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Abstract In this work we propose the Step Matrix
Multiplication based Path Integration method (SMM-
PI) for nonlinear vibro-impact oscillator systems. This
method allows the efficient and accurate determinis-
tic computation of the time-dependent response prob-
ability density function by transforming the corre-
spondingChapman–Kolmogorov equation to amatrix–
vector multiplication using high-order numerical time-
stepping and interpolation methods. Additionally, the
SMM-PI approach yields the computation of the joint
probability distribution for response and impact veloc-
ity, as well as the time between impacts and other
important characteristics. The method is applied to a
nonlinear oscillator with a pair of impact barriers, and
to a linear oscillator with a single barrier, providing rel-
evant densities and analysing energy accumulation and
absorption properties. We validate the results with the
help of stochastic Monte-Carlo simulations and show
the superior ability of the introduced formulation to
compute accurate response statistics.
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1 Introduction

Vibro-impact oscillator systems have gained consider-
able attention in the scientific community due to their
theoretical and practical significance in describing a
wide range of problems in engineering. The impacts
in such systems have been widely recognised to sig-
nificantly influence system responses via various non-
linearities, such as grazing bifurcations [1,2], chat-
ter, sticking and chaos [3] with a profound effect on
the performance and safety of mechanical structures.
These nonlinear phenomena are mostly undesirable
in applications, as they lead to complex behaviour,
acoustic noise, increased maintenance, and even to
system failures. Therefore, in most applications, we
aim to avoid impacts, yet in many mechanical systems
they inevitably occur due to tolerances e.g. in gears
[4], ageing, wear, design-specific requirements (seis-
mic mitigation gaps introduced to uncouple structure
from the environment [5]) or the targeted applications
involving impact interaction (hammer drills, jackham-
mers, deep drilling). There are also applications that
utilise the nonlinearities introduced by intentionally
designed impacts, e.g. in energy harvesting and vibra-
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tion damping as they expand the operational bandwidth
[6]. Therefore, accurately predicting and controlling
the behaviour of vibro-impact systems is vital for opti-
mising performance, ensuring reliability, and achieving
desired system characteristics in practical engineering
applications.

The inclusion of stochastic effects in mechanical
systems is essential for capturing the inherent uncer-
tainties present in real-world conditions. Uncertain-
ties can arise from variations in system properties [7],
external disturbances [8], or environmental factors [9],
among others. The consideration of stochastic effects
enables a more realistic representation of the system’s
behaviour and facilitates the modelling and analysis
of these uncertainties. In mechanical systems, stochas-
tic effects can significantly influence the system’s sta-
bility [10], energy dissipation [11], energy harvest-
ing [12] and dynamic response [13]. Understanding
and quantifying these stochastic effects are crucial for
robust design, risk assessment, and effective control
strategies in engineering applications. In the context
of vibro-impact systems, the significance of stochas-
tic effects becomes particularly pronounced. The com-
bination of intermittent impacts and stochastic influ-
ences introduces additional complexity and challenges
in the analysis and prediction of system behaviour.
Stochastic effects can give rise to phenomena such as
stochastic resonance, amplification or suppression of
vibrations, and transitions between different impact-
induced behaviours. Investigating the role of stochas-
tic effects in vibro-impact systems is essential for a
comprehensive understanding of their dynamics under
uncertain conditions, enabling more accurate predic-
tions and improved control strategies in practical engi-
neering scenarios.

One of the most important characteristics of the
response statistics of a dynamical system to random
effects is the time evolution of the probability den-
sity function (PDF) for the state variables [14]. By
obtaining a response PDF, one can infer other important
properties of the dynamical system, such as moments
and reliability, and can improve the decision-making
processes, where relevant. Concise and efficient tools
for the description and the quantitative modelling of
stochastic dynamical systems is stochastic differential
equations (SDEs).

When modelling stochastic systems with impacts
using SDEs there are several potential methods to
obtain the PDF of the state variables. In the Monte-

Carlo (MC) method, path-wise approximations are
obtained through the numerical integration of the
SDE [15,16], even combined with stochastic averaging
[17,18] or with the method of multiple scales [19]. As
it is a stochastic approach, and we need a large number
of approximated realisations to obtain a good approxi-
mation for the PDF. The advantages of this method are
its relative simplicity and its generalisation for a large
set of problem classes. However, due to the stochastic
nature of the MC method, we might need a large num-
ber of sample paths to properly characterise the statis-
tics of the investigated system, and some uncertainty
and noise remain in the results. There are also deter-
ministic methods such as the Fokker–Planck equation,
where we have to solve a corresponding partial differ-
ential equation to obtain the response PDF. In general,
even for smooth systems, there is no explicit analytical
solution for this equation, except for a small number
of special cases. Thus we require a numerical approx-
imations, such as finite element [20,21] or finite dif-
ference [22] methods. However, due to the continuity
conditions, theFokker–Planck equation does not gener-
alise well to non-smooth settings, such as time-varying
impacts, except under certain special transformations
[23].

Another formulation, based on the law of total prob-
ability, is the Chapman–Kolmogorov (CK) equation.
Similarly to the Fokker–Planck equation, we have to
rely on numerical methods to solve it. A possible
approach to estimate the transitional probability den-
sity function (TPDF) is a generalised cell mapping
(GCM), where the region of interest is divided into
cells, and the probability of transitioning from one
cell to another is computed through MC simulations
[24,25]. This method generalises well for a wide range
of systems, but it introduces stochastic perturbations.
Another approach, the Wiener Path Integral method,
uses a variations formulation and the most probable
path to approximate the TPDF [26–29]. This method is
exceptionally efficient at approximating the TPDF and
thus can be used directly to determine the steady-state
PDF, however, it does not generalise to systems with
impacts. The Path Integration (PI) method can address
this gap while maintaining efficiency. This method
utilises the PDF of explicit numerical time stepping
schemes (e.g. Euler-Maruyama) to approximate TPDF.
This consideration removes both the need for discrete
cells and the negative effects of the stochastic pertur-
bations, that is characteristic to the GCM, while not
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compromising on generality. With the help of the PDF
of numerical schemes we can directly approximate the
TPDF for a large number of system classes, includ-
ing non-smooth dynamical systems.Most formulations
of the numerical evaluation of PI solutions of the CK
equations lead to a computationally expensive iterative
method [30–35], where the integral in the CK is eval-
uated directly while using interpolation for the spatial
discretisation of the PDF. There are efforts to acceler-
ate this computation that maintain the general nature
of the method. A computational approach uses GPUs
[30,36] to evaluate an iteration, greatly increasing the
performance of the method as it is a highly parallelis-
able task without restrictions on the problem investi-
gated. The step matrix multiplication-based path inte-
gration (SMM-PI) approach accelerates the computa-
tions algorithmically [37] by formulating the evaluation
of the CK equation as a matrix–vector multiplication.

