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Abstract Investigating the stability of stationary
motions is a highly relevant aspect when character-
izing dynamical systems. For equilibria and periodic
motions, well established theories and approaches exist
to assess their stability: in both cases stability may
be assessed using eigenvalue analyses of small per-
turbations. When it comes to quasi-periodic motions,
such eigenvalue analyses are not applicable, since these
motions can not be parameterized on finite time inter-
vals. However, quasi-periodic motions can be densely
embedded on finite invariant manifolds with periodic
boundaries. In this contribution, a new approach is
presented, which exploits this embedding in order
to derive a sequence of finite mappings. Based on
these mappings, the spectrum of 1st order Lyapunov-
exponents is efficiently calculated. If the linearization
of the problem is regular in the sense of Lyapunov,
these exponents may be used to assess stability of
the investigated solution. Beyond the numerical cal-
culation of Lyapunov-exponents, an approach is pre-
sented which allows to check Lyapunov-regularity
numerically. Together, both methods allow for an effi-
cient numerical stability assessment of quasi-periodic
motions. To demonstrate, verify and validate the devel-
oped approach, it is applied to quasi-periodic motions
of two coupled van- der- Pol oscillators as well as
a quasi-periodically forced Duffing equation. Addi-
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tionally, a “step-by-step application instruction” is pro-
vided to increase comprehensibility and to discuss the
required implementation steps in an applied context.

Keywords Quasi-periodicity · Hyper-time approach ·
Stability analyses · Lyapunov-exponents

1 Introduction and motivation

A quasi-periodic motion is a complex type of oscilla-
tion, which occurs in a variety of dynamical systems
from academical to application oriented models. The
theoretical fundamentals of quasi-periodicity are well
understood and documented in the mathematical liter-
ature [8,41]. The key characteristic of quasi-periodic
motions is that they can be embedded on invariant tori,
which are invariant manifolds with periodic bound-
aries.

Concerning approaches to describe quasi-periodic
motions, the majority aims at identifying the entire
quasi-periodic invariant torus directly (complete approx-
imation) or indirectly by describing sections (invari-
ant circle). A variety of different approaches has been
developed within the last decades [10,21,25,42,45]
fromwhich somewere used to analyze nonlinear vibra-
tions occurring in systemsmotivated by practical appli-
cations [18,19,36,44]. Most of the methods applied
to dynamical systems with practical motivation are
based on a natural form of the flow on quasi-periodic
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invariant tori, which is also referred to as hyper-time
parametrization.

Once a quasi-periodic invariant torus is identified,
the embedding of the corresponding stationary quasi-
periodic motion itself is known. However, the behavior
of the flow in the immediate vicinity is still unknown
and must be analyzed in order to assess the stability of
the invariant solution.

Lyapunov-stability for equilibriumpoints and peri-
odicmotions is investigated bymeans of eigenvalues of
the Jacobian and monodromy matrix, respectively. In
both cases, the analyses of finite quantities (i.e., the
system matrices) enable a statement concerning the
asymptotic timebehavior of a perturbation of the under-
lying solutions. If quasi-periodic motions are regarded,
the identification of a finite quantity capturing the com-
plete motion like the mentioned matrices is difficult,
because unlike equilibria or periodic solutions a quasi-
periodic solution does not exhibit characteristic seg-
ments of finite length in time (e.g., finite periods) on
which stability assessments could be based on.

In order to assess the stability of quasi-periodic
motions, different approaches have been described in
the literature. In [41, Sect. 4.3], a criterion for the stabil-
ity assessment of invariant tori is defined based on the
distance between a trajectory and the torus. However,
the direct application of this criterion to arbitrary sys-
tems exhibiting quasi-periodic motions relies on com-
puting a Lipschitz constant and an index of exponen-
tial attraction. It only makes a qualitative statement on
stability.

The KAM (Kolmogorov- Arnold- Moser) the-
ory [2, Sect. 6.3] can be used for an analysis, if a quasi-
periodic invariant torus of an unperturbed Hamilto-

nian-system persists under small perturbations. This
approach is often applied in astrodynamics, since a
description in terms of Hamiltonian-systems is valid
in this context. In addition, a version for dissipative
systems of the KAM-theory exists [9, App. B.3], [7].
Theoretically, the stability of quasi-periodic motions in
dissipative systems can be assessed by this approach.
However, the authors are not aware of an algorithmic
implementation that can be used on general systems.

One of the first applicable methods for the stabil-
ity characterization of quasi-periodic motions is intro-
duced in [27–29]. This approach regards the eigenval-
ues of a higher order Poincaré-map at a fixed point,
which represents a quasi-periodic motion of the under-
lying ODE. Because this method approaches quasi-

periodic motions by means of a constant linear map
of perturbations over the open time interval t ∈ [0,∞)

(similar to a monodromy matrix), this criterion only
enables a qualitative statement on the stability proper-
ties1

(cf. Subsect. 2.2). This qualitative stability assess-
ment is often sufficient and is used in [12,23,30].

In [36,37], a method initially developed in [26]
is utilized. The approach assumes a reducible invari-
ant torus and is based on an approximation of eigen-
values of a Floquet-matrix to assess the stability
of quasi-periodic motion. This approach is only used
for Hamiltonian-systems, but the authors of [26]
state that the approach can directly be applied to non-
Hamiltonian ones. Similar to this contribution, the
evolution of a perturbation is regarded within one
pair of periodic boundaries of a quasi-periodic invari-
ant manifold. However, an explicit formulation of the
involvedFloquet-matrix cannot be identified. Instead,
eigenvalues of a related matrix, which is based on
Fourier-series approximation of the invariant bound-
ary curve of the quasi-periodicmotion, are investigated.

An alternative approach to the stability of a quasi-
periodic motion based on the frequency domain rep-
resentation is presented in [49]. The authors use a
perturbed Fourier-series approximation (also referred
to as perturbed harmonic balance) and character-
ize the Lyapunov-exponents by singularities in the
frequency-domain of the series.

In [33], the stability identification of quasi-periodic
motions is also approached in the frequency domain.
Here, a Fourier-series is used to approximate the
underlying quasi-periodic motion. A modeled pertur-
bation is added by means of an exponentially varying
(growing or decreasing) Fourier-series. The stability
is assessed by analyzing the variation rates, which coin-
cide with the eigenvalues of the linearized problem. It
is interesting to note, that this approach exhibits simi-
larities to Hill’s eigenvalue problem.

In this contribution, a systematic approach to the
stability assessment of quasi-periodicmotions in Lya-
punov-regular systems by means of Lyapunov-
exponents [5,34,35] is presented. In the following,
the focus is set on the calculation of the Lya-

1 Although stability is by definition a purely qualitative state-
ment, quantitative measures such as eigenvalues for an equilib-
rium solution or Floquet multipliers for a periodic solution
allow for a more comprehensive analysis (e.g., classification of
bifurcations) and are therefore preferable results.
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punov-exponents and stability identification, while
the preparatory step of calculating stationary quasi-
periodic motions is only briefly addressed and their
existence will be assumed.2 In contrast to the appli-
cable methods in the literature discussed above (e.g.,
[33,36,37,49]), the proposed method does not require
a Fourier-series approximation of the quasi-periodic
invariant manifold. In fact, the method is independent
of the way the invariant manifold was determined and
has therefore a more general applicability.

