− û. The second equation in this system is equivalent to finding a vector
z ∈ R

n−k such that ū = Zz. Substituting this into the first equation gives

HZz + BT v = f − Hû

⇐⇒ ZT HZz = ZT (f − Hû) (3)

Therefore, by solving the reduced system (3), it is possible to straightforwardly
recover u = û+Zz. Finally, v can be obtained by solving the reduced k×k symmetric
positive definite system

BBT v = B(f − Hu).

The null-space method for solving (2) is summarized as Algorithm 1.

1642 Numerical Algorithms (2022) 90:1639–1667

A recent study of null-space factorizations for saddle point systems of the form
(2) has been given by Rees and Scott [8] and the advantages and disadvantages of
null-space methods are summarized in [9]. They can be very efficient for solving a
series of problems with the same blockB but differentH because the null-space basis
N (B) needs to be computed only once. A further key advantage is that H−1 is not
required. In fact, the method is applicable if H is singular, providedR(H)∩N (B) =
{0}. Furthermore, the Schur complement is not needed. The null-space approach can
also be useful when additional rows (dense or sparse) are added to the system matrix
a posteriori [10]. However, a potential difficulty is the need to construct a null-space
basis matrix Z and, even when Z can be computed efficiently, some columns of Z

may contain a large number of entries so that ZT HZ is not sparse.
The null-space method can be generalized to unsymmetric saddle point systems

with a zero (2, 2) block in which H is unsymmetric and the full rank (1, 2) and (2, 1)
blocks are BT

1 and B2 with B1 	= B2. In this case, û is required such that B2û = g

and matrices Z1 and Z2 ∈ R
n×(n−k) whose columns form a basis for the null-spaces

N (B1) and N (B2), respectively, must be constructed.

2.2 Symmetry-preserving null-space approach for non zero C

As Golub et al. observe [1, Section 6], the null-space method cannot be applied to
solve saddle point systems with C 	= 0k,k . In a recent paper, Howell [3] proposes
what he terms a one-sided application of the null-space method to solve non-singular
generalized saddle point systems of the form

A
(

u

v

)
=

(
H BT

1
B2 −C

) (
u

v

)
=

(
f

g

)
, (4)

in which H and C 	= 0k,k are possibly unsymmetric, B1 ∈ R
k×n and B2 ∈ R

k×n

are of full row rank and either B1 and/or B2 is dense. Howell introduces an auxiliary
variable w that is used to replace the (n + k) × (n + k) system (4) by a larger (n +
2k) × (n + 2k) system

Â

⎛
⎝ u

v

w

⎞
⎠ =

⎛
⎝ H BT

1 0n,k

B2 −C 0k,k

0k,n 0k,k Ik

⎞
⎠

⎛
⎝ u

v

w

⎞
⎠ =

⎛
⎝ f

g

0k,1

⎞
⎠ . (5)

Interchanging the second and third equations leads to another unsymmetric saddle
point system (

Ĥ B̂T
1

B̂2 0k,k

) (
û

v

)
=

(
f̂

g

)
, (6)

with

û =
(

u

w

)
, f̂ =

(
f

0k,1

)
, Ĥ =

(
H BT

1
0k,n 0k,k

)
, B̂T

1 =
(
0n,k

Ik

)
, B̂2=(

B2 −C
)
.

Because the coefficient matrix in (6) is non singular with a zero (2, 2) block, the null-
space method can be applied. Howell provides further details and presents results
for a number of practical applications that have a small number of dense rows and
columns. However, a major problem with this approach is that it fails to preserve

1643Numerical Algorithms (2022) 90:1639–1667

symmetry. If B1 = B2 and H and C are symmetric, the symmetry of the original
problem is lost because of the swapping of the second and third equations in (5); it
leads to the need to solve an n × n unsymmetric system of the form

ẐT
1 Ĥ Ẑ2v̂ = ĝ,

where Ẑj is a null-space basis matrix for B̂j (j = 1, 2). Howell does not comment on
this aspect and the use of MATLAB backslash for solving linear systems within his
numerical experiments obscures the fact that a symmetric problem has been traded
for a larger unsymmetric one.

Our interest is in developing a null-space approach for (1) when C 	= 0k,k and
k is small that retains symmetry and leads to a transformed saddle point system of
the same dimension n + k that has favourable numerical properties, specifically, a
symmetric positive definite (1, 1) block and a (2, 2) block of dimension at most 2k.
We consider the general case that both H and C are only SPSD and B may not have
full row rank. Lemma 1 gives sufficient conditions for A to be nonsingular. This
extends results from [1]; see also [11].

Lemma 1. Let

A =
(

H BT

B −C

)
,

where H ∈ R
n×n and C ∈ R

k×k are SPSD matrices, and the rectangular matrix
B ∈ R

k×n is not necessarily of full row rank. If N (H) ∩ N (B) = {0} and N (C) ∩
N (BT) = {0} then A is nonsingular.

Proof Consider a vector w = (
uT vT

)
such that Aw = 0. This means that Hu +

BT v = 0 and Bu−Cv = 0. Consequently, wT Aw = 0 implies uT Hu+vT Cv = 0.
Because H and C are SPSD, uT Hu = 0 and vT Cv = 0 and it follows that Hu = 0
and Cv = 0 [12]. Consequently, BT v = 0 and Bu = 0. The null-space assumptions
then imply that w = 0 and hence A is nonsingular.

The following theorem presents our proposed transformation without B needing
to be of full row rank.

Theorem 1. Consider the symmetric saddle point problem (1) of order n + k with
rank(B) = r ≤ k, H and C SPSD. Assume furthermore that N (H) ∩ N (B) =
{0} and N (C) ∩ N (BT) = {0}. The solution of (1) can be obtained by solving a
transformed saddle point problem of order n + k with a symmetric positive definite
(SPD) principal leading submatrix of order n − r .

Proof Because the saddle-point problem satisfies the assumptions of Lemma 1, the
system matrix A is nonsingular. Let E be the n × n matrix of full rank given by

E = (
Z Y

)
, (7)

where Z ∈ R
n×(n−r) has full column rank and is such

BE = (
0k,n−r BY

)
, BY = BY ∈ R

k×r , rank(BY) = r . (8)

1644 Numerical Algorithms (2022) 90:1639–1667

Set E to be the (n + k) × (n + k) matrix

E =
[

E 0n,k

0k,n Ik

]
.

Then the transformed saddle point matrix

Ã = ET AE (9)

is symmetric and non singular. We can rewrite this transformation as

Ã =
(

ET 0k,n

0n,k Ik

)(
H BT

B −C

) (
E 0n,k

0k,n Ik

)

=
(

ET HE (BE)T

BE −C

)

=
⎛
⎝ ZT HZ ZT HY 0n−r,k

Y T HZ YT HY BT
Y

0k,n−r BY − C

⎞
⎠

=
(

Ĥ B̂T

B̂ −Ĉ

)
,

where
Ĥ = (ET HE)1:n−r,1:n−r = ZT HZ (10)

is the SPD leading principal submatrix of ET HE of order n − r , and

B̂ =
(

YT HZ

0k,n−r

)
, Ĉ =

(−YT HY −BT
Y−BY C

)
.

The transformed system becomes

Ã
(

ũ

ṽ

)
=

(
Ĥ B̂T

B̂ −Ĉ

) (
ũ

ṽ

)
=

(
f̃

g̃

)
= ET

(
f

g

)
, (11)

where ũ ∈ R
n−r and ṽ ∈ R

r+k and

f̃ = (ET f)1:n−r g̃ =
(

(ET f)n−r+1:n
g

)
.

To solve (11), consider a conformal partitioning of the vectors u and f . Once ũ and
ṽ have been computed, the solution of the original problem (1) is given by

u =
[

E1:n−r,1:n−r ũ

En−r+1:n,n−r+1:nṽ1:r

]
, v = (ṽ)r+1:r+k .

