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Abstract The investigated parametrically coupled
electromechanical structure is composed of a mechan-
ical Duffing oscillator whose mass sits on a moving
belt surface. The driving electrical network is a van der
Pol oscillator whose aim is to actuate the attached DC
motor to provide some rotatry unbalances and para-
metric coupling in the vibrating structure. The cou-
pled oscillator is applied to energy harvesting and over-
comes the limitation of low energy generation associ-
atedwith a single oscillator of this kind.The systemwas
solved analytically and validated by numerical meth-
ods. The global dynamics of the structure were inves-
tigated, and nonlinear phenomena such as Neimark–
Sacker bifurcation, discontinuity-induced bifurcation,
grazing–sliding, and bifurcation to multiple tori were
identified. These nonlinear behaviors affect the har-
vested energy at bifurcation points, resulting in jumps
fromone energy level to another. In addition to harness-
ing the highest energy under hard parametric coupling,
the coupling ensures that higher andmore useful energy
is harvested over a wider range of belt speeds. Finally,
the qualitative validation of the numerical concept by
experimental setup verifies the workings of the model.
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1 Introduction

Electromechanical oscillations have been found in
modern systems such as speakers, specialized sensors,
and power grids [1–3]. In power systems, such oscilla-
tions pose severe threats to the stable workings of inter-
connected grids and angular instability [3,4]. The oscil-
lations stem from associated nonlinearities of power
converters and are undesirable, requiring dynamical
analysis, damping measurements, and control. Ken-
mogne et al. [5], however, converted such unwanted
oscillations of an electromechanical system with irra-
tional nonlinearities to a novel sand sieve application by
analyzing the damping effects on the system’s dynam-
ics. The system consists of an electrically forced van
der Pol oscillator magnetically coupled to a network
of elastically coupled mechanical subsystems. Other
coupled electromechanical systems are the unforced
van der Pol and Duffing oscillators with elastic cou-
plings [6], dissipative couplings [7], forced and com-
bined couplings [8], parametric couplings [9]; and have
found applications in neuron models, information cod-
ing, sensors and actuators such as the skin impedance
measurement unit [10]. Despite the notable presence
of these coupled oscillators and their dynamical analy-
ses, the configuration with friction-induced excitation
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is lacking in the literature. Balaram et al. [11] investi-
gated friction-induced stick-slip vibrations in a three
degree of freedom (3 DoF) discontinuous model of
a disc brake system with the aim of suppressing the
unwanted vibration. The undesired oscillations were
suppressed using normal harmonic forcing for fre-
quency entrainment of the nonsmooth limit cycles.
Similar structures with friction-induced vibration have
been carried out by researchers in [12–15], in which
a mass on the moving belt forms the central substruc-
ture, and the speed of the belt creates the induced self-
excitation. Insights into the instability of multi-degree
of freedom of such models were investigated by Li et
al. [16]. Other structures with friction-induced mech-
anisms, including constraints and discontinuities are
studied in the works [17–21]. Though the dynamics
of the highlighted systems were highly investigated,
their applications towards energy harvesting were not
extended.

Vibration energy harvesting (VEH) utilizing non-
linear and nonideal sources has proven to be vital
technology inmeeting ever-increasing energy demands
[22,23]. Besides being environmentally friendly, it sup-
plies small electronic devices such as wireless sensor
networks, communications device packs, Internet of
Things (IoT),wearablemedical applications, and trans-
portation systems [24–26].Wanget al. [27] numerically
investigate the conversion of friction-induced vibration
(FIV) of mechanical structures composed of mass on a
moving belt under normal loads into harvested energy.
The study showed that both the normal load and the
belt’s speed significantly influence generated power,
and the energy is greater in the unstable region. A simi-
lar investigationwas carried out byHan and Zhang [28]
for a disc brake system, modeled as a V-shape struc-
ture of springs-connected mass on a moving belt. The
self-excited system had additional surface nonlinear-
ity of quasi-zero stiffness. The study showed multiple
stability of single, double, and triple potential wells
and stick-slip motion. An electromagnetic harvester
was used to convert the FIV into electrical energy. In
another development, Xiang et al. [29] performed a
study on a simultaneous FIV reduction and energy har-
vesting from the braking system of a high-speed train.
The harvester serves as a damper for reducing vibra-
tions and, at the same time, converting the FIV into
energy. The dynamic contact surface behavior, mod-
eled as an exponential function of the relative speed
between the mass and the belt, significantly influenced

the harvested energy.Xiao et al. [30] expanded on simi-
lar effects of Stribeck friction surface behaviors (model
parameters) of a designed energy generator from FIV
in a 1 DoF friction system. The results show that the
coefficient of static and dynamic friction, and the expo-
nential decay constant notably affect the energy gen-
eration. The FIV systems considered so far are those
of rigid mass on belt structures. Chen et al. [31] con-
sidered a mass frame that encloses a cantilever with
a tip magnet, and a fixed magnet separated by an air
gap. The frame rests on the moving belt and converts
the FIV into helpful electricity. The stick-slip system
is bistable, with poor output power generation in the
chaotic region. A more recent study by Sani et al. [32]
used a body frame (mass) on the belt, which houses a
rotary unbalanced mass that provides parametric exci-
tation as an additional nonideal energy source. The
frame was placed on the moving belt so that both the
self–excitation from the FIV and the parametric excita-
tion were present. It was demonstrated that while use-
ful energy was harvested due to the surface–excitation
alone, the parametric excitation helped to increase the
speed bandwidth over which the energy was harvested.
The considered literature, in some cases, pointed out
the limitation of 1 DoF system, characterized by low
energy generation.Where friction-induced vibration of
the mass–belt relation was used, energy harvesting was
also limited to a small range of belt speeds.

The goal of this study is to overcome these limita-
tions by introducing an electrical subcircuit of the van
der Pol oscillator and parametrically coupling it with
the mechanical substructure. The advantages are

(i) The mass on the belt structure allows for the
attachment of MFC (piezoelectric) filaments,
which are reliable and practical for energy har-
vesting applications.

(ii) The parametric coupling of van der Pol subcircuit
provides two non-ideal energy sources: the para-
metric excitation (from the coupling) and the self-
excitation from negative damping, of which both
inject energy into the system for self-sustained
oscillations.

(iii) Simple enough for energy harvesting applications
since only the mechanical subsystem requires
physical construction, thus saving costs.