This work aims to expand the SMM-PI method
for vibro-impact oscillators. This method was already
shown to be able to uncover the response PDF of non-
smooth [38] linear vibro-impact systems [39], there-
fore it is an ideal candidate for the efficient analysis
of nonlinear vibro-impact systems as well. We gener-
alise the SMM-PI method for vibro-impact oscillators,
and additionally, we use the resulting time-dependent
response PDF to obtain important statistical character-
istics of such oscillators, including the impact velocity
distribution, the time between impacts, and the energy
accumulated and absorbed by the system.

The paper is organised as follows. In Sec. 2 we
describe the class of vibro-impact oscillators under
consideration and give their equations of motion. Next,
in Sec. 3 we derive the step matrix multiplication
path integration (SMM-PI) method for the PDF of
the vibro-impact oscillators and the impact velocity
distribution. Furthermore, in this section, we use the
SMM-PI formulation to obtain also the mean first
impact time for such systems in order to compute
the time between impacts. Then, in Sec. 5 we inves-
tigate the vibro-impact Van der Pol and linear oscil-
lators and compare the results to Monte-Carlo simu-
lations. The analysis includes the computation of the
evolution of the response PDF, the impact velocity
PDF, the energy accumulated within the system, the
time between impacts and the energy absorbed by the
impacts. Additionally, we discuss how to address a
local error of the method through the simple exam-
ple of a linear oscillator with a single impact barrier.

Fig. 1 Example mechanical model for the vibro-impact oscil-
lator with two impact barriers. Here f (x, v, t) = R(x, v) +
Fdet(x, v, t) and g(x, v, t) = Fstoch(x, v, t)

Finally, in Sec. 6 we draw conclusions and summarise
the results of this paper.

2 Stochastic vibro-impact oscillators

The governing equation of motion of a single-degree-
of-freedom vibro-impact system (sketched in Fig. 1) is

dx(t) = v(t)dt

dv(t) = f (x(t), v(t), t)dt + g(x(t), v(t), t)dW (t)

(1)

if x(t) ∈ S, and

v+(τ ) = −r v−(τ ) (2)

if x(τ ) ∈ ∂S. Here x and v denote the displacement
and velocity of the oscillator, that evolve in time t ,
v−(τ ) and v+(τ ) are the velocities just before and after
the impact at time τ , r is the coefficient of restitution
(CoR), S denotes the region of smooth motion and ∂S
denotes its boundaries, that we refer to as impact barri-
ers. The functions f and g are smooth functions, where
f (x, v, t) incorporates nonlinear behaviour (e.g. in
case of a mechanical oscillator this is the nonlinear
restoring and damping forces) while g is the state vary-
ing noise intensity. In this work we focus on vibro-
impact oscillators of two types: with a single impact-
ing barrier where S = (ξL,∞) and ∂S = {ξL}, and
with two impacting barriers, where S = (ξL, ξR) and
∂S = {ξL, ξR}. Here x = ξL is the location of the left
boundary and x = ξR is the right boundary.
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3 Path integration method

To investigate the response statistics of the vibro-
impact oscillator (1) firstwe compute thePDF p(x, v, t).
As the stochastic process (1) isMarkovian, we describe
the time evolution of p(x, v, t) with the Chapman–
Kolmogorov (CK) equation, that we solvewith the help
of the SMM-PI method. In the case of the vibro-impact
oscillator (1) the CK equation has the form of

p(x, v, tn+1) =∫
R

∫
S
p(x,v, tn+1|x0, v0, tn) p(x0, v0, tn) dx0dv0.

(3)

Here, p(x, v, tn+1|x0, v0, tn) is the transitional joint
PDF of the displacement x and velocity v of the vibro-
impact oscillator at time tn+1 given an initial state
x(tn) = x0, v(tn) = v0. Note that the difference
between (3) and the CK equation for a smooth oscil-
lator is the integration interval; in case of (3) x0 ∈ S,
while in case of a smooth oscillator x0 ∈ R.

The SMM-PI method approximates the time evolu-
tion of the PDF p(x, v, t) by transforming the Eq. (3)
into a matrix multiplication of the form

vec(qn+1) = Sn vec(qn), (4)

whereqn ∈ R
Nx×Nv is amatrix containing the values of

the probability density functionqi, j,n = p(xi , v j , tn) at
the discrete points {xi , v j |i = 1, . . . , Nx , j = 1, . . . ,
Nv} over a finite region, and Sn ∈ R

Nx Nv×Nx Nv is the
step matrix. The process of this transformation has
three key components: the interpolation of the PDF
p(x, v, tn), the approximation of the transitional proba-
bility density function p(x, v, tn+1|x0, v0, tn) based on
the PDF of numerical time stepping schemes and the
computation of the integral in (3) using e.g. a Gauss-
Legendre quadrature.

3.1 Interpolation

For the interpolation of the PDF p(x, v, tn) we use a
fifth-order polynomial interpolation formulated as the
linear combination of the elements of the matrix qn of

the known points, i.e.,

p(x, v, tn) ≈ 〈φ(x, v),qn〉 :=
Nx∑
i=1

Nv∑
j=1

φi (x) φ j (v) qi, j,n
(5)

where φ(x, v) is an interpolation weight matrix con-
structed using the interpolation function φi (.) of the
fifth order interpolation detailed in Appendix B.1.3. of
[37]. In [37] a detailed analysis comparing different
interpolation methods (linear, cubic, quintic, barycen-
tric, trigonometric) show that the fifth-order polyno-
mial (quintic) interpolation is remarkably efficient in
the SMM-PI setting. The quintic interpolation has a
high error convergence rate (up to O(N−5

x )), while
it has a small constant number (i.e. 6) of interpola-
tion functions, making it a computationally performant
choice for interpolating p(x, v, tn).

The main advantage of the formulation in (5), is that
we can detach the weight functions φi (x) φ j (v) from
the values qi, j,n , and evaluate the integral of the CK-
equation only on these weight functions. To compute
qn+1 we evaluate the CK equation (3) for each inter-
polation value qi, j,n+1, namely,

qi, j,n+1 = p(xi , v j , tn+1) = 〈
�i, j,n,qn

〉
(6)

with

�i, j,n =∫
Iv

∫
S
p(xi , v j , tn+1|x0, v0, tn)φ(x0, v0)dx0dv0,

(7)

where Iv ⊂ R is the velocity interval covered by the
interpolation.

3.2 Transitional probability density function of
non-smooth oscillators

For the approximation of the TPDF p(x, v, tn+1|x0,
v0, tn) we use a similar approach as in [37], however,
we adjust it for the case of the vibro-impact systems,
namely for the non-smooth impacting dynamics. In
general, the TPDF is not available in a closed analyt-
ical form even for smooth systems. Thus, the basis of
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the approximation of the TPDF is the probability den-
sity function of a numerical time stepping scheme with
x(tn) = x0 and v(tn) = v0:

x(tn+1) ≈ ηx (x0, v0, tn, tn+1),

v(tn+1) ≈ ηv(x0, v0, tn, tn+1) + g(x0, v0, tn)�Wn

(8)

for a time step between tn and tn+1. Here ηx and
ηv are the approximations of the drift term, while
�Wn ∼ N (0,

√
�t) is the Maruyama approximation

of theWiener increment.At this point,wedonot restrict
this description to a particular numerical time-stepping
scheme for the drift term. One potential candidate is
the Euler step, which uses

ηx (x0, v0, tn, tn+1) = x0 + v0(tn+1 − tn),

ηv(x0, v0, tn, tn+1) = v0 + f (x0, v0, tn)(tn+1 − tn).