The basic idea of the method is to use the embed-
ding of a (infinite) quasi-periodic solution within a
(finite) invariant manifold with periodic boundaries
(torus). The periodic properties inherent to the torus
representation allow for a systematic structuring of
subsequent time intervals along the trajectory. Eventu-
ally, this allows to efficiently calculate long sequences
of fundamental matrices, which map perturbations
from boundary-to-boundary of the underlying quasi-
periodic manifold.

This paper is organized as follows. In Sect. 2, a
brief overview and discussion of some necessary fun-
damentals for the proposed approach are given. Subse-
quently, the stability identification approach is detailed
in Sect. 3. In Sect. 4, the proposed approach is veri-
fied and validated by assessing the stability of quasi-
periodic motions of two nonlinear dynamical systems,
two coupled van- der- Pol oscillators and a quasi-
periodically forcedDuffing equation. In order to facil-
itate the application of the presented approach, a “step-
by-step instruction” is provided in Subsect. 4.1. Finally,
a conclusion is given in Sect. 5.

2 Introductory remarks on quasi-periodicity and
LYAPUNOV-stability

Since the proposed stability identification method
determines the Lyapunov-stability of quasi-periodic
motions, some aspects concerning the theoretical fun-
damentals of the latter two are briefly discussed in this
section.

2 Details on this may be found in the corresponding literature
surveyed above.

Fig. 1 Qualitative depiction of a torus function and a corre-
sponding motion, both parameterized over hyper time θ = νt
mod 2π

2.1 Quasi-periodicity

Theoretical fundamentals of quasi-periodicity are com-
prehensively documented in the mathematical litera-
ture (cf. e.g., [8,41]). Moreover, some recent illustra-
tive overviews and application oriented introductions
can be found in [4,18]. In the following section, some
basic concepts will be summarized as they will be fun-
damental for the derivation of the presented method.
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As a central characteristic, a quasi-periodic motion
zqp(t) : t �→ R

n in n-dimensional state space exhibits
a frequency base ν = [ν1, ..., νp] of incommensurable
(rationally independent) fundamental frequencies νi .
Such a motion is embedded on a p-dimensional torus,
which is the image of a torus function Z(θ1, . . . , θp) :
T
p �→ R

n . In this context, the parametrization θ =
[θ1, . . . , θp] of the torus function is often referred to as
torus coordinates. The toroidal characteristic implies
that the torus function exhibits periodic boundaries

Z(..., θi , ...)=Z(..., θi+2π, ...), i=1, . . . , p (1)

and consequently describes a closed surface. Due to
the incommensurability of the fundamental frequen-
cies, the quasi-periodic motion fills the torus function
densely [41]. Here, dense means that every point of
the torus function Z is either identical or arbitrarily
close to a point of the quasi-periodic motion trajec-
tory zqp. For periodic motions, which are a special
case of quasi-periodic motions, the torus function is
a one-dimensional object and it is also (trivially) filled
by a corresponding trajectory (cf. Fig. 1a). Thus, for
both cases, the longtime behavior of stationary solu-
tions may conveniently be captured by investigating
the invariant manifold on which they are embedded
(cf. Fig. 1b).

Furthermore, from the property of density it can be
concluded that torus functions are invariant manifolds.
Assuming the trajectories exhibit asymptotic behavior,
these invariant manifolds are attractors or repellors.

Yet, invariantmanifolds in general describe abroader
class of objects in state-space, where motions on them
are not necessarily quasi-periodic. Therefore, a torus
functions capturing a quasi-periodic motion is referred
to as quasi-periodic invariant manifold.

A general, smooth dynamical system, which is for-
mulated as a first order ordinary differential equation,
is given by

ż = f(z, t), f : Rn × R �→ R
n . (2)

Here, the explicit time dependence of the right-hand-
side of Eq. (2) accounts for possible heteronomous
influences like external forcing or explicitly prescribed
variation of parameters. The right hand side is assumed
to suffice a Lipschitz-condition, which guarantees
existence and uniqueness of solutions.

Assuming the externally imposed heteronomous
influences are multi-harmonic with q base frequencies
Ωi (i = 1, . . . , q), the right hand side of Eq. (2) may

be rewritten to

ż = g(z, t), g : Rn × R
q �→ R

n, (3)

where

g(z, t) = g(z, ...,Ωi t, ...)

= g(z, ...,Ωi t + 2π, ...)
i = 1, ..., q (4)

holds. Moreover, it is assumed that Eq. (3) exhibits
a general quasi-periodic solution zqp(t) with p fun-
damental frequencies ν ∈ R

p
+. Consequently, the fre-

quencies appearing in the system may be classified as
follows:

• q external base frequencies Ωi , which stem from
external (heteronomous) influences such as forcing
or imposed variation of parameters. These q fre-
quencies are a priori known.

• p−q internal base frequenciesω j that are produced
by internal (autonomous) mechanisms (i.e., self-
excitation). These p− q frequencies are unknown.

Thus, the frequency base ν may be partitioned as

ν = [Ω,ω], Ω ∈ R
q
+

ω ∈ R
p−q
+ .

(5)

A very popular choice of torus coordinates in
application oriented investigations is the hyper-time
parametrization, which relates torus coordinates and
base frequencies by θ̇i = νi . Restricting these coordi-
nates to a so-called coordinate torus T = [0, 2π) leads
to

θi = νi t mod 2π wi thi = 1, . . . , p. (6)

In the mathematical literature, the latter connection
between time t and the torus coordinates θ is referred
to as natural form (e.g., [42]) of the flow on the quasi-
periodic invariant torus.

As a consequence of density of the flow on the man-
ifold, Eq. (3) holds equally for the torus function in
natural form
d

dt
Z = g(Z, t). (7)

Expressing the explicit time dependency in Eq. (7)
by using torus coordinates in substituting θ̂ = Ωt
mod 2π , the governing equation reads

d

dt
Z = g(Z, θ̂), g : Rn × T

q �→ R
n, (8)

where θ̂ = [θ1, . . . , θq ]. Now, considering again the
relation θ = νt mod 2π , the time derivative can be
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recast as

d(.)

dt
=

p∑

i=1

∂(.)

∂θi

dθi
dt

=
q∑

i=1

∂(.)

∂θi
Ωi +

p∑

i=q+1

∂(.)

∂θi
ωi .

(9)

Summing all up, the fundamental equation to describe
stationary quasi-periodic motions of the considered
system by means of a torus function is obtained: this
invariance equation reads

q∑

i=1

∂Z
∂θi

Ωi +
p∑

i=q+1

∂Z
∂θi

ωi = g(Z, θ̂). (10)

The term hyper-time parametrization is derived from
the fact that the solution of Eq. (10) is a torus function,
which depends on multiple time scales Z(θ1, . . . , θp)

with θi = νi t mod 2π for i = 1, . . . , p (e.g., [19]).
If a solution of Eq. (10) is sought, the system exhibits

n equations for n + p − q unknowns (Z : Tp �→ R
n

and ω ∈ R
p−q ). In case of a purely external excitation

(q = p), Eq. (10) is solvable, in case of the occurrence
of self-excitationmechanism (q < p), p−q additional
equations are required to close the equation system, due
to translational invariance. These additional equations
are phase conditions for which different formulations
exist. Due to good convergence properties, an integral
formulation
∫

Tp

Z� ∂Z0

∂θi
dθ = 0, i = q + 1, . . . , p (11)

introduced in [42] is often used. In Eq. (11), Z0 rep-
resents a nearby torus function. It is noteworthy that
Z0 does not have to be an exact solution of the con-
sidered problem, because its main purpose in Eq. (11)
is to provide a reference to fix the parametrization of
Z and thus overcome the translational invariance (cf.
[42]).

