
Nonlinear Dyn (2024) 112:8363–8391
https://doi.org/10.1007/s11071-024-09509-8

ORIGINAL PAPER

Monte Carlo tree search control scheme for multibody
dynamics applications

Yixuan Tang · Grzegorz Orzechowski ·
Aleš Prokop · Aki Mikkola

Received: 14 June 2023 / Accepted: 7 March 2024 / Published online: 3 April 2024
© The Author(s) 2024

Abstract There is considerable interest in applying
reinforcement learning (RL) to improve machine con-
trol across multiple industries, and the automotive
industry is one of the prime examples. Monte Carlo
Tree Search (MCTS) has emerged and proven pow-
erful in decision-making games, even without under-
standing the rules. In this study, multibody system
dynamics (MSD) control is first modeled as a Markov
Decision Process and solved with Monte Carlo Tree
Search. Based on randomized search space explo-
ration, the MCTS framework builds a selective search
tree by repeatedly applying a Monte Carlo rollout at
each child node. However, without a library of avail-
able choices, deciding among the many possibilities
for agent parameters can be intimidating. In addition,
the MCTS poses a significant challenge for searching
due to the large branching factor. This challenge is
typically overcome by appropriate parameter design,
search guiding, action reduction, parallelization, and
early termination. To address these shortcomings, the
overarching goal of this study is to provide needed
insight into inverted pendulum controls via vanilla and
modifiedMCTSagents, respectively.A series of reward
functions are well-designed according to the control

Y. Tang (B) · G. Orzechowski · A. Mikkola
Department of Mechanical Engineering, LUT University, 53850
Lappeenranta, Finland
e-mail: Yixuan.Tang@lut.fi; Yixuan.Tang@aliyun.com

A. Prokop
Faculty of Mechanical Engineering, Brno University of
Technology, Technicka 2896/2, 616 69, Brno, Czech Republic

goal,whichmaps a specific distribution shape of reward
bonus and guides the MCTS-based control to maintain
the upright position. Numerical examples show that
the reward-modified MCTS algorithms significantly
improve the control performance and robustness of
the default choice of a constant reward that constitutes
the vanilla MCTS. The exponentially decaying reward
functions perform better than the constant value or
polynomial reward functions. Moreover, the exploita-
tion vs. exploration trade-off and discount parameters
are carefully tested. The study’s results can guide the
research of RL-based MSD users.

Keywords Monte Carlo Tree Search · Multibody
dynamics · Reward functions · Parametric analysis ·
Artificial intelligence control · Inverted pendulum

1 Introduction

Artificial intelligence (AI), often realized by apply-
ing machine learning (ML), has recently been attract-
ing considerable interest and has been on the rise in
academia and industry. The objective of this work is to
use AI to control multibody system dynamics, such
as inverted pendulum control, and improve the per-
formance of classical AI controllers. The most com-
mon ML approach is to train learning algorithms with
a lot of data to solve decision-making and prediction
tasks, which has brought many groundbreaking inno-
vations. Reinforcement learning (RL) [1] is one of the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-024-09509-8&domain=pdf
http://orcid.org/0000-0003-0299-6713
http://orcid.org/0000-0002-3252-1236
http://orcid.org/0000-0002-7526-1366
http://orcid.org/0000-0003-2762-8503

8364 Y. Tang et al.

main branches of ML. Depending on how the agents
learn from the environment model to get a known tran-
sition probability, the RL algorithms can be grouped
into model-free and model-based RL algorithms [2].
To maximize cumulative reward, the RL algorithms
generate data through continuous interaction with the
environment. Each interaction cycle in RL intends to
find the optimal decision to take action. The agent in
model-free RL algorithms uses the data sampled from
experience and learns the value function and policy.
Model-free RL algorithms are suitable when using the
deep learning (DL) framework to sample large-scale
data and conduct network training. Due to the large
amount of data sampling required, however, themodel-
free RL algorithms are computationally intensive. At
the same time, the agent in model-based RL algorithms
samples the simulation data to interactwith the environ-
ment model and plan value function and policy. Ideally,
if the model is sufficiently accurate, a good policy can
be learned from it [3]. However, a compounding error
[4] will develop between the model and the actual envi-
ronment.

The optimization process for RL algorithms pri-
marily uses a mathematical framework known as the
Markov decision process [5]. Monte Carlo Tree Search
(MCTS) can be categorized as a model-based rein-
forcement learning approach, which involves plan-
ning for a sequential decision-making algorithm using
standard Markov decision process logic. MCTS con-
sists of searching combinatorial spaces represented by
trees and Monte Carlo methods. Monte Carlo is one
of the fundamental RL algorithms used to solve any
Markov decision process problem [6]. Decision-mak-
ing involves identifying and selecting the best alterna-
tive based on personal values and preferences. Deci-
sion-making processes are integral to games, involv-
ing players making strategic choices to achieve their
objectives. In 2006, Rémi Coulomb [7] developed the
MCTS algorithm in the 9 × 9 Go-chess-playing pro-
gram,Crazy Stone. Before that, almost all Go programs
used deterministic search algorithms. In 2017, the
AlphaGoZero [8] (trained without human examples)
defeated the strongest previous versions of AlphaGo
[9] (trained with human expert data). MCTS was one
of the main ideas behind the success of AlphaGo [9]
and AlphaGoZero [8].

The MCTS is often combined with ML models to
achieve great success in games. Notably, AlphaGo [9]
combinedMCTSwith deep neural network is currently

state-of-the-art for games in the class of chess and Go
[10]. It has inspiredmany approaches for games sharing
the same basic structure with a trained shallow value
[11] and policy [12] networks. Moreover, MCTS also
acted as a trainer for reinforcement learners to buildML
models. Pinto and Coutinho [13] used MCTS as a pos-
sible options framework and prepared options for the
video games. Kartal et al. [14] usedMCTS as a demon-
strator in hard-exploration domains because the nega-
tive rewards may have profound consequences acts.

In addition to its remarkable achievements in games,
MCTS also attracted interest from real-world problems
beyond games [15]. This study only focuses on the
application of mechanics and control. Shen et al. [16]
proposed the M-walk to overcome the sparse reward
problem, where the agent comprises an MCTS and a
deep neural network to generate trajectories with more
positive rewards. Using the same cost function and sys-
tem model in autonomous driving, the MCTS algo-
rithm achieves a much lower cost than classical Model
Predictive Control (MPC) [17]. However, the scope of
the study [17] is limited, and more insight is needed
to draw more general conclusions about MCTS char-
acteristics as compared with other control schemes,
including MPC. A novel perspective to use MCTS to
reconstruct the state space from a single time series for
detection and observation was proposed in [18]. The
Monte Carlo simulations of the surrogate models pro-
vided highly accurate approximations and significantly
reduced the computational cost of structural headmod-
els [19].

Although MCTS has proven powerful in sequen-
tial decision-making problems, it poses a significant
challenge for searching due to the search tree’s com-
plexity [15,20]. Lacking computational power limits
the potential of building an exhaustive search tree from
the whole state space. The performances of MCTS can
be significantly below algorithm capacity if the param-
eters are limitedly designed [21]. This can be clearly
seen in Sect. 4.3, where multiple MCTS control exam-
ples are evaluated with varying parameters. In recent
years, several MCTS modifications intended to tackle
the decision-making problems in games and havemade
new achievements in the following aspects.

(1) In case of the tree is growing sideways with limited
chances for the in-depth inspection of promising
branches, the MCTS did action reduction modified

123

Monte Carlo tree search control scheme... 8365

to narrow down the number of available actions
[22,23].

(2) Real-time strategy is a challenge and hot-spot for
RL algorithms due to considerable decision space
and partial observability, which can benefit from
methods of action reduction, early termination,
sampling strategy [20] and parallel algorithm.

(3) Making the trade-off between exploitation and
exploration is one of the challenges facing the use of
RL algorithms that has been studied by mathemati-
cians for many decades [24]. An exploitation and
exploration trade-off depends mainly on the vari-
ous tree policies with different parameters. Updat-
ing the policy parameters increased the strength of
MCTS [25].

(4) To guide the search-based algorithm to a good
solution, the reward function design is the key
to solution evaluation problem [23]. Learning
reward functions through deep neural networks has
become popular in RL for complex tasks involv-
ing goals that are poorly defined or hard to specify
[26]. In addition, the reward design avoiding the
sparse rewardproblem [16] or reflecting the optimal
reward problem [21] improved the performance of
MCTS.

To overcome the limitations of theMonte Carlo Tree
Search (MCTS) algorithm, which are mainly caused
by the complexity and large number of branches in
the tree, the paper examines the solutions proposed in
points 2, 3, and 4 of the aforementioned list. After point
2, the early termination is done by limiting the time
horizon of the simulation rollouts. After point 3, the
paper explores the impact of the exploration parameter
on the algorithm’s performance, to study the trade-off
between exploitation and exploration. After point 4,
the MCTS algorithm is guided by several reward func-
tions. However, the study only focuses on two specific
actions, so the tree’s sideways growth is not considered.

