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Abstract Existing studies within the literature that
focus ondesigningparametric energy-maximizing con-
trollers for Wave Energy Converter (WEC) systems
predominantly rely on the impedance-matching (IM)
principle, originally developed for linear time-invariant
systems. Alternatively, iterative optimization routines
are commonly employed for nonlinear WECs. How-
ever, these approaches often face a trade-off between
effectiveness in maximizing energy extraction and
computational efficiency. To address this limitation,
this study proposes a computationally efficient con-
troller tuning method for analogous synthesis in the
case of nonlinear WECs. The proposed approach com-
bines a statistical linearization technique known as
spectral-domain modeling with the IM principle, to
synthesize a Proportional–Integrative (PI) controller
for a nonlinear WEC. Furthermore, a comparison is
performedwith two other synthesismethods: one based
on a standard (i.e. linear) frequency-domain represen-
tation of the WEC that incorporates the IM principle,
and the other employing a gradient-free optimization
routine applied to the nonlinear time-domain model
of the WEC for PI parameter tuning through exhaus-
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tive numerical search.A discussion on the effectiveness
of each tuning method in maximizing energy absorp-
tion is provided, including an appraisal of their associ-
ated computational time requirements.Numerical anal-
yses demonstrate that the proposedmethod,which inte-
grates spectral-domain modeling and IM, can achieve
(almost) optimal PI controller design for a nonlinear
WEC. Furthermore, this study addresses the inaccu-
racies inherent in the frequency-domain approach and
significantly reduces the computational time compared
to the exhaustive search procedure. The findings of this
research represent a significant advancement towards
the development of simple, effective, and efficient IM-
based techniques for synthesis of controllers in nonlin-
ear WEC systems

Keywords Wave energy converter · Spectral-domain
model · Energy-maximizing control · Impedance-
matching · Efficient control synthesis

1 Introduction

Over the past decade, the renewable energy sector
has witnessed remarkable growth attributed to gov-
ernment support, financial incentives, and technolog-
ical advancements, leading to cost reductions. Despite
the challenges posed by the COVID-19 epidemic and
the Russian-Ukraine conflict, resulting in a widespread
financial and energy supply crisis, the demand for solar,
wind, and renewable energies persists. According to
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the International Energy Agency [37], solar PV and
wind turbines are currently considered the most effec-
tive means of reducing emissions in the power sector,
and their global share of electricity generation is pro-
jected to increase from 10 (%) in 2021, to 40 (%) in
2030, and 70 (%) in 2050.

Against this backdrop, strides have been made in
ocean energy research, with wave energy converter
(WEC) technologies inching towards reliability and
cost-effectiveness. Current research efforts are focused
on reducing the energy cost of WEC systems through
optimal design processes [6,11,30], ultimately aimed
at minimizing the capital cost of WEC technolo-
gies, including optimal control techniques [16,25,47]
to facilitate maximum energy harvesting capabilities.
However, numerical simulations andoptimization tech-
niques alone are not sufficient to guarantee the real-
world performance and reliability of WEC designs.
Experimental tests and validation provide invaluable
insights into the actual physical behavior of the sys-
tem, ensuring that numerical models accurately repre-
sent the complexities of ocean dynamics [19,44].

In the context of WEC design, the process involves
intricate optimization stages covering each component
of the conversion chain, such as the floater, internal
mechanics, and energy conversion. Due to the numer-
ous design factors linked to this process, and their inter-
dependencies, global optimization routines are typi-
cally employed [9,62], requiring significant compu-
tational efforts to evaluate numerous WEC architec-
tures and components. Additionally, early considera-
tion of energy-maximizing control has been shown to
be crucial [54], as it has the potential to greatly enhance
power generation throughout the operational lifespan,
with multipliers suggested by a variety of wave energy
researchers and technologists regarding the perfor-
mance improvement (in captured energy varying from
2 to 4). Optimization informed by control considera-
tions can influence the dynamic characteristics of the
resultingWEC [32], as the system is optimized not only
in terms of its physical characteristics but also with
respect to control variables [24,29], which inherently
affect the system’s response. However, the process of
tuning a WEC controller often relies on rather empiri-
cal approaches, involving multiple numerical tests to
maximize energy harvesting capabilities in a set of
pre-defined operating conditions [6]. In summary, the
design of aWEC involves a delicate balancing between
conflicting objectives [6], aiming to achieve both max-

imum energy absorption and optimal design within a
reasonable (computational) time-frame. This trade-off
can be pursued through the use of accurate and compu-
tationally efficient numerical models and optimal con-
trol design and tuning.

In the field of WEC modelling, time-domain (TD)
frameworks are commonly preferred for predicting
WEC performances [33,53] and implementing opti-
mal control strategies [28,31,47]. However, frequency-
domain (FD) and spectral-domain (SD) models have
also gained popularity as they offer a simple and effi-
cient simulation tool [20]. In particular, SD models
serve as an intermediate solution, incorporating non-
linear effects in a FD simulation (which is, by defi-
nition, fully linear) through the use of stochastic lin-
earization methods [21,57]. Recognizing the effective-
ness of SD methods both in terms of accuracy and
computational efficiency, studies leveraging this tech-
nique can be found in [4,8,58], to provide a numeri-
cal model for the ISWEC [51], a WEC developed by
theMarine Offshore Renewable Energy Lab (MOREn-
ergy Lab) at Politecnico di Torino (Italy). Main goal in
these studies is that of reducing the simulation burden
while maintaining reliable power extraction (i.e. per-
formance) estimations. Furthermore, the universality of
stochastic linearization has been demonstrated across
a wide range of engineering fields [14], ensuring accu-
rate results and computational efficiency when com-
pared to other modelling techniques based on FD and
TD models. In the offshore industry, the application of
SD models can be traced back to 1983, when Gudmes-
tad [34] used an SDmodel to analyze the dynamics of a
floating offshore structure. More recent applications in
theWEC domain can be found in [12,57,60,61], where
SD representations of widely studiedWEC systems are
discussed.

The availability of effective control systems for
maximal energy harvesting is a critical milestone in
the pathway towards commercialization of WECs,
having a significant potential to reduce the associ-
ated levelised cost of energy. Various control meth-
ods have been proposed in the literature, encompass-
ing both optimization-based approaches [17] and non-
optimization-based strategies [16]. Focusing on the lat-
ter, a comprehensive review of ‘simple controllers’
based on the Impedance-Matching (IM) principle is
presented in [25]. The IM principle is commonly
employed to design stable energy-maximizing con-
trollers using different architectures [10], encompass-
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ing both feedforward [22,23,26,27] (which require
knowledge of the so-called wave excitation force [5,7])
and feedback structures [3,59], some of which incor-
porate constraint handling mechanisms [22,26,27].
However, the existing non-optimization-based control
methodologies in the literature primarily rely on the
availability of a linear model of the WEC system, i.e.
synthesis is performed under linearity assumptions. As
a result, these studies fail to address how these con-
trollers can be designed and synthesised in a more
realistic case, that is considering nonlinear WEC mod-
els. As a matter of fact, typically, optimal control
tuning and energy-maximizing control strategies are
designed and applied to WECs represented in terms of
linear approximations. Controllers applied to nonlin-
ear WECs are often tuned through exhaustive search
methods [6], which can be both time-consuming, and
lack convergence guarantees towards a global solution.
This approach can involve a ‘brute force’ search, where
a subset of possible control parameters are system-
atically explored until an optimum solution is found,
or by exploiting an optimization routine that employs
gradient-based or gradient-free search methods. Over-
all, research on energy-maximizing controllers has
been mostly restricted to LTI models, lacking of sys-
tematic and efficient control synthesis for nonlinear
systems.

In this study, we propose a novel control synthe-
sis procedure that leverages a SD representation of the
nonlinear WEC dynamics in combination with the IM
principle. The objective is to develop a method for con-
trol design, synthesis and tuning that achieves effec-
tiveness in terms of energy maximization for predomi-
nantly nonlinear WEC systems, while showcasing effi-
ciency in terms of computational burden. In particular,
our approach utilizes the SD representation of theWEC
dynamics to tune a Proportional–Integral (PI) feedback
controller. The tuning process relies on the IM prin-
ciple, which enables the derivation of optimal coeffi-
cients for the PI structure via frequency-based interpo-
lation. To elaborate, the IM principle provides an opti-
mal anti-causal transfer function that maps velocity to
the corresponding energy-maximizing control action.
However, since such an anti-causal condition cannot
be implemented in practice, we perform an interpo-
lation of the IM-based optimal response at a suitably
defined point (frequency), to derive a causal PI con-
troller based on the SD representation of the nonlin-
earWEC dynamics. Additionally, we present two other

tuning methods in this study, for the sake of compari-
son. The firstmethod uses a fully linear FDmodel of the
WEC, and the IM principle is employed to synthesize
the corresponding PI controller. The second method
directly employs a nonlinear TDmodel controlled by a
PI structure, which is tuned using an optimization rou-
tine to maximize power extraction for the specific sea
state considered. We apply and provide a numerical
appraisal of these three tuning methods using a con-
ceptual point absorber (PA) WEC, taking into account
various nonlinear effects. A critical comparison of the
three methods is provided, considering the trade-off
between energy-maximizing performance and compu-
tational burden required by each tuning approach. We
demonstrate the effectiveness of the proposed control
synthesis methodology based on SDmodelling and the
IM principle, showing a significant improvement in
the design and synthesis of PI controllers for nonlinear
WEC systems.