(9)

However, we can opt for a higher order drift approx-
imation, that captures the interactions between x and
v with high accuracy (e.g. fourth-order Runge–Kutta
approximation). In these cases the formulas for ηx and
ηv are more complex and potentially too convoluted to
write out. In this work we approximate the drift evolu-
tion with Ralston’s method (detailed in Appendix A),
a second-order explicit time-stepping scheme, that has
the minimal local error bound among the two-stage
Runge–Kutta methods [40].

Furthermore, as we use a small time step �t =
tn+1 − tn when computing the TPDF, we assume that
we have at most a single impact during the time interval
[tn, tn+1] even for low velocities v. In both cases (with
and without impact), the TPDF is approximated as

p(x, v, tn+1|x0, v0, tn) ≈ δ(x − x1) · pN (v, v1, σv),

(10)

where pN (v, v1, σv) is the PDF of the normal distri-
bution N (v1, σv), i.e.

pN (v, v1, σv) = 1√
2πσv

e
− (v−v1)2

2σ2v . (11)

To obtain x1, v1 for the smooth motion, i.e., when we
start at x(t) /∈ ∂S, over t ∈ [tn, tn+1], we solve

x1 − ηx (x0, v0, tn, tn+1) = 0,

v1 − ηv(x0, v0, tn, tn+1) = 0,
(12)

where x0 and v1 are the unknown variables. Note, that
x1 is fixed due to the term δ(x − x1) in (11). The dif-
fusion of the step without impact is

σv = g(x0, v0, tn). (13)

Starting from an initial condition that results in an
impact (x(τ ) ∈ ∂S, τ ∈ [tn, tn+1]), we use an approx-
imation where we first trace the time evolution of the
drift ηx and ηv through the impact, and then approx-
imate the diffusion. In this case, we solve the set of
equations

ξ − ηx (x0, v0, tn, τ ) = 0,

v− − ηv(x0, v0, tn, τ ) = 0,

v+ + r v− = 0,

x1 − ηx (x̄, v
+, τ, tn+1) = 0,

v1 − ηv(x̄, v
+, τ, tn+1) = 0.

(14)

Here ξ ∈ ∂S denotes the location of the impact bar-
rier, τ is the time of the impact, and x1 and v1 are the
finishing position and velocity at time tn+1. In (14) the
unknown variables are x0, v1, v−, v+ and τ .

Next, we approximate the diffusion σv . We assume,
that each trajectories started at x0, v0 reach the bar-
rier at x = ξ approximately at time τ with a variance
σ 2

v,− = g2(x0, v0, tn)(τ − tn). Then the corresponding
impact velocities v−(τ ) are multiplied by a factor of
−r , i.e. v+(τ ) = −rv−(τ ). This leads to a contracted
velocity variance σ 2

v,+ = r2σ 2
v,−, and as the trajec-

tories continue according to (8), this variance further
increases by g2(ξ, v+(τ ), τ )(tn+1 − τ) leading to

σ 2
v = r2g2(x0, v0, tn)(τ − tn)

+g2(x̄, v+, τ )(tn+1 − τ).
(15)

Next, we substitute (11) into (3) and utilise (12)-(15)
to compute the parameters v1 and σv of pN (v, v1, σv).
When evaluating the resulting integral we integrate the
Dirac delta function of the form δ(γ (x)), that has the
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property

∫
R

β(x0)δ(γx (x0))dx0 = β(x∗
0 )

|Jγ (x∗
0 )|

, (16)

where

γx (x
∗
0 ) = 0 and Jγ := ∂γ

∂x0
. (17)

When applying this property to (3) combined with the
approximated TPDF, the integral yields

p(x, v, tn+1) =∫
R

pN (v, v1(x∗
0 , v0, tn, tn+1), σv(x∗

0 , v0, tn, tn+1))

|Jγ (x∗
0 )|
× p(x∗

0 , v0, tn)dv0.

(18)

Here x∗
0 denotes the initial condition x0 = x∗

0 for which

γx (x
∗
0 ) = (x − x1(x

∗
0 , v0, tn, tn+1)) = 0. (19)

In (18) and (19) we used the clarifying notations
v1 = v1(x∗

0 , v0, tn, tn+1), σv = σv(x0∗, v0, tn, tn+1)

and x1 = x1(x0∗, v0, tn, tn+1) to emphasise that these
quantities depend on x∗

0 , v0, tn and tn+1. Note that Eqs.
(16)-(19) hold for both the non-impacting and impact-
ing cases. The difference is that for the case without
impact we use (12) for computing the states v1 and x∗

0
in (19), and (13) for the diffusion σv . Meanwhile, for
the case with impact we use (14) and (15) to obtain x∗

0 ,
v1 and σv , while as a side benefit we also obtain τ , v+,
and v− as well.

3.3 Approximation of the integral

As the final key step of solving of the Chapman–
Kolmogorov Eq. (3) we evaluate the integral

�i, j,n =∫
Iv

pN (v j , v1(x∗
0 , v0, tn, tn+1), σv(x∗

0 , v0, tn, tn+1))

|Jγ (x∗
0 )|

× φ(x∗
0 , v0)dv0.

(20)

Here x∗
0 corresponds to the initial position that sat-

isfies (19) for x1 = xi . We utilise the exponential
decay of the Gaussian component pN (v, v1, σv) of the
TPDF, and only evaluate the integrale on the inter-
val v0 ∈ Īv ⊂ Iv where the kernel of (20) sig-
nificantly differs from zero. With this consideration
we minimise the number of subnodes required for an
accurate quadrature approximation of �i, j,n . To find
the starting velocities v0 ∈ Īv := [VL,0, VU,0] that
contribute to p(x1, v1, tn+1) we trace back trajecto-
ries ending in the interval J̄v := [VL,1, VU,1] around
v1 using only the drift of (1). We choose the limits
VL,1 and VU,1 using the diffusion at g(x0, v0, tn), e.g.
(VL,1, VU,1) = v1 ± k g(x0, v0, tn)�t , where we set
k ∈ R+ large enough to find all initial states that con-
tribute to p(x1, v1, tn+1), e.g. k = 4 or k = 6.