Computer technology can be used for the dynamic
simulation of complex mechanical systems, and AI has
also attracted much attention and seen rapid progress
in multibody system dynamics (MSD). Therefore, reli-
able and efficient models are crucial in various MSD
applications via AI technology. Angeli et al. [27] estab-
lished a nonlinear map via DL to minimal rigid multi-
body coordinates with the Kalman filter to speed up
the simulations. Peng et al. [28] established a general
friction model via DL to determine the contact sur-

face and characterize friction properties. In addition,
the dynamics response predictions for rigid MSD [29]
and flexible MSD [30] via DL successfully met the
research needs for real-time. Although the develop-
ment of AI in MSD applications is remarkable, little
has been done to date to explore the MSD applications
with MCTS. In MSD, decision-making processes usu-
ally involve setting a control objective and then using
optimization techniques to find the control inputs that
can either maximize or minimize this objective. The
modifications made to MCTS in games can be applied
to address decision-making challenges inMSD, such as
making the right moves to keep an inverted pendulum
upright. Efficient implementation of MSD numerical
solutions requires time discretizing a set of continuous
ordinary or partial differential equations. The motion
of a rigid MSD in 2D or 3D can serve as a series of
decision-making problems of theMarkov decision pro-
cess and apply MCTS to solve them. Thus, the discrete
action space in MCTS can be naturally added to the
dynamic equations due to the discrete time.

In this study, we consider the classical control MSD
task of stabilizing inverted pendulums using vanilla
and modified MCTS to reach the level of automatic
drive. By limiting choices to left or right movements
in the inverted pendulum search tree, the sideways tree
growth challenge is eliminated. Making a balance of
exploitation vs. exploration trade-off and manipulating
the reward function can improve learning results,which
are widely recognized in games and will also be dis-
cussed in MSD applications. The main contributions
are summarized as follows.

(1) This marks the inaugural application of MCTS
to multibody applications. While reinforcement
learning typically favours along-sighted algorithms
in virtual games [1], there is limited work on this
concept in mechanical systems. In this mechan-
ical study, the discount parameter incrementally
grows from 0 to 1, revealing superior performance
by long-sighted agents compared to short-sighted
counterparts.

(2) Opting forminor exploitation andmore exploration
is expected to result in significant improvement in
controlwhen compared to other trade-off parameter
combinations. Typically, maximized exploitation,
focusing only on specific previous actions, is too
greedy to utilize other chances for success. Con-
versely, maximizing exploration involves consid-

123

8366 Y. Tang et al.

ering both actions simultaneously, creating another
opportunity for success.

(3) A series of reward functions guiding the MCTS-
based controller to maintain the upright position is
designed, which significantly improve the control
performance of the default constant reward used
in the benchmark reinforcement learning cart pole
environment [31].

(4) The exponential reward functions perform bet-
ter than the polynomial reward functions. Among
them, the angle penalty and tip displacement
penalty were shown to control the multi-inverted
pendulum well.

(5) The redesigned reward functions improve the con-
trol robustness of MCTS. With prolonged sim-
ulation time, the vanilla MCTS exhibits dimin-
ished control robustness, while themodifiedMCTS
maintains stable performance.

The objective of this work is to identify the effects
of parameters in the vanilla MCTS via the two inverted
pendulum control systems and improve the vanilla
MCTS through reward designs. Section2 offers a
detailed background on building an MCTS, which
combines a tree search approach with MC simula-
tions. AmodifiedMCTS algorithmwith several frame-
works of reward functions is proposed, whose dis-
tribution shapes guide the search algorithm towards
higher reward regions to control the inverted pendu-
lums upright. The rigid MSD based on semi-recursive
formulation is illustrated in Sect. 3. The effects of
parameters in the vanilla MCTS and the improved
performances in the modified MCTS are accordingly
demonstrated via two numerical examples in Sect. 4.
Section5 describes the findings and future studies.

2 Monte Carlo tree search in control

The MCTS is a decision-making algorithm that com-
bines a tree search approach with Monte Carlo simu-
lations and uses the outcome of these simulations to
evaluate states in a look-ahead decision tree. See Fig. 1
for details of such a combination. The Monte Carlo is
one of the fundamental RL algorithms used to solve
any Markov decision process problem [6]. And the
Markov decision process, discussed in Sect. 2.1, is the
logic behind the MCTS.

In the field of control, there are two key components
that are interrelated: the controller (or agent) and the

plant (or environment) being controlled. These terms
are often used interchangeably based on the context. In
control theory, the terms controller and plant are used to
describe the components, while in the context of rein-
forcement learning, the terms agent and environment
are used instead.

In Figs. 1 and 5, we use the terms controller and
plant. However, in Fig. 2 and discussion in the rein-
forcement learning context, we refer to the agent and
environment.

2.1 Markov decision process

The Markov decision process is the logic behind the
MCTS. Modeling a control task as a Markov decision
process is a key concept in RL. In a Markov decision
process setting, the RL problem is formulated by the
tuple M = (S, A, R, P, γ) [24].

(1) S is the state space (also called the observation),
which contains the information about the environ-
ment and the agent at a given moment.

(2) A is the action space, which defines the interactions
between the agent and the environment.

(3) R(s, a) is the reward function to be learned, which
gives a numeric signal of goodness to the moves
the agent chooses.

(4) P ∈ [0 1] is the transition probability distribu-
tion function (mostly to be learned), which rep-
resents the probability of being in the next state
s′ after the agent performed action a in state s.
p = P(s′|s, a) is learned from the previous experi-
ence for the stochastic control system and typically
follows the Boltzmann, uniform, or categorical dis-
tribution [10]. While p = P(s, a) = 1 is for the
deterministic control, such a move will always be
chosen and there is no need to learn. The sum of the
probabilities across all possible next states is equal
to 1, i.e.,

∑
s P(s′|s, a) = 1, ∀s ∈ S, where ∀s ∈ S

represents for any s ∈ S holds.
(5) γ ∈ [0 1] is the discount factor, which adjusts the

importance of rewards over time and howmuch the
affections of the future are discounted. A discount
rate close to 1, i.e., γ −→ 1, means that the agent is
long-sighted and future rewards are given similar
weight to immediate rewards optimizing over the
long-term. Whereas a low discount rate, i.e., γ −→
0, means that the agent is short-sighted and leads
to preferring only short-term time horizons [10].

123

Monte Carlo tree search control scheme... 8367

Fig. 1 One-time interval MCTS open-loop control of the plant.
At each control time step, the current state of the plant ini-
tializes the tree. The plant takes the best-approximated action
after the tree is built (typically when the computational budget is
exhausted or the allotted time is reached). Internally, the MCTS

controller expands the tree by selecting an appropriate node and
performing a Monte Carlo simulation starting at the selected
node’s state.After theMonteCarlo rollout, the performancemea-
sure is returned as a reward. The controller is explained in details
in Sect. 2.3 and Fig. 3

For a state s ∈ S, the agent takes a control action
a ∈ A, then a reward r = R(s, a) is received, and a
next state s′ is reached in the environment. In RL, s and
a appear in pairs, that is (St , At , St+1, At+1, . . .). The
subscript t represents the steps, and the corresponding
reward is recorded as Rt+1. The probability of moving
from the current state St to the next state St+1 follows
the so-called Markov property. This property says that
the probability is independent of the history and regard-
less of all previous states or actions encountered,

P(St+1|St , At) = P(St+1|St , At , St−1,

At−1, . . . , S0, A0). (1)

Within a Markov decision process, the current state
contains enough information to choose optimal actions
to maximize future rewards. However, models require
previous experience to predict the next action, such as
the autoregressive models. As a result, suchmodels fail
to meet the so-called Markov property.

Some important terms are introduced below to help
understand the algorithms as follows.

(1) Cycle – A tuple of state, action, reward, and next
state, such as (St , At , Rt+1, St+1), which is the
interaction cycle between the agent and the environ-
ment. See Fig. 2. At each step, the agent observes
the environment, picks an action, and then receives
a new reward and state. And every step has an
opportunity for learning and improving perfor-
mance.

(2) Episode e [1] – An episodic task is a task that has an
ending, either because the clock stops or because

the agent reaches a terminal state. The episode is a
sequence of cycles from the beginning to the end
that describes a complete interaction process, such
as

e : (S0, A0, R1, S1, A1, R2, S2, . . . , AT−1, RT , ST).

(2)

Therefore, there is a finite number of steps in an
episodic task. Mostly, such interactions go on for
several cycles in an episode. In a tree search plan, an
agent may take several episodes, numbered as ne,
to learn to solve a task, especially in a pure Markov
decision process, ne = 1. The episode is always the
first thing that the agent needs to generate.

(3) Search budget n – The maximum search compu-
tational cost of given. As in [32], the given search
budget is divided into ne episodes as

n = neH , (3)

where H is the total steps in an episode, termed a
horizon.

The effect of the follow-up of step t can be summed
up as the time-discounted cumulative rewards Gt by
γ , termed a discount return. The objective of the agent
is to take actions that maximize the expected value of
the sum of future discounted rewardsGt (or discounted
cumulative rewards) during an episode, which is equal
to

Gt = Rt+1 + γ Rt+2 + γ 2Rt+3 + · · · + γ T−t−1RT

= Rt+1 + γ (Rt+2 + γ Rt+3 + · · · + γ T−t−2RT)

123

8368 Y. Tang et al.

= Rt+1 + γGt+1, (4)

where T is the final step.
The agent can be designed to learn mappings from

states to actions called policies π(a|s). When the
agent follows policy π(a|s) starting from state s to
adopt a combination of random variables, each strat-
egy will eventually produce a time-discounted cumu-
lative return Gt. The expectation E of these cumu-
lative returns is defined as the state-value function
or v-function. The state-value function represents the
expected return when following policy π(a|s) from
state s, which is equal to

v(s) = Eπ [Gt|St = s]. (5)

Substituting Eq. (4) into Eq. (5) results in the state-
value expression of the model-free RL as follows.

v(s) = Eπ [Rt+1 + γGt+1|St = s]. (6)

The Bellman equation for state-value in the Markov
decision process is defined as follows [1].

v(s) =
∑

a

π(a|s)
∑

s′
p(r + γ v(s′)),∀s ∈ S. (7)

Notice that the state-value in Eq. (7) is obtained via
the transition probability P with the knowledge of the
environmentmodel, which is used formodel-basedRL.