The structure of this article is as follows. Section2
provides an introduction to the mathematical frame-
work utilized in this study, including an overview of
linear random vibration theory, the SDmodelling tech-
nique, and the IMprinciple as applied to a single degree
of freedom (DoF) WEC. Section3 presents the novel
control tuning procedure proposed in this study, along
with the two additional numerical methods used for
synthesizing a PI controller. In Sect. 4, a conceptual
nonlinear PA is described, which serves as the case
study for evaluating the performance of the control tun-
ing methods considered. Section5 provides a summary
of the numerical models employed to tune the PI con-
troller. The section also compares thesemodels in terms
of their accuracy in predicting WEC motion, and their
computational requirements. The numerical compari-
son between the three control tuning methods, in terms
of performance, is presented in Sect. 6. In particular,
this section analyses and compares these strategies in
terms of energy-maximizing capabilities and computa-
tional efficiency. Finally, Sect. 7 presents the conclu-
sions drawn from the study, and discusses potential
avenues for further research and development in the
field.

2 Mathematical framework

This section elucidates the mathematical framework
underpinning the research study. Firstly, it delves
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into the statistical (or stochastic) linearization pro-
cess, which establishes a correlation between elements
of linear random vibration theory and the analytical
derivation of the SD model for a generic nonlinear
dynamical system. Subsequently, the IM principle is
introduced, offering a concise yet qualitative exposi-
tion of its principal properties and implications.

2.1 Elements of linear random vibration theory

Assuming ocean waves follow aGaussian random phe-
nomenon [64], the excitation and response of a WEC
are modelled as stochastic processes [18]. In this study,
we focus on a single DoF system, implicitly assuming
Linearity Time Invariance (LTI) and input–output sta-
bility. Let us consider a lumped parameter LTI model
that describes the system for t ∈ R

+, given by the
following equation:

� :
{
Mq̈(t) + Bq̇(t) + Kq(t) = f (t),

v(t) = q̇(t),
(1)

where q : R+ → R, t �→ q(t) is the device displace-
ment, q̇ : R+ → R, t �→ q̇(t) (equivalently q̇ = v)
its first time-derivative, and q̈ : R+ → R, t �→ q̈(t)
its second time-derivative. M ∈ R

+ is the mass con-
stant, B ∈ R

+ is the damping constant, K ∈ R
+ is the

stiffness constant, and f : R+ → R, t �→ f (t) rep-
resents the un-controllable external force, i.e the wave
excitation force. Both FD and TD solutions for system
(1) are recalled hereafter, alongside their fundamental
properties associated to the Gaussian random process
underlying f .

2.1.1 Frequency-domain response evaluation

To predict the steady-state response of a LTI system
under stochastic loads, the FD may be used. Depend-
ing on the desired output, e.g. displacement q or veloc-
ity q̇, the input–output responses are derived in FD as
follows:

H(jω) = Q(jω)

F(jω)
= 1

−ω2M + jωB + K
,

G(jω) = jωH(jω),

(2)

where H : C → C, jω �→ H(jω) and G : C →
C, jω �→ G(jω) denote the input–output dynam-

ics between the system input, i.e. the wave excitation
force f , to the WEC outputs, i.e. the WEC displace-
ment q and velocity q̇ , respectively. F : C → C,
jω �→ F(jω) stands for the Fourier transform of
the input force f , Q : C → C, jω �→ Q(jω)

for the Fourier transform of the displacement q, and
V : C → C, jω �→ V (jω) for the Fourier transform
of the velocity v. If the stochastic nature of the input f
can be described by its power spectral density (PSD)
S f f : R+ → R

+, ω �→ S f f (ω), that is derived by the
wave PSD Sηη : R+ → R

+, ω �→ Sηη(ω) via:

S f f (ω) = |E(jω)|2Sηη(ω), (3)

the PSD of the responses Sqq : R
+ → R

+, ω �→
Sqq(ω) and Sq̇q̇ : R

+ → R
+, ω �→ Sq̇q̇(ω) can be

computed as follows:

Sqq(ω) = |H(jω)|2S f f (ω),

Sq̇q̇(ω) = |G(jω)|2S f f (ω),
(4)

where E : C → C, jω �→ E(jω) collects the Froude–
Krylov and diffraction coefficients that relate the wave
excitation force to the wave profile [20,63]. Please note
that the Eq. (4) are applicable in the scalar case, though
can be straightforwardly extended to multi-DoF sys-
tems accordingly. These equations provide a funda-
mental relationship in linear vibration theory, establish-
ing a direct connection between input and output PSDs.
Since the Gaussian process underlying f is fully spec-
ified in terms of its mean (which is assumed to be zero
in this study) and variance, the variance of the output q,
denoted as mq ∈ R

+, is sufficient to obtain a complete
probabilistic characterization of the system response
[55,65]. For a single DoF system, the probability den-
sity function (PDF) fq : R → R of a zero-mean dis-
placement q, following a Gaussian distribution, can be
expressed as:

fq(q) = 1√
2πmq

e
− 1

2
q2

mq , (5)

where the zero-order moment mq , namely variance, is
computed with the auto-spectrum of q as follows:

mq =
∫
R+

Sqq(ω) dω. (6)
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2.1.2 Time-domain response evaluation

To obtain a statistically consistent TD output for Eq.
(1), we define the mathematical framework for analyz-
ing experiments with f repeated R ∈ N times over
T ∈ R

+. As f follows a Gaussian distribution, a sin-
gle realization f̃ (t) for t ∈ [0; T ] differs across experi-
ments. The randomness and statistical properties of the
signal in TD are appreciated through two procedures:

Procedure 1 : generating a large number of finite-
length signals, whereby ensemble statistics can be
characterised.

Procedure 2 : generating an infinitely-long time-
horizon realization, whereby the time statistic can
be obtained.

A concise but effective analysis of the influence of
finite-lengthwave profiles can be found in [42].Against
this background, considering a zero-mean input signal
f̃ with finite-time duration, theTDconvolution integral
relationships between f̃ and the outputs q̃ : R → R

and ˙̃q : R → R, for τ ∈ R
+, can be expressed as:

q̃(t) =
∫ T

0
h(τ ) f̃ (t − τ) dτ,

˙̃q(t) =
∫ T

0
g(τ ) f̃ (t − τ) dτ,

(7)

where h : R → R, t �→ h(t) and g : R → R, t �→ g(t)
denote the impulse response function between the sys-
tem input f̃ to the WEC outputs q̃ and ˙̃q, respectively.
Then, the variance of the system output, say q̃ , is:

m̃q = 1

T

∫ T

0
q̃2(t) dt. (8)

Note that m̃q ∈ R computed with Eq. (8) is merely
an estimate, which differs from the theoretical mq

defined in Eq. (6). In particular, for large T , the stan-
dard deviation σmq ∈ R

+ of the mq estimator tends to
zero, approximated as [52]:

σmq ≈
√

1

T

∫
R+

S2qq(ω) dω. (9)

This implies that generating a series of R finite-time
traces f̃ or a single infinitely-long time trace f provides

statistically consistent evaluations of WEC outputs as
obtained through a single FD via (4).

2.2 Spectral-domain modelling

A SD model can be regarded as a statistical equiva-
lent linear representation of a nonlinear model. The
primary concept behind this approach is to employ a
set of equivalent linear matrices that aim to replicate
the time-averaged behavior of nonlinear effects in FD.
Initially, we define the following nonlinear differential
equation to describe the motion of a single DoF WEC
system, based on a corresponding extension of Eq. (1),
in TD:

	 :
{
Mq̈(t) + Bq̇(t) + Kq(t) + 
(q, q̇, q̈) = f (t),

v(t) = q̇(t),

(10)

where the nonlinear effects are grouped in
(q, q̇, q̈) :
R×R×R → R, (q, q̇, q̈) �→ 
(q, q̇, q̈), as a function
of the system motion q, velocity q̇ , and acceleration q̈ .
A suitable linear element 
0(q, q̇, q̈) : R×R×R →
R, (q, q̇, q̈) �→ 
0(q, q̇, q̈) for the purpose of approx-
imating the nonlinear term
 is one which produces an
output:


0(q, q̇, q̈) = M0q̈(t) + B0q̇(t) + K0q(t), (11)

where M0 ∈ R
+, B0 ∈ R

+, and K0 ∈ R
+ are the

equivalent linear mass, damping, and stiffness matri-
ces, respectively. The parameters M0, B0, and K0 can
be chosen to minimize the difference between the non-
linear term 
 and its linear approximation 
0:

ε = 
(q, q̇, q̈) − 
0(q, q̇, q̈). (12)

Various minimization criteria for ε are proposed in
literature [38], but the following is considered to give,
in general, the best accuracy [55]:

min
M0,B0,K0

〈ε2〉, (13)

where the operator 〈•〉 stands for the expected value of
•. This procedure leads to the following expressions,
for the special case where q is a Gaussian process [55]:
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K0 =
〈
∂
(q, q̇, q̈)

∂q

〉
, B0 =

〈
∂
(q, q̇, q̈)

∂q̇

〉
,

M0 =
〈
∂
(q, q̇, q̈)

∂q̈

〉
,

(14)

The expectations reported in Eq. (14) can be com-
puted considering that variables q, q̇ , and q̈ are Gaus-
sian process with zero-mean, zero-order moments mq ,
mq̇ , and mq̈ computed as follows:

mq =
∫
R+

Sqq(ω) dω, mq̇ =
∫
R+

Sq̇q̇(ω) dω,

mq̈ =
∫
R+

ω2Sq̇q̇(ω) dω,

(15)

and PDFs derived as follows:

fq(q) = 1√
2πmq

e
− 1

2
q2

mq , fq̇(q̇) = 1√
2πmq̇

e
− 1

2
q̇2

mq̇ ,

fq̈(q̈) = 1√
2πmq̈

e
− 1

2
q̈2

mq̈ .