Remark 1. The claim in Theorem 1 that the transformed saddle point matrix
Ã given by (9) is symmetric and nonsingular cannot be strengthened to it being
quasi definite, even when B has full row rank. The problem is that the submatrix
(ET HE)n−r+1:n,n−r+1:n is then only symmetric.

The (1, 1) block Ĥ in the transformed system (11) is SPD. This allows block
factorizations to be employed, which are useful not only for direct methods but also

1645Numerical Algorithms (2022) 90:1639–1667

in the construction of preconditioners for use with iterative methods. For example,
using the Cholesky factorization Ĥ = L1L

T
1 yields

(
Ĥ B̂T

B̂ −Ĉ

)
=

(
L1
L2 LS

)(
I

−DS

)(
LT
1 LT

2
LT

S

)
, (12)

where

L2 =
[

L̃2
01:k,1:n−r

]
∈ R

(r+k)×(n−r) with L2L
T
1 = B̂,

and

Ĉ + L2L
T
2 =

[
−YT HY + L̃2L̃

T
2 − BT

Y−BY C

]
= LSDSLT

S ,

where LS is unit lower triangular and DS is block diagonal with 1 × 1 and 2 × 2
blocks.

2.3 An application: sparse-dense least squares problems

Consider the linear least-squares (LS) problem

min
x

‖Ax − b‖2,

where the system matrix A ∈ R
m×n (m ≥ n) and the right-hand side vector b ∈ R

m

are given. The solution x satisfies the n × n normal equations

Cx = AT b, C = AT A,

where, provided A has full column rank, the normal matrix C is symmetric positive
definite. Our interest lies in the case where A is large and mainly sparse and includes
a relatively small number of rows that are regarded as dense. These rows may be
fully dense or have significantly more entries compared to the other rows of A or
may contain far fewer entries than n but nevertheless lead to large amounts of fill in
C. The presence of such rows has long been recognized as a fundamental difficulty
in the solution of large LS problems; see, for example, [13] for a discussion and
references to past work on this problem.

Assuming the rows of A that are to be treated as dense have been permuted to
the end and assuming a conformal partitioning of the vector b (and omitting the row
permutation matrix for simplicity), we have

A =
(

As

Ad

)
, As ∈ R

ms×n, Ad ∈ R
md×n, b =

(
bs

bd

)
, bs ∈ R

ms , bd ∈ R
md ,

where ms denotes the number of sparse rows of A, and md is the number of dense
rows, with m = ms + md , ms ≥ n > md ≥ 1 and md � ms . The normal equations
become

Cx = (Cs + AT
d Ad)x = c, c = AT

s bs + AT
d bd, (13)

1646 Numerical Algorithms (2022) 90:1639–1667

whereCs = AT
s As is the reduced normal matrix. The solution of (13) can be obtained

from the equivalent (n + md) × (n + md) system(
Cs AT

d

Ad −Imd

) (
x

Adx

)
=

(
c

0md,1

)
. (14)

This is of the form (1) with k = md , H = Cs , B = Ad and C = Imd
. If As has full

column rank, Cs is SPD. But in practice As may contain one or more null columns,
and Cs is then singular with a corresponding number of null rows and columns. Even
if Cs has no null columns, it can be singular or highly ill conditioned. Recent studies
have proposed ways of circumventing the problem of null columns in As . In [13,
14], it was shown how they can be dealt with either by perturbing diagonal entries
of Cs before applying a direct solver or by solving a number of related sparse LS
problems and combining their solutions to give the solution of the original problem.
Unfortunately, both methods incur overheads, with the former requiring the sparse
direct solver is combined with an iterative solver and the latter needing the solution of
a number of LS problems. These disadvantages led us to consider employing matrix
stretching [15, 16]. The main aim of matrix stretching is to split each of the dense
rows (that is, each row of Ad) into a number of sparser rows and to formulate a
(larger) modified problem from which the solution to the original problem can be
derived. This has the advantage that, provided A is of full rank, the issue of null
columns does not arise. However, when As is very sparse, the dimensions of the
stretched system can grow rapidly with md so that the stretched LS problem can be
considerably larger than the original problem. It may also be highly ill conditioned.
Thus, we remain interested in developing alternative strategies and this was a key
motivation behind the current work on null-space approaches.

The following result shows that, in the case of the full rank LS problem (14), the
assumptions of Theorem 1 are satisfied, with r ≤ md the rank of Ad .

Lemma 2. Consider A =
(

As

Ad

)
, As ∈ R

ms×n, Ad ∈ R
md×n. If A is of full rank,

then Cs = AT
s As is positive definite on the null space of Ad .

Proof Let v ∈ N (Ad) and consider

vT Csv = (Asv)T Asv ≥ 0.

If Asv = 0 then because Adv = 0 it follows that Av = 0. Because A is of full rank,
this implies v = 0. Hence vT Csv > 0 and Cs is positive definite on N (Ad).

Thus, provided a basis for N (Ad) can be constructed, the proposed null-space
approach offers an alternative way of solving sparse-dense LS problems, even in the
case that Cs is SPSD.

3 Null-space basis construction

Solving large-scale saddle point systems using null-space methods leads to the prob-
lem of finding null-space bases that preserve sparsity and lead to a stable transformed

1647Numerical Algorithms (2022) 90:1639–1667

system. Before looking at null-space basis construction for wide matrices, we give a
brief overview of the historical development of techniques for constructing null-space
bases of sparse matrices.

3.1 Construction of null-space bases of sparsematrices

A null-space basis matrix Z for B ∈ R
k×n of rank r > 0 can sometimes be obtained

directly by analysing the problem [17] but more advanced methods are normally
necessary. In structural analysis, early methods were based on factorizations of B

and focused on the sparsity of Z, with emphasis on Z having a banded or skyline
sparsity pattern. Computation of Z based on an initial LU factorization of B was
proposed by Topçu [18] (see also [19, 20]). A specific strategy of this kind, called
the turnback method [18, 19], attracted interest in the late 1970s/early 1980s (see
also an early parallel implementation [21] and its recent use in practice [22]). The
turnback (backward looking) method finds null vectors by expressing n − r chosen
start columns of B as linear combinations of a small set of previously numbered
columns. The initial LU factorization serves to determine these start columns. Linear
independence of the columns of Z is guaranteed by not using the leftmost columns
in these linear combinations from any set computed for the remaining start columns.
An overview and modifications to the basic approach (such as replacing LU by a
QR factorization) are described in [23]; see also [24] for further refinements. More
recently, factorization approaches for the computation of null-space bases of sparse
matrices are discussed in [25, 26].

Theoretical and algorithmic breakthroughs based on bipartite graph matchings and
matroid theory came with the 1984 thesis of Pothen [27] and subsequent papers.
The contributions covered not only new algorithmic approaches but also complexity
concepts for the related problem of finding the sparsest null-space basis of B, that is,
for finding Z with the smallest possible number of non zero entries (see also [28]).
It has been shown that such a basis can be constructed by a greedy algorithm that
assembles the basis using a sequential choice of the sparsest vectors belonging to
N (B). While this can provide extremely sparse Z, there are two important practical
limitations. Firstly, finding the sparsest vectors of a null-space basis for a general
constraint matrix is NP-hard. Secondly, sparsity of Z may not be enough and its
numerical properties must also be considered. Sophisticated proposals given in [27,
29, 30] were designed to compute sparse null-space bases of sparse matrices and
they led to efficient algorithms for computing so-called fundamental and triangular
null-space bases.