By solving Eq. (10) and (11) with respect to Z and
ω, the torus function is identified and the flow of the
embedded quasi-periodic motion can be derived by
Eq. (6). It is interesting to note that for periodicmotions,
which are parameterized over one-dimensional tori T1

(i.e., p = 1), Eq. (10) and (11) correspond to the clas-
sical problem formulation used in MATCONT [22] or
AUTO [16]. Beyond this, for p > 1 Eq. (10) and (11)
are able to capturemulti-frequent, quasi-periodic oscil-
lations.

Therefore, these equations offer a generalized
approach to describe periodic as well as quasi-periodic
motion in a common (hyper-) time-based framework.

The invariant manifold described by Eq. (10) and
(11) can be discretized and solved by common meth-
ods such as theFourier- Galerkinmethod [3,19,23],
the Finite Difference method [18,42] or the Shooting
Method [21,36].

An alternative approach to determine the torus func-
tion Z of Eq. (10) indirectly, aims on finding a periodic
boundary hyper-plane of the torus function. Because
Eq. (10) is a semi-linear PDE, themethod of character-
istics can be applied. As a result, the system of ordinary
differential equations (ODEs)

dθi
dt

= Ωi i = 1, . . . , q (12a)

dθ j

dt
= ω j j = q + 1, . . . , p (12b)

dZ
dt

= g(Z(θ(t)), θ̂(t)) (12c)

is obtained, which describes the invariant manifold
along characteristic lines. Here, the characteristic vari-
able coincides with time t . In order to determine spe-
cific solutions of Eq. (12), initial conditions must be
defined: since the characteristics in Eq. (12) may be
seen as a continuous set of solutions which simulta-
neously start at a specified time (e.g., t = 0), these
initial conditions must be a (p − 1)-dimensional sub-

manifold Z(t = 0)
!= Ẑ of the p-dimensional solu-

tion to Eq. (10). In order to parameterize this manifold
Ẑ = Ẑ(ρ) : Tp−1 �→ R

n of initial conditions, (p − 1)
coordinates according to

ρ = [ρ1, . . . , ρp−1] = [θ2, . . . , θp] (13)

may be introduced. Eventually, this parameterization
corresponds to a sub-manifold Ẑ = Ẑ(ρ) of initial
conditions in the initial hyperplane at θ1 = 0 = const.
By virtue of the periodicity properties of the underlying
invariant solution, the chosen initial conditionswill also
be periodic according to

Ẑ(..., ρi , ...) = Ẑ(..., ρi + 2π, ...),

i = 1, . . . , p − 1. (14)

As examples, the following typical cases may be dis-
tinguished:

• periodic solutions (p = 1): for one-dimensional
invariant manifolds the initial sub-manifold Ẑ :
T
0 �→ R

n is a single point.
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Fig. 2 Illustration of approximating a quasi-periodic motion
(p = 2) by means of a periodic boundary hyper-plane Ẑ(ρ)

• quasi-periodic solutions (p = 2): for two-dimen-
sional invariant manifolds the initial manifold
Ẑ(ρ) : T1 �→ R

n is a curve. This particular case is
shown in Fig. 2.

Because the characteristics—which are sections of
the underlying quasi-periodic trajectory—evolve in a
parallel flow (natural form),3 the position on the coor-
dinate torus, where a characteristic recurs to the peri-
odic hyper-plane θ1 = 0, can be calculated as function
of the frequencies. The characteristic time, which tra-
jectories require to recur to the initial hyper-plane, is
tr = 2π

ν1
. Thus, a characteristic starting at ρ recurs at

ρr = 2π

ν1
ν̂ + ρ mod 2π (15)

where ν̂ = [ν2, . . . , νp] (cf. Fig. 2). According to Eq.
(14), initial sub-manifolds on the invariant manifold
must be periodic from one initial hyperplane to the
other. Thus, the equation

Ẑ(ρr ) − Ẑ (ρ) = 0 (16)

has to be solved in order to determine Ẑ, where Eq. (12)
is used to find Ẑ(ρr ). Because Eq. (16) is generally
not fulfilled by an initial guess, it is solved using a
shooting-method [18,36,37] or a collocation-method
[14] combined with a solver for nonlinear algebraic
equations (e.g., Newton-solver).

Conclusively, it is interesting to note that in the case
of a periodic motion for either the non-autonomous

3 The parallel flow is a consequence of the chosen hyper-time
parametrization.

(p = 1, q = 1) or the autonomous (p = 1, q = 0)
case, Eq. (12) is identical to Eq. (10), highlighting the
equivalence of a periodic torus function Z(θ) : T �→
R
n and a periodic trajectory zp(t) : R �→ R

n(cf. Fig.
1).

The stability criterion presented in this contribution
is independent of the method for solving Eq. (10) and
(11). However, the approach by means of the initial
hyper-plane combined with a shooting method exhibits
some advantages, because the required fundamental
matrices (cf. Sect. 3) are a byproduct of the involved
nonlinear equation solver (e.g., Newton-solver).

2.2 Lyapunov-stability

The notion of stability in the sense of Lyapunov

[24,34,35] is based on the time evolution of small devi-
ations

Δz(t) = z(t) − z0(t) ∈ R
n (17)

between a perturbed solution z and the unperturbed
reference solution z0 of Eq. (2) for general solutions
or Eq. (3) for (quasi-)periodic solutions. Inserting the
decomposition from Eq. (17) into Eq. (2) or Eq. (3) and
subsequent Taylor-expansion about z0(t) yields

Δż(t) = J(t)Δz(t) + O(Δz2(t)), (18)

where J(t) =
[
∂gi/∂z j

∣∣
z=z0

]
∈ R

n×n is the Jaco-

bian-matrix along the reference solution z0.
Lyapunov’s first or indirect method assesses the

stability of the reference z0 by evaluating the long-term
temporal behavior of Δz(t) by the linearization

Δż(t) = J(t)Δz(t). (19)

Here, the local behavior is of interest and perturbations
may be assumed to be small (Δz(t) � 1).

It can be proven that the resulting stability charac-
teristics of Eq. (19) are equivalent to those of Eq. (18),
if the linearization (19) is regular in the sense of Lya-
punov [5,11,24,35]: the definition and further details
are given below. In particular, Perron-like effects are
ruled out by this condition.Moreover, only cases can be
decided where the investigated solution z0(t) is hyper-
bolic.4 Since Eq. (19) is a linear ODE, the solution can

4 Roughly speaking, a solution is hyperbolic if perturbations in
its normal directions exhibit either a contracting or an expand-
ing behavior—the critical case of indifferent (neutral) behavior
cannot be decided based on Eq. (19) (cf. [18, Sect. 4] and [31,
Sect. 2.3]).