The proposed design overcomes the limitation of low
energy harvesting associated with the FIV of 1 DoF
substructures and inherent energy harvesting that is

123



Dynamics and energy harvesting

only possible over a small range of belt speeds. The sys-
temwas solved analytically by multiple scales method,
and validated by numerical comparisons of the results.
Further contributions include the numerical treatment
of the system, which identified the underlying nonlin-
ear dynamic behaviors and their effects on harvested
energy. At bifurcation points, there are jumps in the
values of harvested energy, while maximum power
was generated in the region of hard parametric cou-
pling. Finally, experimental verification of the estab-
lished model was carried out to validate some known
numerical results qualitatively. The rest of the paper
is organized as follows. Section 2 deals with system
modeling, the governing equations, and the state-space
by Filippov method. In section 3, the analytical solu-
tion by multiple scale method of the non-resonant sce-
nario, identifying the various resonance conditions in
the system, was established. Numerical treatment of
the system for bifurcation analysis and effects of the
behavioral dynamics on energywere carried out inSect.
4, while experimental work was performed in Sect. 5.
Finally, the concluding remark was given in Sect. 6.

2 System modeling

The conceptual model of the electromechanical sys-
tem is given in Fig. 1. Let the initial voltage Vc of the
capacitor with capacitance C be substantially greater
than zero. The current I will flow through the nonlinear
resistor R, and the inductor (of inductance, L) feeds the
coupling network of drivers M(t) to the stepper motor,
which in turn provides some unbalanced rotations on
the body mass.

The lumped mass M0 of the frame with the attached
stepper motor is displaced by q. At the same time, the
nonlinear stiffness k(q) = k1 + k2q2, and the vis-
cous damper d create the restoring forces and cause
the mechanical subsystem to act back on the electrical
subcircuit via the parametric coupling. Additionally,
the mass M0 is connected with a macro-fiber compos-
ite (MFC) piezoelectric crystal for energy harvesting
applications. TheMFCsubcircuit is indicated as having
the resistance, capacitance, and equivalent electrome-
chanical coupling coefficient denoted as Rp, Cp, and
χ , respectively. When the belt moves at constant speed
v0, dry frictional force fr exists between the belt and
the mass M0 and serves as a source of self-excitation
to the mechanical subsystem.

It is interesting to show a simple cross-section of the
steppermotor and its subcircuit in Fig. 2where the rotor
speed is a function of the number of pole pairs p and
rotation angle θ . The direction and speed also depend
on the excitation phase and frequency. From the subcir-
cuit of Fig. 2b, Ra and La(θ), represent the resistance
and the inductance of phase A winding, respectively.
However, the inductance is also a function of the rotor
position such that

La(θ) = L0 + L1cos(Nrθ), (1)

where L0 is the average inductance, L1 is themaximum
inductance variation, and Nr is the rotor teeth number.
But if the magnets introduced non–negligible amount
of air gap, the winding inductance of the stepper motor
is considered to be independent of the rotor position.
Then, the back electromotive force (EMF), given by
ea(θ) becomes a function of the rotor position

ea(θ) = −pψmsin(pθ)ω, (2)

where ψm is the motor maximum magnetic flux, and
ω = θ̇ . It implies that ω�t = �θ for small changes
� in θ per unit time t , at which point, two pole pairs
are energized (p = 2). Thus, the parametric coupling
M(t) is modeled as

M(t) = kl + kncos(2ωt), (3)

where kl and kn are themutual coupling coefficients due
to the interactions between the winding inductances
and the magnetic flux of the back EMF. The electro-
magnetic torque Te generated [33] is given as

Te = J
dω

dt
+ Bω + TL , (4)

where J is the total inertia, B is the total friction coef-
ficient, and TL is the load torque. Hence, the system’s
governing equations can now be established.

2.1 The governing equations

Considering the model in Fig. 1, let Q be the unit
charge on the inductive element. The current I = dQ

dt
flows in the electrical subcircuit when energized by the
capacitive voltage Vc. The nonlinear resistor R offers
a dissipative characteristic force that must be normal-
ized. Thus, Q0 and R0 are the normalization charge
and resistance such that the normalization current is
I0 = dQ0

dt . In our previous studies [9], the govern-
ing equations without the moving belt were established
using the Euler–Lagrange technique for a system with
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Fig. 1 Conceptual model of the electromechanical system

Fig. 2 Stepper Motor cross-section (a) and subcircuit (b)
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similar coupling terms. Adopting this approach and
including the moving belt mechanism and energy har-
vesting components, the followinggoverning equations
are arrived at:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L d2 I
dt2

− R0

[

1 −
(

I
I0

)2
]

d I
dt + I

C

−(kl + kn cos(2ωt))(q − I ) = 0,

M0
d2q
dt2

+ d dq
dt + k1q + k2q3 + χϑ − fr

−(kl + kn cos(2ωt))(I − q) = 0,

Cp
dϑ
dt + ϑ

Rp
− χ

dq
dt = 0,

(5)

where ϑ is the generated voltage from the MFC piezo-
electric crystal of mass mp, fr = M0gμ(vr ), and g is
the acceleration due to gravity. The relative velocity is
vr = v0 − q̇ and the dry friction coefficient μ(vr ) is
defined as,
{

μ(vr ) = μssgn(vr ) − μ1vr + μ3v
3
r , ∀ v0 �= q̇,

μ(vr ) = 0, ∀ v0 = q̇

(6)

where the over–dot (.) represents a time derivative d
dt ;

μs , μ1, and μ3 are the coefficients of Stribeck friction
model. The first part of Eq. (5) represents the equation
of the van der Pol electrical subcircuit, while the sec-
ond part is that of a mechanical Duffing oscillator on
friction-induced surface. The nondimensional form of
the system (5)–(6) can now be presented.