(16)

Then, Eq. (14) can be fully explicit:

K0 =
∫
R+

∂
(q, q̇, q̈)

∂q
fq(q) dq,

B0 =
∫
R+

∂
(q, q̇, q̈)

∂q̇
fq̇(q̇) dq̇,

M0 =
∫
R+

∂
(q, q̇, q̈)

∂q̈
fq̈(q̈) dq̈.

(17)

The spectral-domain model can now be explicitly
formulated by substituting expression (11) in Eq. (10),
and derivingM0, B0 and K0 viaEq. (17). The linearized
system follows:

	eq :
{
Meqq̈(t) + Beqq̇(t) + Keqq(t) = f (t),

v(t) = q̇(t),
(18)

where the scalars Meq ∈ R, Beq ∈ R, and Keq ∈ R are
defined as:

Meq = M + M0, Beq = B + B0, Keq = K + K0.

(19)

As a result, the equivalent linear input–output
responses between f and the outputs q and q̇ can be
written as:

Heq(jω) = Q(jω)

F(jω)
= 1

−ω2Meq + jωBeq + Keq
,

Geq(jω) = jωHeq(jω).

(20)

Then, the system output in terms of motion and
velocity PSD can be obtained as follows:

Sqq(ω) = |Heq(jω)|2S f f (ω),

Sq̇q̇(ω) = |Geq(jω)|2S f f (ω).
(21)

Thepurpose of anSDmodel is to calculate the equiv-
alent linear terms, namely M0, B0, and K0, to approx-
imate the response of the nonlinear system (Eq. (10))
using the linearized equation (Eq. (1)). Since there is,
in general, no analytical solution to this problem, an
iterative procedure is employed:

Step 1: Initialize the linearized transfer functions
(20) with an initial guess of linearized matrices
(17).
Step 2: Evaluate the system responses Sqq and Sq̇q̇
via Eq. (21).
Step 3: Compute the system outputs in term of the
PDF fq , fq̇ , and fq̈ , and variance mq , mq̇ , and mq̈

via Eqs. (16) and (15), respectively.
Step 4: Calculate the linearized matrices via Eq.
(17) andupdate the equivalent linearmodels in (20).
Step 5: Again, evaluate the spectral responses of
the body Sqq and Sq̇q̇ based on the new equivalent
system via Eq. (21). Check the convergence of the
new values compared with the values obtained at
step 2. If convergence is not achieved, return to
step 3.

Convergence is verified by comparing the spectral
responses of the body Sqq and Sq̇q̇ with the values gen-
erated in the previous iteration. Typically, the results
are considered converged when the relative error is less
than 1 (%) [12].

It is important to note that, despite the presence
of nonlinearities in the system dynamics, the assump-
tion of a Gaussian distribution of the WEC response
(stated in Sect. 2.1) is considered valid as long as
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the nonlinear forces are not dominant [20]. How-
ever, strong nonlinearities may lead to non-Gaussian
response distributions. Therefore, since the application
of an energy-maximizing control action often amplifies
WECdisplacements and increases nonlinear behaviors,
the validity of the SD model should also be verified
under optimal control conditions, as per discussed in
Sect. 6.3 of our study.

For a more in-depth understanding of statistical lin-
earization and SDmodeling, readers are encouraged to
refer to [20,55].

2.3 The impedance-matching principle in a nutshell

The IM principle involves designing or adjusting the
impedance of an electrical device to optimize power
transfer. Applied to wave energy control, it is used to
synthesize an energy-maximizing controller, enhanc-
ing the WEC power extraction capabilities. We con-
sider a single DoF WEC device described by the LTI
operator G, which represents the input–output dynam-
ics for a WEC affected by two distinct inputs: the wave
excitation force f and the controlled action u. The out-
put of the WEC, namely the WEC velocity v, can be
computed using the following FD relation:

V (jω) = G(jω) [F(jω) −U (jω)] , (22)

where U : C → C, jω �→ U (jω) is the Fourier
transform of the controlled input u. We do identify the
dynamical characteristics of G that are significant in
the development of the IM: G is input–output stable,
strictly proper, minimum-phase, and positive-real (see
[15]).

Equation (22) can be rewritten in FD defining the
so-called WEC intrinsic impedance [15] I : C → C,
jω �→ I (jω) as:

I (jω) = 1

G(jω)
, (23)

where ω is the input frequency, so that the system (22)
can be expressed in terms of I as:

V (jω) = 1

I (jω)
[F(jω) −U (jω)] . (24)

With this, the IM principle dictates that the load
impedance Iu : C → C, jω �→ Iu(jω) for the control

action U should coincide with the complex-conjugate
of the intrinsic impedance:

Iu(jω) = I (jω) = 1

G(jω)
. (25)

The IM closed-loop mapping Z : C → R
+, jω �→

Z(jω), can be fully written in terms of G as follows:

Z(jω) = V (jω)

F(jω)
= G(jω)G(jω)

G(jω) + G(jω)
=

= �(G(jω))2 + 	(G(jω))2

2�(G(jω))
,

(26)

where Z is an ideal filter [46] and hence has zero-phase.
Operators �(•) and 	(•) stand for the real and imagi-
nary part of •, respectively. This results in a zero-phase
condition between the system input f and output v.
Another perspective on the mapping Z lies in seeing
the output v as a scaled version of the input f . This
statement can be hence split as two conditions, i.e. in
terms of phase and amplitude:

• Amplitude condition Under optimal control condi-
tions, the instantaneous amplitude of the velocity
v is equal to the excitation force f scaled by the
mapping |Z |.

• Phase condition The instantaneous phase of the
velocity v under optimal control conditions is syn-
chronised (instantaneously) with that of the wave
excitation force f .

It is worth noting that the mapping Z can be used
to obtain the system outputs Sqq and Sq̇q̇ for a con-
trolled system with optimal control actionU = IuV as
follows:

Sqq(ω) = | 1

jω
Z(jω)|2S f f (ω),

Sq̇q̇(ω) = |Z(jω)|2S f f (ω).

(27)

For a deeper understanding of the IM principle
applied to WECs, the reader should refer to [15].

3 Control structures and tuning

We dedicate this section to illustrate a detailed expla-
nation of the specific objectives of this study, which
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Fig. 1 Typical IM-based feedback control configuration for a
sigle-DoF system

involve the comparison of three different numeri-
cal procedures for synthesizing an energy-maximizing
controller for a nonlinear WEC modelled in TD. Spe-
cial emphasis is placed on adapting the concept of an
IM-based controller, originally developed for LTI sys-
tems, to the context of a nonlinear single-DoF WEC.
The mathematical frameworks presented in Sect. 2
serve as the basis for this adaptation. Three distinct
numerical procedures for tuning controllers in nonlin-
ear WECs are described in this section. It is important
to note that, throughout this section,we utilize theWEC
representation and notation introduced in Sect. 2.

3.1 Control structure

As per the discussion provided in Sect. 2.3, IM-based
controllers introduce a control action designed to
induce zero-phase between the input f and the output
v, with the aim to maximize power extraction. How-
ever, the resultant optimal control condition is inher-
ently non-causal due to the complex conjugate operator
in Eq. (25), and hence require future information of the
corresponding device motion (in a feedback structure).
An approximation is commonly performed to derive a
causal and stable controller for LTI systems, delivering
simplified control solutions that are straightforward to
deploy in real-time. Figure1 reports a feedback control
structure, whichwe herein generalise to the single-DoF
WEC case.