Origins of another line of research appear in the 1969 seminal paper of Hender-
son and Maunder [31] (see also [32]). Subsequently, a number of related algorithms
for specific applications have been developed independently. These exploit the graph
of B and, in particular, cycles in the graph. The idea is most transparent if B is
the vertex-edge incident matrix of some underlying graph. In structural mechanics,
cycles of the graph that describes the interconnection of separate substructures of a
skeletal structure can be considered. Using the graph cycles, a set of independent
null-space vectors that form columns of Z can be computed [31, 33]. This construc-
tion was developed and discussed in the context of other approaches in [34]. In some

1648 Numerical Algorithms (2022) 90:1639–1667

partial differential equation applications the cycle approach is relevant because a sim-
ple constraint structure may be implied by discretization schemes [35–39]. Many
publications discuss using cycles in the graph: pointers to relevant literature can be
found in [40, 41]. There are heuristic ways of finding the cycle basis, a task that is
straightforward if the underlying graph is planar [39]. More generally, construction
may be based on a spanning tree of the graph [27]. Procedures to find sparse cycle
bases in this way are given in [42] (see also [43, 44]). However, discretizations of
three-dimensional grids may not allow sparse cycle bases to be found [38]. As with
sparse factorization approaches, those based solely on local computations of Z may
suffer from ill conditioning.

An interesting motivation is to construct Z using structure, for example, by allow-
ing a permutation to block angular form. Such an approach was introduced in [45].
Closely related proposals to compute Z while explicitly exploiting substructuring,
motivated in part by parallel computing, were given in [46, 47] (see also [48]).
The block form can be obtained algebraically, as in the nested dissection ordering
discussed in [44]; see also [45].

3.2 Null-space basis for widematrices

In contrast to much of the previous work on constructing null-space bases, our focus
is on wide matrices B ∈ R

k×n with k � n. B may be sparse but because k is small,
we may want to treat B as dense (although the null-space basis construction may still
involve sparse operations). As it can happen in practical applications, we allow for B

being rank deficient (rank(B) = r < k). We want the nearly-square null-space basis
matrix Z ∈ R

n×(n−r) to be sparse but we are also concerned about conditioning. Our
experiments consider the quality of Z and, as we employ a sparse direct solver to
factorize the (1, 1) block ZT HZ given by (10) of the transformed system, we need
Z to have no dense rows and be such that ZT HZ is sparse. Orthogonal transfor-
mations inevitably lead to dense Z and so, although useful in other situations (see,
for instance, [49]), are not appropriate here. Because B is wide, each column of Z

can be computed independently and such that each has small support (the entries can
be computed as the coefficients of linear combinations of at most k other columns).
Small support means that there is always some orthogonality but Z may still be ill
conditioned. Indeed, if B is an adjacency matrix of a domain discretized by mixed
hybrid finite elements, then the condition number of the null-space basis of the con-
straints that express the hybridization with small support can grow like h−2, where
h is the discretization parameter [38]. Thus, we propose employing a QR factoriza-
tion that incorporates pivoting for stability and, because B has only a small number
of rows, this is not prohibitively expensive.

3.2.1 Null-space bases with local support

This section discusses constructing (a permutation of) Z by finding linearly depen-
dent sets of columns with close column indices. The coefficients of the linear
combination of these columns that sum to zero are the values of the entries in Z.
These bases are similar to those belonging to the category of triangular null-space

1649Numerical Algorithms (2022) 90:1639–1667

Fig. 1 Simple example with n = 5 and r = 1 showing B ∈ R
1×5, P ∈ R

5×5, the permuted matrix BP

and Z̃ computed using Algorithm 2. E satisfies (8)

bases [29], but employment of QR factorizations with pivoting leads to Z having a
more general sparsity pattern. Our focus is on the numerical qualities of the basis
combined with limiting the number of entries through the employment of a thresh-
old pivoting strategy (thus, as is common with sparse matrix factorizations, there is a
trade off between stability and sparsity).

We begin with the simple case in which B comprises a single fully dense row
(k = 1) and consider two extreme cases for the structure of a sparse null-space basis
Z ∈ R

n×(n−1). First, Z can be constructed to have non zeros only in its first row and
on the diagonal of Z2:n,1:n−1. The entries in row 1 are obtained by dividing entries
2 to n of B by the entry in its (1, 1) position. Column pivoting is needed to ensure
that this entry is large. The resulting Z is sparse but ZT HZ is dense and so is not of
interest here.

The second extreme case constructs Z to be a permutation of a matrix with a
banded structure; it is presented as Algorithm 2 and illustrated in Fig. 1. When B ∈
R
1×n we have Q = I1, but we include the Q factor in the algorithm description

because it will be needed in subsequent more general algorithms. The R factor is a
single row with its first entry β1 	= 0. The computed Y (recall (7)) is sparse, has full
rank, is well conditioned because of the column pivoting and belongs to the space of
vectors Z⊥ [8, 50]. In particular, BY = 1. We remark that a similar approach was
recently proposed by Howell [3, Algorithm 3].

A dominant part of the saddle-point matrix (11) is its (1, 1) block ZT HZ. Its
condition number cond(ZT HZ) is bounded by

cond(ZT HZ) ≤ cond(ZT
0 HZ0) cond(ZT Z), (15)

1650 Numerical Algorithms (2022) 90:1639–1667

where Z0 is an orthogonal null-space matrix (see Lemma 10 in [51]). Consequently,
it is desirable for cond(ZT Z) to be small. Constructing Z so that P T Z has a narrow
band may not be sufficient to guarantee this, as can be deduced from the following
result for the idealized example of B comprising a single row of all ones.

Lemma 3. Let B ∈ R
1×n be a row vector of all ones and construct Z using Algo-

rithm 2. Then the condition number of ZT Z ∈ R
(n−1)×(n−1) is asymptotically of

order n2.

Proof The permutation P is the identity and the computed Z is bidiagonal with diag-
onal entries equal to −1 and off diagonal nonzeros equal to 1. ZT Z is a well-known
Laplacian matrix with eigenvalues given by

2 cos(1 − jπ

n
), 1 ≤ j ≤ n − 1.

Consequently, the largest eigenvalue goes asymptotically to 4 and the smallest one is

4 sin2
π

2 n
≈ π2

n2
.

The result follows.

Algorithm 3 considers general B with 1 ≤ k < n rows and rank r such that 0 <

r ≤ k. The basic idea is to express columns of Z as linear combinations of previous
columns with close indices. r is computed using a QR factorization with column
pivoting. The columns of B corresponding to the first r columns of the R factor are
permuted to the front and the remaining n−r columns are marked as dependent; they
correspond to the columns of Z. They are computed independently while aiming to
balance sparsity and numerical stability. As in other sparse numerical linear algebra
algorithms that need to combine locality with ensuring stability, this is achieved using
threshold column pivoting. The principle behind threshold pivoting is as follows.
Assume a threshold parameter θ is given with 0 < θ ≤ 1. At a step of the QR
factorization, assume that � is the maximum norm of all the columns eligible to be
chosen as the next pivot column. While full column pivoting selects the pivot column
to be an eligible column with norm �, threshold pivoting chooses the pivot column
to be the eligible column with norm at least θ� and such that its index is closest to
the index of the first (starting) column of the factorized matrix. In Algorithm 3, we
perform QR factorizations repeatedly in the loop commencing at Line 3 for a set of
n − r starting columns. The initial permutation P guarantees to find r and determine
the n − r starting columns, that is, the columns that are expressed in the loop as
linear combinations of previous columns in the order determined by P . The local
permutation PL reverses the column order so that threshold column pivoting chooses
columns closest to the starting column first. The coefficients are then obtained by
performing QR factorizations (with threshold partial pivoting) of submatrices of BP .
While Algorithm 3 is somewhat technical, it essentially combines two steps: it first
determines BP and then solves n−r subproblems for the entries of the n−r columns
of Z. Permutations ensure the subproblems always find these entries. The matrix E

computed by Algorithm 3 satisfies (8).