2.2 Dimensionless form of the governing equations

Assuming that the natural frequency of the mechanical
substructure occurs at the pulsation of the electrical
subcircuit,

�e = 1√
LC

=
√

k1
M0

. (7)

It follows that Eq. (7) presents the synchronized fre-
quency of the coupled system. Then, the static deflec-
tion of the structure is anchored to the normalization
current, I0 such that,

yst = M0g

k1
|I0=Q̇0

(8)

Using the dimensionless variables τ = �et , x = I
I0
,

y = q
yst
, the initial voltage of the MFC crystal is ϑ0 =

mpg
�e RpCp

so that φ = ϑ
ϑ0
. Then, d

dt = �e
d
dτ
, d2

dt2
=

�2
e

d2

dτ 2
, Eqs. (5) and (6) become

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẍ − α
(
1 − x2

)
ẋ + x − λN1(1 + μp cos(2�τ))

× (y − x) = 0,

ÿ + β ẏ + y + γ y3 + χφ − ρμ(v̄r )

−λ (1 + μp cos(2�τ)) (x − y) = 0,

φ̇ + �φ − χ�ẏ = 0,

(9)

and
⎧
⎪⎨

⎪⎩

μ(v̄r ) = μssgn(v̄r )

−μ̄1v̄r + μ̄3v̄
3
r , ∀ vb �= ẏ,

μ(v̄r ) = 0, ∀ vb = ẏ,

(10)

where v̄r = vb − ẏ α = R0C�e, β = d
√

1
k1M0

,

γ = k2 y2st
k1

, � = ω
�e

, λ = kl
k1

, μp = kn
kl
, ρ = g

�2
e yst

,

� = 1
�e RpCp

, � = Q0
Cpϑ0

and N1 = C · k1, vb =
v0

�e yst
, μ̄1 = μ1�e yst , μ̄3 = μ3(�e yst )3. It should be

noted that � and N1 are dimensionless with N1 ≤ 1
because the static deflection yst represents the static
charge Q0 while k1 transforms into elastance ( 1C ) in
electromechanical equivalence.

2.3 State space subdivision by Filippov method

The frictional term μ(v̄r ) in Eq. (9) makes the vector
field associated with the governing system of Eq. (9)
discontinuous. Suppose the state space vector is defined
as {y} = {x, ẋ, y, ẏ, φ}T , the surface of discontinuity
� in the present case can be specified by the scalar
function � : D(y) = vb − ẏ. Using this surface of
discontinuity, the five-dimensional state space can be
partitioned into three regions:

S1 =
{
y ∈ �5 : D(y) < 0

}

S2 =
{
y ∈ �5 : D(y) > 0

}

� =
{
y ∈ �5 : D(y) = 0

}

A pictorial representation of this partitioning is given
in Fig. 3. As sgn(vb − ẏ) = −1 when y ∈ S1, and
sgn(vb − ẏ) = +1 when y ∈ S2, the vector field is
smooth in regions S1 and S2. These smooth vector fields
are denoted as F1 and F2, respectively.

According to the Filippov methodology for discon-
tinuous systems [34], the vector field along the discon-
tinuous surface � is defined as a convex combination
of the two smooth vector fields.
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Fig. 3 Surface of discontinuity � and the Filippov partitioning

c̄o (F1(y), F2(y))

=
{
FD : y ∈ �5 → �5 : FD

= (1 − αp)F1 + αpF2, αp ∈ [0, 1]} (11)

When an orbit, starting out in one region of the state
space, intersects with the surface of discontinuity �, it
can either slide along the surface or transversally cross
over to the other region. For illustration, a sliding orbit
is shown in Fig. 3. This scheme allows one to formulate
the analytical treatment of the discontinuous problem.

3 Analytical solution

The Filippov rendition enables us to solve the system in
regions S1 and S2 separately by taking sgn(vb − ẏ) =
−1, +1 inEq. (9). Thisway,we can identify the various
resonant conditions present in the system. The solution
in the region �, however, yields no such information
since ẏ = vb. It implies that the mass sticks to the
belt until slipping occurs, and the convex combination
in Eq. (11) applies. Hence, the approximate analytical
solution is found only at sgn(vb − ẏ) = +1 for sim-
plicity and further analysis. This solution is valid for
all cases since only the sign of μs (i.e., ±μs) can be
changed without affecting the method. First, Eq. (9) is
re–arranged as follows, introducing unit constants to
separate the complex terms. We have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ + p21x − λN1y − α
(
1 − ηx2

)
ẋ

+λμpN1x cos(2�τ) − λμpN1ycos(2�τ)=0

ÿ + p22 y − λx + β ẏ + γ y3 + χφ

−ρ
(
μ̄s + μ̄3 (vb − κ ẏ)3 − μ̄1 (vb − ẏ)

)

−λμpxcos(2�τ) + λμp ycos(2�τ) = 0,

φ̇ + �φ − χ�ẏ = 0,

(12)

where p21 = (1+λN1), p22 = (1+λ), η = κ = 1. The
initial conditions are

x(0) = x0, ẋ(0) = vx0, y(0) = y0, ẏ(0) = vy0,

φ(0) = φ0. (13)

The analytical solution is sought using the multiple
scalesmethod in the time domain (MSM).Awrejcewicz
et al. [35] established the computational sequence of
this method herein adopted. We introduce a book-
keeping parameter ε, and use two-time scales on the
dimensionless time τ . The time-scales τ0, τ1 are related
as

τr = εrτ, r = 0, 1. (14)

Then, the solutions and auxiliary functions are approx-
imated by the following asymptotic expansions
⎧
⎪⎨

⎪⎩

x(τ ; ε) = ∑2
k=1 εkξk(τ0, τ1) + O(ε3)

y(τ ; ε) = ∑2
k=1 εkϕk(τ0, τ1) + O(ε3)

φ(τ ; ε) = ∑2
k=1 εk�k(τ0, τ1) + O(ε3),

(15)

where the function ξk(τ0, τ1), ϕk(τ0, τ1) and
�k(τ0, τ1) are to be found. Those of order O(ε3) and
above are neglected. The differential operators relating
to the non–dimensional time τ , and assumptions on
the system’s parameters for non–resonant solutions are
as follows.

d

dτ
= D0 + εD1 + . . . ,

d2

dτ 2

= D2
0 + 2εD0D1 + ε2D2

1 + . . . , D j
r = ∂ j

∂τ
j
r

(16)
⎧
⎪⎨

⎪⎩

α = εα̃, β = εβ̃, λ = ελ̃, η = ε−2η̃,

κ = ε−1κ̃, γ = ε−1γ̃ ,

� = ε−1�̃, χ = εχ̃, ρ = ε2ρ̃,

(17)

where α̃, β̃, λ̃, η̃, κ̃ , γ̃ , �̃, χ̃ and ρ̃ are of the order 1.

3.1 Non-resonant solution

Substituting the relations (17) into the modified Eqs.
(12), and considering the asymptotic expansions (15),
the time scaling (14) and the time derivatives (16),
the following expressions are yielded according to the
ordered powers of ε.