123



Efficient numerical calculation of Lyapunov-exponents 8305

be written in explicit form as

Δz(t) = ψ(t, 0)Δz(0), (20)

where ψ(t, 0) ∈ R
n×n is the fundamental matrix,

whichmaps an initial perturbation to the perturbation at
time t . Since the right hand side of Eq. (3) is assumed to
suffice a (local) Lipschitz-condition the partial deriva-
tives are bounded: thus, the norm5 of J(t) satisfies

||J(t)|| ≤ C. (21)

This implies that the growth of perturbations is expo-
nentially bounded and thus the fundamental matrix sat-
isfies

||ψ(t, 0)|| ≤ K eCt . (22)

Depending on the type of solution and the correspond-
ing time-dependency of J(t) in Eq. (19), the following
cases can be distinguished:

• equilibria where J = const: Here, the general fun-
damental matrix can be determined as ψ(t, 0) =
e J t . Solutions will be asymptotically stable if all
eigenvalues λi (i=1,…, n) of J have negative real
parts.

• periodic solutions with J(T + t) = J(t): For such
solutions the stability can be assessed by inves-
tigating the eigenvalues/ Floquet multipliers Λi

(i = 1, . . . , n) of the monodromy matrix M =
ψ(T+t, t)=const,which is the fundamentalmatrix
mapping a general state at t over the period T . Here,
a solution will be asymptotically stable if the mag-
nitudes of all n − (p − q) (in general complex)
Floquet multipliers Λi (i=1,…, n) of M are less
than unity and p − q multipliers are at most equal
to unity.6

• general stationary solutions where J(t) exhibits
some arbitrary time dependency: For such cases
the stability of the reference z0(t)may be judged by
examining the (top) Lyapunov-exponent

σ1 = lim
t→∞

1

t
ln ||ψ(t, 0)Δz(0)||or theLyapunov-

spectrum σi (i = 1, . . . , n). If the linearization in
Eq. (19) is regular, non-chaotic stationary reference
solutions z0 to Eq. (2) or Eq. (3) are asymptoti-
cally stable, if all n − p Lyapunov-exponents σi

5 Here, the 2-norm is used according to ||J || =
max ||Jz||/||z|| = C . From this follows ||Jz|| ≤ C ||z||.
6 For autonomous systems, there is always one Floquetmulti-
plier exactly equal to unity. Thismultiplier describes the behavior
of the perturbation into the tangential direction of the periodic
limit cycle.

are smaller than zero—the remaining p exponents
are exactly zero and indicate the dimension of the
invariant manifold (p-torus).7

Obviously, in all cases the fundamental matrix plays a
central role. Subsequently, the approaches for periodic
and general solutions are briefly summarized, since
a combination of those two methods will be used to
approach the stability of quasi-periodic solutions.

2.2.1 Periodic solutions

It can be proven that for periodic reference solutions the
linearization in Eq. (19) is always regular in the sense
of Lyapunov: thus, stabilitymay be assessed using the
linearization. For z0(T + t) = z0(t) the constant mon-
odromy matrix M = ψ(T + t, t)8 maps perturbations
from an arbitrary time t over one period T to t + T .
Due to the periodicity of the investigated system,

Δz(kT + t) = MkΔz(t), ∀k ∈ Z (23)

holds. Based on Eq. (23), the stability of the periodic
motion can be deduced from the eigenvalues of the
monodromy matrix Λi ∈ C, i = 1, . . . , n, which are
called Floquet-multipliers.Moreover, it can be shown
that

Λi = eδi T , δi ∈ C, i = 1, . . . , n (24)

holds, where δi are called Floquet-exponents.
If a hyperbolic periodic motion stems from a

non-autonomous system ż = g(z,Ωt)—i.e., exhibit-
ing a heteronomous frequency Ω—each Floquet-
multiplier describes a contraction or expansion behav-
ior normal to the periodic motion.

If the hyperbolic periodic motion occurs in an
autonomous system ż = g(z)—i.e., exhibiting an
autonomous frequency ω—one multiplier will be Λ̂ =
1, which indicates the “indifferent” behavior tangen-
tial to the periodic solution. The remaining multipliers
describe contraction or expansion behavior in normal
directions.

7 Thus, the p− n non-zero Lyapunov-exponents σi determine
the behavior normal to the invariant manifold, while the p zero
exponents belong to the indifferent behavior in the p-dimensional
tangent space. For chaotic behavior, the attractor’s dimensionwill
no longer be an integer number and thus the relation between
dimension and p will be more complicated.
8 Obviously, this matrix is directly obtained from the fundamen-
tal matrix ψ .
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DefiningΛn,i as all Floquet-multipliers associated
with the behavior normal to the solution, a periodic
motion is considered asymptotically stable in the Lya-
punov-sense if |Λn,i | < 1, ∀i holds. If ∃|Λn,i | > 1,
the periodic motion is unstable. For |Λn,i | = 1, the
solution is non-hyperbolic and its stability may not be
judged using linearized Eq. (19).

One further characteristic of this approach should be
noted: the monodromy matrix M maps perturbations
to a point z0 along the periodic solution over one period
T . Thus,Δz(t) andΔz(T + t) exist in the same tangent
space at z0(t)

Δz(t), Δz(T + t) ∈ R
n
lin. z0(t). (25)

Consequently, the monodromy matrix is a self-map, by
which an eigenvalue analysis can be used to deduce the
stability. In contrast, fundamental matrices ψ(τ, 0) at
arbitrary times τ are no self-mappings, since they do
not map between the same tangent spaces. Therefore:

• Tangential directions cannot be identified by
λi (τ ) = 1, because the tangential space at z0(0)
is in general not equal to the tangential space at
z0(τ )

• For two arbitrarily chosen points in time τ̂ > τ , two
eigenvalue sets λi (τ̂ ) and λi (τ ) w.r.t. ψ(τ̂ , 0) and
ψ(τ, 0) do not have to allow for an unambiguous
conclusion on the stability behavior.

Consequently, such situations demand for different
approaches.

2.2.2 General non-chaotic stationary solutions and
application to quasi-periodic solutions

If the reference solution does not exhibit an obvious
temporal structure, which could be exploited to analyze
the fundamental matrix ψ(t, 0) (cf. Eq. (20)), a more
general approach has to be chosen. For this purpose
the generalized concept of Lyapunov-exponents is a
common approach: originally devised by Lyapunov

this concept [11,34,35] has been generalized to a broad
class of ergodic dynamical systems by Oseledec [5,
38]. A recent comprehensive review can be found in
[48].

For the special cases of stationary points or peri-
odic motions the Lyapunov-exponents correspond to
the real parts of the eigenvalues or the Floquet-
multipliers, respectively.