For the final position x1 and velocities v1 ∈ J̄v that
we reach without an impact this process is straight-
forward: we choose the limits VL,1 and VU,1 then use
Eqs (12) to find the corresponding initial velocity inter-
val Īv = [VL,0, VU,0]. However, when we have a final
position x1 close to the impact barrier, we have to
take into consideration that for some velocities within
the interval J̄v we might have an impact. Figure 2
shows the sketch of this process for x1 being close
to x = ξL. We first find VI,1 by setting the time of
impact to τ = tn and substitute it back to (12) with
x∗
0 = ξL and solve it for v1 = VI,1 and v0 = VI,0.
In case VI,1 ∈ J̄v , then we split the interval J̄v into
an interval J̄v,1 (orange in Fig. 2) that consists of
final velocities that are reached through smooth motion
and to an interval J̄v,1 (green in Fig. 2) that are final
velocites that are reached after an impact. Finally,
for the endpoints VL,1 and VI,1 of the interval J̄v,1

we compute the corresponding initial velocity interval
[VL,0, VI,0] with the use of the Eqs (12) corresponding
to the smooth motion. Similarly, for the velocities VI,1,
VU,1 of J̄v,2 we compute the initial velocity interval
[V−I,0/r, VU,0] by utilising the Eq. (14) describing the
motion with impact. The resulting composite interval
Īv = [VU,0,−VI,0/r ] ∪ [VL,0, VI,0] gives us the ini-
tial velocities for the quadrature evaluation of the inte-
gral (20). For TPDFs p(x1, v1, tn+1|x0, v0, tn) where
v0 ∈ [VU,0,−VI,0/r ] we use (14) and (15) corrspond-
ing to the dynamics with impacts compute the drift and
diffusion of the trajectories, while for TPDFs where
v0 ∈ [VL,0, VI,0] we use (12) and (13) corresponding
to the smooth dynamics. Note that in Fig 2 the position
x1 is fixed, while x∗

0 is the intial position correspond-
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Fig. 2 Sketch for the integration limits: the quantities VL, VI and
VU with the index 0 refer to states corresponding to tn and with
the index 1 refer to states corresponding to tn+1

ing to x1 and v0 and the dashed lines represent the the
change in velocity during impact, i.e. the mapping that
takes v− to v+ = −rv−.

Remark In the models of mechanical systems where
we describe impacts as instantaneous velocity changes,
as the underlying deterministic system in (1), we
encounter the so-called grazing phenomenon [41]: an
impact with zero velocity, i.e. x ∈ ∂S and v = 0. In
case of deterministic systems where we have periodic
orbits, grazing can lead to bifurcations and other singu-
lar behaviour [1,2,41]. In this work we consider these
zero velocity impacts as if there is no impact happening,
therefore we use (12) to compute v1 and σv necessary
for the TPDF approximation (11).

4 Derived statistics

4.1 Impact velocity distribution

Besides the joint PDF p(x, v, t) another important
statistic describing a stochastic vibro-impact process is
the impact velocity distribution p(ξ)

v− (v, t) at the impact
barrier x = ξ . This distribution is essential when inves-
tigating the impact forces or the energy absorbed by
impacts. First, we assume that the joint PDF p(x, v, t)
is available via e.g. the SMM-PI method. Next we use

Bayes theorem, namely we write

p(ξ)

v− (v, t)dv :=
: = P(v < v− < (v + dv)|impact at x = ξ) =
= P(v < v− < (v + dv) and impact at x = ξ)

P(impact at x = ξ)
.

(21)

The condition that an impact happens is satisfied when
the velocity v ∈ V(ξ). This impact velocity interval
V(ξ) depends on ξ , i.e.

V(ξL) = (−∞, 0) and V(ξR) = (0,∞). (22)

In terms of probability density functions 21 translates
for v ∈ V(ξ) as

p(ξ)

v− (v, t)dv =
p(ξ, v, t)dxdv∫

V(ξ)
p(ξ, v, t)dxdv

=
p(ξ, v, t) v dtdv∫

V(ξ)
p(ξ, v, t) v dtdv

=
1

K
v p(ξ, v, t) dv,

(23)

where K = ∫
V(ξ)

v p(ξ, v, t)dv is the normalising con-
stant. Here we utilise dx = vdt , that is an inherent rela-
tionship between the displacement x and the velocity v

in case of oscillators. To summarise: the impact veloc-
ity distribution at x = ξ is

p(ξ)

v− (v, t) =
{

v p(ξ, v, t)/K if v ∈ V(ξ),

0 otherwise.
(24)

4.2 Expected time until next impact

In this section we formulate an approximation for the
steady-state mean time T̄∂S(x, v, t) of impacting the
barrier ∂S starting from state (x, v). The equation we
use to estimate the mean first hitting time (MFHT) is

T̄∂S(x, v, tn) = (tn+1 − tn)+∫
R

T̄∂S(x1, v1, tn+1)p(x1, v0,tn+1|x, v, tn)dx1dv1.

(25)
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The Eq. (25) captures the expected time to the next
impact starting from state (x , v): after taking a time step
tn+1 − tn we end up in state (x1, v1) with probability
density p(x1, v1, tn+1|x, v, tn) (the TPDF correspond-
ing to (1)), fromwhere the expected time to next impact
is T̄∂S(x1, v1, tn+1). The second term in (25) utilizes the
law of total expectation to average the expected times
to impact T̄∂S(x1, v1, tn+1) after the time step weighted
by the TPDF p(x1, v1, tn+1|x, v, tn). Throughout this
processwe assume that the time step is small, therefore,
there is no impact for t ∈ [tn, tn+1].

Using a numerical approximation analogous to that
given for the PI method in Sec. 3, we transform (25) to
the system of linear equations

vec
(
t̄∂S,n

) =
R∂S,n vec(t̄∂S,n+1) + (tn+1 − tn) 1

(26)

where t̄∂S,n ∈ R
Nx×Nv is the unknown matrix of inter-

polation values for T̄∂S(x, v, tn),R∂S,n ∈ R
Nx Nv×Nx Nv

is the step matrix for the mean first hitting time,
1 ∈ R

Nx Nv is a vector of ones of the appropriate
size. In constructing (26) we use similar approxima-
tion steps as in case of the Chapman–Kolmogorov
equation’s transformation to (4). Namely, we approx-
imate the transitional probability density function
p(x1, v1, tn+1|x, v, tn) according to Sec. 3.2, we inter-
polate T̄∂S(x1, v1, tn+1) according to Sec. 3.1 and
then evaluate the integral in (25) using e.g. a Gauss-
Legendre quadrature. To solve system (26) we set the
elements of t̄∂S,n to zero, that correspond to the bound-
ary conditions T̄∂S(ξL, v, tn+1) = 0 for all v ≤ 0 and
T̄∂S(ξR, v, tn+1) = 0 for all v ≥ 0.

For a general time-variant vibro-impact oscilla-
tor (1) solving the system (26) for t̄∂S,n requires an
initial t̄∂S,n , which is generally not available. How-
ever, when investigating the steady-state mean first
hitting time of a periodic ( f (x, v, t) = f (x, v, t +
τp), g(x, v, t) = g(x, v, t + τp)) or a time-invariant
( f (x, v, t) = f (x, v), g(x, v, t) = g(x, v)) vibro-
impact oscillator, we can utilise that limn→∞ t̄∂S,n =
limn→∞ t̄∂S,n+p, τp = p�t and limn→∞ t̄∂S,n = t̄∂S ,
respectively. In these cases we have a well-defined sys-
tem of linear equations for (26) that we solve to obtain
the (periodic) steady-state mean first hitting time of the
barriers.