For order ”1” :

D2
0ξ1 + p21ξ1 = 0 (18)

D2
0ϕ1 + p22ϕ1 = 0 (19)

D0�1 + ��1 − �̃χ̃D0ϕ1 = 0 (20)
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For order ”2”:

D2
0ξ2 + p21ξ2 = −ξ1N1λ̃μp cos (2�τ0)

+ N1ϕ1λ̃μp cos (2�τ0)−
D0ξ

3
1 α̃η̃ + D0ξ1α̃

+ N1ϕ1λ̃ − 2D0D1ξ1 (21)

D2
0ϕ2 + p22ϕ2 =

− 3D0ϕ1μ̄3κ̃ ρ̃v2b

+ 3D2
0ϕ

2
1 μ̄3κ̃

2ρ̃vb + μ̄3ρ̃v3b − μ̄1ρ̃vb−
D3
0ϕ

3
1μ̄3κ̃

3ρ̃ + ρ̃μ̄s + ξ1λ̃μp cos (2�τ0)

− ϕ1λ̃μp cos (2�τ0) − ϕ3
1 γ̃−

D0ϕ1β̃ + ξ1λ̃

− �1χ̃ − 2D0D1ϕ1 (22)

D0�2 + ��2 − �̃χ̃D0ϕ2 = D1ϕ1�̃χ̃

+ D0ϕ2�̃χ̃ − D1�1 (23)

The solutions to Eqs. (18)–(20) are

ξ1(τ0, τ1) =B1 (τ1) e
ip1τ0 + B̃1 (τ1) e

−i p1τ0 (24)

ϕ1(τ0, τ1) =B2 (τ1) e
ip2τ0 + B̃2 (τ1) e

−i p2τ0 , (25)

�1(τ0, τ1) = p2�̃χ̃B2 (τ1) eip2τ0

p2 − i�

+ p2�̃χ̃ B̃2 (τ1) e−i p2τ0

p2 + i�
, (26)

where Bj (τ1) ( j = 1, 2) are unknown functions of
slow time scale, and B̃ j (τ1) are their complex con-
jugates. Substituting (24)–(26) into (21)–(23) leads to
the emergence of secular terms. Eliminating the secu-
lar terms provides the following solvability conditions
and their conjugate reflectors.

−i B2
1 p1α̃ B̃1η̃

+i B1 p1α̃ − 2i p1D1B1 = 0 (27)

−3i B2 p2μ̄3κ̃ ρ̃v2b − 3i B2
2 p

3
2μ̄3 B̃2κ̃

3ρ̃

−3B2
2 B̃2γ̃ − i B2 p2β̃ −

B2 p2�̃χ̃2

p2 − i�
− 2i p2D1B2 = 0 (28)

Removing the secular terms after substituting (24)–(26)
into (21)–(23), one obtains

ξ2(τ0, τ1)

= B1N1λ̃μpeiτ0(2�+p1)

8�(� + p1)

+ B2N1λ̃μpeiτ0(2�+p2)

2 (−2� + p1 − p2) (2� + p1 + p2)

+ N1 B̃1λ̃μpeiτ0(2�−p1)

8�(� − p1)

+ N1 B̃2λ̃μpeiτ0(2�−p2)

2 (2� + p1 − p2) (−2� + p1 + p2)

+ B2N1λ̃eip2τ0

(p1 − p2) (p1 + p2)

+ i B3
1 α̃η̃e3i p1τ0

8p1
+ CC, (29)

ϕ2(τ0, τ1)

= B2
2 μ̄3κ̃

2ρ̃vbe
2i p2τ0 + 6B2μ̄3 B̃2κ̃

2ρ̃vb

− μ̄3ρ̃v3b + μ̄1ρ̃vb + ρ̃μ̄s

p22

− e3i p2τ0
(−B3

2 γ̃ + i B3
2 p

3
2μ̄3κ̃

3ρ̃
)

8p22

+ B2λ̃μpeiτ0(2�+p2)

8�(� + p2)

− B1λ̃μpeiτ0(2�+p1)

2 (2� + p1 − p2) (2� + p1 + p2)

− B̃1λ̃μpeiτ0(2�−p1)

2 (2� − p1 − p2) (2� − p1 + p2)

+ B̃2λ̃μpeiτ0(2�−p2)

8�(� − p2)

− B1λ̃eip1τ0

(p1 − p2) (p1 + p2)
+ CC, (30)
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�2(τ0, τ1) =2B2
2 p2μ̄3κ̃

2�̃ρ̃χ̃vbe2i p2τ0

2p2 − i�
−

ie3i p2τ0
(

3
8 B

3
2 p

2
2μ̄3κ̃

3�̃ρ̃χ̃ + 3i B3
2 γ̃ �̃χ̃

8p2

)

3p2 − i�

−
ieiτ0(2�+p1)

(

− i�B1λ̃�̃χ̃μp

4�2+4�p1+p21−p22
− i B1 p1λ̃�̃χ̃μp

2
(
4�2+4�p1+p21−p22

)

)

2� − i� + p1

−
ieiτ0(2�−p1)

(
i p1 B̃1λ̃�̃χ̃μp

2
(
4�2−4�p1+p21−p22

) − i�B̃1λ̃�̃χ̃μp

4�2−4�p1+p21−p22

)

2� − i� − p1

−
ieiτ0(2�+p2)

(

− i B2 p22 λ̃�̃χ̃μp
8�(�−p2)(�+p2)

− i B2 p2λ̃�̃χ̃μp
8(�−p2)(�+p2)

+ i�B2λ̃�̃χ̃μp
4(�−p2)(�+p2)

)

2� − i� + p2

−
ieiτ0(2�−p2)

(
i B̃2λ̃�̃χ̃μp
4(�−p2)

− i p2 B̃2λ̃�̃χ̃μp
8�(�−p2)

)

2� − i� − p2
+ B1 p1λ̃�̃χ̃eip1τ0

(
p21 − p22

)
(p1 − i�)

+ CC, (31)

where CC stands for the complex conjugate terms. The
complex functions Bj , and B̃ j are dependent on τ1, and
are found from the solvability conditions (27)–(28) as
follows;

Bi (τ1) = 1

2
bi (τ1)e

iψi (τ1),

B̃i (τ1) = 1

2
bi (τ1)e

−iψi (τ1), i = 1, 2
(32)

where ai (τ1) and ψi (τ1) are real-valued.
Putting (32) in (27)–(28), separating the imaginary

and real parts,

b′
1 = − 1

8
b1α̃

(
b21η̃ − 4

)
, (33)