After evaluating the value of the state in Eq. (6) or
Eq. (7), the state-action pairs (s, a) must be evaluated
to determine what results will be produced after tak-
ing this state. By comparing different actions under the
same policy, the best action is selected, and the poli-
cies are improved. To evaluate the above-mentioned
state-action pairs (s, a), the action-value function, q-
function, or mean reward is defined as the expected
return if the agent follows policy π(a|s) after taking
action a in state s,

q(s, a) = Eπ [Gt|St = s, At = a]
= Eπ [Rt+1 + γGt+1|St = s, At = a]. (8)

The Bellman equation for action-value is defined as
[1]

q(s, a) =
∑

s′
p(r + γ v(s′)),∀s ∈ S,∀a ∈ A(s). (9)

Eq. (8) and Bellman Eq. (9) are used for model-free
RL and model-based RL, respectively. Figure2 shows
the differences in the algorithm used in an interaction
cycle between the Monte Carlo and MCTS.

Substituting Eq. (9) into Eq. (7), one can get the
relationship between the v-function and q-function in
the model-based RL as follows.

v(s) =
∑

a

π(a|s)q(s, a),∀s ∈ S,∀a ∈ A(s). (10)

2.2 Monte Carlo methods

To solve finite Markov decision problems, Dynamic
Programming (DP), Monte Carlo (MC) methods, and
Temporal Difference (TD) learning are the three fun-
damental solution approaches [6]. The Monte Carlo
methods are used in this study, which are based on
the statistical (or large number) principle and require
only experience-sample sequences of states, actions,
and rewards from actual or simulated interaction with
an environment [24]. Therefore, they can be used for
direct learning without a model to be learned with the
functions of transition probability distribution P . The
core idea is that agents constantly interactwith the envi-
ronment to generate a series of historical trajectories
and an index of the cumulative return Gt under a spe-
cific state and action in the historical trajectories. The
Monte Carlo methods do not bootstrap because their
estimations for each state are independent and do not
build upon the estimate of any other state [24].

In theMonteCarlomethods, the values of thev andq
functions are estimated by, respectively, V and Q. The
estimated V -function for a state s is the mean return
for that state,

VT (s) = 1

N (s)

T∑

t=1

Gt = 1

N (s)
(GT +

T−1∑

t=1

Gt), (11)

where the superscript T represents the end step, which
is also the end of an episode. Notice that VT (s) is cal-
culated only at the end of an episode because GT in
Eq. (11) depends on the end step T . The estimated V -
function for the step (T − 1)-th is

VT−1(s) = 1

N (s) − 1

T−1∑

t=1

Gt,

which can be submitted into Eq. (11) yields.

VT (s) = 1

N (s)

(

GT + (N (s) − 1)VT−1(s)

)

= VT−1(s) + 1

N (s)

(

GT − VT−1(s)

)

.

(12)

123

Monte Carlo tree search control scheme... 8369

Fig. 2 Algorithm differences of an interaction cycle between
Monte Carlo and MCTS–Without the environment model, the
agent of Monte Carlo can’t get the distribution of P , and there-
fore, the Markov decision process tuple is M = (S, A, R, γ).
The state-value and action-value are calculated via Eqs. (6) and

(8) due to the lack of P in the model-free RL. For MCTS,
the agent learns P from the environment model. Therefore,
M = (S, A, R, γ, P). And the state-value and action-value are
calculated via Eqs. (7) and (9)

Similarly, the estimated Q-function for the state-
action pairs (s, a) is the mean return for that pair.

QT (s, a) = 1

N (s, a)

T∑

t=1

Gt

= QT−1(s, a) + 1

N (s, a)

(

GT − QT−1(s, a)

)

.

(13)

When T approaches infinity, the estimate values of
Monte Carlo in Eqs. (11) and (13) will approach the
true values of model-free Markov decision process in
Eqs. (5) and (8), respectively.

lim
T→∞ VT (s) = lim

T→∞
1

N (s)

T∑

t=1

Gt = Eπ [Gt|St = s]

= v(s),

(14)

and

lim
T→∞ QT (s, a) = lim

T→∞
1

N (s, a)

T∑

t=1

Gt

= Eπ [Gt|St = s, At = a] = q(s, a).

(15)

That is, when T → ∞, Monte Carlo methods →
model-free Markov decision process. This implicitly
regularizes the Monte Carlo methods towards the pre-
vious model-free Markov decision process.

2.3 Vanilla Monte Carlo tree search

Monte Carlo Tree Search is one of the simulation-
based search methods that emerged and became popu-
lar in gaming. The MCTS (= Monte Carlo methods +
Tree search algorithm) framework develops a selective
search tree by repeatedly applying a Monte Carlo eval-
uation (see Sect. 2.2) at each child (or leaf) node and

then uses a tree structure to update and select node val-
ues efficiently. Unlike traditional planning and learning
algorithms, MCTS does not acquire knowledge from
the past, i.e., from steps that have already been done.
The main characteristic of the simulation-based search
is the strategy to look ahead and plan the future best
action based on the results of a large number of simu-
lations. The sample returns are observed between each
trajectory’s initial and termination state, and the val-
ues estimate the most promising episodes in the search
tree. These simulations are performed to forecast the
outcomes of possible decisions and plan in time.

The core of MCTS is an iterative process divided
into four steps. See Fig. 3.

(1) Selection – In this step, the algorithm begins at the
root node and traverses the tree according to the
so-called tree policy. The strategy’s main goal is
to select the best node to maximize the estimated
value and reach a child node.

(2) Expansion – Add a single child node to the search
tree under the node selected in the previous step, as
shown in Fig. 3.

(3) Rollout (or simulation) –Unlike games, an applica-
tion to multibody system dynamics involves real-
world physical models. Therefore, in this context,
the models of inverted pendulums will be primarily
utilized. Based on randomMonteCarlo simulations
from the added child node, the rollout policy is used
with a termination outcome with a specific reward.
For example, for the double inverted pendulums,
once the cart deviates more than a settled distance
from the center of the pole tilt exceeds a prede-
termined degree, the task will be terminated with
a reward of 0. Otherwise, the task gets a reward
of 1 from each interaction cycle. In addition, the
states visited will not be stored in the lookahead

123

8370 Y. Tang et al.

Fig. 3 Tree build scheme in the Monte Carlo Tree Search algo-
rithm. The algorithm is divided into iteration cycles involving
four steps (selection, expansion, rollout, and backup). The tree-
building process will stop when the search budget in Eq. (3) is
exhausted. For illustration purposes, the scheme depicts an envi-

ronment of double inverted pendulums on a cart with two discrete
actions (moving left andmoving right) and three states. However,
the MCTS scheme is universal and applies to any environment
with discrete actions

tree except for the started child node during the
rollout. Again, see Fig. 3. Future discounted cumu-
lative rewards can be obtained from Eq. (4) as

Gt = Rt+1 + γ Rt+2 + γ 2Rt+3 + · · · + γ d−t−1Rd

= Rt+1 + γGt+1, 0 < t < d, (16)

where d is the lookahead tree depth and t represents
the t-th interaction cycle in this tree. In addition, the
rollout includes the states visited but not stored.

(4) Backup (or backpropagation) – After reaching the
terminal state in d-th tree depth, the visit count and
action-value in Eq. (13) of the current simulation
are updated through all nodes up to the root node
as

Nt (s, a) = Nt−1(s, a) + 1, (17)

and

Qt (s, a) = Qt−1(s, a) + Gt − Qt−1(s, a)

Nt (s, a)
, (18)

123

Monte Carlo tree search control scheme... 8371

as shown in Fig. 3. And each edge (s, a) stores a set
of statistics as

E(s, a) ≡ (P(s, a), Q(s, a), N (s, a), R(s, a)),(19)

where P(s, a), Q(s, a), N (s, a), and R(s, a) are a
transition probability, an action value, a visit count,
and a reward, respectively.When the agent does the
t-th interaction cycle, for node i , the following set
is stored here (Fig. 3),

Et (Si , Ai)

≡ (Pt (Si , Ai), Qt (Si , Ai), Nt (Si , Ai), Rt (Si , Ai)).

(20)

In addition, the node must be visited several times
to ensure the estimate is reliable.

The iteration of steps 1–4 in MCTS will continue
until the search budget n in Eq. (3) is exhausted. There
are two policies in the MCTS; one is the tree policy in
the selection step, and the other is the rollout policy in
the rollout step. Some of the parameters of the MCTS
are shown in Table 1. At each interaction cycle, the
agent observes the current state of the environment and
selects an action that will cause the environment to
move to a new state, i.e., left and right. At the same
time, the environment will return a reward to the agent,
reflecting the result of the action.

2.4 Tree policy

As mentioned in the introduction, there are two chal-
lenges facing the tree policy: a sideway growing tree
and exploitation vs. exploration trade-off. The former
challenge does not exist for the inverted pendulums
because only two actions can be chosen here to make
the tree grow in-depth.