5 Numerical examples

5.1 Stochastic Van der Pol oscillator with impacts

In this section, we use numerical experiments to test the
SMM-PI method’s ability to estimate the time evolu-
tion of the PDF p(x, v, t), the impact velocity PDF
p(ξ)

v− (v, t), the expected time T̄∂S between impacts,
energy Ēacc accumulated in the system and energy
Ēabsorb absorbed by impacts in a nonlinear vibro-
impact oscillator. Even though the definition in (27)
and in the TPDF definitions through (8)-(19) we gen-
eralised the method for stochastic vibro-impact oscil-
lators with state-dependent noise, in the examples we
will focus on systems with additive noise, as it is the
most frequently applied noise model in engineering
problems. Therefore, in this section we consider the
stochastically forced Van der Pol oscillator, the proto-
type for systems with self-excited limit cycle oscilla-
tions, with two, symmetric impact barriers. The Van
der Pol oscillator is a well studied system, with several
advantages that make it a good candidate to benchmark
the PI method. It is autonomous, allowing a number of
simplifications (discussed later) during the computa-
tion of the step matrix Sn , the PDF p(x, v, t) and the
other statistics. Furthermore, it is also a nonlinear sys-
tem, that not only makes this system ideal to demon-
strate the SMM-PImethod’s capabilities, but also it has
a stable limit cycle allowing it tomimic some character-
istics of a periodically forced stochastic vibro-impact
system, e.g. the system that is used to describe vibro-
impact energy harvester [2,6].

The governing equations of motion for the Van der
Pol oscillator subjected to additive noise is

dx(t) = v(t)dt,

dv(t) =
(
μ

(
1 − x2(t)

)
v(t) − x(t)

)
dt + σdW (t),

(27)

when x ∈ S = (ξL = −d, ξR = d) with two symmet-
ric impacting barriers at x = ±d. The impact condition
at x(τ ) ∈ ∂S = {−d, d} is

v+(τ ) = −r v−(τ ). (28)

We use the SMM-PI method to capture the response
probability function p(x, v, t), the impact velocity dis-
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tribution p(ξ)

v− (v, t), the mean time between impacts
T̄∂S(x, v, t) and the energy response of the system in
the presence of additive white noise, and compare the
results to Monte-Carlo simulations.

Since the Van der Pol oscillator is an autonomous
system, the corresponding step matrix is time invariant
as well, i.e. Sn ≡ S. Therefore we need to compute
it only once, and the matrix–vector multiplication (4)
representing a time step in the (3) for the PDF p(x, v, t)
reduces to

vec(qn+1) = S vec(qn). (29)

Additionally,when there is a single steady-state solu-
tion p(x, v) := limt→∞ p(x, v, t) for (3), indepen-
dent from the initial distribution p(x, v, 0), we can
obtain the steady-state discretised representation q :=
limn→∞ qn using twomain approaches. One is the suc-
cessive evaluation of (29) until we reach a tolerance
condition ‖qn+1 − qn‖ < ε�t , ε > 0 for some norm
(e.g. L2). Alternatively, we can utilise the fact that the
eigenvector s(1) of S corresponding to the eigenvalue
with the largest magnitude λ(1) ≈ 1 is the only sur-
viving eigenvector following the successive multipli-
cations in (29). In this case q = s(1) represents the
steady state PDF p(x, v), given that the time step �t
and resolutions Nx and Nv are sufficient for the approx-
imation of (3).

Throughout this section we use the parameters μ =
1/2, σ = 1/2,d = 1.25 and r = 0.7, and initial dis-
tributions x(0) ∼ N (0,

√
0.3) and v0 ∼ N (3,

√
0.3).

Note that throughout this paper we use the notation
X ∼ N (μX , σX ) for a Gaussian random variable with
mean E[X ] = μX and variance V[X ] = σ 2

X .
We test the SMM-PI method with a time step �t =

10−2 and a spatial discretisation Nx = Nv = 151 along
each direction over the (x, v) ∈ [−d, d] × [−6, 6]
region, that is a sufficiently large to contain the non-
zero values of the steady-state PDF. When choosing a
time step �t and spatial discretisations Nx and Nv , we
rely on the results of [37], where we conducted an in-
depth analysis on the effect of �t , Nx and Nv on the
mean absolute error and computational performance of
the SMM-PImethod by comparing the results to closed
form solutions for smooth systems.As for the examples
in this work there are no such benchmarks available,
we do not conduct a formal analysis to choose suit-
able resolutions. Rather, we experimented with multi-

ple temporal and spatial resolutions, and we decided
to use such a combination that resulted in an accurate
solution with acceptable computational requirements.

Figure 3 shows the response PDF p(x, v, t) evolu-
tion as a surface for the above parameters. After a short
transient, we see that the response PDF evolves to a
steady-state distribution by t ≈ 7. This is expected, as
system (27) is time-invariant and the system is ergodic.
Furthermore, the underlyingdeterministic systemwith-
out impacts has a stable periodic orbit. Results show,
that the property of having a stable periodic orbit car-
ries over to the motion of the Van der Pol oscillator
with impacts, and this new stable orbit dominates the
stochastic dynamics as well, as illustrated in Fig. 4.

Figure 5 shows the contour lines of the joint PDF
p(x, v, t) and the marginal PDFs px (x) and pv(v)

computed with the SMM-PI method, at different times
t . We compare the results of the SMM-PI to histograms
based onMC-simulations, that we conducted using the
strong order 1 Runge-Kutta-Milstein method with time
step �tMC = 0.001, combined with automatic impact
detection from theDifferentialEquations.jl [42] numer-
ical differential equation solver library. To construct
the histograms we used 105 trajectories. For the his-
togram we partioned each direction into 20 sections,
and recorded the frequency of trajectories being in each
bin. The resulting 400 bins leads to on average ∼ 250
data points for each bin, meaning that in the case that
the PDF p(x, v, t) is spread over a larger area, then the
histogram estimation is noiser due to the smaller sam-
ple sizes in each of the significant bins. In the case of the
marginal PDF’s px (x, t) and pv(v, t) we have an aver-
age of 5000 samples for each segment, therefore the
histogram estimation has smaller variance, leading to a
smoother estimation.We see that the contours obtained
by the SMM-PI are in good agreement with the results
of the corresponding MC results for each time instant,
especially for themarginal PDF’s px (x, t) and pv(v, t).
This demonstrates, that the SMM-PI is capable of cap-
turing the whole time evolution of the response PDF
p(x, v, t), and themarginal PDFs px (x, t) and pv(v, t)
(for x and v) with high accuracy. Note, that the con-
tours in Fig. 5 are rescaled for each time instant for
visualisation purpose.