ψ ′
1 =0, (34)

b′
2 =1

8
b2

(
−3μ̄3κ̃ ρ̃

(
b22 p

2
2 κ̃

2 + 4v2b
)

−4β̃ − 4��̃χ̃2

�2 + p22

)

, (35)

ψ ′
2 =3b22γ̃

8p2
+ p2�̃χ̃2

2
(
�2 + p22

) . (36)

The reconstitution of Eqs. (33)–(36) into the original
time scale τ is carried out using ai (τ ) = εbi , and the
reverse assumptions in (17),

a′
1 = −1

8
a1α

(
a21η − 4

)
, (37)

ψ ′
1 = 0, (38)

a′
2 = 1

8
a2

(
−3μ̄3κρ

(
a22 p

2
2κ

2 + 4v2b
)

−4β − 4��χ2

�2 + p22

)

, (39)

ψ ′
2 = 3a22γ

8p2
+ p2�χ2

2
(
�2 + p22

) . (40)

Eqs. (37)–(40) are the modulation equations in time τ ,
with initial conditions

a1(0) = a10, a2(0) = a20, ψ1(0) = ψ10, ψ2(0) = ψ20.

(41)
The quantities a10, a20, ψ10, and ψ20 are connected
with the initial values x0, vv0, y0, vy0, and φ0 in (13).
However, due to nonlinearity in (37)–(40), the solutions
are found using the NDSolve function in Mathematica
software. Combining all the solutions from (24)–(25),
and (29)–(30) in a reconstituted form, the following
analytical solutions are obtained.

x(τ ) =a1λN1μp cos (τ (2� − p1) − ψ1)

8�(� − p1)

+ a1λN1μp cos (τ (p1 + 2�) + ψ1)

8�(p1 + �)

+ a2λN1μp cos (τ (2� − p2) − ψ2)

2 (p1 − p2 + 2�) (p1 + p2 − 2�)

− a2λN1μp cos (τ (p2 + 2�) + ψ2)

2 (−p1 + p2 + 2�) (p1 + p2 + 2�)
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+ a2λN1 cos (p2τ + ψ2)

(p1 − p2) (p1 + p2)

− αa31η sin (3 (p1τ + ψ1))

32p1
+ a1 cos (p1τ + ψ1) , (42)

y(τ )

= a2 cos (p2τ + ψ2) + 1

2
a22κ

2ρμ̄3vb cos (2 (p2τ + ψ2))

+ 3

2
a22κ

2ρμ̄3vb

+ a32
(
κ3 p32ρμ̄3 sin (3 (p2τ+ψ2))+γ cos (3 (p2τ+ψ2))

)

32p22

− ρ
(
μ̄3v

3
b + μ̄1vb + μ̄s

)

p22

+ a2λμp cos (τ (2� − p2) − ψ2)

8�(� − p2)

+ a2λμp cos (τ (p2 + 2�) + ψ2)

8�(p2 + �)

− a1λ cos (p1τ + ψ1)

(p1 − p2) (p1 + p2)

− a1λμp cos (τ (2� − p1) − ψ1)

2 (−p1 − p2 + 2�) (−p1 + p2 + 2�)

− a1λμp cos (τ (p1 + 2�) + ψ1)

2 (p1 − p2 + 2�) (p1 + p2 + 2�)
, (43)

φ(τ) =a22κ
2�p2ρχμ̄3vb (2p2 cos (2 (p2τ + ψ2)) − � sin (2 (p2τ + ψ2)))

�2 + 4p22

+ 3a32�χ
(
κ3 p32ρμ̄3 (�cn(τ ) + 3p2sn(τ )) + γ (3p2cn(τ ) − �sn(τ ))

)

32p2
(
�2 + 9p22

)

+ a2R3 ((p2 + 2�) cos (τ (p2 + 2�) + ψ2) − � sin (τ (p2 + 2�) + ψ2))

8�(p2 + �)
(
�2 + 4p2� + p22 + 4�2

)

+ a2R4 ((2� − p2) cos (τ (2� − p2) − ψ2) − � sin (τ (2� − p2) − ψ2))

8�(� − p2)
(
�2 − 4p2� + p22 + 4�2

)

− a1R2 ((2� − p1) cos (τ (2� − p1) − ψ1) − � sin (τ (2� − p1) − ψ1))

2
(−4p1� + p21 − p22 + 4�2

) (
�2 − 4p1� + p21 + 4�2

)

− a1R1 ((p1 + 2�) cos (τ (p1 + 2�) + ψ1) − � sin (τ (p1 + 2�) + ψ1))

2
(
4p1� + p21 − p22 + 4�2

) (
�2 + 4p1� + p21 + 4�2

)

+ a1λ�p1χ (� sin (p1τ + ψ1) − p1 cos (p1τ + ψ1))
(
p21 − p22

) (
�2 + p21

)

+ a2�p2χ (p2 cos (p2τ + ψ2) − � sin (p2τ + ψ2))

�2 + p22
, (44)

where

cn(τ ) = cos (3 (p2τ + ψ2)) ,

sn(τ ) = sin (3 (p2τ + ψ2)) ,

R1 = λ�χμp (p1 + 2�) , R2 = λ�χμp (2� − p1) ,

R3 = λ�χμp (p2 + 2�) , R4=λ�χμp (2� − p2) .

The time–dependent functions a j (τ ) and ψ j (τ ) are
the amplitudes and phases of the modulation equations
(37)–(40).

Using the following set of fixed parameters: η = 1,
κ = 1, α = 0.06, β = 0.03, γ = 0.01, λ = 0.179,
μp = 0.12, N1 = −0.209, p1 = 1.001, p2 = 1.4,
χ = 0.000002, � = 5000000, � = 0.000003, ρ = 1,
� = 2.095, vb = 0.06, μs = 0.001, μ̃1 = 0.02232,
μ̃3 = 1.1191, and the initial values: a10 = −0.04,
a20 = 0.0,ψ10 = 0.0,ψ20 = 0.0, the initial conditions
for the numerical simulationwere estimated from (42)–
(44) as x0 = −0.0399867, vx0 = −0.00119876, y0 =
−0.0087211, vy0 = −0.00022204, φ0 = −0.074043.
Figures 4 and 5 compare the short-time and long-time
histories for x and y, respectively, obtained by the ana-
lytical (MSM) with the corresponding numerical solu-
tions. There is a high degree of compliance between
the solutions methods. Though other sets of initial val-
ues could be used, the choice of the value of a10,
which represents the initial displacement of the mass,
is crucial for the parametrically coupled oscillators to
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Fig. 4 Compared time
histories of x-coordinate

Fig. 5 Compared time
histories of y-coordinate

Fig. 6 Compared time
histories of voltage
(φ-coordinate) and the RMS
power

have immediate influences on each other. However, this
value and those of the system parameters are assumed
to be small in order to minimize computational errors.