Lyapunov-Exponents: Similar to eigenvalues or
Floquet-multipliers, the concept of Lyapunov-exp

onents intents to quantify some sort of exponential
growth rates of solutions. Therefore, the norm of the
fundamental matrix must be bounded according to [48,
p. 17]

‖ψ(t, 0)‖ ≤ K ect , ∀t ≥ 0. (26)

Otherwise,measuring an exponential growth ratewould
not be appropriate to characterize the temporal behav-
ior. For the systems under consideration, Eq. (26) is
fulfilled since they are assumed to comply with a Lip-
schitz condition and thus J is bounded (cf. Eq. (22)).
From this follows finiteness according to

lim sup
t→∞

1

t
ln ‖ψ(t, 0)‖ < ∞ . (27)

Assume a perturbation Δz(t) evolving from the ini-
tial perturbationΔz(0) = Δz0: then, the corresponding
1st order Lyapunov Characteristic Exponent is calcu-
lated as

χ(Δz0) = lim sup
t→∞

1

t
ln ||Δz(t)|| (28)

= lim sup
t→∞

1

t
ln ||ψ(t, 0)Δz0||. (29)

Please note that under certain conditions lim sup may
be replaced by lim: this will be discussed later in
the context of regularity. Due to the assumption of
exponential boundedness, finiteness of theLyapunov-
exponents given by Eq. (29) follows from Eq. (26) and
Eq. (27).

Depending on the initial perturbation Δz0 ∈ R
n ,

the resulting 1st order LyapunovCharacteristic Expo-
nents χ(Δz0) can take up to n values9 σi , which are
typically arranged as ordered Lyapunov-spectrum

σ1 ≥ σ2 ≥ · · · ≥ σn, (30)

where the σi are referred to as Lyapunov-exponents.
Correspondingly,

Li = {
Δz0 ∈ R

n , χ
(
Δz0

) ≤ σi
}

i = 1, . . . , n
(31)

defines n nested subspaces

Ln ⊂ · · · ⊂ L2 ⊂ L1 = R
n (32)

9 Similar to eigenvalues, the values of 1st order Lyapunov-
exponents may appear with multiplicities larger than one.
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Fig. 3 Illustration of the
behavior of the time
dependent basis vectors
ei (t) : R �→ R

3, the
spectrum of 1st order
Lyapunov-exponents σi
and the volume V3 for three
dimensions at the initial
time t = 0 and an arbitrary
point in time t = τ

of initial conditions, which are spanned by ei (0) (i =
1, . . . , n) according to Li = span (en(0), . . . , ei (0)).
Starting fromLn = span (en(0)) and iteratively adding
new orthogonal base vectors to span subsequent sub-
spaces, eventually the entire vector base {ei (0)} (i =
1, . . . , n) can be chosen as an orthonormal system. Sub-
jected to the dynamics of the system, these initial base
vectors will evolve in time according to

ei (t) = ψ(t, 0)ei (0) (33)

and thus the perturbation may be represented as

Δz(t) =
n∑

i=1

Ciei (t), Ci ∈ R. (34)

In principle, all Lyapunov-exponents could be calcu-
lated using

σi = χ
(
ei (0)

)
i = 1, . . . , n. (35)

However, this approach is impractical since usually the
bases ei are not known in advance. Moreover, due to
limited numerical precision almost any vectorwill have
(sooner or later) components along e1 associated with
the largest Lyapunov-exponent: therefore, in numer-
ical calculations any starting vector will almost surely
align with e1 and thus Eq. (29) will eventually yield the
maximum exponent σ1 (c.f. [5, p. 22]), since all other
components decay faster or grow slower.

Note that Eq. (29) captures the long-term evolution
of the norm ||Δz(t)|| of the initial perturbation vec-
tor (i.e., a 1D-volume). Alternatively, instead of con-
sidering such a single vector, the evolution of small
m-dimensional subvolumes

Vm(t) = vol
(
e1(t), . . . , em(t)

) = e1(t) ∧ · · · ∧ em(t)

(36)

of the tangent space can be regarded. If spanned by
m ≤ n basis vectors {ei (t)} , i = 1, . . . ,m they may
be imagined asm-dimensional parallelepipeds (cf. Fig.
3). Note that for m = n

Vn(t) = vol
(
e1(t), . . . , en(t)

) = | detψ(t, 0)| (37)

holds. By virtue of Eq. (27) Vn(t) is finite. The corre-
sponding mean temporal contraction or expansion rate
of a sub-volume Vm(t) is given by the mth order Lya-
punov-exponent10 (cf. Fig. 3)

σ (m) = χ(Vm) = lim sup
t→∞

1

t
ln Vm(t). (38)

Lyapunov- Regularity: In the context of Lyapunov-
exponents the notion of Lyapunov-regularity plays an
important role since it simplifies the calculations and
allows assessing stability using Lyapunov-exponents.

Consider the linearization in Eq. (19) with corre-
sponding Lyapunov-exponents

σ1 ≥ σ2 ≥ · · · ≥ σn . (39)

The adjoint equation11 to Eq. (19) reads

ẏ(t) = −J�(t)y(t). (40)

10 Strictly speaking, also formth order Lyapunov-exponents an
entire spectrum exists. However, this is not important in the fol-
lowing and numerical calculations based on Eq. (38) will almost
surely yield the largest exponent of this spectrum. Thus, the mth
order Lyapunov-exponent will refer to the largest value of the
corresponding spectrum, i.e., σ (m) = σ

(m)
1 .

11 The adjoint equation follows from the constraint y�Δz =
const.
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Using the fundamental matrix ψ(t, 0) to Eq. (19), the
adjoint solution reads

y(t) =
[
ψ(t, 0)

]−�
y(0). (41)

The corresponding (adjoint) Lyapunov-exponents are
denoted by μi and ordered according to

μ1 ≤ μ2 ≤ · · · ≤ μn . (42)

The linearization in Eq. (19) is called regular12 if
its Lyapunov-spectrum (cf. Eq. (39)) and the adjoint
spectrum (cf. Eq. (42)) are mutually point symmetric
according to (e.g., [11, § 67], [24, Ch. 64], [35, § 79])

σi = −μi , i = 1, . . . , n. (43)

As a classical result, it can be shown that linearizations
with constant or periodic Jacobians13 are always reg-
ular. For the quasi-periodic case discussed here such a
general result is unfortunately not available in litera-
ture.

However, in the authors’ experience, regularity
seems to be the norm rather than the exception in
physics or engineering applications—this corresponds
to the reportings of other authors (cf. for example
[1,40]). Counterexamples to demonstrate the effects of
non-regularity are usually specially designed [32,39]
and seem not to be related to known physical problems
in an obvious way.

However, one should be aware that using Lya-

punov-exponents for stability assessments will only
yield reliable results if regularity is guaranteed [11,
§67], [24, Theorem 65.3 & 65.4 ], [35]. Consequently,
regularity is a necessary prerequisite when investigat-
ing the stability of quasi-periodic motions.

Lyapunov-exponents for regular systems: In the
following, regularity in the sense of Lyapunov is
assumed. For regular problems, the limes involved in
the calculation of the Lyapunov-exponents exist and
thus “lim sup” in Eq. (29) and Eq. (38) may be replaced
by “lim” [5], yielding the 1st and mth order exponents

σ = χ(Δz0) = lim
t→∞

1

t
ln ||Δz(t)||,

σ (m) = χ(Vm) = lim
t→∞

1

t
ln Vm(t).

(44)

12 Here, regularity refers to the definition by Lyapunov and
is not related to the notion of regularity in the context of non-
chaotic motion, smoothness of the dynamical system, or any of
the numerous other definitions.
13 Or, more general: reducible cases.