Next, we investigate the impact velocity distribution
p(ξ)

v− (v, t) defined by (24). Here x = ±d is the location
of the impact, V(ξ) is the interval of impact velocities
on the barriers, K = ∫

V(ξ)
v p(d̄, v, t) dv is the nor-
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Fig. 3 Joint response probability distribution p(x, v, t) evolution for the Van der Pol oscillator for parameters μ = 1/2, σ = 1/2,
d = 1.25 and r = 0.7, and initial conditions x(0) ∼ N (0,

√
0.3) and v(0) ∼ N (3,

√
0.3)

malisation constant. For the Van der Pol oscillator (27)
we have V(−d) = (−∞, 0) and V(d) = (−∞, 0).

By using the SMM-PI method we can obtain an
impact velocity PDF p(ξ)

v− (v, t) for a single time instant
t . However, when comparing the results to MC sim-
ulations, we need to consider that the impacts are
instantaneous events, thus it is impossible to observe
the impact velocity distribution for that time instant t .
Hence we take a finite length time interval [t1, t2] and
use the velocities of the observed impacts within that
time interval to estimate the impact velocity distribu-
tion p̄(ξ)

v− (v, t1, t2) averaged over the interval [t1, t2]:

p̄(ξ)

v− (v, t1, t2) = 1

t2 − t1

∫ t2

t1
p(ξ)

v− (v, t) dt, (30)

with ξ ∈ {−d, d}.
In Fig. 6 we see that the SMM-PI is capable of cap-

turing the impact velocities as well, as we see good
agreement between the results on both impact barri-
ers for all time interval displayed. As the structure of
the system (27) is time-invariant and symmetric, the
impact velocity distribution converges to a symmetric
steady-state distribution p̄(ξ)

v− (v) = limt→∞ p̄(ξ)

v− (v, t),
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Fig. 4 a) Stable limit cycle for the Van der Pol oscillator with
parameter μ = 1/2, b) stable limit cycle for the Van der Pol
oscillator with impacts at d = 1.25 and c) contours of the steady
state PDF p(x, v) for the stochastic Van der Pol oscillator with

impacts with parameters μ = 1/2, σ = 1/2, d = 1.25 and
r = 0.7. The dashed red line in panel c) shows the stable limit
cycle from panel b)

namely

p̄(−d)

v− (v) = p̄(d)

v− (−v). (31)

We can observe this symmetry in the righmost column
of 6.

We emphasise that the SMM-PI method is capable
of capturing the whole time evolution of the impact
velocity distribution p(ξ)

v− (v, t) with high accuracy, as

well as the steady-state distribution p̄(ξ)

v− (v), while the
MC simulations can only provide an averaged estimate
of the impact velocity distribution.

Next, we consider the steady-state MFHT T̄∂S(x, v)

of the barriers ∂S = {−d, d}. In Fig. 7 we compare
results obtained via solving (25)-(26) using the SMM-
PI formulation to the MFHTs computed by MC sim-
ulations started from the impact barrier with different
velocities v. As our aim is to use the MFHT to approx-
imate the time between impacts, we only consider the
MFHT T̄∂S(x, v) for the barrier x ∈ ∂S. In Fig. 7 we
show the MFHT T̄∂S on the impact barriers, computed
with the SMM-PI formulation compared to MC simu-
lations for the parameters μ = σ = 1/2, δ = 1.25 and
r = 0.7. To estimate T̄∂S(x, v), x ∈ {−d, d} with MC
simulations, we started 105 trajectories for 21 differ-
ent velocities v on each barrier, and measured the time
until the first impact occured. In Fig. 7 we see good
agreement between these MC results and the results

obtained through the SMM-PI formulation. However,
we have to be aware a local interpolation error that
occur at v+ = 0 when using the SMM-PI formulation
to obtain mean impact time T̄∂S . This is due to the rea-
son, that near v+ = 0 where we go from velocities
v+ = −rv− with v− /∈ V(ξ) to velocities v+ = −rv−
with v− ∈ V(ξ) the mean impact time T̄∂S makes a
sudden transition from 0 to a finite positive value. This
introduces high frequency components into the func-
tion T̄∂S(ξ, v+) describing the impact times, which the
interpolation struggles to properly capture. This may
leads to physically not meaningful negative impact
times near v+ = 0, as in Fig. 7.

From Fig. 7 we also see, that as we increase the
magnitude |v+| of the initial velocity of the trajec-
tory after impact, the effect of the nonlinear dynam-
ics decreases. In this case the impact time T (ξ, v+)

converges to a behaviour as if the path has a con-
stant velocity v+ during the entire travel between the
two barrers, i.e. we have an asymptotic impact time
lim|v+|→∞ T (ξ, v+) = 2d/v+ for v+ = −rv− with
v− ∈ V(ξ), ξ ∈ {−d, d}.

At this point, we have the framework to investigate
the energy statistics of the vibro-impact Van der Pol
oscillator driven by noise. We can compute the mean
of the energy accumulated within the system in the
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Fig. 5 Comparison of the joint PDF p(x, v, t) and the marginal
PDFs px (x) and pv(v) for the Van der Pol oscillator at different
time instances, obtained via the SMM-PI method and Monte-

Carlo simulations. The parameters are μ = 1/2, σ = 1/2,
d = 1.25 and r = 0.7, and the initial conditions are x(0) ∼
N (0,

√
0.3) and v0 ∼ N (3,

√
0.3)
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Fig. 6 Comparison of the impact velocity distribution PDF
p̄(ξ)

v− (v, t1, t2) for the Van der Pol oscillator at different time
instances, obtained via the SMM-PI method and Monte-Carlo

simulations. The parameters are μ = 1/2, σ = 1/2, d = 1.25
and r = 0.7, and the initial conditions are x(0) ∼ N (0,

√
0.3)

and v0 ∼ N (3,
√
0.3) and the system reaches steady state at

around t ≈ 7

Fig. 7 Expected time between impacts for the Van der Pol oscillator starting from the barrier located at x = −d and x = d for different
v+ after impact velocities

steady state by

Ēacc := 1

2

∫
R

∫
S

(
x2 + v2

)
p(x, v) dx dv, (32)

where p(x, v) := limt→∞ p(x, v, t). Themean energy
dissipated by a single impact during steady-state at bar-
rier x = ξ is given by

Ē (ξ)
absorb := 1

2

∫
V(ξ)

(1 − r2) v2 p̄(ξ)

v− (v) dv. (33)

Here we utilised that for a trajectory the kinetic energy
before the impact is (v−)2/2, while after the impact it
is (v+)2/2 = (rv−)2/2.