On the harvested energy, Fig. 6 is added to show
the generated dimensionless voltage time–histories
(Fig. 6a) and the dimensional instantaneous root mean
square (RMS) power (Fig. 6b), computed based onmet-
rics established in Sect. 4. The results are also well-
matched between the analytical and numerical solu-
tions. The RMS power increases at the instance of time
until the steady state, where it is fairly held constant.
Additionally, the following resonances are identified
from Eqs. (42)–(44) where the terms with negative
operands in the denominators are equated to zero.

(i) Primary parametric resonances at � ≈ p1, � ≈
p2;

(ii) Combined parametric resonances at � ≈ 1
2 (−p1

+ p2), � ≈ 1
2 (p1 − p2), � ≈ 1

2 (p1 + p2);

Fig. 7 Frequency response of the system with identified para-
metric resonances

(iii) Internal resonance at p1 ≈ p2.

Figure 7 presents the frequency response of the y
solution showing some identified primary and com-
bined parametric resonance wr j , j = 1, 2, . . . , 5.
These resonant pointswere identified based on thefixed
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Table 1 Compliance errors Error metric x y φ

RMSE 5.89491 × 10−5 7.50036 × 10−6 7.50033 × 10−6
MAE 3.50942 × 10−5 4.63146 × 10−6 4.63141 × 10−6

data set used. The greatest (combined) parametric reso-
nance occurs at wr4 ≈ 1

2 (p1 + p2). It is closely guided
by the primary resonance and its harmonic atwr5 = p2
and wr3 = 1

2 p2.
The approximate solutions presented here are valid

only for the non-resonant case. At resonance, some
modifications must be made to accommodate the
resonance-causing terms, which are outside the aim
of the present study. Furthermore, the computations
are based on small identified parameter values to mini-
mize errors. The assumptions in (14)–(17) truncate the
asymptotic expansion of the assumed solution. How-
ever, they ensure that all the terms in the govern-
ing equations are captured in solution procedures. It
implies that the compliance errors are only limited
to the truncation of asymptotic solutions by two-time
scales.

3.2 Compliance error

Compliance error is the difference between the analyti-
cal solution and the numerical solution computed based
on two well-known metrics: the root mean square error
(RMSE) and the mean absolute error (MAE) according
to the following equations [36], whereRMSEmeasures
the robustness of the method, and MAE indicates the
estimation accuracy of the analytical process.

⎧
⎪⎨

⎪⎩

RMSE =
√

∑N
j=1 E

2
j

N ,

MAE =
∑N

j=1 |E j |
N ,

(45)

where E is the difference between the numerical and
approximate analytical solutions, evaluated at time
interval j to N . For ease of calculation, N is fixed at
1010. Table 1 shows the compliance errors of the com-
putations. The errors are of the order of 10−5/10−6,
which portends the solutions’ robustness and accuracy.

4 Numerical treatment

The Filippov rendition of the system in section 2.3 also
allows one to obtain a smooth approximation of the
surface of discontinuity in state-space by applying Eq.
(11). This way, the system’s global dynamics can be
investigated via the bifurcation analysis. The effects of
these dynamics on harvested energy can also be numer-
ically examined. The non-dimensional RMS voltage is
computed by

Vrms =
√
1

n
�n

j φ
2
j , j = 1, 2, 3, ...n; (46)

and n is the approximate period (or its multiple) of
the generated non–dimensional voltage φ. The dimen-
sional value of RMS voltage is, however, Ṽrms =
ϑ0Vrms . The value of ϑ0 can be found using the expres-
sion given in Sect. 2.2 as ϑ0 = mpg

�RpCp
= 4.314mV ,

adopted from our previous work [32]. The dimensional
RMS power can also be computed from

P̃rms = ϑ0V 2
rms

RL
, (47)

where the value of load resistance is taken as RL =
10k� for calculation purposes. Other parameters are
α = 0.3, β = 0.03, γ = 0.1, λ = 0.2213, μp = 0.12,
N1 = 0.98, χ = 0.0002, � = 500000, � = 0.0003,
ρ = 1,� = 2.095, vb = 0.1,μs = 0.9, exceptwhere it
is explicitly stated.Additionally, the following relations
hold for μ̄1 and μ̄3;

{
μ̄1 = 3

2
μs−μm

vm
,

μ̄3 = 1
2

μs−μm
v3m

,
(48)

where vm = f (vb) and μm = f (μs).

4.1 Bifurcation analysis

One of the critical components affecting the behavioral
stability of the system is the belt speed vb.
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Fig. 8 Coexisting bifurcation diagram with vb as the control
parameter. The blue curve corresponds to forward sweep, while
the red corresponds to backward sweep. (Color figure online)

It is responsible for injecting a variant formof energy
into the structural dynamics as friction-induced self-
excitation. Using this variable as the control parame-
ter, a coexisting bifurcation diagram is constructed in
Fig. 8. The blue curve is obtained during the forward
sweep, while the red (underlaid) is obtained during the
backward sweep, both on the hyperplane x − y. Three
types of bifurcations are notable: the Neimark–Sacker
(NS),Neimark–Sacker bifurcation tomultiple tori (NS-
BMT), and grazing–sliding (GS) bifurcation.

Figure 9a shows the transition for the NS bifurcation
occurring at vb = [0.166, 0.177, 0.179] in which the
limit cycle (inset) on the left-hand side (LHS)changes
shape to one in the middle and is finally destroyed,
giving birth to an entirely new attractor (inset) on the
right-hand side (RHS). In Fig. 9b, the NS-BMT is one
that gives birth to n-torus via NS bifurcation [37], and
is demonstrated at vb = [0.466, 0.478] in which a sin-
gle torus formed by the Poincaré section on the LHS
bifurcates into 3-torus demonstrated by the inset of the
attractor’s Poincaré on the RHS.