1651Numerical Algorithms (2022) 90:1639–1667

Incorporating threshold column pivoting in the QR factorizations in Algorithm 3
implies that, provided the parameter θ is not too small, the matrix BY should be rea-
sonably well conditioned. Moreover, it guarantees that any dependent column (B̃):,l
of B̃ can be stably expressed as a linear combination of previous columns. Note
that the coefficients of this linear combination are expressed using the inverse of R̃.
Because each such column is used in the construction of just one column of Z, the
columns ofZ must be linearly independent. Observe that a null column (B̃):,l implies
a unit column in Z. Note also that Line 10 is well defined because the permutation P

guarantees not only that there is a submatrix of rank r in each Xl , l = r + 1, . . . , n,
but also that Q̂T (B̃):,l cannot have non zeros in rows r + 1, . . . , k.

Figure 2 shows the basis matrix Z constructed using Algorithm 3 for B ∈ R
2×6

of full rank; θ is set to 0.1. With this threshold choice, it is not necessary to permute
column 6 of B (the one with largest norm) to the front and hence P = I and B = B̃.
The loop starting in Line 3 considers the last n − r = 4 columns of B̃ and expresses
each as a linear combination of the closest previous columns, successively accessing

1652 Numerical Algorithms (2022) 90:1639–1667

Fig. 2 Simple example with n = 6 and r = k = 2. Z and Y are constructed using Algorithm 3;
E = (Z Y) satisfies (8)

the columns in reverse order; the initial permutation P guarantees this is possible and
each column provides a column of Z = Z̃. For example, B:,4 = 2B:,3 − B:,2, giving
entries −1, 2, −1 in rows 2, 3 and 4 of the second column of Z.

3.2.2 Fundamental null-space basis

We next discuss constructing the so-called fundamental null-space basis, which was
first mentioned in an unpublished 1962 paper by Wolfe [52] (see [29]).

Let B ∈ R
k×n have full row rank and assume the columns have been permuted

so that G = (B)1:k,1:k is nonsingular. Then the fundamental null-space basis of
B = (

G N
)
is defined to be

Z =
(−G−1N

In−k

)
. (16)

For rank(B) = r < k, let

BP = Q

(
R1 R2

0k−r,r 0k−r,n−r

)
and P1BP2 =

(
L1
L2 Ik−r

)(
U1 U2

0k−r,r 0k−r,n−r

)

be the pivoted QR and LU factorizations of B, respectively. The fundamental null-
space basis of B may be expressed as either

Z = P

(−R−1
1 R2

In−r

)
(17)

or

Z = P2

(−U−1
1 U2

In−r

)
. (18)

For the LU factorization, our experience is that complete pivoting should be used for
stability.

The biconjugation process of Hestenes [53] applied to a square matrix A ∈ R
n×n

yields a pair of biconjugate matrices (Ṽ , V) such that Ṽ AV is diagonal. Biconju-
gate factorizations were discussed in [54] and some practical extensions were given
by Benzi [4]; see also the direct projection method [5, 6]. Applying biconjuga-
tion approximately leads to so-called approximate inverse preconditioners [55]. We
define a partial biconjugation factorization applied to B ∈ R

k×n with rank(B) = r ,
0 < r ≤ k ≤ n, to be a process that yields V ∈ R

n×n and a lower trapezoidal
L ∈ R

k×n satisfying
BV = L. (19)

1653Numerical Algorithms (2022) 90:1639–1667

We term this the right oblique conjugation. Assuming r steps of an LDU factorization
of B can be performed without pivoting, Algorithm 4 computes a null-space basis
matrix Z ∈ R

(n−r)×n by right oblique conjugation.

It initializes V to be the identity. The columns of V are then transformed so that,
from Line 4, bT

i v
(i)
j = 0. At the end of the algorithm, BV is lower trapezoidal. This

means, in particular, that the last n − r columns form a null-space basis because they
are linearly independent. To see the mutual relationship between oblique conjuga-
tion and LDU factorization, first consider the ‘non-wide’ square case (r = k = n).
In this instance, V = U−1, where U is the U factor of the LDU factorization of
B without pivoting. This result follows from the fact that V is unit upper triangular
by construction, the uniqueness of the LDU factorization without pivoting and (19)
is satisfied (see [56]). Now consider r ≤ k < n. Because the construction com-
mences with V = In, and all the updates at Line 4 are well defined, the computed
V is upper triangular and its last n − r columns have the shape of (16), where G

represents the principal leading submatrix of B of dimension r . In the algorithm out-
line, for simplicity, we omit pivoting. Even with column pivoting, an assumption is
needed to guarantee the factorization exists. It is sufficient to assume linear indepen-
dence of the first r rows of B, which is weaker than requiring the first r steps of the
LDU factorization of B can be performed without pivoting. We have the following
straightforward result.

Lemma 4. Let the first r rows of B ∈ R
k×n be linearly independent and let

rank(B) = r . Apply right oblique conjugation to B. Then there exists a permutation

P ∈ R
n×n and a block partitioning of BP =

(
G N

D C

)
with G ∈ R

r×r such that

(
G N

) (
W S

0n−r,r In−r

)
= (

Ir 0r,n−r

)
, (20)

1654 Numerical Algorithms (2022) 90:1639–1667

for some W ∈ R
r×r and S ∈ R

r×(n−r). In particular,

Z =
(

S

In−r

)

is the fundamental null-space basis corresponding to
(
G N

)
.

Proof Setting P to be the permutation matrix corresponding to column pivoting
within the LU factorization and using the uniqueness of the first r steps of the LU
factorization of BP , we have W = G−1. Moreover, GS + N = 0r,n−r , from which
it follows that (

S

In−r

)
≡

(−G−1N

In−r

)

is the fundamental null-space basis of the matrix B with permuted columns.

One reason why fundamental null-space bases using right oblique conjugation
are of potential interest is the practical implementation of Algorithm 4 and relates
to the fact that the one-sided factorization does not split the inverse of G into two
factors. In practice, pivoting needs to be incorporated to maximize the magnitude of
the quantity bT

i v
(i−1)
i used in Line 4. While the rows of B can be stored in static data

structures, the columns of V that are eligible to be pivot columns (those with indices
j = i + 1, . . . , n) are updated and so need to be stored in a (single) dynamic data
structure. By contrast, if the basis is constructed using a standard LU factorization,
two sets of vectors (those that form the L and U factors) change dynamically and so
must be stored using two dynamic data structures. This storage difference may be
important when k is large (which is not the case in this paper). Note that the one-sided
factorization is a useful way to explain relations among closely related computational
approaches [57]. In exact arithmetic, the diagonal entries bT

i v
(i−1)
i are inverses of

the diagonal entries of the LDU factorization (see [4]). In finite precision arithmetic,
there are other, and possibly more stable, ways of computing the pivots that we do not
discuss here; theoretical properties of some biconjugation variants (with additional
assumptions) are discussed in [58]. In the case k � n, complete pivoting is not
prohibitively expensive and may be needed for stability.

A further attraction of right oblique conjugation is its flexibility. It was introduced
as a way to obtain the fundamental null-space basis, but it can be modified to give
other null-space bases, including banded ones. To see this, consider the inner loop of
Algorithm 4. The oblique projection in Line 4 projects the vectors v

(i−1)
j along v

(i−1)
i

onto the space b⊥
i . The oblique projection can be rewritten using the projector

(
I − v

(i−1)
i bT

i

bT
i v

(i−1)
i

)
,

where the vectors v
(i−1)
i , . . . , v

(i−1)
n belong to the space b⊥

1 ∩ . . . ∩ b⊥
i−1 (see, for

example, [5]). But v(i−1)
i , . . . , v

(i−1)
n can be projected along any other set of linearly

1655Numerical Algorithms (2022) 90:1639–1667

independent vectors that are not equal to the v
(i−1)
i . Algorithmically, the projection

can be replaced by

v
(i)
j =

(
I − xj bT

i

bT
i xj

)
v

(i−1)
j , j = i + 1, . . . , n,

where x2, . . . , xn are linearly independent. The real power to construct the null-space
bases via oblique projections is apparent from the following result. It shows that
Algorithm 2, which obtains the null-space basis Z by permuting the upper bidiagonal
matrix Z̃, can be cast in the form of projections. We state the result without proof
because it can be verified by direct checking.