The control structure defined in Fig. 1 is of a feed-
back nature: output measurements are used directly in
a feedback configuration, together with a dynamic sta-
ble and causal (i.e. implementable) controller. A clas-
sical feedback control structure, as depicted in Fig. 1,
does not require any knowledge of the wave excitation
force, which significantly reduces controller complex-
ity and simplifies its implementation. This feedback
controller is to be designed such that it approximates

the corresponding IM condition for a specific wave fre-
quency range ω ∈ W. In fact, the ‘true’ optimal con-
dition reported in Eq. (25) cannot be achieved in this
setting, since the associated optimal impedance Iu is
not implemented. We hence define the approximated
feedback controller Ic : C → C, jω �→ Ic(jω) such
that the general approximating condition holds:

||Ic(jω) − Iu(jω)||2 ≈ 0, ω ∈ W, (28)

where the operator || • ||2 denotes the 2-norm of •. A
typical design that fits the control structure of Fig. 1 is
the so-called reactive controller, namely PI. These type
of feedback controllers achieve the IM condition for a
single wave frequency ωi ∈ R with a PI control struc-
ture with respect to the output velocity v. Following the
derivation of the IM conditions presented in Sect. 2.3,
such controller can be simply designed by fulfilling the
interpolation condition:

Ic(jω) = �(Iu(jωi )) − ωi	(Iu(jωi ))

jω
. (29)

This procedure is proposed here to tune the PI feed-
back controller relying on a single-frequency approx-
imation of the optimal anti-causal control impedance
Iu that is, in fact, not achievable in practice. Equation
(26), defining the optimal mapping Z between the sys-
tem input f and the corresponding output v, can be
rewritten for the controller proposed in Eq. (29) as fol-
lows:

Zc(jω) = V (jω)

F(jω)
= G(jω)

1 + G(jω)Ic(jω)
. (30)

where the mapping Zc : C → C, jω �→ Zc(jω)

is not an ideal filter, and hence has no zero phase for
ω ∈ R

+. Despite this outcome makes Zc intrinsically
suboptimal with respect to the optimal expression Z ,
the impedance Ic allows obtaining a causal closed-loop
transfer function that is achievable in practice. Then,
Eq. (27) can be rewritten as:

Sqq(ω) = | 1

jω
Zc(jω)|2S f f (ω),

Sq̇q̇(ω) = |Zc(jω)|2S f f (ω).

(31)

A specific example case on how to use this interpola-
tion condition is offered in Fig. 2. In particular, Fig. 2a
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(a) Optimal feedback controller
with the corresponding PI struc-
ture.

(b) Optimal closed-loop map-
ping with the corresponding PI
structure.

Fig. 2 a Optimal feedback controller Iu and b optimal closed-
loop response Z (black solid), with the corresponding feedback
PI controller Ic and suboptimal closed-loop mapping Zc (light-
blue dashed), achieved by interpolation at ωi =1 (rad/s)

depicts a typical optimal controller transfer function
Iu derived via IM-principle that is used to synthesize a
PI controller with parameters tuned following Eq. (29).
Moreover, Fig. 2b shows the corresponding closed-loop
mapping Z and its causal approximation derived with
a PI controller. It can be readily appreciated that Ic
derived with a PI structure effectively interpolates the
optimal controller response Iu and the transfer function
Z at thewave frequencyωi=1 (rad/s) both inmagnitude
and phase.

Considering the TD formulation of the controller
transfer function (29), the control action u can be
expressed in TD as follows:

u(t) = αq̇(t) + βq(t), (32)

where α = �(Iu(jωi )) ∈ R, and β = −ωi	(Iu(jωi ))

∈ R are the controller parameters.
Alternatively, the controller proposed in this study

could be designed in a feedforward fashion [10]. One
key advantage of the feedforward configuration is that
the stability of the control loop can be directly ensured
by designing Z to be stable (and causal for practical
implementation). However, it should be noted that the
feedforward design requires knowledge of the wave
excitation, which is not directly measurable in practice
[49]. Furthermore, more advanced interpolation tech-

niques could be employed, utilizing FD system identifi-
cation algorithms [17] to approximate the optimal anti-
causal controller Iu within a specific frequency range,
while employing the LiTe-Con [27] and the LiTe-Con+
[26] architectures.

3.2 Control tuning

The purpose of this study is to identify the most effec-
tive way to design a PI feedback controller for a non-
linear WEC. In particular, with effective we refer to (I)
maximising the mean extracted power obtained with
the nonlinear TD model system (10), while (II) min-
imising the computational time required to tune the
control parameters α and β. These identified control
parameters, obtained using various methodologies, are
applied to the TD model of the WEC. By evaluat-
ing and comparing the mean extracted power, annual
energy extraction, and computational time associated
with each tuning method, we can determine which
approach is the most effective and efficient for design-
ing a PI controller for the nonlinear WEC.

Considering the controller derived in Sect. 3.1 (see
Eqs. (29) and (32)), different methods are proposed
here to identify α and β:

• FDm A straightforward control synthesis can be
performed considering the FD model of the WEC
system. First, the Iu is derived via Eq. (25) by using
the force-to-velocity transfer function G defined
in Eq. (2). Then, the control coefficients α and β

are selected by interpolating the optimal anti-causal
control impedance Iu at the specific input frequency
ωi as reported in Eq. (29).

• SDm A more sophisticated identification relies on
the SD of theWEC. Iu is derived using the force-to-
velocity transfer function Geq defined in Eq. (20).
Again, α and β are subsequently selected to inter-
polate Iu at the specific input frequency ωi . The
process traces the steps outlined in Sect. 2.2 with
some modifications:

Step 1: Initialize the linearized transfer func-
tions (20) with an initial guess of linearized
matrices (17).
Step 2: Synthesize the controller via IM proce-
dure to find the optimal control Iu , consider-
ing Geq computed via Eq. (20), and by replac-
ing it into Eq. (25) accordingly. Then, derive a

123



M. Bonfanti et al.

PI controller by interpolating Iu at the angular
frequency ωi through Eq. (29). Implement the
controller Ic to obtain the mapping Zc via Eq.
(30).
Step 3: Evaluate the system responses Sqq and
Sq̇q̇ via Eq. (31).
Step 4:Compute the system outputs in term of
the PDF fq , fq̇ , and fq̈ , and variance mq , mq̇ ,
and mq̈ via Eq. (16) and Eq. (15), respectively.
Step 5: Calculate the linearizedmatrices via Eq.
(17), synthesize a new controller Ic, and update
the closed-loop mapping function Zc.
Step 6: Again, evaluate the spectral responses of
the body Sqq and Sq̇q̇ based on the new equiv-
alent system Zc via Eq. (31). Check the con-
vergence of the new values compared with the
values obtained at step 3. If convergence is not
achieved, return to step 4.

The control coefficients α and β to be considered as
optimal are the values obtained at the last iteration
of the SD simulation.

• TDm The last method directly uses the TD model
controlled with a PI controller, tuned individually
by varying its control parameters, with the aim to
maximize the power extracted for the specific sea-
state considered. The optimization is performed
with a Nelder-Mead simplex method [39], that is
implemented in MATLAB®with the native func-
tion fminsearch. This procedure aims to opti-
mize the control parameters for a single sea-state
defined by its PSD Sηη, using the TD model, and
considering the following minimization problem:

min
α,β

pu = 1

T

∫ T

0
pu(t) dt = 1

T

∫ T

0
q̇(t)u(t) dt

s.t. u(t) = αq̇(t) + βq(t)

System 	 (see (10)).

(33)

where pu ∈ R is the mean extracted power and
pu : R

+ → R, t �→ pu(t) is the instantaneous
power produced by the PTO. The fminsearch
routine has been set for a maximum of 25 func-
tion evaluation to limit its computational time. The
influence of this limit on the control parameter
search are based on sensitivity analyses carried out
in previous studies by the authors [6,30].

The control parameters α and β obtained through
the different tuning methodologies are applied to the
time-domain model (10) of the WEC. Extracted power
and annual energy production of the WEC using these
control parameters is compared among the different
tuning methods. Additionally, the computational time
required for each tuningmethod is reported. All numer-
ical simulations and calculations are carried out using
MATLAB® 2022b, running on a computer equipped
with a 2.8 (GHz) 8-core Intel® processor and 16 (GB)
of RAM.

Table 1 summarizes the case studies that are addressed
and compared in this paper in terms of: structure of
the Controller (PI) with the correspondent Parameters
(α, and β), numerical Model (FD, SD or TD) used to
tune the controller, and the Tuning approach (IM or
fminsearch) used to derive the control coefficients.

4 Case study

In this section, we present a case study focusing on
a PA WEC to provide a concrete illustration of opti-
mal control synthesis and the design of an IM-based
controller for a nonlinear WEC. The PA is a widely
used technology in theWEC industry, suitable for both
nearshore and offshore environments. While the real
ocean environment inducesmultiplemotions inWECs,
such as surge, sway, heave, roll, pitch, and yaw, the
PA typically allows for power production only in the
heave DoF, while restraining other motions [56]. For
our specific case study, we consider an articulated PA
configuration, as shown in Fig. 3. This configuration
enables the PA to harness wave energy efficiently in
the heave motion. We provide a detailed description
of the equations governing the PA in TD. We explic-
itly present the hydrodynamics of the floater and the
internal mechanics, distinguishing between linear and
nonlinear contributions.

4.1 Point absorber nonlinear equations

The basis of WEC modelling is the Newton’s Sec-
ond Law, which relates the motion of moving parts
to the forces exerted onto the WEC system. A numer-
ical description of the PA WEC is presented here in
terms of its vertical excursion, namely heave motion
z : R+ → R, t �→ z(t). Then, the governing equation
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Table 1 Methods considered for tuning a PI controller for a
nonlinear WEC

Method Id Controller (Param.) Model Tuning

FDm PI (α and β) FD IM

SDm PI (α and β) SD IM

TDm PI (α and β) TD fminsearch

Param. Parameters

can be generically expressed by:

� :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mz̈(t) = f (t) + fi (t) − fu(t),

fi (t) = fr (t) + fh(t) + fd(t) + fe(t)

+ fs(t) + f f (t),

v(t) = ż(t),

(34)

where fr : R+ → R, t �→ fr (t) the radiation force,
fh : R+ → R, t �→ fh(t) the nonlinear hydrostatic
restoring force, fd : R+ → R, t �→ fd(t) the viscous
drag force, fe : R

+ → R, t �→ fe(t) the end-stop

z

ds

R

le

ls

End stop
damper

End stop
spring

Snap through
spring

PTO slider

Seal

PTO stator

Fig. 3 Illustrative picture of the PA studied in this work

force, fs : R
+ → R, t �→ fs(t) the snap-through

mechanism force, fu : R+ → R, t �→ fu(t) the control
force acted by the PTO, and m ∈ R

+ the device mass.
ż : R

+ → R, t �→ ż(t) and z̈ : R
+ → R, t �→

z̈(t) are the vertical velocity and acceleration of the
PA, respectively. The term fi : R+ → R, t �→ fi (t)
collects all the internal forces acting on the system.