Exploitation and exploration are two aspects that
drive the decision during the tree policy, a trade-off
representing real-life problem-solving approaches in
RL. The starting point for the trade-off investigation is
to give the readers a preliminary impression of how the
trade-off parameter affects the control performance of
the inverted pendulums. This study uses the tree policy
of PUCT (Predictor + Upper Confidence with Tree-
based Search policy) [33] to select an action, which is
one of the bandit strategies. For child node i , the PUCT
formula can be expressed as follows,

πpuct (a|s) = argmax

⎡

⎢
⎣ Q(Si , Ai)︸ ︷︷ ︸
exploitation, greedy

+ U (Si , Ai)︸ ︷︷ ︸
exploration

⎤

⎥
⎦.

(21)

(1) Exploitation: Q(Si , Ai) is the action-value from
Eq. (13), representing the exploitation of the vis-
ited good paths.

(2) Exploration: U (Si , Ai) is the understand level of
child node i , which represents the exploration of
the unvisited paths. And,

U (Si , Ai) = Cpuct P(Si , Ai)

√∑
a N (s, a)

N (Si , Ai) + 1
,

(22)

where N (Si , Ai) is the number of child node i has
been visited.

∑
a N (s, a) corresponds to the total

number of visits done so far and evaluated in the
parent node. The state-action pairs in the search tree
are edges (s, a), and each node i contains edges
(s, a) for all legal actions ∀a ∈ A(s). Cpuct [9] is
a constant exploration parameter determining the
level of exploration, which will be discussed in
detail in the numerical examples.WhenCpuct = 0,
the PUCT policy degenerates to a pure greedy-
based policy, e.g., regression tree. The PUCT pol-
icy of Eq. (21) initially prefers actions with high
transition probability P and low visit count N , but
asymptotically prefers actions with high action-
value Q [8]. The PUCT formula strengthens the
convergence of known reward nodes and encour-
ages the exploration of nodes that have not been
visited. In the stochastic control for the uniformly
distributed case,

P(Si , Ai) = P(s′|s, a) = 1
∑

a nc(s, a)
, (23)

where nc is the sum of the number of children for
the parent.

The environment of an inverted pendulum has only
two actions. Exploration involves considering these
two actions simultaneously, and their choices are ran-
dom, discovering new paths with the potential for
success. Pure exploitation (or greedy-based) policy
lacks exploration and only considers the good existing
actions, which is too greedy to utilize other chances for
success. As the tree is transversed, the balance between
exploitation and exploration must be retained to obtain
themaximumvalue of the PUCT formula, i.e., Eq. (21).

2.5 Reward variants in Monte Carlo tree search

The reward function is developed to evaluate which
actions are worth doing, which is vital to achieving

123

8372 Y. Tang et al.

Table 1 Parameters used in the MCTS

Parameter Symbol Role Value Eqution

Discount parameter γ Discounted effects of future predictions [0 1] (4)

Exploration parameter Cpuct Determine the level of exploration [0 ∞) (22)

Transition probability P Select the edge (s, a) [0 1] (23)

Search budget n Maximum search cost (0 ∞) (3)

Episode e Sequence of cycles from the beginning to the end − (2)

Horizon H Total steps in an episode − (3)

Cumulative rewards Gt Future discounted cumulative reward in an episode − (4)

State-value V Expected return via policy π from state s − (12)

Action-value Q Expected return via policy π after taking action a − (13)

Fig. 4 The reward default MCTS vs. The reward modified
MCTS

good learning results. It is nontrivial to design a good
reward function. In the MCTS, the reward function is
essential to estimate an action-value (see, Eq. (18)) that
is next used to exploit the tree. A deep understanding
of task logic can also help engineers design effective
reward functions for optimal action generation. The
default reward function in the Gymnasium cart-pole
environment has only two values of 0 or 1 [31]. See
Fig. 4a. Unlike some games with clear reward signals,
i.e., win (R = 1) or lose (R = 0), the outcome of
multibody system control often needs careful evalua-
tion with a continuous reward function R, see Fig. 4b.
The structure of the reward function is important to the
agent, which guides the planning for decision-making
strategy in the right searching direction towards higher
reward regions. Therefore, the reward function should
be carefully designed to encourage a better solution.

In Sect. 4, where the numerical examples are pre-
sented, several reward functions are evaluated. The
baseline is set by the simple reward of a constant

1 value for each successful step. It follows the rule
of reward design that the reward should express the
desired behavior of the system and not indicate how to
achieve such a goal [34].However, the agent’s guidance
based on expert knowledge is desirable, and reward
design may be one of the easiest ways to achieve it.
Therefore, Sect. 4 presents additional rewards for the
n-inverted pendulum systems. They provide the high-
est reward for the pendulum in the equilibrium position
(inverted link(s) in the upward vertical position, and, if
the cart is also considered, for its position at the cen-
ter). The further from the zero position, the reward is
smaller. Several variants were considered, and they are
introduced below.

2.6 The MCTS controller for each time interval

In classical control, the simulation model of the con-
trol system is called the plant. Figure5 illustrates the
open loop control system scheme via MCTS for the
inverted pendulums on a cart. The MCTS is used as a
controller, and the plant could be Single, Double, N-th
order Inverted Pendulums (SIP, DIP, and NIP, respec-
tively) on the cart or any other system. For every time
interval, a new search tree is built from the current state
to decide the following action by comparing the final
backup discounted cumulative rewards in Eq. (4) to
take an actual left or right action. High-reward actions
are more likely to keep the inverted pendulums upright.
Therefore, in the inverted pendulum task, the control
goal is to stabilize the pendulum and make the task run
for as long as possible.

The control concept involves utilizing a reward func-
tion, as described in Sect. 2.5, to assess the worth of

123

Monte Carlo tree search control scheme... 8373

actions in achieving good learning outcomes. In the fol-
lowing numerical examples, reward functions are care-
fully designed based on human intelligence to align
with the control objective, shaping a specific distribu-
tion of reward bonuses and guiding the MCTS-based
control to maintain the upright position. The innova-
tive nature of this control strategy is underscored by
the novel application of the MCTS algorithm in con-
trollingmultibody systems. The enhanced reward func-
tions have shown to yield superior control performance,
compared to the standard MCTS algorithm.

3 Multibody system dynamics

Understanding the dynamic behaviors of complex
mechanical systems such as industrial robots, vehicles,
machine mechanisms, and rotating structures requires
a sophisticated simulation toolset. The multibody sys-
tem dynamics approach is ideally suited as an effective
and efficient dynamics modeling tool for various appli-
cations.

In multibody system dynamics, equations of motion
can be constructed using two alternative procedures.
The common procedure consists of a family of global
methods applied to define the absolute translations and
rotations of each body of a system with a set of coordi-
nates. Joints are accounted for via constraint equations
that couple global coordinates. An alternative to global
methods is the family of topological methods, which
uses relative coordinates between bodies. Using rela-
tive coordinates can lead to a computationally effective
procedure of semi-recursive formulation and its varia-
tions. In this study, the global formulation is used. The
global position of an arbitrary particle can be defined
as

rAP = RA + AAuAP , (24)

whereRA is the position of the reference frame of body
A with respect to the global reference frame, AA is the
rotation matrix of body A, and uAP is the location of
particle P in the reference frame of body A. Joints that
couple bodies together and limit their motion possibil-
ities can be expressed in terms of constraint equations
as

C = [C1 C2 · · · CNc]T = 0 ∈ R
Nc , (25)

where Ci is i-th constraint equations of the system and
Nc is the number of constrain equations.

By following the concept of virtual work [35], the
forces acting on a multibody system can be written in
terms of generalized coordinates,

δF = δqT (Mq̈ + Qv − Qe) , (26)

where δq ∈ R
6Nb is the virtual displacement vector,

Nb is the number of bodies, M ∈ R
6Nb×6Nb is the mass

matrix of the system,Qv ∈ R
6Nb is the quadratic veloc-

ity vector and Qe ∈ R
6Nb is the vector of externally

applied generalized forces. Equation (26) can be set to
zero if virtual displacement δq is kinematically admis-
sible. In practice, kinematically admissible displace-
ment can be expressed using the concept of coordinate
partitioning.

To derive kinematically admissible displacements,
coordinate partitioning begins by grouping generalized
coordinates as dependent or independent. This parti-
tioning can be expressed as

δq =
[
δqT

d δqT
i

]T
, (27)

where δqd is the vector of dependent generalized coor-
dinates and δqi is the vector of independent general-
ized coordinates. The dependent generalized coordi-
nate displacements δqd can be determined using the
displacement of the independent generalized coordi-
nates δqi . To this end, constraints (i.e., Eq. (25)) con-
cerning the generalized coordinates must be differen-
tiated to get the Jacobian matrix of the system. When
using the concept of coordinate partitioning in the Jaco-
bian matrix, the relationship between all virtual dis-
placement of generalized coordinates and virtual dis-
placement of independent generalized coordinates can
be obtained as

δq =
[
−C−1

qd Cqi

I

]

δqi = Bδqi , (28)

where Cqd is the dependent part of the Jacobian matrix
and Cqi is independent. Using Eq. (28), in Eq. (26), the
equations of motion can be written as

BTMBq̈i + BTMD − BTQv − BTQe = 0, (29)

where matrix D can be obtained by differentiating the
constraints twice, respecting the time, and using coor-
dinate partitioning [35]. Equation (29) uses the min-
imum number of coordinates to represent the system
dynamics.