Lemma 5. Algorithm 2 can be rephrased in terms of the general scheme of Algorithm
4 by using in Line 4 the oblique projections

z
(i)
j =

(
I − xj bT

i

bT
i xj

)
z
(i−1)
j , j = i + 1, . . . , n, (21)

with xj = ej−1, j = 2, . . . , n.

3.2.3 Composite null-space basis for wide dense matrices

There are situations in which the null-space basis can be constructed from par-
tial null-space bases in several steps, instead of the single pass of Algorithm 3.
This may simplify the computation, allow it to be more parallel, or to be useful
in specific cases, for example, when B has a particular block structure. The fol-
lowing is a straightforward extension of Theorem 6.4.1 of [59] for rank deficient
blocks and non-orthonormal bases (a slightly less general version was described
in [3]).

Theorem 2. Consider the null-space basis ZF ∈ R
n×(n−r1) of the matrix F ∈ R

k1×n

of rank r1 and the null-space basis ZG ∈ R
(n−r1)×(n−r1−r2) of the matrix GZF ∈

R
k2×(n−r1) of rank r2, where G ∈ R

k2×n. Then the columns of the matrix ZF ZG ∈
R

n×(n−r1−r2) form a basis of N (F) ∩ N (G).

This result allows Algorithms 2 and 3 to be generalized by adding rows (or blocks
of rows) sequentially to B. An important application for such a construction is when
a sequence of problems is generated by successively modifying B through the addi-
tion of further rows. A special case of a procedure of this type was proposed by
Howell [3]. To demonstrate the mechanism, we introduce Algorithm 5 that applies
Algorithm 3 repeatedly to τ ≥ 1 row blocks of B and the null-space basis construc-
tion exploits Theorem 2. For simplicity, we assume that the rows of B are dense and
rank(B) = k (so that all the row blocks are also of full rank). In practice, B may
contain zeros that fill in as the algorithm proceeds.

1656 Numerical Algorithms (2022) 90:1639–1667

An important practical application of Algorithm 5 is B having a non-trivial block
angular form as this can be exploited to reduce the work. Assume that B (of full row
rank) can be ordered to the block angular form

B =

⎛
⎜⎜⎜⎝

B̄1 D̄1

B̄2 D̄2
. . .

...
B̄s D̄s

⎞
⎟⎟⎟⎠ , (22)

where B̄i ∈ R
ki×ni and D̄i ∈ R

ki×nd . If N (B) can be composed from the null-space
bases of the B̄i extended by zeros outside their domains, then the null-space basis
matrix Z is of block angular form; see also the framework of substructuring in [47].

In our experiments, we consider the special case in which each row block contains
a single row but B is not assumed to have full row rank. The approach is given in
Algorithm 6 and illustrated in Fig. 3. It constructs the null-space basis Z as a product
of bases Zi corresponding to the rows of B. Let (B̃)1:i,: be the i ×n matrix with rows

b̃T
j , j = 1, . . . , i. Then at Line 4, li = l − 1 if rank((B̃)1:i,:) > rank((B̃)1:i−1,:)

and li = l otherwise.

1657Numerical Algorithms (2022) 90:1639–1667

Fig. 3 Simple 3 × 6 example illustrating Algorithm 6

4 Numerical experiments

In this section, we present numerical results to illustrate the potential of the proposed
approaches for computing null space bases for solving symmetric saddle point prob-
lems with a small non zero (2, 2) block. We start by presenting detailed results for a
least squares problem that has 7 dense rows. In particular, we examine the effects of
varying the threshold parameter θ on the construction of the null-space basis, report-
ing on its sparsity and orthogonality. Then for a wider set of least squares problems
that have a few dense rows and using a fixed threshold, we compare the performances
of Algorithms 3, 4 and 6 in terms of the sparsity of ZT CsZ and its condition number.
Finally, we consider a problem coming from quadratic programming.

With the exception of PDE1 (which comes from the CUTEst linear program test
set [60]), the test problems given in Table 1 are from the SuiteSparse Matrix Col-
lection1. If necessary, a test matrix is transposed to give an over determined system
(m > n). The problems are a subset of those used in the least squares study of
Gould and Scott [61]. They were selected because they are real rectangular matrices
of full rank that contain a small number of dense rows. Problem PDE1 was included
because it is a large problem that illustrates the effects of a single dense row. The row
block Ad is identified using the variant of the approach of Meszaros [62] described
in [16]. All reported norms are Euclidean norms. In our experiments, for any matrix

1https://sparse.tamu.edu/

1658 Numerical Algorithms (2022) 90:1639–1667

https://sparse.tamu.edu/

Table 1 Least squares test
problems. The matrix A is of
order m × n and md is the
number of rows in Ad

Identifier m n md

deter3 21,777 7,647 15

deter8 10,905 3,831 15

lp agg 615 488 20

PDE1 270,595 271,792 1

sc205-2r 62,423 35,213 8

scagr7-2b 13,847 9,742 7

sctap1-2b 33,858 15,390 34

H , nnz(H) denotes the number of non zero entries, with the number set to those in
the lower triangular part when H is symmetric.

4.1 Results for problem scagr7-2b

Our initial experiments are for problem scagr7-2b. Figure 4 demonstrates the
effect of varying the threshold parameter θ ∈ [0.15, 1] in Algorithm 3 on the sparsity
of the null-space basis matrix Z and on the transformed normal matrix ZT CsZ. It
confirms the significant advantage of using a small θ . Once θ is sufficiently small,
there are sufficient degrees of freedom to find a suitable null-space basis Z and the
sparsity of the matrices Z and ZT CsZ does not decrease. The sparsity patterns of Z

and ZT CsZ for θ = 0.15, 0.5 and 1 are given in Figs. 5 and 6.
The effects of varying θ on the orthogonality of the null-space basis (here and

elsewhere this is measured as the norm of BZ) and on the condition number
cond(ZT CsZ) are illustrated in Fig. 7. We see that, except for very small θ , ‖BZ‖
is small and there is little variation in cond(ZT CsZ).

0.2 0.4 0.6 0.8 1

threshold

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

nn
z(

Z
)

104

0.2 0.4 0.6 0.8 1

threshold

105

106

nn
z(

Z
T
C

sZ
)

Fig. 4 Dependence of the number of entries in Z (left) and in the triangular part of ZT CsZ (right) on the
threshold parameter θ for the problem scagr7-2b. Z is computed using Algorithm 3

1659Numerical Algorithms (2022) 90:1639–1667

0 2000 4000 6000 8000
nz = 14341

0

2000

4000

6000

8000

0 2000 4000 6000 8000
nz = 14341

0

2000

4000

6000

8000

0 2000 4000 6000 8000
nz = 17152

0

2000

4000

6000

8000

Fig. 5 Sparsity pattern of Z for θ = 0.15 (left), θ = 0.5 (centre), and θ = 1 (right) for the problem
scagr7-2b. Z is computed using Algorithm 3

We also tested the fundamental null-space basis approaches discussed in
Section 3.2.2. The standard approach based on the pivoted QR factorization (17) finds
a well-conditioned submatrix and nnz(ZT CsZ) ≈ 7×106 for a range of values of θ .
For right oblique conjugation (Algorithm 4), cond(ZT CsZ) = 2.8 × 109 (indepen-
dently of θ) and nnz(ZT CsZ) ≈ 1.4 × 106. The greater density for the fundamental
null-space approach is potentially an important disadvantage if it is used as here in
combination with a sparse direct solver. However, we anticipate that the approach
may be more attractive if ZT CsZ is applied implicitly, such as in the employment of
an iterative solver; we plan to investigate this further in the future.