Both exponents are related by

σ (m) =
m∑

i=1

σ
(1)
i =

m∑

i=1

σi , m = 1, . . . , n. (45)

Consequently, the full spectrum of 1st order Lya-

punov-exponents of a regular system can be deter-
mined iteratively using

σ1 = σ (1)

σm = σ (m) − σ (m−1), m = 2, . . . , n.
(46)

In order to calculate the sequence ofmth order Lya-
punov-exponents σ (m)—and subsequently determine
the spectrum of 1st order exponents σi – Eq. (38) could
in principle be solved directly. One would subject an
initially orthonormal basis {ei (0)} (i = 1, . . . ,m) to
the linearized flow in Eq. (19) and thus analyze the evo-
lution of anm-dimensional sub-volume Vm(t) spanned
by this basis.

Unfortunately, also in this context numerical calcu-
lations are influenced by the phenomenon that initially
orthonormal basis vectors will align with the direction
associated with the highest growth rate. Consequently,
any initially finite sub-volume will shrink down to
machine precision and, consequently, only the largest
exponent could be identified in numerical calculations.

This problem can be circumvented by partitioning
the time interval [0, t] into k segments of length τ and
expanding the volume Vm(t) according to14

Vm(t) = Vm
(
kτ

)

Vm
(
(k − 1)τ

)
Vm

(
(k − 1)τ

)

Vm
(
(k − 2)τ

) · · · V (0). (47)

Obviously, over the i th time segment [(i − 1) , i]τ
only the ratio Vm

(
(i)τ

)
/Vm

(
(i − 1)τ

)
is relevant. This

allows for resetting the initial volume at the beginning
of each sub-interval. A commonmethod to do this is the
Discrete GRAM-SCHMIDT Orthonormalization (DGSO)
[5,6,47], by which the basis vectors are repeatedly re-
orthogonalized after the preceding time-interval. This
is done prior to calculating the evolution over the next
interval and also includes a re-normalization of the
basis vectors to avoid exponential growthof the vectors.
Mainly this latter method is used within the proposed
approach.

An alternative is the Continuous GRAM-SCHMIDT

Orthonormalization (CGSO) [20]. Within this contribu-
tion, a modified version of CGSO according to [13] is

14 For simplicity of notation it is assumed that t = kτ .
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used in Sect. 4.2 to validate the results obtained by the
proposed method, which uses the DGSO.

Please note that methods involving re-orthogonali-
zation and re-normalization like the DGSO and CGSO
systematically avoid numerical overflows.

Beyond the above-mentioned general results, please
be reminded of the following points, which are impor-
tant in the context of quasi-periodic motions:

• The quasi-periodic trajectory is contained on an
invariant compact manifold of the state space.

• As t → ∞, any arbitrarily chosen quasi-periodic
trajectory (i.e., independent of its initial conditions)
will fill this invariant manifold densely. Thus, the
entire motion is ergodic on this manifold.

Verifying regularity in numerical calculations: Using
the relations summarized above in the context of sta-
bility, investigations rely on Lyapunov-regularity of
the problem. In particular, regularity is important for
the following crucial points:

• Replacing the “lim sup” by “lim”.
• Using themth order Lyapunov-exponent to deter-
mine the sum σ (m) = ∑m

i=1 σi .
• Assessing stability using theLyapunov-exponents.15

As mentioned before, for most applications in physics
or engineering regularity can be assumed: up to the
authors’ knowledge, non-regular behavior has not been
reported from experiments or simulations on physi-
cal problems and is usually associated with specially
designed model problems. However, to guarantee reli-
able results, it may be desirable to check the regularity
of the problem under consideration. For this purpose,
we propose the following checks:

1. Convergence towards “lim”: Check whether the
involved expressions for σ = σ (1) and σ (m) really
converge towards a limes. This will also help to
verify whether the numerical calculation has con-
verged or not. The existence of a limes is only a
necessary condition, thus condition no. 2 must also
be checked in order to prove regularity.
In order to assess the convergence of the Lya-

punov-exponentsσi , the approximation si for finite
time

s(m)
i (t) := 1

t
ln Vm(t) (48)

15 For non-regular systems, wrong results like the classical the
Perron-effect [32,39] could otherwise be obtained.

of the mth order exponent16 given by Eq. (38) is
investigated with regard to its supremum and infi-
mum by evaluating the difference

Δ
(m)
lim = lim sup

t
s(m)
i (t) − lim inf

t
s(m)
i (t). (49)

If Δ
(m)
lim = 0 and if lim sup and lim inf converge

towards stationary values, lim exists.
For the numerical evaluation, the time-continuous
Eq. (48) for the exponents is evaluated at discrete
time instants tk = kτ on a finite time interval. Thus,
for Nmap time steps (mappings) this provides an
equidistant discretization of the finite time interval
[0, Nmapτ ]. Eventually, for the resulting time-series

s(m)
k = s(m)(kτ) (k = 0, . . . , Nmap) the relations
to calculate the corresponding limes superior and
limes inferior on the considered time interval read

lim sup
k

s(m)
k = inf

k∈K
sup
�∈L

s(m)(�τ ) (50)

lim inf
k

s(m)
k = sup

k∈K
inf
�∈L

s(m)(�τ ) (51)

where

K = [0, 1, . . . , (Nmap − Nwin)] (52)

L = k, . . . , Nmap. (53)

Here, the index k is not allowed to run through the
entire time interval, but is restricted to [0, (Nmap −
Nwin)] in order to guarantee that the sup� in Eq.
(50), as well as the inf� in Eq. (51), apply to time
series of a minimal window length Nwin and thus
may yield meaningful values.17

As a numerical indicator whether the “lim sup”
and “lim inf” in Eq. (50), (51) converge onto each
other—and thus whether the “lim sup” may be
replaced by “lim”—one may monitor their differ-
ence as the length of the considered time interval
increases.
To this end

Δ
(m)
lim (Nmap, Nwin) = lim sup

k∈K

{
s(m)
k

}
− lim inf

k∈K
{
s(m)
k

}

(54)

16 For m = 1 this yields the first order exponent.
17 If such a minimal window length was not applied at the end
of s(m)

k , for the last data point lim sup and lim inf would auto-
matically coincide. In order to find appropriate values for Nwin,
different values should be studied.
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quantifies the limit of the oscillation width of the
sequence s(m)

k over the finite data sequence k ∈
K = [0, . . . , (Nmap − Nwin)].
If Δ

(m)
lim (Nmap, Nwin) → 0 as Nmap → ∞ this

may serve as numerical indicator for equality of
lim sup and lim inf and, thus, existence of lim,
which implies regularity of the linearization.
For assessing the convergence of Δ

(m)
lim its depen-

dence on Nmap must be investigated for sufficiently
large values of Nmap and appropriate values of
Nwin. In this context it is recalled that Lyapunov-
exponents typically exhibit convergence, which is
hyperbolic over time.18 Thus, it is recommended
to observe the behavior ofΔ(m)

lim (Nmap) until hyper-
bolic (or faster) convergence is found.