In summary, themultibody systemapproachpresents
a general framework formodeling and analyzingmulti-
physics systems. In this study, the framework is used to

123

8374 Y. Tang et al.

Fig. 5 The control system scheme via MCTS for inverted pen-
dulums on the cart–The plants are controlled in the open loop in
this study. The inputs are the parameters of MCTS and the envi-
ronment, and the output is the state of the plant. In the controller,
(1) at every time interval, a new search tree is built from the root

node of the current state to decide which next action A1 or A2
will be taken for the plant; (2) the search tree is finished until
the search budget is exhausted; and (3) the interaction with the
simulation environment happens during the tree building process
ahead of time with the prescribed time horizon

model both single and double-inverted pendulums on
a cart, with the primary purpose of facilitating the roll-
out phase of the MCTS algorithm. Although other for-
malisms could be used to derive the simulation model,
the flexibility and versatility of themultibody approach
make it an excellent fit for control approaches that rely
heavily on model evaluation. Furthermore, the multi-
body model can be easily modified to account for phe-
nomena such as friction or to include rapid design
changes.

4 Numerical examples

Investigating our control concept utilization leads to the
studyof benchmark performance results.The single and
double inverted pendulums on the cart mechanisms are
used for benchmark purposes. Because of their non-
linearity and strongly coupled and under-actuated con-
trol, such systems are commonly used in the field of
control engineering techniques both for theoretical and
real-time physical implementation. The control strate-
gies can be classified into three main groups: (1) bal-
ance control in the inverted equilibrium point [36], (2)
swing-up control to inverted equilibrium [37,38], and
(3) random motion control from one equilibrium state
to another [39]. This study addressed the balance con-
trol task category, where the main objective is to stabi-
lize the pole upwards.

All the examples are programmed using the Julia
programming language [40], and all used codes are
available online under an MIT license [41,42].

4.1 Simulation environments

The multibody dynamic systems used will be called
environments here. In this study, the two planar simu-

lation environments used are single and double inverted
pendulums on the cart. They are available on GitHub in
Julia package Environments.jl [41]. The single inverted
pendulum on the cart is implemented after the OpenAI
Gymnasiumcart pole environment [31,43] inspired ini-
tially by the research of Barto et al. [44]. A double-
inverted pendulum on the cart is a variant of the single-
inverted pendulumwith a second link added. See Fig. 6.
The single pendulum variant has two degrees of free-
dom and coordinates x and θ1. The double pendulum
variant has three DOFs and coordinates x , θ1, and θ2.
The parameters of pendulum-cart systems are listed in
Table 2. Mechanisms operate in a gravitational field,
and control input dictates the direction of applied force
F acting on the cart body in the x̂ axis direction.

For a dynamic model of a double inverted pendulum
on the cart, as described above, the main control objec-
tive is to keep both poles balanced upwards. The initial
state of the simulation is based on the vertical position
of both poles, while the parameter that can be regulated
is the direction of the actuation force. Its magnitude is
given in Table 2. The simulation state time interval is
set to 0.02 s, while after each state update, a controller
or an agent decision is required about which action in
Table 3 will be taken. See Fig. 5.

4.2 Reward for the simulation environment

As discussed in Sect. 2.5, one of the key components
of the reinforcement learning environment is the design
of the reward function. For the episodic MDP problem
where, as an analogy to a real-life problem, the goal
is to maximize the time the poles of the mechanism
remain upwards. After each state, the reward value that
the agent receives is updated.

123

Monte Carlo tree search control scheme... 8375

Table 2 Physical parameters of the SIP and DIP on the cart

Parameter Symbol SIP DIP Unit

Cart mass mc 1 1 kg

Pendulum 1 mass m1 0.1 0.1 kg

Pendulum 2 mass m2 NA 0.1 kg

Pendulum 1 length l1 1 1 m

Pendulum 2 length l2 NA 1 m

Pendulum 1 moment of inertia I1 8.33 × 10−3 8.33 × 10−3 kg.m2

Pendulum 2 moment of inertia I2 NA 8.33 × 10−3 kg.m2

Excitation force value F 10 20 N

Fig. 6 Double inverted pendulum on a cart–The system has
three generalized coordinates: cart displacement x , and pendu-
lum angles θ1 and θ2

Termination of the control occurs if any of the con-
ditions in Table 4 is met. The equations for the rewards
R shown in this section are valid only when those ter-
mination conditions are not met. Specifically cart dis-
placement must follow |x | ≤ xmax, where xmax is the
cart displacement limit, and pole angles |θi | ≤ θmax,
i = 1, 2 where θmax is the angle limitation adopted in
this study.

In the following sections, the rewards that are eval-
uated in the numerical tests are present. Most of those
rewards use xmax and θmax as scaling factors.

4.2.1 Constant reward

The simple reward of a constant value for each suc-
cessful step sets the baseline. In this case, the agent can
receive +1 in all states until the episode terminates.

R = 1 (30)

It follows the rule of reward design that the reward
should express the desired behavior of the system and
not indicate how to achieve such a goal [34]. How-
ever, the agent’s guidance based on expert knowledge
is desirable, and reward design may be one of the eas-
iest ways to achieve it. Therefore, below, we present
additional rewards that provide the highest reward for
the pendulum in the equilibrium position (inverted link
in an upward vertical position, and if the cart is also
considered for its position at zero). The further from
the zero position, the reward is smaller. Several vari-
ants were considered, and they are introduced below.

4.2.2 Polynomial reward functions

The first reward function in this category is based on
the pole angles and cart displacement.

R = 1 − w
1

n

n∑

i=1

(|θi |
θmax

)pθ

− (1 − w)

(|x |
xmax

)px

(31)

where w is weighting factor (for w = 1 only angle is
considered, for w = 0 only cart displacement), while

123

8376 Y. Tang et al.

pθ and px are power coefficients for angle and displace-
ment. n denotes the number of poles that are stabilized.

The second variant of the polynomial reward traces
the tip of the topmost pendulum. The reward is given
by equation

R = 1 − w

(|ye|
yemax

)py
− (1 − w)

(|xe|
xmax

)px
(32)

where ye = l
∑n

i=1(1 − cos θi) is the vertical dis-
placement of the endpoint of the topmost pole con-
cerning the vertical position in an equilibrium state,
yemax = nl(1−cos θmax) ismaximumallowed ye before
termination, and xe = x − l

∑n
i=1 sin θi is the hori-

zontal displacement of the endpoint. py is the power
coefficient for the vertical displacement component.

4.2.3 Exponential reward functions

This reward function is given as

R = w
1

n

n∑

i=1

exp

[

−
(

θi

qθ θmax

)2
]

+

(1 − w) exp

[

−
(

x

qx xmax

)2
] (33)

When end tip displacement is considered, the fol-
lowing equation is used.

R = w exp

[

−
(

ye

qy yemax

)2
]

+

(1 − w) exp

[

−
(

xe

qx xmax

)2
] (34)

Parameters qθ , qx , and qy determine how fast the
exponential function decreases value from the zero for
respective reward components.

To illustrate differences between specific reward
functions, Fig. 7 plots the default, polynomial (linear,
quadratic, and square root), and exponential reward
functions when w = 1. The probability of winning
by keeping the inverted pendulum upright at θ = 0◦
is much greater than θ = 12◦, and it decreases as θ

deviation away from θ = 0◦. This is not considered in
the default reward function with a uniform distribution
of 1. Therefore, the value distribution of redesigned
reward functions is dropping from 1 to 0 as the θ devi-
ation away from θ = 0◦, which encourages the plan-
ning searching direction towards higher reward regions
(upright position). Different dropping slopes ∂R

∂θ
can

Fig. 7 Reward functions when w = 1 and |x | ≤ xmax

result in significant differences in the control perfor-
mance. See the additional results of the current study
online [45].

4.3 Reinforcement learning environment

The computational study was carried out for two vari-
ants of the mechanism: single and double inverted pen-
dulum on the cart. The environments were controlled
using the MCTS algorithm (Sect. 2) implemented in
the software package PureMCTS.jl [42]. Control algo-
rithm parameters were determined for each environ-
ment to perform a sensitivity study to determine the
effectiveness of the control process. Table 5 contains
individual control parameters indicating their range and
step. Each combination of parameters was calculated
10 times for different seed values. The same seed val-
ues are chosen to ensure consistent initial conditions
for each parameter combination. Two figures are pre-
sented to evaluate the control performance of a set of
combinations of parameters. The left column presents
the mean of all 10 runs, while the right column presents
the standard deviation of all 10 runs.

The so-called heatmap plots are presented to evalu-
ate the control performance of a combination of param-
eters, where each data point is presented explicitly
without interpolation. The color map was set so that
light colors indicated the desired outcome on both

123

Monte Carlo tree search control scheme... 8377

Table 3 Action space
parameters

Parameter Symbol

Force applied to the cart in positive x̂ axis direction 1

Force applied to the cart in negative x̂ axis direction 0

Table 4 Termination scenario conditions

Scenario description Termination value Condition

Cart reaches the border of graphic window xmax = 2.4m |x | > xmax

Pendulums tilt angle has exceeded the limit θmax = 12◦ |θ1| > θmax or |θ2| > θmax

The number of time steps reaches the limit in the control system Tmax
s Ts > Tmax

s

Table 5 Single and double pendulum control parameter range

Single pendulum Double pendulum
Parameter Symbol Range Step Range Step

Discount parameter γ [0.5 1.0] 0.05 [0.7 1.0] 0.05

Exploration parameter Cpuct 0 and [21 210] ×21 0 and [21 25] ×21

Search budget (rounded) n [101.5 105] ×100.05 [103 106] ×100.1

Horizon H [4 30] 1 [10 40] 2

means (left) and standard deviation (right) plots.A light
color for the mean means that the pendulum was sta-
bilized for a sufficient duration (at most for Ts time
steps). A bright color on the standard deviation plots
indicates low solution divergence for various seed set-
tings. Therefore, the most desired solution is a large,
continuous bright color area in both mean and standard
deviation plots. Such a solution would indicate that the
control grade is not sensitive to specific budget and
horizon choices.