In Fig. 8, we plot cond(ZT Z) and ratio = ‖AT res‖/‖res‖ for Algorithms 3,
4 and 6 for the threshold parameter θ ∈ [0.15, 1] (here res = b − Ax is the least
squares residual). We see that Algorithm 4 leads to the smallest condition numbers
but the variation in ratio for the different approaches is much smaller.

4.2 Experiments on other matrices

Table 2 presents results for other least squares test examples. In these experiments,
the threshold parameter is θ = 0.25. The emphasis here is on comparing the

0 2000 4000 6000 8000
nz = 61651

0

2000

4000

6000

8000

nz = 62161

0

2000

4000

6000

8000

0 2000 4000 6000 8000
nz = 889144

0

2000

4000

6000

8000

Fig. 6 Sparsity pattern of ZT CsZ for θ = 0.15 (left), θ = 0.5 (centre), and θ = 1 (right) for the problem
scagr7-2b. The number of entries in ZT CsZ is 11,328, 1,103,582 and 1,674,118, respectively. Z is
computed using Algorithm 3

1660 Numerical Algorithms (2022) 90:1639–1667

0.2 0.4 0.6 0.8 1

threshold

0.5

1

1.5

2

2.5

||B
Z

||

10-13

0.2 0.4 0.6 0.8 1

threshold

0.5

1

1.5

2

2.5

3

co
nd

(Z
T
C

sZ
)

109

Fig. 7 Dependence of orthogonality of the null-space basis (left) and on cond(ZT CsZ) (right) on the
threshold parameter θ for the problem scagr7-2b. Z is computed using Algorithm 3

proposed approaches for computing a null-space basis for wide B = Ad ∈ R
md×n.

In particular, we compare the standard pivoted QR computation of the fundamental
null-space basis given by (17) with Algorithm 3 and the right conjugation approach
of Algorithm 4.

The results demonstrate that, as expected, the different approaches lead to null-
space bases with complementary properties, with no single approach being uniformly
advantageous.

In particular, we see that for the chosen threshold parameter, Algorithms 3 and 6
result in sparse transformed matrices but it can lead to a large condition number (as
illustrated by problem lp agg). Furthermore, comparing the pivoted QR and Algo-
rithm 4, which both construct fundamental bases, we see that the condition number
estimate is similar but the latter produces a sparser transformed normal matrix.

0.2 0.4 0.6 0.8 1

threshold

103

104

105

106

107

108

co
nd

(Z
T
Z

)

0.2 0.4 0.6 0.8 1

threshold

10-10

10-9

10-8

E
uc

lid
ea

n
no

rm
 o

f t
he

 r
at

io
 ||

A
T
*r

||
/ |

|r
||

Fig. 8 Dependence of the condition number of ZT Z (left) and the ratio ‖AT res‖/‖res‖ (right) on the
threshold parameter for the problem scagr7-2b. Results for Algorithm 3 are represented by the blue
solid line, Algorithm 4 by the red dotted line, and Algorithm 6 by the black dashed line

1661Numerical Algorithms (2022) 90:1639–1667

Table 2 Results for least squares examples with the fixed threshold parameter θ = 0.25

Pivoted QR Algorithm 3 Algorithm 4 Algorithm 6

Identifier nrow cond nrow cond nrow cond nrow cond

deter3 7583. 1.2 × 103 4.79 8.5 × 103 32.0 2.1 × 103 4.79 1.6 × 107

deter8 3809. 5.3 × 102 4.80 8.5 × 103 17.8 1.0 × 103 4.79 4.9 × 106

lp agg 448.8 1.6 × 105 146. 3.3 × 109 112.8 1.3 × 105 47.2 5.7 × 1012

PDE1 † ‡ 14.3 4.2 × 102 † ‡ 14.3 4.2 × 102

sc205-2r 622.7 ‡ 5.38 8.4 × 101 622.7 6.8 × 103 4.82 7.9 × 107

sctap1-2b 1429. ‡ 973. 3.5 × 104 400.1 4.6 × 106 14.9 9.8 × 108

Here nrow and cond denote the average number of nonzero entries in a row of ZT CsZ and the condition
number estimate for ZT CsZ, respectively. ‡ indicates insufficient memory for condest; † indicates
insufficient memory to construct ZT CsZ

4.3 Results for problem hues mod

The experiments presented so far targeted the saddle-point formulation of sparse-
dense least squares problems. The next example, hues mod, comes from a convex
quadratic programming problem and is taken from the CUTEst test set [60]. While

0 0.2 0.4 0.6 0.8 1

threshold

105

106

107

nn
z(

Z
T
H

Z
)

0 0.2 0.4 0.6 0.8 1

threshold

105

106

107

no
nz

er
os

 in
 C

ho
le

sk
y

fa
ct

or
 o

f Z
T
H

Z

0 0.2 0.4 0.6 0.8 1

threshold

0

1

2

3

4

5

6

||B
Z

||

10-8

0 0.2 0.4 0.6 0.8 1

threshold

10-8

10-6

10-4

10-2

100

||r
es

||

Fig. 9 Dependence of the number of entries in the transformed (1, 1) block (top left) and in its Cholesky
factor (top right), the orthogonality of Z measured as ‖BZ‖ (bottom left), and the residual norm (bottom
right) on the threshold parameter for the problem hues mod. Z is computed using Algorithm 3

1662 Numerical Algorithms (2022) 90:1639–1667

Fig. 10 Dependence of the
solution time in seconds on the
threshold parameter for the
problem hues mod. Z is
computed using Algorithm 3

0 0.2 0.4 0.6 0.8 1

threshold

20

30

40

50

60

70

to
ta

l t
im

e

the (1, 1) Hessian block of size n = 10000 is well conditioned, the k = 2 rows that
form the off-diagonal constraint block B are dense with entries that differ by 6 orders
of magnitude. This is potentially challenging when constructing a sparse null space
basis matrix Z. The (2, 2) block is C = 10−6 × I2. In Fig. 9, we report results for
Algorithm 3 for different values of the threshold pivoting parameter θ . We see that,
even for small thresholds (θ ≈ 0.1), the orthogonality of Z is very good and both the
number of entries nnz(ZT HZ) in the transformed (1, 1) block and its factor increase
steadily with θ . Note that, for this problem, there is little fill in the factor of ZT HZ.

In Fig. 10, we illustrate how the solution time is influenced by the threshold param-
eter. This is the total solution time (in seconds).2 We see that using a large threshold
is expensive.

5 Concluding remarks and future directions

In this paper, we have proposed a new null-space approach for solving general sym-
metric saddle point systems with a small and non zero (2, 2) block and a (2, 1) block
that may be rank deficient. An important motivation was solving large-scale linear
least squares problems in which the system matrix has a small number of rows that
are considered to be dense. Because the success of null-space approaches depends on
being able to construct appropriate null-space bases, we have looked at how this can
be done stably for our applications. In particular, our emphasis has been on null-space
bases for k × n matrices that are wide (k � n) and possibly dense.

The standard QR-based fundamental null-space basis computation leads to a trans-
formed matrix that is relatively dense but has the advantage of being generally well
conditioned. If a sparse direct solver is employed, the blocks of the transformed
matrix must be constructed explicitly and the factors will further fill in. In this case,
the QR approach is not ideal; indeed, memory requirements limit the size of systems
that can be tackled. Null-space bases computed using right conjugation are also well
conditioned and offer the possibility of sparser transformed matrices.

Fundamental null-space bases are potentially attractive for iterative solvers if the
basis can be efficiently applied implicitly and provided an effective preconditioner is

2Timings on a uniprocessor Intel Core(TM) i5-4990, 3.30GHz, 12GB memory.

1663Numerical Algorithms (2022) 90:1639–1667

available. In the future, we plan to develop preconditioners for use with an iterative
solver for the solution of large-scale saddle-point systems with a small non zero (2, 2)
block via our proposed null-space transformation. Possible lines of research are the
left inverses proposed by Nash and Sofer [51] and the factorization behind the con-
jugation process. Preconditioning of the transformed system based on constructing
Z using Algorithm 3 with a small threshold parameter may be more straightforward
but possible ill conditioning must be taken into account.