4.1.1 Wave excitation force

As stated in Sect. 2.1, the time-series of thewave excita-
tion force f cannot be represented with a deterministic
description [40]. In particular, the wave field is mod-
elled at a fixed location in space and the wave PSD
Sηη is considered to be unidirectional and described
through the JONSWAP (Joint North SeaWave Project,
[35]). A single wave profile realization η̃ : R+ → R,
t �→ η̃(t) is supposed to be generated for a finite dura-
tion T and it is approximated locally following a ran-
dom amplitude scheme [42]:

η̃(t) =
N∑

w=1

η0w cos(ωwt + φw), (35)

where η0w ∈ R
+ is the wave amplitude, φw is the

random phase, uniformly distributed in [0, 2π ], and
ωw ∈ R

+ is the w-th wave frequency. N ∈ N repre-
sents the total number of frequencies with which the
wave elevation is approximated. Then, a single time-
domain realization of the wave excitation force f̃ is
derived from a single wave profile realization η̃ as fol-
lows:

f̃ (t) =
M∑

w=1

|E(jωw)|η0w cos(ωwt+φw +
 E(jωw)).

(36)

The complex coefficients E of our specific case
study are reported in Fig. 12 in “Appendix A”. The
operator 
 • represents the phase of •.

4.1.2 Hydrodynamic model

The description of Eq. (34) underlines a mathematical
representation of hydrodynamic loads based on Cum-
mins’ equation [36] and linear potential flow theory
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[63], extended by the inclusion of a nonlinear hydro-
static restoring force and a viscous effect for a more
reliable prediction of the hydrodynamic response.

The radiation force fr arises from the motion of the
spherical floater through thewater, that results in inertia
and friction components [36] that can be obtained as:

fr (t) = −A∞ z̈(t) −
∫
R+

hr (τ )ż(t − τ) dτ, (37)

where A∞ ∈ R
+ is the addedmass at infinite excitation

frequency, and hr : R
+ → R

+, t �→ hr (t) is the
(causal) radiation implulse response function [50]. As
the computation of the convolution integral can be very
time consuming, it is convenient to express this term
with a state-space representation:

ζ̇ (t) = Arζ (t) + Br ż(t),∫
R+

hr (τ )ż(t − τ) dτ = Crζ (t) + Dr ż(t),
(38)

where the vector ζ : R
r+ → R

r , t �→ ζ (t) repre-
sents the state vector that approximates the radiation
force contributions and r ∈ N is the approximation
order. The state-space matrices Ar ∈ R

r×r , Br ∈ R
r ,

Cr ∈ R
1×r and Dr ∈ R can be identified following the

approach proposed in [48].
Considering the case of a spherical shaped floating

PA, the nonlinear hydrostatic restoring force fh can be
expressed as a sum between a linear fh1 : R+ → R,
t �→ fh1(t) and a cubic fh3 : R+ → R, t �→ fh3(t)
term as follows [12]:

fh(t) = fh1(t) + fh3(t) = −kh1z(t) + kh3z
3(t), (39)

where kh1 ∈ R
+ and kh3 ∈ R

+ are the linear and
nonlinear restoring stiffness:

kh1 = πρgR2
s ,

kh3 = πρg

3
,

(40)

with ρ ∈ R
+ the water density, g ∈ R

+ the gravita-
tional acceleration, and Rs ∈ R

+ the floater radius.
Concerning the viscous drag force, the term fd mod-

els a nonlinear effect based on the Morison equation

[43]:

fd(t) = −1

2
CdρSż(t)|ż(t)| (41)

where Cd ∈ R
+ is the drag coefficient, derived exper-

imentally as a function of geometry, roughness, flow
regime and Reynolds number, and S ∈ R

+ the cross-
sectional area of the floater perpendicular to the z-axis.

4.1.3 Internal mechanics

Anend-stopmechanism is considered to restrictmotion
of the WEC floater between upper and lower bounds,
as shown in Fig. 3. The impact interaction between the
moving part (namely slider) and the end of the PTO sta-
tor (namely stop) is assumed to be elastic, introducing
a force linearly proportional to the relative penetration
between the slider and the stop. Moreover, to account
for non-elastic effects, a damping term is considered,
making it possible to model energy losses. The basic
end-stop model is described with the following equa-
tions:

fe(t) =

⎧⎪⎨
⎪⎩

− ke (z(t) − le) − beż(t) if z(t) ≥ le

0 if |z(t)| < le

− ke (z(t) + le) − beż(t) if z(t) ≤ −le
(42)

where le ∈ R
+ is the initial gap between the slider and

both upper and lower bound, ke ∈ R
+ is the contact

stiffness at the bounds, and be ∈ R
+ is the damping

coefficient at the bounds.
The snap-through mechanism is composed of two

linear springs mounted as illustrated in Fig. 3. Accord-
ing to the expression proposed in [12], the expression
of the snap-through action is obtained as:

fs(t) = −2ks

(
1 − ls√

z2(t) + d2s

)
(43)

where ks ∈ R
+ is the spring stiffness, ls ∈ R

+ the
un-stretched length of the spring, and ds ∈ R

+ the
horizontal projection of ls measured between the stator
wall and the vertical centre of it (see Fig. 3).
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4.1.4 Power take-off and friction effects

The PTO considered in this study consists of a linear
permanent-magnet synchronous machine connected to
the PA as showed in Fig. 3 [1,13]. The concept is to
control the generator torque as follows:

fu(t) =

⎧⎪⎨
⎪⎩

fu(t) if − fsat ≤ fu(t) ≤ fsat

fsat if fu(t) > fsat

− fsat if fu(t) < − fsat

, (44)

where fsat ∈ R is the saturation force limit to avoid
the generator overcoming its force limit.

A static friction is added due to the contact between
slider and seals that are installed at the interface
between the stator and the slider itself. Such an effect
is modelled as a Coulomb-like force regulated by the
speed direction:

f f (t) = − sign(ż(t))Ff , (45)

where Ff ∈ R stands for the friction force and the
operator sign(•) computes the sign of •.

5 Numerical models

In this section, we present a compact representation of
the three models considered in this study: TD model,
FD model, and SD model.

5.1 Time-domain model

Equation (34) can be rewritten in matrix form as:

	 : Mẍ(t) + Bẋ(t) + Kx(t) + �(x, ẋ, ẍ)

= f(t) − f(t),
(46)

including the kinematic variable of interest x : Rn+ →
R
n , t �→ x(t), ẋ : Rn+ → R

n , t �→ ẋ(t) its first time-
derivative, and ẍ : Rn+ → R

n , t �→ ẍ(t) its second
time-derivative. M ∈ R

n×n denotes the mass matrix,
B ∈ R

n×n the damping matrix,K ∈ R
n×n the stiffness

matrix, the nonlinear function � : Rn × R
n × R

n →
R
n , (x,Px, ẍ) �→ 
(x, ẋ, ẍ), f : Rn+ → R

n , t �→ f(t)
the external forces, and fu : Rn+ → R

n , t �→ fu(t)
the control action. n ∈ N is the system dimension. The

state vector x contains the floater displacement and the
radiation states:

x(t) =
[
z(t)
ζ (t)

]
. (47)

The nonlinear term� includes the nonlinear hydro-
static force, viscous damping, end-stop mechanism,
snap-through mechanisms, and friction force:

�(x, ẋ, ẍ) =
[
fh3 + fd + fe + fs + f f

0

]
. (48)

The linear terms, concerning the matricesM, B and
K, are defined as follows:

K =
[
kh1 Cr

0 −Ar

]
B =

[
Dr 0

−Br I

]
,

M =
[
m + A∞ 0

0 0

]
.

(49)

Forwhat regards the external force and control input,
f and fu read:

f(t) =
[
f (t)
0

]
, fu(t) =

[
fu(t)
0

]
. (50)

The terms 0 and I, used above, denote zeros and
identity matrices of appropriate dimensions.

5.2 Frequency-domain model

With reference to the nonlinear model previously dis-
cussed, the following assumptions and linearizations
are considered to obtain a FD model:

• The displacement z is considered small in magni-
tude.

• The added mass and radiation damping are defined
in FD and not in TD.

• Nonlinear hydrostatic effects, viscous forces, end-
stop and snap-through actions are considered to be
zero.

• The PTO system is assumed ideal, hence excluding
saturations and Coulomb friction from the model.