To quantify the results presented in the plots, we
introduce a simplemeasure of the control performance,
the success rate S. S expresses the percentage of the
successful control episodes to the total number of con-
trol episodes. In this context, the single control episode
denotes the single point on the heatmap (that is, the
control episode is composed of ten control runs for the
same agent parameters). The control episode is consid-
ered successful when the system is stabilized for all Ts
steps. Therefore, the successful control episodes are the
brightest possible points in the plots (referring to the
maximummean value of Ts and minimum deviation of
0). As such, S is the ratio of the brightest possible area
to the total area of the plot expressed in percentage.

As shown in Table 5, multiple parameter variations
are tested. Therefore, only selected results are shown
here to indicate the specific behavior of the system.
More precisely, only plots for one selected γ value and
three different Cpuct values are shown. For the single
pendulum example, γ = 0.85 and Cpuct = 2, 4, 1024.
For the double pendulum example, γ = 1.0 and
Cpuct = 8, 32, 128. The choice of the parameters is
made to present the results of the most considerable
control quality for simulated examples for constant
reward from Eq. (30) – γ = 0.85, and Cpuct = 2
for the single pendulum and γ = 1.0, and Cpuct = 32
for double. The example of high and low Cpuct shows
results degradation when less optimal parameters are
chosen. The interested reader can see all generated
results during the current study online [45]. In addi-
tion, all the plots can be generated using script files
found in PureMCTS.jl package [42].

4.3.1 Single inverted pendulum

Figures 8, 9, 10, 11 and 12 are the chosen typical results
for the single inverted pendulum on the cart for default,
constant and exponential reward functions. Table 6
shows all the parameter settings details that generated

123

8378 Y. Tang et al.

Fig. 8 Simulation results for single inverted pendulum on cart environment when Ts = 200 and γ = 0.85. (Default case A in Table 6)

corresponding control results are shown online [45].
Analysis of the presented figures reveals the following
results.

(1) The results in Fig. 8 present the control perfor-
mance when Cpuct = 0, representing the agent
using a purely greedy policy. As pointed out in
Sect. 2.4, the pure greedy-based policy lacks explo-
ration and only considers the good existing actions,
which is too greedy to utilize other chances for suc-
cess. All the numerical results in [45] show similar
failures for a single/double inverted pendulum on
the cart, no matter the discount parameter’s value.
This indicates that exceptionally poor performance
results from theMCTSagent only learning from the
previous experience with no exploration involved.

(2) The plots for Cpuct = 2 show a significant area
of high control effectiveness in the mean plot. This
area begins for budgets of about 1000 and hori-
zon values of 10 to 15. When increasing the value
of Cpuct , such as from 4, 8, 16,32, 64, 128, 256,
512 to 1024, the results are getting worse [45]. The
plot for Cpuct = 1024 (see Fig. 9) reveals the pat-
tern where the areas of high control effectiveness
are directly adjacent to areas of low control effec-
tiveness. This is achieved for low standard devia-
tion. The adjacent areas of low and high control
effectiveness often differ by just one step in the
tree-building process (Fig. 3). While the results (as
shown for Cpuct = 1024) allow for finding good
control results with a reasonably small budget, they
also reveal the large sensitivity to parameter selec-

tion. LargerCpuct values also seem to require larger
γ to control the system effectively.

(3) An increase in horizon typically requires a larger
budget, which is expected because more simu-
lations are required to build a tree of the same
size when a smaller horizon is used. However, the
standard deviation plot shows that some combina-
tions of parameters result in worse performance
than their neighbors. A similar result pattern was
observed for γ from 0.8 up to 1.0 and for Cpuct up
to 64. Moving away from optimal settings results
in a smaller area of a high mean Ts and a noisier
standard deviation.

(4) Significantly improvements in the control perfor-
mance can be found when comparing proposed
redesigned reward functions (shown in Sects. 4.2.2
and 4.2.3) to default constant reward. See results in
Figs. 9 and 11. The success rate S increases from
the 30.3% for caseA to 78.0% for themodified case
Q. The improvement is more remarkable for longer
simulations with Ts = 500, where S is just 1.3%
for case B and 66.4% for modified case U. These
improvements can also be found when using other
redesigned reward functions. More results can be
found in [45]. These results validate the effective-
ness of the proposed reward functions.

(5) A poor control robustness can be found when
using the default constant reward by compar-
ing the Figs. 9 and 10. The control performance
drops sharply with the same set of parameters
when increasing the control time, and almost no
combination of parameters can provide acceptable

123

Monte Carlo tree search control scheme... 8379

Fig. 9 Simulation results for single inverted pendulum on cart environment when Ts = 200 and γ = 0.85. (Default case A in Table 6)

results. However, significant improvements in the
control robustness can be found when using the
redesigned reward functions by comparing Figs. 11
and 12. Similar significant improvements can also
be found using the polynomial reward functions
(Eqs. (31) and (32)) and exponential reward func-

tions (Eqs. (33) and (34)). Again, more results can
be found in [45].

(6) Comparing all the generated results online [45]
whose parameters are listed inTable 6, the exponen-
tial reward function of angle penalty when w = 1
and pθ = 0.25 (cases Q and U) shows the best con-

123

8380 Y. Tang et al.

Fig. 10 Simulation results for single inverted pendulum on cart environment when Ts = 500 and γ = 0.85. (Default case B in Table 6)

trol effectiveness for both Ts = 200 and Ts = 500
in general. For example, the results of Q (angle
penalty) show better performance than results of
AD (angle penalty and tip displacement penalty)
whenCpuct = 2, 4 and 8. Considering only the cart
displacement penalty (case C) makes the results

worse than the default one (caseA)when Ts = 200.
The reward function with a combination of angle
and cart displacement penalties performs not as
well as the one that only considers the angle penalty,
such as case Q and cases V, W, X, Y, Z, and AA.

123

Monte Carlo tree search control scheme... 8381

Fig. 11 Simulation results for single inverted pendulum on cart environment with modified reward function when Ts = 200 and
γ = 0.85. (Modified case Q in Table 6)

123

8382 Y. Tang et al.

Fig. 12 Simulation results for single inverted pendulum on cart environment with modified reward function when Ts = 500 and
γ = 0.85. (Modified case U in Table 6)

123

Monte Carlo tree search control scheme... 8383

Fig. 13 Simulation results for double inverted pendulum on cart environment with angle penalty reward when Ts = 200 and γ = 1.
(Modified case G in Table 7)

123

8384 Y. Tang et al.

Fig. 14 Simulation results for double inverted pendulum on cart environment with angle penalty reward when Ts = 500 and γ = 1.
(Modified case I in Table 7)

123

Monte Carlo tree search control scheme... 8385

Fig. 15 Simulation results for double inverted pendulum on cart environment with tip drop rewardwhen Ts = 200 and γ = 1. (Modified
case Q in Table 7)

123

8386 Y. Tang et al.

Fig. 16 Simulation results for double inverted pendulum on cart environment with tip drop rewardwhen Ts = 500 and γ = 1. (Modified
case T in Table 7)

123

Monte Carlo tree search control scheme... 8387

Table 6 Test cases for the single pendulum

ID Name Tmax
s Figure Equation w pθ or py px qθ or qy qx

A Constant 200 8 and 9 (30) – – – – –

B Constant 500 10 (30) – – – – –

C Linear to x 200 – (31) 0 – 1 – –

D Linear to θ1 200 – (31) 1 1 – – –

E Linear to θ1 and x I 200 – (31) 0.5 1 1 – –

F Linear to θ1 and x II 200 – (31) 0.75 1 1 – –

G Linear to θ1 and x III 200 – (31) 0.25 1 1 – –

H Linear to θ1 and x II 500 – (31) 0.75 1 1 – –

I Quadratic to θ1 200 – (31) 1 2 – – –

J Quadratic to x 200 – (31) 0 – 2 – –

K Quadratic to θ1 and x 200 – (31) 0.75 2 2 – –

L Square root to θ1 200 – (31) 1 0.5 – – –

M Polynomial to θ1 and x 200 – (31) 0.75 2 6 – –

N Linear to ye and xe I 200 – (32) 0.5 1 1 – –

O Linear to ye and xe II 200 – (32) 0.75 1 1 – –

P Exponential to θ1 I 200 – (33) 1 – – 5/12 –

Q Exponential to θ1 II 200 11 (33) 1 – – 0.25 –

R Exponential to θ1 III 200 – (33) 1 – – 2/3 –

S Exponential to θ1 IV 200 – (33) 1 – – 1/6 –

T Exponential to θ1 V 200 – (33) 1 – – 1/12 –

U Exponential to θ1 II 500 12 (33) 1 – – 0.25 –

V Exponential to θ1 and x I 200 – (33) 0.75 – – 0.25 0.25

W Exponential to θ1 and x II 200 – (33) 0.75 – – 0.25 0.2

X Exponential to θ1 and x III 200 – (33) 0.75 – – 0.25 0.3

Y Exponential to θ1 and x IV 200 – (33) 0.85 – – 0.25 0.25

Z Exponential to θ1 and x V 200 – (33) 0.75 – – 0.25 0.1

AA Exponential to θ1 and x VI 200 – (33) 0.75 – – 0.25 0.4

AB Exponential to θ1 and x IV 500 – (33) 0.85 – – 0.25 0.25

AC Exponential to θ1 and x VII 500 – (33) 0.95 – – 0.25 0.25

AD Exponential to ye I 200 – (34) 1 – – 0.25 –

AE Exponential to ye II 200 – (34) 1 – – 0.1 –

AF Exponential to ye III 200 – (34) 1 – – 0.4 –

AG Exponential to ye II 500 – (34) 1 – – 0.1 –

Similar results also can be found when Ts = 500,
such as in case U and cases AB, and AC.