A further goal will be to satisfy linear constraints with a small residual, that is,
using the least squares notation of Section 2.3, if we require Adx = bd then we
need to ensure resd = bd − Adx is small. Applying Algorithm 3 to the test example
scagr7-2b gives ‖resd‖∞/‖res‖∞ ≈ 5.7×10−2, with little variation for different
values of the threshold parameter θ . Thus the constraints are not tightly satisfied. In
the future, we will explore how we can use the null-space approach presented here in
combination with other techniques to reduce ‖resd‖∞.

Acknowledgements We are grateful to two anonymous reviewers for their constructive feedback.

Funding The first author was partially supported by the UK Engineering and Physical Sciences Research
grant EP/M025179/1. The second author was partially supported by project 18-12719S of the Grant
Agency of the Czech Republic.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica 14,
1–137 (2005)

2. Govaerts, W.: Solution of bordered singular systems in numerical continuation and bifurcation. In:
Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven,
1992), vol. 50, pp. 339–347 (1994). https://doi.org/10.1016/0377-0427(94)90311-5

3. Howell, J.S.: Prestructuring sparse matrices with dense rows and columns via null space methods.
Numer. Linear Algebra Appl. 25, 1–30 (2018). https://doi.org/10.1002/nla.2133

4. Benzi, M.: A direct row-projection method for sparse linear systems. PhD thesis, Department of
Mathematics North Carolina State University (1993)

5. Benzi, M., Meyer, C.D.: A direct projection method for sparse linear systems. SIAM J. Sci. Comput.
16(5), 1159–1176 (1995)

6. Tůma, M.: Implicit Gauss algorithm for solving the sparse unsymmetric sets of linear equations.
Technical Report CSGS 1/85, Department of Mathematics, Statistics and Informatics, University of
Bergamo (1992)

1664 Numerical Algorithms (2022) 90:1639–1667

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0377-0427(94)90311-5
https://doi.org/10.1002/nla.2133

7. Hogg, J.D., Reid, J.K., Scott, J.A.: Design of a multicore sparse Cholesky factorization using DAGs.
SIAM J. Sci. Comput. 32, 3627–3649 (2010)

8. Rees, T., Scott, J.A.: A comparative study of null-space factorizations for sparse saddle point systems.
Numer. Linear Algebra Appl. 25:e2103, 1–17 (2018). https://doi.org/10.1002/nla.2103

9. Le Borne, S.: Preconditioned nullspace method for the two-dimensional Oseen problem. SIAM J. Sci.
Comput. 31(4), 2494–2509 (2009). https://doi.org/10.1137/070691577

10. George, A., Heath, M.T.: Solution of sparse linear least squares problems using Givens rotations.
Linear Algebra Appl. 34, 69–83 (1980)

11. Benzi, M., Golub, G.H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix
Anal. Appl. 26(1), 20–41 (2004). https://doi.org/10.1137/S0895479802417106

12. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press. https://doi.org/10.1017/
CBO9780511810817 (1985)

13. Scott, J.A., Tůma, M.: Solving mixed sparse-dense linear least-squares problems by preconditioned
iterative methods. SIAM J. Sci. Comput. 39(6), 2422–2437 (2017)

14. Scott, J.A., Tůma, M.: A Schur complement approach to preconditioning sparse least-squares prob-
lems with some dense rows. Numer. Algorithm. 79, 1147–1168 (2018). https://doi.org/10.1007/
s11075-018-0478-2

15. Scott, J.A., Tůma, M.: Sparse stretching for solving sparse-dense linear least-squares problems. SIAM
J. on Scientific Computing 41(3), 1604–1625 (2019)

16. Scott, J.A., Tůma, M.: Strengths and limitations of stretching for least-squares problems with some
dense rows. ACM Trans. Math. Softw. 47(1), 1–1125 (2021). https://doi.org/10.1145/3412559

17. Chow, E., Manteuffel, T., Tong, C., Wallin, B.: Algebraic elimination of slide surface constraints in
implicit structural analysis. Int. J. Numer. Methods Eng. 57, 1129–1144 (2003)

18. Topçu, A.: A Contribution to the Systematic Analysis of Finite Element Structures Using the Force
Method. PhD Thesis, University of Essen, Federal Republic of Germany (1979)

19. Kaneko, L., Lawo, M., Thierauf, G.: On computational procedures for the force method. Int. J. Numer.
Methods Eng. 18(10), 1469–1495 (1982). https://doi.org/10.1002/nme.1620181004

20. Soyer, E., Topçu, A.: Sparse self-stress matrices for the finite element force method. Int. J. Numer.
Methods Eng. 50, 2175–2194 (2001). https://doi.org/10.1002/nme.119

21. Berry, M., Plemmons, R.: Computing a banded basis of the null space on the Denelcor HEP
multiprocessor. Contemp. Math. 47, 7–23 (1985)

22. Dang, T., Ling, K., Maciejowski, J.: Banded null basis and ADMM for embedded MPC. IFAC-
PapersOnLine 50, 13170–13175 (2017). https://doi.org/10.1016/j.ifacol.2017.08.2172

23. Heath, M.T., Plemmons, R.J., Ward, R.C.: Sparse orthogonal schemes for structural optimization
using the force method. SIAM J. Sci. Stat. Comput. 5(3), 514–532 (1984). https://doi.org/10.1137/
0905038

24. Berry, M.W., Heath, M.T., Kaneko, I., Lawo, M., Plemmons, R.J., Ward, R.C.: An algorithm to com-
pute a sparse basis of the null space. Numer. Math. 47(4), 483–504 (1985). https://doi.org/10.1007/
BF01389453

25. Gotsman, C., Toledo, S.: On the computation of null spaces of sparse rectangular matrices. SIAM J.
Matrix Anal. Appl. 30(2), 445–463 (2008). https://doi.org/10.1137/050638369

26. Shklarski, G., Toledo, S.: Computing the null space of finite element problems. Comput. Methods
Appl. Mech. Eng. 198(37-40), 3084–3095 (2009). https://doi.org/10.1016/j.cma.2009.05.012

27. Pothen, A.: Sparse null bases and marriage theorems, pp. AAI8415425. PhD thesis, Cornell
University, Ithaca (1984)

28. Coleman, T.F., Pothen, A.: The null space problem. I. Complexity. SIAM J. Algebraic Discret.
Methods 7(4), 527–537 (1986). https://doi.org/10.1137/0607059

29. Coleman, T.F., Pothen, A.: The null space problem. II. Algorithms. SIAM J. Algebraic Discrete
Methods 8(4), 544–563 (1987). https://doi.org/10.1137/0608045

30. Gilbert, J.R., Heath, M.T.: Computing a sparse basis for the null space. SIAM J. Algebraic Discrete
Methods 8(3), 446–459 (1987). https://doi.org/10.1137/0608037

31. Henderson, J.C.d.C., Maunder, E.A.W.: A problem in applied topology: On the selection of cycles for
the flexibility analysis of skeletal structures. J. Inst. Math. Appl. 5, 254–269 (1969)

32. Cassell, A.C., Henderson, J.C.d.C., Kaveh, A.: Cycle basis for flexibility analysis of structures. Int. J.
Numer. Methods Eng. 8, 521–528 (1974). https://doi.org/10.1002/nme.1620080308