2. Regularity: If convergence as necessary precondi-
tion is found, it should be checkedwhether the spec-
tra of the system and its adjoint fulfill the condition
in Eq. (43), i.e., if σi +μi = 0 (i = 1, . . . , n). This
condition is necessary and sufficient for regularity.
From an algorithmic point of view, this condition
is in principle easy to verify: after calculating the
Lyapunov-spectrum σ1 ≥ · · · ≥ σn according to
Eq. (39) of the original problem in Eq. (19), the
spectrum μ1 ≤ · · · ≤ μn (cf. Eq. (42)) of the
adjoint problem in Eq. (40) is calculated. To this
purpose, basically the same algorithm may be used
as for the calculation of the spectrum σi (i=1,…,
n). The only necessary modification is the usage of
the fundamental matrix

[
ψ(t, 0)

]−� of the adjoint
system, whichmay directly be determined from the
fundamental matrix of the original problem. Thus,
no additional information or data will be neces-
sary. Since the calculation of the adjoint spectrum
basically follows the same algorithm, the numeri-
cal costs will roughly increase by the factor of two,
plus the numerical costs of inversion of the funda-
mental matrix.
For the implementation, it will be necessary to
account for numerical accuracy when determining
σi and μi . Thus, it will be required to modify Eq.
(43) to

|σi + μi | ≤ εtol , (i = 1, . . . , n) (55)

where εtol is a numerical tolerance parameter.Alter-
natively, onemight considermonitoring the conver-

18 In [15, p. 412] it is analytically shown that the error between
a finite time estimate σi (t) and the true limit σi converges ∼ 1

t .

gence of |σi +μi | simultaneous to the calculations.
Please note that the regularity condition must be
checked for all Lyapunov-exponents.

3 An approach to calculate the
LYAPUNOV-exponents and assess stability of
quasi-periodic motions

A quasi-periodic motion can be interpreted as a type
of motion, which lies between periodic and gen-
eral motions: on the one hand—and unlike periodic
motions—quasi-periodic motions cannot be described
using a finite part of a trajectory. On the other
hand, the representation as torus function reveals
that a quasi-periodic motion exhibits strong structural
characteristics—namely, periodicitywith respect to the
torus-coordinates. This strongly differs from unstruc-
tured general motions and may be utilized for further
analyses. Moreover, quasi-periodic motions are non-
chaotic.

First, it shall be emphasized that the standard
approaches for periodic motions are unsuited to be
applied to quasi-periodic motions. If the stability of
a quasi-periodic motion was approached like the one
of a periodic motion, the expression

lim
Tqp→∞ Δz(Tqp) = lim

Tqp→∞ ψ(Tqp, 0)Δz(0) (56)

would hold and ψ(Tqp, 0) would be a self-map. By
that, the eigenvalues could be analyzed. However, even
if such a self-map would exist from a rigorous mathe-
matical point of view, only three types of eigenvalues
would be identified due to the underlying linear prob-
lem (cf. Eq. (20)):

• Λi = 0 : stable normal direction
• Λi = 1 : tangential direction
• Λi → ∞ : unstable normal direction

If—in contrast to the latter—the stability of a quasi-
periodic motion is approached like the one of a gen-
eral motion, the spectrum of 1st order Lyapunov-
exponents can be identified and the quantitative stabil-
ity properties are characterized. However, this “brute
force” approach would not make use of the additional
information provided by the quasi-periodic invariant
torus and the structure of the quasi-periodic trajectory
embedded on it. Thus, it misses a potential increase in
numerical efficiency.
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In the following, an approach to identify the stability
of quasi-periodic motions is derived, which combines
the latter two approaches to overcome the drawbacks of
each individualmethod. Therefore, two views on quasi-
periodic motion are of importance: the representation
as quasi-periodic time-trajectory zqp(t) : R �→ R

n

as well as the representation as torus function Z(θ) :
T
p �→ R

n (cf. Fig. 1).
Since Eq. (19) holds generally and the stability of

a quasi-periodic motion is analyzed by means of the
perturbation

ΔZ(θ) = Z(θ) − Z0(θ), (57)

the time derivative in Eq. (19) can be transformed with
Eq. (9), by which

q∑

i=1

∂ΔZ(θ)

∂θi
Ωi +

p∑

i=q+1

∂ΔZ(θ)

∂θi
ωi = J(θ)ΔZ(θ)

(58)

results, where

J(..., θi , ...) = J(..., θi + 2π, ...),

J(θ) : Tp �→ R
n×n (59)

is the same Jacobian-matrix as in Eq. (19), but now
parameterized over the torus coordinates θ . Although
Eq. (58) is a PDE like Eq. (10), one should be aware
that Eq. (58) does not—part from the trivial solution
ΔZ(θ) = 0 (cf. Eq. (57))—exhibit a quasi-periodic
invariant torus as solution if the underlying motion is
hyperbolic. Recall that Eq. (58) describes the dynami-
cal behavior of a perturbation ΔZ(θ).

SolvingEq. (58), the evolution ofone specific pertur-
bation can be analyzed. In order to capture the general
behavior of perturbations, a fundamental matrix

ψ(θ(t, t0)) = [ΔZ1(θ(t)), . . . , ΔZn(θ(t))], (60)

where t0 is the initial time and ΔZi (θ(t)) i = 1, . . . , n
are linearly independent perturbations, can equiva-
lently be regarded

q∑

i=1

∂ψ(θ)

∂θi
Ωi +

p∑

i=q+1

∂ψ(θ)

∂θi
ωi = J(θ)ψ(θ) (61)

since Eq. (58) is linear. Note that the fundamental
matrix ψ(θ(t, t0)) describes perturbations of trajecto-
ries in the vicinity of the torus. Stated differently, it
only holds in time and for a nearby trajectory (cf. Eq.
(20)), but not for the torus itself.

Consequently, methods used to identify torus func-
tions (periodic boundaries) are not applicable. How-
ever, since Eq. (61) is a linear PDE, its solution can be
determined by the method of characteristics

dθi
dt

= Ωi i = 1, . . . , q (62a)

dθi
dt

= ωi i = q + 1, . . . , p (62b)

dψ

dt
= J(θ(t))ψ(θ(t, t0)), (62c)

where the characteristic variable is just the timevariable
t of the ODE (cf. Eq. (2)).

Obviously, one could have directly written down
Eq. (62) by simply taking Eq. (19). The authors refer
the latter derivation asmore descriptive and illustrative,
because Eq. (62) emphasizes that the perturbation is a
motion in the neighborhood of the toroidal reference
surface.

In order to solve the ODE-system given by Eq. (62),
a set of initial hyper-values ψ̂(ρ) has to be defined,
which is assumed to be continuously parameterized by
the independent variables in the parametrization vec-
tor ρ (cf. Eq. (13)). This parametrization is chosen
equivalently to the shooting approach for torus func-
tions described in Sect. 2.1, namely

[ρ1, . . . , ρp−1] = [θ2, . . . , θp] ∈ T
p−1, (63)

by which a periodic boundary of the underlying torus
function Z0(θ) is selected (cf. Fig. 4). It is important
to note that for the following approach other parame-
terizations are equally acceptable, e.g.,

[ρ1, . . . , ρp−1] = [θ1, . . . , θi−1, θi+1, ...θp],
i ∈ [1, p], (64)

because different choices will only affect the integra-
tion time of the ODE (cf. Eq. (62)). Furthermore, by
this choice of the initial hyper-plane parametrization,
the transversality condition
∣∣∣∣

∂θ

∂[t, ρ]
∣∣∣∣ �= 0, (65)

required for the method of characteristics, is automat-
ically fulfilled due to θ = νt mod 2π .