4.3.2 Double inverted pendulum

The results for the double inverted pendulumon the cart
(see Figs. 13, 14, 15 and 16) show similar behavior to
their single pendulum counterpart when the large area
of the good control effectiveness is achieved. However,

a larger budget and horizon values are needed to stabi-
lize the system due to the more considerable complex-
ity of the dynamics of the double-inverted pendulum
system than the single one. This translates to far higher
computational costs. In addition, only the redesigned
reward functions with exponential form are studied
in the double-inverted pendulum, as they exhibit the
best control performance in the single-inverted pendu-
lum, as stated in the last result in Sect. 4.3.1. Table 7

123

8388 Y. Tang et al.

Table 7 Test cases for the double pendulum

ID Name Tmax
s Figure Equation w qθ or qy qx

A Constant 200 – (30) – – –

B Constant 500 – (30) – – –

C Exponential to θ1 I 200 – (33) 1 0.25 –

D Exponential to θ1 II 200 – (33) 1 0.1 –

E Exponential to θ1 III 200 – (33) 1 0.4 –

F Exponential to θ1 IV 200 – (33) 1 0.55 –

G Exponential to θ1 V 200 13 (33) 1 0.7 –

H Exponential to θ1 VI 200 – (33) 1 0.85 –

I Exponential to θ1 V 500 14 (33) 1 0.7 –

J Exponential to θ1 and x I 200 – (33) 0.75 0.25 0.25

K Exponential to θ1 and x II 200 – (33) 0.85 0.7 0.7

L Exponential to θ1 and x III 200 – (33) 0.7 0.7 0.7

M Exponential to θ1 and x IV 200 – (33) 0.85 0.7 0.4

N Exponential to θ1 and x II 500 – (33) 0.85 0.7 0.7

O Exponential to θ1 and x III 500 – (33) 0.7 0.7 0.7

P Exponential to θ1 and x IV 500 – (33) 0.85 0.7 0.4

Q Exponential to ye I 200 15 (34) 1 0.25 –

R Exponential to ye II 200 – (34) 1 0.1 –

S Exponential to ye III 200 – (34) 1 0.4 –

T Exponential to ye I 500 16 (34) 1 0.25 –

U Exponential to ye II 500 – (34) 1 0.1 –

V Exponential to ye III 500 – (34) 1 0.4 –

W Exponential to ye and xe I 200 – (34) 0.95 0.25 0.25

X Exponential to ye and xe II 200 – (34) 0.8 0.25 0.25

Y Exponential to ye and xe I 500 – (34) 0.95 0.25 0.25

Z Exponential to ye and xe II 500 – (34) 0.8 0.25 0.25

shows the parameter settings details that generated cor-
responding control results are shown online [45]..

(1) For Cpuct = 32, the area of high control effec-
tiveness is relatively uniform and valid for hori-
zon values above 20 and a budget larger than 5×4.
However, even in this region, there are points of
visibly worse control effectiveness. With varying
Cpuct and γ values, the effectiveness of the MCTS
degraded. Within the tested range of parameters,
other regions with relatively good control effec-
tiveness were observed for Cpuct = 4 and γ =
0.85, Cpuct = 8 and γ = 0.9, Cpuct = 16 and
γ = 0.95, Cpuct = 32 and γ = 0.95, 1.0, and
Cpuct = 64, 128 and γ = 1.0. As Cpuct values
increase, larger γ are required. Other sets of param-

eters result in a lack of clear and continuous areas
of high mean and low standard deviation for Ts .

(2) The redesigned reward functions can improve
the control robustness and performance of the
vanillaMCTS. Similar to the single pendulum case,
rewards that combine angle and cart displacement
penalties perform not as good as the one with only
the angle penalty when Ts = 200, such as case G
and cases J, K, L, and M. See the results online
[45]. Similar results can be found when Ts = 500
in case N and cases O and P.

(3) When using a high value of Cpuct , one new result
revealed the areas of high control effectiveness
are directly adjacent to areas of low control effec-
tiveness for single-inverted pendulum is no longer

123

Monte Carlo tree search control scheme... 8389

observed for the double-inverted pendulum. This is
likely due to its more complex dynamics.

(4) Comparing all the generated results online [45]
whose parameters are listed in Table 7, one new
result is that the tip displacement penalty’s expo-
nential reward functions perform as well as the
angle penalty’s. For example, with the same param-
eters’ setting of the rest, the results of C (angle
penalty) and Q (angle penalty and tip displacement
penalty) perform almost the same. This makes the
exponential reward functions of angle penalty and
tip displacement penalty both promising to control
the multi-inverted pendulum.

5 Conclusions

Monte Carlo Tree Search is a decision-making algo-
rithm based on the standard Markov Decision Process
logic, which combines the Monte Carlo simulations
with the tree search algorithm. It is the main success
behind many games because of its simple probabil-
ity logic and easy implementation via computer tech-
nology. Furthermore, parametric analysis can be used
to identify the effects of input parameters on model
results, which are difficult to estimate for multibody
systems and cannot be acquired from the literature. This
work aims to provide new insights into the performance
of MCTS with the role and impact of its parameters in
multibody dynamics control applications. The innova-
tive aspect of this control approach lies in its pioneering
use of the MCTS algorithm for controlling multibody
systems, with the modified reward functions demon-
strating superior control performance compared to the
standard MCTS algorithm. In summary, our findings
show that:

(1) Compared with a short-sighted agent with a low
value of the discount parameter, a long-sighted
agent with a high value of the discount parame-
ter, such as r ∈ [0.85 1], often controls the task
better.

(2) The exploitation-exploration trade-off is crucial,
which suggests using minor exploitation and more
exploration can expect significant improvement in
the control of mechanical systems. In the con-
text of real-world physical systems, the balance
between leveraging prior knowledge (exploitation)
and actively searching for new information or

actions (exploration) is essential to design sys-
tems that are robust against uncertainties like sys-
tem nonlinearities or parameter modifications. This
trade-off is not unique to reinforcement learning
but is universally related to decision-making under
uncertainty and limited budget.

(3) The proposed reward functions, which can guide
the search tree to a higher rewards region, greatly
improve the control performance compared to the
simple constant reward. This can be easily observed
in a single pendulum simulation for Ts = 500 and
Cpuct = 2 where the success rate S raises from
1.3% (as shown in Fig. 10) to 66.4% (Fig. 12).

(4) The exponential reward functions perform bet-
ter than the polynomial reward functions. Among
them, the angle penalty and tip displacement
penalty are most promising for effectively con-
trolling multiple inverted pendulums. On the other
hand, penalizing the cart displacements shows little
to no improvements.

(5) The vanilla MCTS with constant reward exhibit
much worse control performance when control
time is extended. The modified MCTS controls the
inverted pendulums well when increasing the sim-
ulation time.

The currentMCTScontroller has a limited capability of
explaining its decisions. Although we have developed
algorithms based on reward functions that can provide
interpretable explanations for their decisions, MCTS
still lacks transparency, making it difficult to under-
stand how it arrived at a particular decision. The current
MCTS controller can predict the control performance
for future actions, while the classical control design,
such as PID controller, cannot. The predictive ability is
powerful and promising in solving more complex sys-
tems. Future studies should focus on real-time applica-
tions and usage of MCTS with learning for a suitable
surrogate model to avoid costly Monte Carlo rollouts.
Moreover, the methodology presented could be used
to control more complex systems, such as autonomous
cranes.

Acknowledgements The authors wish to acknowledge CSC–
IT Center for Science, Finland, for computational resources.

Funding Open Access funding provided by LUT University
(previously LappeenrantaUniversity of Technology (LUT)). The
authors gratefully acknowledge funding provided by Business
Finland’s “Kumppanuusmalli - SANTTU - LUT” project under
grant 8859/31/2021

123

8390 Y. Tang et al.

Data Availability Statement The data that support the find-
ings of this study are available on GitHub. The whole dis-
cussed numerical cases are available at https://gorzech.github.
io/mcts-pendulum-results/, Reference Number [29]. The data
that support the findings of this study are available in Mende-
ley Data. The codes are available at http://doi.org/10.17632/
grk34bx9vf.1, Reference Number [30], and http://doi.org/10.
17632/vtfx27gwbz.1, Reference Number [31].