33. Maunder, E.A.W.: Topological and Linear Analysis of Skeletal Structures. PhD Thesis, Imperial
College, London (1971)

1665Numerical Algorithms (2022) 90:1639–1667

https://doi.org/10.1002/nla.2103
https://doi.org/10.1137/070691577
https://doi.org/10.1137/S0895479802417106
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1007/s11075-018-0478-2
https://doi.org/10.1007/s11075-018-0478-2
https://doi.org/10.1145/3412559
https://doi.org/10.1002/nme.1620181004
https://doi.org/10.1002/nme.119
https://doi.org/10.1016/j.ifacol.2017.08.2172
https://doi.org/10.1137/0905038
https://doi.org/10.1137/0905038
https://doi.org/10.1007/BF01389453
https://doi.org/10.1007/BF01389453
https://doi.org/10.1137/050638369
https://doi.org/10.1016/j.cma.2009.05.012
https://doi.org/10.1137/0607059
https://doi.org/10.1137/0608045
https://doi.org/10.1137/0608037
https://doi.org/10.1002/nme.1620080308

34. Pothen, A.: Sparse null basis computations in structural optimization. Numer. Math. 55(5), 501–519
(1989). https://doi.org/10.1007/BF01398913

35. Amit, R., Hall, C.A., Porsching, T.A.: An application of network theory to the solution of implicit
Navier-Stokes difference equations. J. Comput. Phys. 40(1), 183–201 (1981). https://doi.org/10.1016/
0021-9991(81)90206-0

36. Arioli, M., Manzini, G.: Null space algorithm and spanning trees in solving Darcy’s equation. BIT
Numer. Math. 43(suppl.), 839–848. https://doi.org/10.1023/B:BITN.0000014568.20710.77 (2003)

37. Arioli, M., Manzini, G.: A network programming approach in solving Darcy’s equations by mixed
finite-element methods. Electron. Trans. Numer. Anal. 22, 41–70 (2006)

38. Arioli, M., Maryška, J., Rozložnı́k, M., Tůma, M.: Dual variable methods for mixed-hybrid finite
element approximation of the potential fluid flow problem in porous media. Electr. Trans. Numer.
Anal. 22, 17–40 (2006)

39. Hall, C.A.: Numerical solution of Navier-Stokes problems by the dual variable method. SIAM J.
Algebraic Discrete Methods 6(2), 220–236 (1985). https://doi.org/10.1137/0606020

40. Kaveh, A.: Computational structural analysis and finite element methods. Springer. https://doi.org/10.
1007/978-3-319-02964-1 (2014)

41. Kaveh, A.: Graph transformations for efficient structural analysis. ActaMech. 229(2), 659–675 (2018)
42. Deo, N., Prabhu, G.M., Krishnamoorthy, M.S.: Algorithms for generating fundamental cycles in a

graph. ACM Trans. Math. Softw. 8(1), 26–42 (1982). https://doi.org/10.1145/355984.355988
43. Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J.

Comput. 16(2), 358–366 (1987). https://doi.org/10.1137/0216026
44. Stern, J.M., Vavasis, S.A.: Nested dissection for sparse nullspace bases. SIAM J. Matrix Anal. Appl.

14(3), 766–775 (1993). https://doi.org/10.1137/0614054
45. Pinar, A., Chow, E., Pothen, A.: Combinatorial algorithms for computing column space bases that

have sparse inverses. Electron. Trans. Numer. Anal. 22, 122–145 (2006)
46. James, D., Plemmons, R.J.: An iterative substructuring algorithm for equilibrium equations. Numer.

Math. 57(6-7), 625–633 (1990). https://doi.org/10.1007/BF01386432
47. Plemmons, R.J., White, R.E.: Substructuring methods for computing the nullspace of equilibrium

matrices. SIAM J. Matrix Anal. Appl. 11(1), 1–22 (1990). https://doi.org/10.1137/0611001
48. James, D.: Implicit nullspace iterative methods for constrained least squares problems. SIAM J.

Matrix Anal. Appl. 13(3), 962–978 (1992). https://doi.org/10.1137/0613058
49. Le Borne, S.: Block computation and representation of a sparse nullspace basis of a rectangular matrix.

Linear Algebra Appl. 428(11-12), 2455–2467 (2008). https://doi.org/10.1016/j.laa.2007.11.025
50. Fletcher, R., Johnson, T.: On the stability of null-space methods for KKT systems. SIAM J. Matrix

Anal. Appl. 18(4), 938–958 (1997). https://doi.org/10.1137/S0895479896297732
51. Nash, S.G., Sofer, A.: Preconditioning reduced matrices. SIAM J. Matrix Anal. Appl. 17(1), 47–68

(1996). https://doi.org/10.1137/S0895479893245371
52. Wolfe, P.: Methods of nonlinear programming. In: Nonlinear Programming (NATO Summer School,

Menton, 1964), pp. 97–131. North-Holland (1967)
53. Hestenes, M.R.: Inversion of matrices by biorthogonalization and related results. J. Soc. Ind. Appl.

Math. 6, 51–90 (1958)
54. Chu, M.T., Funderlic, R.E., Golub, G.H.: A rank-one reduction formula and its applications to matrix

factorizations. SIAM Rev. 37, 512–530 (1995)
55. Benzi, M., Tůma, M.: A sparse approximate inverse preconditioner for nonsymmetric linear systems.

SIAM J. Sci. Comput. 19(3), 968–994 (1998)
56. Benzi, M., Meyer, C.D., Tůma, M.: A sparse approximate inverse preconditioner for the conjugate

gradient method. SIAM J. Sci. Comput. 17(5), 1135–1149 (1996)
57. Li, J., Widlund, O.B.: FETI-DP, BDDC, and block Cholesky methods. Int. J. Numer. Methods Eng.

66(2), 250–271 (2006). https://doi.org/10.1002/nme.1553
58. Kopal, J., Rozložnı́k, M., Smoktunowicz, A., Tůma., M.: Rounding error analysis of orthogonalization

with a non-standard inner product. BIT Numer. Math. 52, 1035–1058 (2012)
59. Golub, G.H., Van Loan, C.F. Matrix Computations, 4th edn. The Johns Hopkins University Press,

Baltimore and London (1996)
60. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained testing environment

with safe threads for mathematical optimization. Comput. Optim. Appl. 60, 545–557 (2015)

1666 Numerical Algorithms (2022) 90:1639–1667

https://doi.org/10.1007/BF01398913
https://doi.org/10.1016/0021-9991(81)90206-0
https://doi.org/10.1016/0021-9991(81)90206-0
https://doi.org/10.1023/B:BITN.0000014568.20710.77
https://doi.org/10.1137/0606020
https://doi.org/10.1007/978-3-319-02964-1
https://doi.org/10.1007/978-3-319-02964-1
https://doi.org/10.1145/355984.355988
https://doi.org/10.1137/0216026
https://doi.org/10.1137/0614054
https://doi.org/10.1007/BF01386432
https://doi.org/10.1137/0611001
https://doi.org/10.1137/0613058
https://doi.org/10.1016/j.laa.2007.11.025
https://doi.org/10.1137/S0895479896297732
https://doi.org/10.1137/S0895479893245371
https://doi.org/10.1002/nme.1553

61. Gould, N.I.M., Scott, J.A.: The state-of-the-art of preconditioners for sparse linear least squares
problems. ACM Trans. Math. Softw. 43(4), 1–35 (2017)

62. Meszaros, C.: Detecting dense columns in interior point methods for linear programs. Comput. Optim.
Appl. 36, 309–320 (2007)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

1667Numerical Algorithms (2022) 90:1639–1667

	A null-space approach for large-scale symmetric saddle point systems with a small and non zero (2,2) block
	Abstract
	Introduction
	Test environment
	Notation

	Null-space approach for solving saddle point systems
	Null-space approach for zero C
	Symmetry-preserving null-space approach for non zero C
	An application: sparse-dense least squares problems

	Null-space basis construction
	Construction of null-space bases of sparse matrices
	Null-space basis for wide matrices
	Null-space bases with local support
	Fundamental null-space basis
	Composite null-space basis for wide dense matrices

	Numerical experiments
	Results for problem scagr7-2b
	Experiments on other matrices
	Results for problem hues_mod

	Concluding remarks and future directions
	References