Finally, the GS bifurcation happens at vb = 0.607
as shown in Fig. 11a (middle). At vb = 0.603, the sys-
tem is still characterized by stick-slipmotion as seen on
the LHS. But at grazing–sliding bifurcation (middle),

the system’s speed ẏ grazes the touchline belt speed
vb before sliding back into motion. The attractor on
the RHS shows clearly when the system is in pure slip
motion as ẏ < vb. The second principal influencer of
the induced excitation is the coefficient of static fric-
tion μs . This is critical because, over time, the belt
surface loses some roughness and affects the stick-slip
motion of the mass. Fig. 10 shows the coexisting bifur-
cation diagram of the system, with μs as the control
parameter. Discontinuity-induced bifurcation of torus
(DIB-T) and NS-BMT are identified at μs ≈ 0.6630,
and μs ≈ 0.7431, or μs ≈ 0.8276, respectively. The
DIB-T [38] is examined in Fig. 11b, where the limit
cycle in Fig. 11b (i) is destroyed via the transition in
Fig. 11b (ii) to give birth to the torus of the Poincaré
section in Fig. 11b (iii) as the system’s speed ẏ grazes
the belt speed vb held constant at vb = 0.45. These
dynamics have effects on energy harvesting, which are
further investigated in the next subsection.

4.2 Effect of behavioral dynamics on energy

On the effects of qualitative changes occurring within
the structural dynamics on energy harvesting, the bifur-
cation diagram of the system is constructed and plotted
alongside the harvested energy to highlight the energy’s
responses to certain types of bifurcation. The metric
used for measuring energy harvesting is the root mean
square voltage Vrms according to Eq. (46).

We begin by examining the systemwithout coupling
the electrical subcircuit of the van der Pol oscillator. In
this case, only the simple mechanical substructure is
present as a 1 DoF system, and the governing equations
in Eq. (9) reduce to
{

ÿ + β ẏ + y + γ y3 + χφ − ρμ(v̄r ) + λy = 0,

φ̇ + �φ − χ�ẏ = 0.

(49)

Fig. 9 Phase portraits with
Poincaré sections showing
the transition for the
NS—bifurcation in (a) and
NS-BMT in (b), both with
reference to Fig. 8
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Fig. 10 Coexisting bifurcation diagram with μs as the control
parameter. The blue curve corresponds to forward sweep, while
the red corresponds to backward sweep. (Color figure online)

Using vb as the control parameter, Fig. 12 is con-
structed, showing the bifurcation diagram in red (axis
on the right) overlaid with the generated voltage in
blue (axis on the left). It can be seen that the harvested
energy (Vrms) is characteristically low (i.e., Vrms < 1)
all through the system’s dynamics. The highest volt-
age is recorded at the GS bifurcation (vb ≈ 0.6)
where Vrms ≈ 0.6, after which the voltage falls to
Vrms = 0.53 for vb ≥ 0.64. In comparison with the
originally proposed design having the parametric cou-
pling with the van der Pol oscillator whose dynamic
model is given by Eq. (9), and using the same sys-
tem parameters, Fig. 13a is constructed, with vb as the
bifurcation parameter. It can be seen that the energy
harvested in this case is much higher (i.e., Vrms > 100
for all vb > 0.076). Furthermore, this figure shows

two kinds of bifurcation with significant changes in
the level of harvested energy. First, the Vrms increases
exponentially from near zero value until it reaches
Vrms = 207.4 just before the NS bifurcation point
(vb ≈ 0.177). At this point, Vrms jumps to a lower
level (Vrms ≈ 156) before increasing further at a slow
pace. The steady increase, though small, terminates at
NS–BMT, after which a fairly steady and stable energy
is harvested. At GS bifurcation (vb ∈ [0.603, 0.611]),
another jump to a lower energy level (Vrms ≈ 149.7)
was recorded. After GS bifurcation, the system enters
a pure slip motion, and this steady generated voltage
level is maintained. Hence, the proposed model not
only overcomes the limitation of low energy genera-
tion associated with the simple 1 DoF system but also
generates higher (useful) energy over a wide range of
belt speeds.

With μs as the bifurcation parameter, the harvested
energy is fairly constant at Vrams ≈ 150 until DIB-T
as shown in Fig. 13b.

At DIB-T, there is a jump in harvested energy to a
higher level. However, the new energy level is hard to
maintain at a steady pace due to the underlying system’s
dynamics forμs > 0.731. At NS–BMT, a further jump
in Vrms to a higher level is seen. However, the voltage
is not smooth at this level but increases gradually for
μs > 0.852.

Examining the system’s dynamics and the energy
harvested with respect to the variation of the inter-
nal parametric coupling strength μp, Fig. 14a is con-

Fig. 11 Phase portraits
with Poincaré sections
showing the transition for
the GS–bifurcation in (a)
and DIB-T in (b), with
reference to Figs. 8 and 10,
respectively

Fig. 12 Voltage generated
(Vrms ) in log scale (blue)
and the bifurcation diagram
(red), with vb as the control
parameter of the system
without coupling. (Color
figure online)
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Fig. 13 Voltage generated (Vrms ) in log scale (blue) and the
bifurcation diagram (red), with vb as the control parameter in a,
and μs as the control parameter in b

Fig. 14 Voltage generated (Vrms ) in log scale (blue) and the
bifurcation diagram (red), with μp as the control parameter in a,
and λ as the control parameter in b. (Color figure online)

structed using μp as the control parameter. It can be
seen from this figure that μp did not cause a distinc-
tive bifurcation phenomenon, but one can identify the
region of soft, intermediate, and hard coupling. In the
soft coupling μp < 0.1, the energy Vrms is mildly
rough in the neighborhood of Vrms ≈ 131. In the
intermediate region μp ∈ [0.1, 1.12), the degree of
roughness in Vrms ≈ 132.5 increases. Hard coupling
at μp ≥ 1.12 shows a decline in the energy harvested.

For the external coupling strength λ, the system
experienced rich dynamics. Fig. 14b shows the con-
structed bifurcation diagram with λ as the control
parameter. The energy Vrms increases steadily until it
approaches the neighborhood of NS bifurcation (λ ≈

0.2231). At NS bifurcation point, Vrms jumps from
about 160 to 220, and remains steady at this level until
another behavioral change occurs at λ ≥ 0.4642. Fur-
thermore, a parametric study was conducted under the
soft, intermediate, and hard internal parametric cou-
pling to examine the harvested energy, and presented
in Fig. 15.