Declarations

Conflict of interest The authors declare that they have no known
competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

1. Morales, M.: Grokking deep reinforcement learning. Man-
ning publication, New York (2020)

2. Kurinov, I., Orzechowski, G., Hämäläinen, P., Mikkola,
A.: Automated excavator based on reinforcement learning
and multibody system dynamics. IEEE Access 8, 213998–
214006 (2020)

3. Luo, F., Xu, T., Lai, H., Chen, X., Zhang, W., Yu, Y.: A sur-
vey on model-based reinforcement learning. arXiv preprint
arxiv:2206.09328 (2022)

4. Xiao, C., Wu, Y., Ma, C., Schuurmans, D., Müller, M.:
Learning to combat compounding-error in model-based
reinforcement learning. arXiv:1912.11206 (2019)

5. Puterman, M.: Markov decision processes: discrete stochas-
tic dynamic programming. Wiley, New York (2013)

6. Paniri, M., Dowlatshahi, M.B., Nezamabadi-pour, H.: Ant-
td: ant colony optimization plus temporal difference rein-
forcement learning for multi-label feature selection. Swarm
Evol. Comput. 64, 100892 (2021)

7. Coulom, R.: in the 5th international conference on computer
and games (2006), pp. 72–83

8. Silver, D., et al.: Mastering the game of Go without human
knowledge. Nature 550(7676), 354–359 (2017)

9. Silver, D., et al.: Mastering the game of Go with deep neural
networks and tree. Nature 529, 484–489 (2016)

10. Zai, A., Brown, B.: Deep reinforcement learning in action.
Manning publications, New York (2020)

11. Zhuang, Y., Li, S., Peters, T.V., Zhang, C.: in 2015 IEEE
Conference on Computational Intelligence and Games
(CIG) (IEEE, 2015), pp. 314–321

12. Hu, Z., Tu, J., Li, B.: in 2019 IEEE 39th international con-
ference on distributed computing systems (ICDCS) (IEEE,
2019), pp. 2037–2046

13. Pinto, I.P., Coutinho, L.R.: Hierarchical reinforcement
learning with monte carlo tree search in computer fighting
game. IEEE Trans. Games 11(3), 290–295 (2018)

14. Kartal, B., Hernandez-Leal, P., Taylor, M.E.: in Proceedings
of the AAAI conference on artificial intelligence and inter-
active digital entertainment, vol. 15 (2019), pp. 153–159

15. Świechowski, M., Godlewski, K., Sawicki, B., Mańdziuk,
J.: Monte carlo tree search: a review of recent modifications
and applications. Artif. Intell. Rev. 56(3), 2497–2562 (2023)

16. Shen, J., Chen, Y., Huang, P., Guo, Y., Gao, J.: In: Intelligent
Robots and Systems (IROS) (In NeurIPS, 2018)

17. Yao, H., Nosrati, M., Rezaee, K.: In: NIPS Workshop on
Machine Learning for Intelligent Transportation Systems
(MLITS) (2017)

18. Kraemer, K.H., Gelbrecht, M., Pavithran, I., Sujith, R., Mar-
wan, N.: Optimal state space reconstruction via monte carlo
decision tree search. Nonlinear Dyn. 108(2), 1525–1545
(2022)

19. Upadhyay, K., Giovanis, D., Alshareef, A., Knutsen, A.,
Johnson, C., Carass, A., Ramesh, K.: Data-driven uncer-
tainty quantification in computational human head models.
Comput. Meth. Appl. Mech. Eng. 398, 115108 (2022)

20. Ontanón, S.: Combinatorial multi-armed bandits for real-
time strategy games. J. Artif. Intell. Res. 58, 665–702 (2017)

21. Guo, X., Singh, S., Lewis, R., Lee, H.: Deep learning for
reward design to improve monte carlo tree search in atari
games. arXiv preprint arXiv:1604.07095 (2016)

22. De Waard, M., Roijers, D.M., Bakkes, S.: In: 2016 IEEE
Conference on Computational Intelligence and Games
(CIG) (IEEE, 2016), pp. 1–8

23. Chen, L., Liu, J., Jiang, S., Wang, C., Liang, J., Xiao, Y.,
Zhang, S., Song, R.: In: Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 32
(2022), pp. 35–43

24. Sutton, R., Barto, A.: Reinforcement learning: an introduc-
tion, 2nd edn. MIT press, Cambridge (1998)

25. Graf, T., Platzner, M.: Adaptive playouts for online learning
of policies duringmonte carlo tree search. Theoret. Comput.
Sci. 644, 53–62 (2016)

26. Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S.,
Amodei, D.: Deep reinforcement learning from human pref-
erences. Adv. Neural Inf. Process. Syst. 30 (2017)

27. Angeli, A., Desmet, W., Naets, F.: Deep learning of multi-
bodyminimal coordinates for state and input estimationwith
Kalman filtering. Mult. Syst. Dyn. 53(2), 205–223 (2021)

28. Peng, H., Song, N., Li, F., Tang, S.: A mechanistic-based
data-driven approach for general friction modeling in com-
plex mechanical system. J. Appl. Mech. 89(7), 071005
(2022)

29. Choi, H., An, J., Han, S., Kim, J., Jung, J., Choi, J., Orze-
chowski, G., Mikkola, A., Choi, J.: Data-driven simulation
for general-purpose multibody dynamics using deep neural
networks. Mult. Syst. Dyn. 51(4), 419–454 (2021)

30. Han, S., Choi, H., Choi, J., Choi, J., Kim, J.: A DNN-based
data-driven modeling employing coarse sample data for

123

https://gorzech.github.io/mcts-pendulum-results/
https://gorzech.github.io/mcts-pendulum-results/
http://doi.org/10.17632/grk34bx9vf.1
http://doi.org/10.17632/grk34bx9vf.1
http://doi.org/10.17632/vtfx27gwbz.1
http://doi.org/10.17632/vtfx27gwbz.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2206.09328
http://arxiv.org/abs/1912.11206
http://arxiv.org/abs/1604.07095

Monte Carlo tree search control scheme... 8391

real-time flexible multibody dynamics simulations. Com-
put. Meth. Appl. Mech. Eng. 373, 113480 (2021)

31. GymnasiumDocumentation–Cart Pole. https://gymnasium.
farama.org/environments/classic_control/cart_pole/

32. Jonsson, A., Kaufmann, E., Ménard, P., Domingues, O.,
Leurent, E., Valko, M.: In: Advances in Neural Information
Processing Systems (NeurIPS) (2020), pp. 1253–1263

33. Rosin, C.D.: Multi-armed bandits with episode context.
Ann. Math. Artif. Intell. 61, 203–230 (2011)

34. Sutton, R., Barto, A.: Reinforcement learning: An introduc-
tion. MIT press, Cambridge (2018)

35. Shabana, A.: Dynamics of multibody systems, vol.
9781107042650, pp. 1–384. Cambridge University
Press, Cambridge (2013). https://doi.org/10.1017/
CBO9781107337213

36. Joonho, L., Ranjan, M., Hassan, K.: Output feedback stabi-
lization of inverted pendulum on a cart in the presence of
uncertainties. Automatica 54, 146–157 (2015). https://doi.
org/10.1016/j.automatica.2015.01.013

37. Hesse, M., Timmermann, J., Hüllermeier, E., Trächtler, A.:
A reinforcement learning strategy for the swing-up of the
double pendulum on a cart. Procedia Manuf. 24, 15–20
(2018). https://doi.org/10.1016/j.promfg.2018.06.004

38. Knut, G., Michael, T., Michael, Z.: Swing-up of the dou-
ble pendulum on a cart by feedforward and feedback con-
trol with experimental validation. Automatica 43(1), 63–71
(2007). https://doi.org/10.1016/j.automatica.2006.07.023

39. Benjamin, J., Lars, W., Johann, R.: On the design of stable
periodic orbits of a triple pendulum on a cart with experi-
mental validation. Automatica 125, 109403 (2021). https://
doi.org/10.1016/j.automatica.2020.109403

40. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.: Julia: a
fresh approach to numerical computing. SIAM Rev. 59(1),
65–98 (2017). https://doi.org/10.1137/141000671

41. Orzechowski, G.: Environments.jl. Mendeley Data, (2023).
https://doi.org/10.17632/grk34bx9vf.1

42. Orzechowski, G.: Puremcts.jl. Mendeley Data, (2023).
https://doi.org/10.17632/vtfx27gwbz.1

43. Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., Zaremba, W.: Openai gym (2016)

44. Barto, A., Sutton, R., Anderson, C.: Neuronlike adaptive
elements that can solve difficult learning control problems.
IEEE Trans. Syst. Man Cybernet. SMC–13(5), 834–846
(1983). https://doi.org/10.1109/TSMC.1983.6313077

45. Orzechowski, G.: Summary of MCTS results. https://
gorzech.github.io/mcts-pendulum-results/

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://doi.org/10.1017/CBO9781107337213
https://doi.org/10.1017/CBO9781107337213
https://doi.org/10.1016/j.automatica.2015.01.013
https://doi.org/10.1016/j.automatica.2015.01.013
https://doi.org/10.1016/j.promfg.2018.06.004
https://doi.org/10.1016/j.automatica.2006.07.023
https://doi.org/10.1016/j.automatica.2020.109403
https://doi.org/10.1016/j.automatica.2020.109403
https://doi.org/10.1137/141000671
https://doi.org/10.17632/grk34bx9vf.1
https://doi.org/10.17632/vtfx27gwbz.1
https://doi.org/10.1109/TSMC.1983.6313077
https://gorzech.github.io/mcts-pendulum-results/
https://gorzech.github.io/mcts-pendulum-results/

	Monte Carlo tree search control scheme for multibody dynamics applications
	Abstract
	1 Introduction
	2 Monte Carlo tree search in control
	2.1 Markov decision process
	2.2 Monte Carlo methods
	2.3 Vanilla Monte Carlo tree search
	2.4 Tree policy
	2.5 Reward variants in Monte Carlo tree search
	2.6 The MCTS controller for each time interval

	3 Multibody system dynamics
	4 Numerical examples
	4.1 Simulation environments
	4.2 Reward for the simulation environment
	4.2.1 Constant reward
	4.2.2 Polynomial reward functions
	4.2.3 Exponential reward functions

	4.3 Reinforcement learning environment
	4.3.1 Single inverted pendulum
	4.3.2 Double inverted pendulum

	5 Conclusions
	Acknowledgements
	References