As the system (27) is symmetric we can easily
use (33), to compute the mean energy dissipated by
a single impact during steady state as

Ēabsorb = 1

2

(
Ē (d)
absorb + Ē (−d)

absorb

)
. (34)

Next, we compute the mean time between impacts dur-
ing steady-state.We have a probability density p̄(ξ)

v− (v),
ξ ∈ ∂S = {−d, d} of an impact happening with veloc-
ity v. After the impact the motion continues from the
state (ξ,−rv), with amean first hitting time T (ξ,−rv)

of the barrier ∂S. Furthermore, due to the symmetric
structure of system (27) after reaching steady state we
hit each barrier with equal probability. Hence, themean

123



H. T. Sykora et al.

time between impacts is given by

T̄imp := 1

2

∫ 0

−∞
T̄∂S(−d,−rv) p̄(−d)

v− (v) dv

+1

2

∫ ∞

0
T̄∂S(d,−rv) p̄(d)

v− (v) dv.

(35)

During steady-state we have an impact with velocity
v with probability density p̄(ξ)

v− (v) at the barrier located
at ξ . The impact absorbs (1− r2)v2/2 energy and then
on average there is no next impact for T (ξ, v), thus we
distribute the absorbed energy over this time period.
Therefore the average energy absorption performance
P̄imp of the impacts is

P̄imp = 1

4

∫
V(−d)

(1 − r2)v2

T̄∂S(−d,−rv)
p̄(−d)

v− (v) dv

+1

4

∫
V(d)

(1 − r2)v2

T̄∂S(d,−rv)
p̄(d)

v− (v) dv.

(36)

Figure 8 shows the steady-state accumulated energy
Ēacc, the impact time T̄imp and the energy absorp-
tion performance P̄imp for different barrier locations d
(∂S = {−d, d}). In Fig. 8a we see that as we increase
the distance 2d between the barriers, and we begin to
leave the domain affected by the limit cycle, the mean
impact time T̄imp begins to increase sharply, as there are
an increasing number of impacts after which the trajec-
tory does multiple (half) periods of oscillations before
hitting either barrier. This is expected, since increasing
d beyond a value leads to a systemwhere there is almost
surely no interaction with the barriers, hence we con-
verge to the stochastic Van der Pol oscillator without
barriers.

Figure 8b presents that in case our aim is to increase
the energy Eacc accumulated within the system the
introduction of barriers is beneficial. Furthermore,
according to Fig. 8c, we can choose a barrier distance
d that maximises the energy absorption performance
P̄imp, that is beneficial if we use the stochastic Van der
Pol oscillator to model an application where impacts
are utilised to harvest energy [6], as P̄imp is propor-
tional to the harvestable energy.

Next we discuss a local error in the PDF p(x, v, t)
at the barriers that is characteristic to the SMM-PI
method, namely a local probability density accumula-
tion near grazing (“impacts with zero velocity v = 0”)
velocities. This phenomenon is hard to present in case

of the Van der Pol oscillator as its effect is significant
only for a small set of parameters. The comparison in
Fig. 9 shows the effect of the barrier location d on
this local error. In case d = 1.25 this local error is
not that apparent, as near grazing velocities occur only
with small probability densities. However, for d = 2,
for which trajectories have a large probability density
near grazing, this local error becomes significant. We
note that the effect of this error is localised: its effect
is contained by averaging, thus it does not show up
in expected values or marginal probability densities.
Nonetheless, in the next section we discuss the effect
of the spatial resolution of the approximation of the
PDF p(x, v, t), focusing on the probability densities
near v = 0 at the barriers. We consider the stochas-
tic linear oscillator with impacts, as the approximation
of the response PDF p(x, v, t) with SMM-PI produces
this error for a wide range of parameters and barrier
locations.

5.2 Stochastic linear oscillator with impacts

In this sectionwe consider a stochastically forced linear
oscillator with a single impact barrier, that is described
by

dx(t) = v(t)dt,

dv(t) = −x(t)dt + dW (t).
(37)

if x ∈ S = (−d,∞). The system has a single impact-
ing barrier at x = −1, i.e. ∂S = {−1}. The impact
condition at x(τ ) ∈ ∂S is again

v+(τ ) = −r v−(τ ), (38)

with r = 0.7. In case of the SMM-PI method we use
a time step �t = 0.025 and a spatial discretisation
Nx = Nv = 151 alongboth directions over the (x, v) ∈
[−1, 6] × [−6, 6] region. This system’s steady-state
PDF p(x, v) has a large value of the probability density
along v = 0, thus it allows us to observe the influence
of the spatial resolution on the joint PDF p(x, v, t) near
grazing.

Figure 10 shows the response PDF p(x, v, t) evolu-
tion as a surface for multiple time instances and Fig. 11
shows the comparison with MC simulations for multi-
ple time instances, showing good agreement between
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Fig. 8 Steady-state a)mean time between impacts T̄imp, b) accu-
mulated energy Ēacc and c) energy absorption performance P̄imp

of the Van der Pol oscillator with impact with different barrier
positions d for the stochastic Van der Pol oscillator with param-
eters μ = 1/2, σ = 1/2

Fig. 9 Local error near grazing velocities for the Van der Pol oscillator with impacts for barrier locations ∂S = {−1.25, 1.25} (left)
and ∂S = {−2, 2} (right)

the results. This system also converges to a steady-
state, even though it has a slower rate than the Van der
Pol oscillator, which is also suggested by inspecting
the eigenvalues of the step matrix S. We also see, that
at the wall where grazing happens x ∈ ∂S = {−1}
near v = 0, a local spike appears in the interpo-
lated PDF p(x, v, t). However, carefully inspecting the
comparison in Fig. 11 we see, that this artifact near
(x, v) = (−1, 0) is a characteristic only for the inter-
polated PDF p(x, v, t) obtained with the SMM-PI, and
not for the results MC simulations. Due to the inade-
quate resolution of the interpolation of p(x, v, t), the
SMM-PI accumulates probability density near v = 0
at the barrier. One tool to reduce this error is to increase
both the resolution Nx and Nv of the interpolation
of the p(x, v, t). Figure 12 demonstrates that this is
indeed the case: increasing the resolution of the inter-
polation decreases this numerical singularity. However,
increasing the interpolation resolution does come at a

significant computational time cost with a complex-
ity of O(N 4) according to [37]: while computing the
steady-state PDF with N := Nx = Nv = 101 takes
approximately 6.5 s on a computer with an Intel i7
8565U CPU, it takes approx. 32.5 s and 475 s for
N := Nx = Nv = 151 and N := Nx = Nv = 301,
respectively.

With these observations in mind, one has to bal-
ance accuracy with computational time. As this error is
local, its influence is limited when computing marginal
PDFs or expectation values; therefore, a lower accu-
racy joint PDF is acceptable. Also, this error does not
propagate into the impact velocity PDF, as it is out-
side the interval V(ξ) where the p̄(ξ)

v− (v, t) is nonzero.
In Fig. 13 we see that despite the significant local
error being present in the joint PDF p(x, v, t) for
Nx = Nv = 151, the results for the impact velocity dis-
tribution p(−1)(x, t1, t2) obtained through the SMM-PI
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Fig. 10 Joint response probability distribution p(x, v, t) evolution for the linear oscillator with initial conditions x(0) ∼ N (2.5, 7/12)
and v(0) ∼ N (0, 4/3)

method and MC simulations are in good agreement for
multiple time intervals.