Under these assumptions, the kinematic variable of
interest for theFDmodel frameworkbecomes the heave
displacement z and its first and second time derivatives
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ż and z̈. Then, the system model can be represented in
a scalar form following the notation of Eq. (2):

H(jω) = 1

−ω2(m + A(ω)) + jωB(ω) + kh1
,

G(jω) = jωH(jω),

(51)

where A(ω) ∈ R
+ is the frequency-dependent added

mass, and B(ω) ∈ R
+ the frequency-dependent radia-

tion damping defined from Ogilvie’s relations [45] as:

A(ω) = A∞ − 1

ω

∫
R+

hr (t) sin(ωt) dt,

B(ω) =
∫
R+

hr (t) cos(ωt) dt.
(52)

The coefficients A and B, for the considered PA
device, are graphically represented in Fig. 12b, c in
“Appendix A”.

5.3 Spectral-domain model

Following the procedure outlined in Sect. 2.2, the lin-
earized matrices in (17) can be formulated by deriving
the nonlinear term of Eq. (48) with respect to system
states (z, ż, z̈) as follows:

∂
(z, ż, z̈)

∂z
= ∂ fh

∂z
+ ∂ fe

∂z
+ ∂ fs

∂z
,

∂
(z, ż, z̈)

∂ ż
= ∂ fd

∂ ż
+ ∂ fe

∂ ż
+ ∂ f f

∂ ż
,

∂
(z, ż, z̈)

∂ z̈
= 0.

(53)

Then, the explicit formulation of K0, B0, and M0

concerning the PA under study are reported in Eq. (54).
In the sake of clarification, Eq. (54) have been derived
by substituting Eq. (53) in Eq. (17) and by applying
Eq. (16) to the present case study. It is straightforward
to see how each term depends on both the nature of a
specific nonlinear effect and on the magnitude of the
PA displacements and velocity, synthesised in terms of
the zero-order moments mz ∈ R

+ and mż ∈ R
+.

K0 = −πρgmz + kes

(
1 − erf

(
les√
2mz

))

+
∫
R

2kst ((z2 + d2st )
3
2 − d2st lst )

(z2 + d2st )
3
2

1√
2πmz

e− 1
2

z2
mz dz, B0

=
√
8mż

4π
CdρS + bes

(
1 − erf

(
les√
2mż

))

+ Ff

√
2

πmż
, M0 = 0. (54)

The results in Eq. (54) highlight a crucial aspect of
statistical linearization. The linearized coefficients are
sensitive to the magnitudes of motion, represented by
the variancesmz andmż . Essentially, as the amplitudes
of motion, denoted by displacement z and velocity ż,
increase, the corresponding linearized coefficients also
increase (or decrease) in magnitude. Typically, nonlin-
ear effects dominate when the system exhibits substan-
tial oscillations, causing the system behavior to devi-
ate from its linear representation. From a mathematical
perspective, the terms K0, B0, and M0 act as correction
coefficients that adjust by a certain factor, depending
on the extent of z and ż. This adjustment is made con-
sidering the expected value of the nonlinear function in
Eq. (48).

The PA can be effectively represented in the SD
using the following expressions:

Heq (jω)

= 1

−ω2(m + A(ω) + M0) + jω(B(ω) + B0) + kh1K0
,

Geq (jω) = jωHeq (jω).

(55)

5.4 Model comparison

Before delving into the primary focus of this study, we
conduct a comparison among the three modelling tech-
niques presented in this section. The aim is to verify the
validity of the SD representation and assess its accuracy
in predicting the PA motion. The buoy is considered to
be excited by a typical sea from the Pantelleria test
site (Italy) [41], in which waves are characterized by a
JONSWAP spectrum, with peak period Tp ∈ R

+, sig-
nificant wave height Hs ∈ R

+, and peak enhancement
factor γ ∈ R

+, as reported in Table 2. These specific
wave conditions are considered to excite the PA with
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Table 2 Parameters of irregular wave conditions based on JON-
SWAP spectra

Sea state Id Tp (s) Hs (m) γ (–) Ew (kW/m)

Sea state s1 4 1.2 3.3 2.8

Sea state s2 6 2 3.3 11.8

Sea state s3 8 3.3 3.3 43.5

sea-states with increasing energy content Ew ∈ R
+. In

particular, sea states s1, s2 and s3 are considered, low,
medium and high energetic seas, respectively.

This work initiates simulating the PA in TD by solv-
ing Eq. (46) via Runge–Kutta 4th order scheme. R=50
realizations with a duration of1 T=600 (s) of the input
force f are generated with both random phase and
amplitude [42]. Then, the WEC is simulated in FD
and SD by models (51) and (55), respectively. The
PA is controlled with a PI controller, and the nominal
parameters used for this comparison are summarized in
Table 5 reported in Appendix A. This systematic pro-
cedure, repeated for each sea state reported in Table 2,
allows for the verification of the accuracy of both FD
and SD models with respect to the TD counterpart.

Figure4 depicts the PDF of the heave motion
obtained from a unique FD simulation (grey solid),
a unique SD simulation (blue dashed), and averaging
a serie of 50 TD simulations (black solid). The PDF
obtained via SD simulation accurately traces the aver-
age PDF obtained through TD simulations for all con-
sidered sea states. A slight decrease in accuracy of the
SD appears for sea state s3, in which the motion of
the PA is exaggerated. If the device is excited by severe
wave conditions, experiencing large displacements, the
SD model becomes less accurate, showing a small gap
with respect to the TD model, albeit acceptable. More-
over, the TD results are fairly comparable with the
Gaussian distribution obtained via SD technique. The
similarity achieved enables one to rely on the Gaussian
distribution assumption. On the other hand, the FD is
not able to capture the PA behaviour, not even for the
less energetic sea state (s1).

Table 3 presents the zero-order moments of the PA
vertical displacement and the mean CPU time required

1 The impact of the number of realizations R and of the sim-
ulation time T on the system performances is not within the
scope of this research. Parameters R and T has been chosen to
obtain statistically consistent results for the upcoming perfor-
mance assessment.

for a single simulation using different numerical mod-
els. The mean CPU time is calculated by averaging
1000 simulations for each model. The results demon-
strate that the SD technique exhibits excellent agree-
mentwith theTD simulation in terms ofmz . This agree-
ment is notable even in sea state s3, where nonlinear
contributions are expected to be significant compared
to linear effects.

Regarding computational efficiency, there are sig-
nificant differences among the three models. As antic-
ipated, the FD model outperforms the other two, with
an average simulation time of less than 1 (ms). The SD
model is approximately one order of magnitude slower
than the FD model but still two orders of magnitude
faster than the TD technique. However, considering the
accuracy achieved by the SD framework compared to
its TD counterpart, the use of the SD technique for
simulating the nonlinear PA is justified, despite the FD
model being notably faster. It is important to note that
the computational time associated with a single SD
simulation remains relatively small compared to FD
and TD models. Furthermore, note that the reported
computational time for the TD model corresponds to a
single wave realization, and to obtain accurate statisti-
cal results, such as the mean PDF of the heave motion
shown in Fig. 4, 50 realizations (R=50) are required.

6 Performance analysis

The results and methodologies presented in Sect. 2 and
3 are applied to the specific case of the PA described
in Sect. 4.1 and 5. The analysis aim to compare the
tuning methods discussed in Sect. 3.2 in terms of mean
extracted power and annual energy production, as com-
puted using the nonlinear TD model. Additionally, the
computational time required for tuning the controllers
is compared to evaluate the computational burden of
each tuning method.

6.1 Power extraction and CPU time

First, the PI parameters, i.e. α and β, are tuned via
FDm, SDm, and TDm and applied to the nonlinear TD
model. The PTO force can be expressed as a piecewise
function depending on α, β, and fsat , as follows:
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(a) PDF of the heave motion obtained simu-
lating the sea-state 1.

(b) PDF of the heave motion obtained simu-
lating the sea-state 2.

(c) PDF of the heave motion obtained simu-
lating the sea-state 3.

Fig. 4 Comparison of different PDF of the heave motion, com-
puted averaging R=50 TD simulations (black solid), obtained via
FDmodel (grey solid), and obtained via SDmodel (blue dashed).

The buoy is considered to be excited by the three waves reported
in Table 2: a concerns sea state s1, b sea state s2, and c sea state
s3

fu(t) =

⎧⎪⎨
⎪⎩

fu(t) if − fsat ≤ αż(t) + βz(t) ≤ fsat

fsat if fu(t) > fsat

− fsat if fu(t) < − fsat

.