Fixing the values of μp = 0.05, μp = 0.12, and
μp = 1.12, respectively for the soft, intermediate, and
hard coupling, Fig. 15a shows theVrms under these con-
ditions with varying vb. From this figure, the effect is
slightly desirable under the soft and intermediate cou-
plings. With μs as the varying parameter (Fig. 15b),
the jumps to higher voltage levels under soft and inter-
mediate couplings are desirable as they generate more
energy. Finally, in the case of λ as the varying parame-
ter (Fig. 15c), the generated voltages under these condi-
tions are quantified as follows. For λ < 0.2, the highest
energy is harvested at about Ṽrms = 726.9 mV corre-
sponding to dimensional RMS power P̃rms = 12.25
mW under soft and intermediate couplings. In the
region λ ∈ [0.2, 0.4], energy harvested under interme-
diate coupling is the highest, with P̃rms = 20.86 mW.
However, for λ > 0.4, the hard coupling produced the
highest energy with P̃rms = 31.25 mW.

5 Experimental setup

An experiment is performed to qualitatively verify the
model in this section. The experimental stand in Fig. 16
is a multipurpose rig configured to accommodate the
major features of the conceptual framework in Fig. 1
without the energy harvester. In Fig. 16, the air prepa-
ration module (valve with gauge and filter) labeled 1
uses the air at set pressure from the compressor and
controls the aerostatic bearing 4, to give the body frame
withmasses 3 and 5 a frictionless swing on the attached
handle. The body frame is attached to springs 6 on both
sides.

The mass 3 is a rotor, providing unbalanced rotation
on the body frame, and it is controlled by the first step-
per motor driver 2, which takes input from computer
12 running the real-time electrical subcircuit simula-
tion diagram in LabVIEW. The speed of the belt 7 is
controlled by the second motor driver 10, which also
takes input from the second signal generator 11.

A PC–based National Instrument Data Acquisition
(NI DAQ) module 9 is connected to the computer
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Fig. 15 Voltage generated
(Vrms ) at soft, intermediate,
and hard internal parametric
coupling (strength with μp),
while varying vb in (a), μs
in (b), λ in (c)

Fig. 16 Experimental setup
with whole system (a) and
enlarged portion (b).
1—valve, 2—motor driver,
3—unbalanced rotor,
4—aerostatic bearing,
5—body frame with mass,
6—spring, 7—belt support
and drive, 8—support
frame, 9—NI DAQ,
10—motor driver 2,
11—Signal generators (1
and 2), 12—computer with
LabVIEW

system 12, with LabVIEW software to capture the
dynamic responses which are saved to Excel spread-
sheet. It should be noted that label 8 provides the sup-
port for the mechanical part while label 3 provides the
unbalanced rotation that incorporates the parametric
coupling. This setup is without the energy harvesting
component, which reduces complexities in the imple-
mentation.

When valve 1 is turned ON, and the speed of the
belt 7 is set, the speed of the unbalanced mass 3 is pro-
vided from the van der Pol electrical subcircuit drawn
in LabVIEW running on the computer 12. The frame
with the masses 3 and 5 as one lumped mass experi-
ences displacement, and it is captured by the computer
system 12 via module 9. This way, the setup is used
to qualitatively compare the results of the numerical
simulations with the experimental results after minor
preprocessing to remove dead zones and timing align-
ments. Figure 17 shows the sampled current generated
by the van der Pol electrical subcircuit in LabVIEW as
the driving signal for the unbalanced rotor 3, and the
corresponding pulse width modulation (PWM) voltage

Fig. 17 Driving current from the van der Pol electrical subcircuit
and associated PWM signal for driving the unbalanced rotor at
slow-fast speed from the experiment

signal from the first signal generator. This ensures that
the speed of the rotor is not constant but varies based
on the current generated from the electrical subcircuit.

Figures 18, 19 and 20 compare the results of the
numerical simulations (a) and the experimental verifi-
cations (b) of the systemunder three scenarios, inwhich
the experimental results were scaled to their respec-
tive non–dimensional values using the relations estab-
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Fig. 18 Quasiperiodic phase portrait of numerical (a) v =
0.045, μs = 0.517 and experimental (b) v0 = 0.007 m/s; during
stick-slip phenomenon

Fig. 19 Phase portrait of numerical a v = 0.485, μs = 0.65
and experimental b v0 = 0.147 m/s; near the grazing–sliding
phenomenon

Fig. 20 Phase portrait of numerical a v = 0.56, μs = 0.85 and
experimental b v0 = 0.15 m/s; during pure-slip motion

lished in Sect. 2.2. In Fig. 18, the system is entirely
in the stick-slip quasiperiodic motion; the phase por-
traits show this phenomenon in both the numerical (a)
and experimental (b) results when the belt’s speed is
kept at v0 = 0.007 m/s. Increasing the belt’s peed
to v0 = 0.147 m/s brought the system close to the
grazing–sliding in Fig. 19. It should be noted that due to
the high sensitivity of the system to the belt’s speed and
other assumptions and nonlinear effects present in the
experimental setup, the exact grazing speed was hard
to find. This is shown when the speed was increased
to v0 = 0.15 m/s, the system entered into pure-slip
motionwith twoquasiperiodic orbits (I) and (II) respec-
tively inFig. 20 for both numerical (a) and experimental
(b) results. All the parameter values are fixed as previ-

ously, except for those indicated in the figure captions.
The experiment results verified themodel qualitatively.
However, some results are not the exact match due to
the following assumptions and limitations:

(i) The two linear springs estimate the nonlinear spring
in the setup,

(ii) The coefficient of static friction μs on the belt’s
surface reduces from the actual value due to long
usage.

6 Concluding remarks

The governing equations for the dynamics of the para-
metrically coupled electromechanical structure were
established. The system was solved analytically using
the multiple scales method and validated by numer-
ical simulation. The analytical treatment reveals the
various parametric resonances captured in the fre-
quency response of the system. The global dynam-
ics of the structure were investigated, and nonlinear
behaviors such as Neimark–Sacker (NS) bifurcation,
NS-bifurcation to multiple tori, grazing–sliding bifur-
cation, and discontinuity-induced bifurcation of torus
were identified. The effects of these qualitative changes
on harvested energy were also investigated. At these
bifurcation points, there are changes in the level of har-
vested energy in the form of jumps. At the NS bifur-
cation point, the harvested energy jumps to a higher
level, while at grazing–sliding, it decreases to a lower
level. The effects of parametric couplings were also
examined. The greatest energy was harvested under the
hard coupling with a quantified RMS power of 31.25
mW. The investigated model overcomes the limitations
of low energy harvesting associated with the simple
uncoupled system of the same kind. Finally, the exper-
imental verification of the model was carried out to
qualitatively validate the numerical methods.
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