Note, here we have considered a linear oscillator, to
facilitate illustrating the behaviour of the SMM-PI. We
have also confirmed a similar phenomenon for bilateral
impacts in the nonlinear Van der Pol model. Similar
observations would follow in an asymmetric Van der
Pol model with unilateral impacts as in the linear case.

6 Conclusions

In thiswork,we provide a systematic formulation of the
SMM-PI method to solve the Chapman–Kolmogorov
(CK) Eq. (3) to obtain time evolution of the PDF
for non-smooth dynamics of vibro-impact oscillator
systems (1), and apply this formulation to conduct
a detailed analysis of the response statistics. The
three key elements in the construction of the SMM-
PI method are the interpolation of the PDF p(x, v, t),
the approximation of theTPDF p(x, v, tn+1|x0, v0, tn),
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Fig. 11 Comparison of the joint PDF p(x, v, t) and themarginal
PDFs px (x) and pv(v) for the linear oscillator at different time
instances, obtained via the SMM-PI method and Monte-Carlo

simulations. The initial conditions are x(0) ∼ N (2.5, 7/12) and
v(0) ∼ N (0, 4/3)
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Fig. 12 Effect of resolution on the interpolated steady-state PDF limt→∞ p(x, v, t) of the linear oscillator near grazing

Fig. 13 Comparison of the impact velocity distribution PDF p̄(−1)
v− (v, t1, t2) for the linear oscillator at different time instances, obtained

via the SMM-PI method and Monte-Carlo simulations. The initial conditions are x(0) ∼ N (2.5, 7/12) and v(0) ∼ N (0, 4/3)

and the evaluation of the integral [37]. For the discreti-
sation of the PDF p(x, v, t)we use the Euclidean inner
product formulation of the fifth-order polynomial inter-
polation, for the approximation of the TPDF we use
the PDF of a Runge–Kutta-Maruyama scheme, and
for the evaluation of the integral (20) we use a Gauss-
Lengendre quadrature on a restricted interval v0 ∈ Īv .
Through this formulation we transform the CK equa-
tion into a multiplication by a step matrix that not only
captures the full PDF evolution, but also contains the
steady-state PDF in its eigenvectors. We also formu-
lated two important quantities for vibro-impact sys-
tems within the framework of the SMM-PI method:
the impact velocity PDF p̄(ξ)

v− and the mean first hitting
time T̄∂S .

We validate the SMM-PI method by applying it
to the Van der Pol and the impacting linear oscilla-
tors and comparing the results for the joint response
PDF p(x, v, t) againstMonte-Carlo simulations for the
quantities the impact velocity distribution pv−(v, t),
and the expected time until next impact T̄∂S(x, v, t),
the energy Eacc accumulated within the system, the

energy absorption performance P̄imp and themean time
T̄imp between impacts. For the Van der Pol oscillator
with impacting barriers we analysed the non-stationary
joint PDF p(x, v, t), the impact velocity PDF p̄(d)

v− (v),
the expected time until next impact T̄∂S(ξ, v). We also
demonstrated, that the results of the SMM-PI method
reliably capture the mean time between impacts T̄imp,
the energy Ēacc accumulated within the system, and
the energy absorption performance P̄imp of the impacts.

In the case of the linear oscillatorwith impactingbar-
riers, we also investigated the non-stationary joint PDF
p(x, v, t) and the impact velocity PDF p̄(d)

v− (v). We
used this simple example to demonstrate the effect of
spatial resolutions Nx and Nv on the local error within
the approximated joint PDF near grazing. We showed,
that even though it is possible to reduce this error, this
effort has high computational costs. We demonstrate
that this highly localized error has little effect on the
accuracy in calculating the averages and marginals, so
that these extra costs may not be necessary. The results
obtained through the SMM-PI method are confirmed
by Monte-Carlo simulations.
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The method presented in this paper proved to be
a high-performance deterministic computational solu-
tion to obtain the response statistics of stochastic non-
linear vibro-impact systems. Even though it is not
demonstrated through examples, the formulation is
generalised for stochastic systems with impacts with
time-varying parameters aswell. However for such sys-
tems, one has to consider the increased computational
cost of computing the step matrix for each time step.
Therefore, the SMM-PI method is most useful and effi-
cient for time invariant or periodic system, when one
needs to compute only a small set of step matrices, and
use them to advance the probability density function.
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Appendix A Ralston’s method

To increase the accuracy of the approximation of the
TPDF p(x, v, tn+1|x0, v0, tn) for second order sys-
tem’s of the form (1) we use a second order Runge–
Kutta method, the Ralston’s method [40] for the drift
term. In this case the approximations ηx and ηv of the
drift term in (8) is

[
ηx (x0, v0, tn, tn+1)

ηv(x0, v0, tn, tn+1)

]
=

[
x0
v0

]
+ f̂([x0, v0]�, tn)�tn,

(A1)

where �tn = tn+1 − tn . The Ralston approximation
f̂([x0, v0]�, tn) is

f̂([x0, v0]�, tn) = 1

4
(k1 + 3k2), (A2)

where

k1 =
[

v0
f (x0, v0, tn)

]

and k2 =
[

v1
f (x1, v1, tn + 2�t/3)

]
(A3)

with

x1 = x0+ 2

3
k1,1�tn and v1 = v0+ 2

3
k1,2�tn . (A4)

Fig. 14 Comparison of the steady-state impact velocity distribution PDF limt→∞ p(ξ)

v− (v, t) for the Van der Pol oscillator (27) for
multiple coefficients of restitution r , obtained via the SMM-PI method. The parameters are μ = 1/2, σ = 1/2, d = 1.25
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Fig. 15 Comparison of the steady-state joint PDF limt→∞ p(x, v, t) for the Van der Pol oscillator (27) for multiple coefficient of
restitutions r , obtained via the SMM-PI method. The parameters are μ = 1/2, σ = 1/2, d = 1.25
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Appendix B Effect of the coefficient of restitution

Figure 14 shows the steady-state impact velocity distri-
bution limt→∞ p(ξ)

v− (v, t) and Fig. 15 shows the steady-
state PDF limt→∞ p(x, v, t) and the corresponding
marginal PDFs limt→∞ px (x, t) and limt→∞ pv(v, t)
for the Van der Pol oscillator for multiple coefficients
of restitution r .

A general observable trend is that in the case of lower
r values, the probability density tends to accumulate
near the impact barriers. This is due to the increased
velocity reduction, that makes it harder for the trajec-
tories to escape the region near the impact barriers.
Meanwhile, for larger coefficient of restitution values
r themotion is dominatedwith higher velocities, as less
energy is absorbed by each impact, suggesting higher
accumulated energy within the system. This is con-
firmed by the impact velocity distributions as well, i.e.
for larger restitution coefficients the impacts velocities
are larger.
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