(56)

Then, the extracted power is derived from the non-
linear TD model controlled via Eq. (56), as computed
integrating in time the product of the velocity compo-
nent of the PA and the PTO force, as follows:

p = 1

T

∫ T

0
ż(t) fu(t) dt. (57)

Tobeginwith the correspondingperformance assess-
ment, Fig. 5 shows the extracted power for each of the
tuning method (see Sect. 3.2), for the three irregular
waves described by a JONSWAP spectrum with data
summarized in Table 2. A number of conclusions can
be directly elucidated from Fig. 5, which are discussed
in the following. At first glance, it is clear that tun-
ing the PI controller with SDm outperforms the use
of FDm. This is, naturally, highly consistent with the
quality of the approximating TD solutions of the SD
model with respect to the FD one. In particular, as
briefly demonstrated in Sect. 5.4, the accuracy of the
SD is remarkably higher than the FD in modelling the
TD solution in terms of output statistics. The ‘superi-
ority’ of SDmwith respect to FDm sits on the force-to-
velocity response Geq (see Eq. (55)) used to identify
the PI parameters, i.e. α and β (see Eq. (32)), being

Table 3 Variance of the PA motion and velocity, and computa-
tional time required for simulations for each sea state and numer-
ical model considered

Sea state Id Model mz (m2) CPU time (s)

5emSea state s1 FD 0.151 0.32·10−3

SD 0.075 5.92·10−3

TD 0.075 0.715

5emSea state s2 FD 0.333 0.33·10−3

SD 0.181 4.32·10−3

TD 0.192 0.687

5emSea state s3 FD 0.785 0.30·10−3

SD 0.356 4.61·10−3

TD 0.373 0.667

The mean CPU time has been computed averaging the CPU time
to perform 1000 simulations

capable to model the steady state behaviour of the non-
linear TD model. On the other hand, TDm is the most
effective in adjusting α and β. Specifically, the use of
an optimization routine,fminsearch in our concrete
example, allows to further improve energy production,
especially for high energetic seas (e.g. sea state s3).
This rationale is justified by the fact that the optimiza-
tion process is conducted directly on the nonlinear plant
to effectively locating an optimal condition. Addition-
ally, FDm and SDm incorporate a single interpolation
point ωi = 2π/Tp, leading to suboptimal results when
compared to TDm that optimises the extracted power
via exhaustive search. The selection of ωi = 2π/Tp

as interpolation point is herein motivated by the nature
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Fig. 5 Extracted power
(left) and CPU time (right)
derived from the three
tuning methods for the three
example sea states. The red
axis concern the ratio
between the performances
obtained with FDm and
SDm w.r.t TDm

of the PA operating conditions, notwithstanding there
is no theoretical reference that clearly asserts that this
is the ideal decision. For instance, we assume in the
following that the PA is subject to a stochastic sea-
state, fully characterised in terms of a PSD with a peak
period of Tp. An irregular sea state is composed of dif-
ferent frequencies and, depending on the broadness of
the wave PSD, the resultant WECmotion will exhibit a
certain range of frequency components, many of which
differ from ωi = 2π/Tp. Then, the interpolation point
ωi = 2π/Tp could no longer be a proper and hence
this choice must be done considering different spec-
trum parameters, e.g. peak enhancement factor γ , and
others interpolation points, e.g. mean energy period or
a series of selected frequencies [26,27].

To further quantify the energy absorption differ-
ences, Fig. 5 reports the ratio between the extracted
power achieved with FDm and SDm and the value
obtained with TDm (dashed red line). It is shown how
SDm approaches a unitary ratio since the extracted
power is almost the same of TDm. On the other hand,
the performances of FDm remarkably drop when the
sea state becomes more energetic and the nonlineari-
ties of the system are dominant, making the FD mod-
elling inaccurate. Concerning the computational bur-
den, Fig. 5 reports the CPU time to accomplish the
control tuning for a single sea state. We can find that
TDm ranks in ‘last position’ with respect to the CPU
time being far from the CPU time guaranteed by FDm
and SDm. It is straightforward to see that FDm is the
most efficient from a computational perspective, allow-
ing the calculation of the controller parameters α and
β in, almost, 10−3 (s). SDm takes about 10−2 (s) to
tune the PI controller. Then, TDm gives the worst per-
formance in terms of computational time by taking, on
average,more than 10 (s) to optimise the control param-

eters. Figure5 empathises the CPU time reduction of
FDm and SDm with respect to TDm (dashed red line),
showing that SDm are FDm are three to four order of
magnitude faster than TDm, respectively.

6.2 Annual energy and CPU time

In order to expand the analysis on the effectiveness of
each tuning method, the annual energy production of
the PA is computed. The chosen installation site for
the PA is located near Pantelleria island in the Mediter-
ranean Sea (Italy). Based on the information provided
in Fig. 6, the waves that are most representative for
assessing the PA power generation capabilities have
peak periods ranging from 3 to 10 (s), and significant
wave heights ranging from 0.5 to 4 (m).

The three methods are tested across a broad spec-
trum of wave frequencies and heights, encompassing
all possible sea conditions pertinent to the installation
site of interest. The annual energy production of the PA
is computed as follows:

E =
∑

pT . (58)

Equation (58) concerns the sum of the average pow-
ers extracted fromeachwave considered in the analysis.

The performance evaluation, focusing on the dif-
ferences in energy extraction with respect to TDm, is
depicted in Fig. 7. As anticipated, the percentage vari-
ations in terms of extracted energy between SDm and
TDm are minimal, ranging from 0 to 10 (%) for low-
energy sea states and up to amaximumof 10–20 (%) for
more energetic sea states. Another anticipated outcome
pertains to the performance disparity betweenFDmand
TDm. From the figure, it is evident that TDm outper-
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Fig. 6 Qualitative occurrences and energy scatter diagram for
the reference site close to Pantelleria island (Italy)

Fig. 7 Percentage difference on annual energy extraction for
all the Pantelleria sea states. TDm has been considered as the
reference method

forms FDm by up to 70 (%) in sea states where non-
linearities dominate. Specifically, FDm yields accept-
able energy extraction differences (ranging from 0 to
20 (%)) compared to TDm only in sea states character-
ized by peak periods between Tp = 4 s and Tp = 6
(s), and significant wave heights between Hs = 0.5
(m) and Hs = 2 (m). It should be noted that if the con-
trol action is not appropriately adapted to the prevailing
sea state, the WEC motions may become exaggerated,
causing a decrease in the accuracy of the FD represen-
tation and resulting in suboptimal control parameters
and poor energy extraction performance

Quantitatively speaking, the annual energy pro-
duced by each method are reported in Table 4. SDm
leads satisfactory results in term of energy extrac-
tion maximization, approaching the energy obtained
through TDm that still remains the more effective to
design a PI controller for the PA studied. In partic-
ular, SDm leads to a productivity 11 (%) lower than
TDm. On the contrary, FDm demonstrates its draw-
backs in optimizing the energy extraction capabilities

Table 4 Annual energy produced and elapsed time to calculate
it

Method Energy (MWh/y) CPU time (s)

FDm 149.72 0.022

SDm 226.38 0.160

TDm 254.59 286.04

The percentage differences are calculated in respect to the data
obtained with TDm

of the converter, underestimating the annual energy
extracted of almost 41 (%). The process of comput-
ing the annual energy produced by a WEC is (usu-
ally) carried out during the design of a WEC, involv-
ing a large number of evaluated individuals, which, in
order to be compared, require the calculation of their
potential in terms of extracted energy. From a CPU
time perspective, Table 4 shows how the calculation
of the annual extracted energy for an individual sys-
tem through TDm requires a significant computational
expenditure of approximately 286 (s). In contrast, SDm
takes just over a tenth of second, precisely 0.160 (s),
to complete the calculation of annual productivity. As
expected, FDm is the most computationally efficient,
as it outperforms SDm by (almost) one order of magni-
tude, performing the calculation of the energy produced
by the PA in 0.022 (s). To illustrate the impracticality
of using TDm in the design of the PA under study,
consider the following example: suppose we aim to
evaluate 11,250 individuals as part of an optimization
problem with 12 free parameters, utilizing a single-
objective genetic algorithm set to consider 150 gener-
ations in which 75 individual per generation are eval-
uated [6]. In such a scenario, FDm and SDm would
require approximately 9.8 (s) and 72 (s), respectively, to
complete the evaluations. In contrast, employing TDm
would necessitate a staggering time of about 35.8 (h),
assuming the optimization problem is solved on a high-
performance computing (HPC) cluster-type computer
equipped with 25 physical CPUs. This stark contrast in
computational time highlights the infeasibility of uti-
lizing TDm in practice, emphasizing the advantages of
FDm and SDm in terms of computational efficiency.

6.3 Numerical models validity and controller design
considerations

The observed effectiveness of SDm in maximizing
annual productivity, and its computational efficiency,
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warrant further analysis to understand the reasons
behind its success compared to FDm, and to justify
the gap in performance compared to TDm.

The accuracy of the numerical model plays an
important role, since the ability of a numerical rep-
resentation in reproducing the realistic behaviour of
a WEC naturally increases the optimality of the con-
troller identification process. In our concrete example,
the SD model ensures a remarkable accuracy in esti-
mating the PA behaviour, both in low and high ener-
getic sea conditions, as demonstrated previously (see
Sect. 5.4). Aiming to demonstrate further the accuracy
of the SD representation under optimal control condi-
tions, numerical simulations has been conducted con-
sidering sea state s2, while applying the optimal con-
trol parameters obtained via TDm to all the numerical
models proposed, i.e. FD, SD and TD. The output, in
terms of PDF of the heave motion (z) and heave rate
(ż), are depicted in Fig. 8. It can be argued that the SD
model accurately predict the statistical behaviour of the
PA also under optimal control conditions, in which the
WECmotion is exaggerated. Upon initial inspection, it
is evident that the PDF of the heave motion, as shown
in Fig. 8, is broader compared to the PDF depicted
in Fig. 4. This observation is expected as the energy-
maximizing control conditions induce larger motion
amplitudes compared to sub-optimal control configu-
rations. Additionally, the PDF obtained from the SD
model closely follows the PDF derived from TD sim-
ulations, demonstrating the SD model ability to accu-
rately capture the system response. A slight dissimi-
larity appears in the heave rate PDF if the SD and TD
results are compared. In particular, the TD one diverges
from a Gaussian distribution due to the high nonlinear-
ities that appears in optimal control conditions.

Figure9 reports stiffness anddamping forces, depend-
ing on the heave motion and rate, respectively, with the
aim to compare linear and nonlinear contributions. At
a first glance, the nonlinear forces are of the same order
of magnitude of the linear ones, specially for what con-
cerns the damping contributions. The nonlinear compo-
nentsmanifest themselvesmore as a damping contribu-
tion and, as can be seen in Fig. 9, the end-stop and vis-
cous damping components are of the same magnitude
as the radiation damping and about half the magnitude
of the damping acted by the PTO. This result explains
why the heave rate pdf diverges more from a Gaus-
sian distribution than the heave motion pdf. Another
important aspect to note in Fig. 9 concerns the sign of

Fig. 8 Pdf of the heave motion (left) and heave rate (right)
obtained simulating the sea-state s2 under optimal control cons-
ditions identified via TDm

Fig. 9 Time traces of linear and nonlinear forces concerning
both stiffness (up) and damping forces (down). The time traces
refer to the sea state s2 and a PI tuned with TDm

the stiffness component realised by the PTO. It can be
seen that it is of different signwith respect to the hydro-
static stiffness, since the obtained β coefficient is less
than zero. Practically, the system’s resonance period is
shifted to higher values, and its resonance frequency
decreases. This result is due to the fact that the PA con-
sidered as a case study has a resonance frequency equal
to 1.41 (rad/s), as can be seen in Fig. 12 in “Appendix
A”, while the IM-principle tunes the PTO stiffness to
make theWEC resonant at 2π/Tp=1.04 (rad/s), for the
case of sea state s2. This result can be further appreci-
ated in Fig. 10. This figure shows the optimal parame-
ters α and β identified by the three calibrationmethods.
It can be seen that the stiffness coefficients β are all of
negative sign.
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Fig. 10 Influence of the control parameters for the sea state s2.
The results of the three methods are reported with filled dot. The
iso-level indicates the ratio between the extracted power obtained
with a generic pair of α and β and the extracted power achieved
with TDm

To further extend the analysis on the ability of each
tuning method to identify optimal control parame-
ters, Fig. 10 reports some iso-levels indicating the ratio
between the extracted power obtained with a generic
pair of α and β, and the maximum achievable power.
The PI parameters obtained via TDm (pointed with a
black dot) almost coincide with the optimal ones (indi-
cated with a yellow marker and labelled as True max-
imum). The True maximum was obtained by testing a
dense sequence ofα andβ values around the point iden-
tified by the TDm. These exhaustive parametric simu-
lations ensured a thorough exploration of the parame-
ter space, allowing to accurately identify the absolute
maximum for the sea state s2. Concerning FDm and
SDm, these are able to identify the β coefficient better
than the α coefficient, approaching the result achieved
with TDm. This outcome demonstrates how the cali-
bration principle based on IM theory provides satisfac-
tory results in calibrating the resonance of a PA system.
The same cannot be said for the identification of PTO
damping, namely α. It can be seen from Fig. 10 that
the coefficients α identified with FDm and SDm differ
profoundly from the optimal one identified with TDm.
This inaccuracy can be explained by the fact that non-
linearities associated to the heave rate prevail over lin-
ear effects, as demonstrated by the time traces shown in
Fig. 9, and thus the IM-based calibration process does
not return the optimal damping coefficient. On the other
hand, the sensitivity of the PA to the magnitude of the
PTO damping seems to be very low since, while SDm
synthesize a coefficient α equal to about half of the one
obtained from TDm, the extracted power achieved is
quite similar to the optimal one (see Fig. 5).

Figure11 shows a quantitative comparison of the
coefficients α and β identified by the three proposed
methods. As already mentioned, FDm and SDm are
excellent for identifying the stiffness coefficient of the
PTO β but not for choosing its damping parameter
α. In particular, SDm accurately design the stiffness
coefficient β with (almost) no error in respect to TDm
for all the three sea-states. On the contrary, FDm and
SDm lack in identifying the coefficient α, giving error
between 30 (%) and 75 (%) in respect to TDm. Over-
all, SDm gives lower error in identifying the control
parameters for all the sea-states considered.

7 Conclusions

The problem of tuning a PI controller for a nonlinear
WEC is solved with three different tuning methods.
The first method (FDm) consists in deriving the (non-
causal) IM energy-maximising controller via linear FD
modelling and then interpolate it to derive a causal and
implementable controller that satisfies the IMcondition
for one specific wave frequency. The second method
(SDm) combines the use of the SDmodelling technique
and the IM-principle to find the controller parameters,
relying on a more accurate PA representation in respect
to the FD one. Concerning the third method (TDm),
the controller is tuned via optimization: a cost function
to be maximized is defined, i.e. extracted power, and
different control parameters are imposed iteratively to
the nonlinear TD model until the optimization process
converges to a pre-described condition.

A critical comparison is provided not only in terms
of power and annual energy absorption, but also in
terms of CPU time needed to accomplish each tun-
ing process. The results demonstrate how the novel
method (SDm) outperforms the tuning provided by
the FD model in terms of extracted energy, due to a
better accuracy of the SD model, while approaching
the power extraction performances of the tuning based
on optimization routine. Moreover, the new technique
abruptly reduces the computational burden since it need
a single SD simulation to tune the controller, that is
a specific purpose of this study, hence directly avoid-
ing any numerical optimization routines. To sum up,
despite a slightly lack in estimating the ‘true’ energy-
maximizing control parameters, especially for ener-
getic sea state, SDm is considered a valid method to
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Fig. 11 Coefficient α (left)
and coefficient β (right)
identified with the three
tuning methods for the three
example sea states. The red
axis concerns the
differences obtained with
FDm and SDm w.r.t TDm

synthesize a PI controller for nonlinear WEC in a com-
putational efficient way.

The new methodology proposed is particularly suit-
able for the initial stages of WEC development, which
(usually) employ global optimization routines that
requires a high computational burden to evaluate many
WEC architectures and components. Together, these
results provide important insights towards an optimal
and time-efficient control tuning, ideally enabling the
use of nonlinear TDmodel also at early stage of design-
ing WECs, thus avoiding computationally demanding
optimization routines to solve for energy-maximizing
control solution. It’s crucial to note that utilizing the
SDmodel instead of the TDmodel leads to sub-optimal
solutions in control parameter identification due to the
inability to precisely replicate the nonlinearmodel. The
SDm, which suggests using only one interpolating fre-
quency to derive PI parameters, introduces an addi-
tional error in this identification. Moreover, the SDm
operates without awareness of the maxima and minima
attainable in the TD simulation. This lack can further
contribute to sub-optimal calibration, as crucial infor-
mation regarding the system’s dynamic range may be
overlooked. These aspects collectively underscore the
importance of carefully considering the choice of mod-
eling approach and calibration methodology to ensure
accurate control parameter identification.

Future works will apply the novel procedure to
design controllers in broadband scenarios, using more
advanced interpolation techniques to approximate the
optimal IM-based controller within a frequency range,
rather then at a specific frequency. In particular, future
studies endeavours will delve into the study of both
feedback and feedforward controllers employing the

LiTe-Con and LiTe-Con+ architectures, further explor-
ing their applicability in WEC systems.
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A Point-absorber parameters

In this work, a conceptual PA is used to prove the per-
formances of different technique for tuning a PI con-
troller intended to maximize the annual energy extrac-
tion. Table 5 gives the PA parameters used in the simu-
lations, which follows the parameters reported in [12].
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Table 5 Parameters of the
point absorber under study

Quantity Symbol Unit Value

Sphere mass m (t) 26.4

Sphere radius Rs (m) 5

Cross-sectional area S (m2) 78.5

Water density ρ (kg/m3) 1025

Viscous drag coefficient Cd (–) 0.5

End-stop distance le (m) 1

End-stop stiffness ke (kN/m) 250

End-stop damping be (kN/m/s) 50

Snap-through lenght ls (m) 1

Snap-through diameter ds (m) 1

Snap-through stiffness ks (kN/m) 100

Rated PTO damping α (kNs/m) 25

Rated PTO stiffness β (kN/m) 50

Saturation force fsat (kN) 5000

Coulomb damping force Ff (kN) 10

(a) Froude-Krilov coe cients,
magnitude and phase.

(b) Added mass coe cients.

(c) Radiation damping coe -
cients.

(d) RAO of the heave DoF, magnitude and phase.

Fig. 12 Frequency-dependent a Froude–Krylov and diffraction
complex coefficents reported in terms of magnitude |E | and
phase 
 E , b added massA, c radiation damping B, and d heave
RAO reported in terms of magnitude |RAO| and phase 
 RAO

The hydrodynamic coefficients, that are derived via
boundary element method (BEM) software, such as
NEMOH [2], are reported in Fig. 12. In this figure,
E represets Froude–Krylov and diffraction complex
coefficents, A and B added mass and radiation damp-
ing coefficients, respectively. In Fig. 12, the response
amplitude operator (RAO), referred to the heave DoF,
has been reported in terms ofmagnitude and phase. The
RAO is defined as:

RAO(jω) = E(jω)

−ω2(m + A(ω)) + jωB(ω) + kh1
.

(59)
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