According to ψ̂(ρ) = I , the initial values are chosen
constant where I ∈ R

n×n is the identity matrix. This
choice gives rise to the following advantages:
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Fig. 4 Illustration of the
mechanisms for mapping
(unit) perturbations with the
fundamental matrix
function ψ(ρ) (left graphic)
and parametrization details
(right graphic) for two torus
coordinates θ1 and θ2
(p = 2)

Fig. 5 Illustration of a
mapping by the continuous
fundamental matrix
function ψ̂(ρ), a mapping
of a perturbation at
supporting point ρ1 by the
corresponding discrete
fundamental matrix ψD(ρ1)

and a mapping of a
perturbation at an arbitrary
point ρ by the interpolated
fundamental matrix
function ψAprx(ρ)

1. Choosing a constant value, ensures periodic bound-
aries for the initial hyper-plane ψ̂(ρ)

ψ̂(..., ρi , ...) = ψ̂(..., ρi + 2π, ...)

i = 1, . . . , p − 1.
(66)

2. Choosing the identity matrix I as initial value and
solving Eq. (62) provides a normalized fundamen-
tal matrix function, with which perturbations can
directly be mapped (cf. Eq. (20)).

Having defined initial values, Eq. (62) can be solved
by using a time integration scheme. The integration
interval is chosen to be t ∈ [0, τ ], where τ is the time
a trajectory requires to recur to the initial hyper-plane
(cf. Fig. 4).Due to the parallel flowon the torus function
(cf. Eqs. (62a) and 62b), the recurrence time and the
position on the parametrization of the initial values can
be identified

τ = 2π

ν1
and θe,i = νi

ν1
2π + θs,i mod 2π, (67a)

θe = [0, θe,2, . . . , θe,i , . . . , θe,p]� (67b)

θ s = [2π, θs,2, . . . , θs,i , . . . , θs,p]� (67c)

where i = 2, . . . , p and thus

θe = γ (θ s). (68)

This relates the torus coordinates at Poincaré sections
w.r.t. the underlying periodicities of the torus coordi-
nates. Note that the latter relations correspond to the
choice taken in Eq. (63). The solution of Eq. (62) with
the stated parametrization and initial values is a fun-
damental matrix function ψ(θe, θ s) : T

p �→ R
n×n ,

which maps an arbitrary perturbation over a periodic
boundary of the torus function

ΔZ(θe) = ψ(θe, θ s)ΔZ(θ s), (69)

where θe = γ (θ s). It is important to note that Eq. (69)
is only valid along the characteristics.

Considering Eq. (69) and comparing this funda-
mental matrix function ψ(θe, θ s) to the classical mon-
odromy matrix M = ψ(T + t, t) reveals that both map
a perturbation over periodic boundaries. The crucial
difference is that the monodromy matrix is a constant
matrix which maps perturbations

Δz(t), Δz(T + t) ∈ R
n
lin. z0(t) (70)

within the same linearized space, which is the tangent
space to the considered reference solution at equidis-
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tant points in time. In contrast, the fundamental matrix
function maps perturbations

ΔZ(θ s) ∈ R
n
lin. Z0(θ s )

ΔZ(θe) ∈ R
n
lin. Z0(θe)

(71)

between different tangential spaces at θe and θ s , which
relates the torus coordinates atPoincaré-sections on the
coordinate torus that are at a distance of 2π .

Consequently, the fundamental matrix function is
not a self-map and an eigenvalue analysis cannot
be used to deduce the stability behavior (cf. Sect.
2.2—paragraph “periodic solutions”). Nevertheless,
the identified fundamental matrix function ψ(θe, θ s)

enables the complete description of a perturbation
ΔZ(θ) along the characteristics of the perturbation
manifold Eq. (58) from border to border, which is
known and can be evaluated for any arbitrary mapping.

According to Eq. (46), the spectrum of 1st order
Lyapunov-exponents can be determined by calculat-
ing the mth order Lyapunov-exponents. In order to
incorporate the idea of mappings from border to bor-
der into the definition of σ (m), the time t is divided in
segments of length τ as given by Eq. (67a), and Eq.
(47) is incorporated in Eq. (38). Eventually, this yields

σ (m) = lim
k→∞

1

kτ

k∑

i=1

ln
Vm,i

Vm,i−1
, (72)

where Vm,i are m-dimensional subvolumes according
to Eq. (36) at the time instances τi = iτ at the end of
the i th interval. To determine the sequence of Vm,i =
Vm(iτ), m-dimensional hyper-cubes (cf. Eq. (36)) are
mapped over the periodic boundaries from the starting
point θ (i)

s = θ s(iτ) to the corresponding end point
θ (i)
e = γ (θ (i)

s ). Evaluation of the fundamental matrix
for these start and end points yields the mapping

ψ (i) = ψ
(
γ (θ (i)

s ), θ (i)
s

)
. (73)

Obviously, these mappings are not constant matrices,
but will depend on θ s . However, they may be efficiently
handled since the correspondingmatrix functionψ(θ s)

can be numerically calculated a priori.
Next, the evolution of an m-dimensional hyper-

cube (cf. Eq. (36)) over the i th interval is determined
by investigating the evolution of small parallelepipeds
given by
[
e1(iτ), . . . , em(iτ)

]
= ψ (i)

[
ê1

(
(i − 1)τ

)
, . . . ,

êm
(
(i − 1)τ

)]
. (74)

Here,
[
ê1

(
(i − 1)τ

)
, . . . , êm

(
(i − 1)τ

)]
is the re-

orthonormalized vector bases after the preceding (i −
1)th iteration and

[
e1(iτ), . . . , em(iτ)

](i) spans the par-
allelepiped at the end of the current i th iteration. From
this latter one, the volume after the current mapping is
calculated as Vm,i (τ ) = vol

(
e1(iτ), . . . , em(iτ)

)
.

After each iteration, a Gram- Schmidt-orthonor-
malization is applied, which yields the re-orthonorma-

lized basis
[
ê1, . . . , êm

]
from the calculated basis

[
e1, . . . , em

]
. This step compensates for re-alignment

of to the base vectors (orthogonalization) and accounts
for the exponential growth or decay of the linearized
system of perturbations (rescaling by normalization).
In particular, the normalization step assures finiteness
of perturbations and thus allows using the approach
for stable as well as for unstable solutions over infi-
nite time. Thus, the process can be executed arbi-
trarily often, which—eventually—means nothing else
than executing an arbitrary sequence of the mappings
according to Eq. (74).

Consequently, Eq. (72) may be evaluated for arbi-
trary large values of k until convergence is obtained.

In this context the question arises how long calcu-
lations must be carried out in order to obtain sufficient
convergence. One possible approach is to apply mov-
ing average filtering and observe the oscillation width
over a sliding time window of certain width. For the
presented approach it is possible to efficiently adapt
this strategy: if the Lyapunov-exponents of a p-torus
for p > 1 are calculated, at least p exponents must be
zero: thus, the corresponding true (converged) value is
a priori known and the deviation can easily be deter-
mined as a measure of convergence.19

However, in a post-processing step, the convergence
of all Lyapunov-exponents should be ensured.

Concerning the evaluationof the fundamentalmatrix
function, it is interesting to note that due to incommen-
surability, the characteristics recur densely on the peri-
odic boundary: thus, it will be necessary to evaluate
the fundamental matrix function ψ

(
γ (θ s), θ s

)
at arbi-

trary boundary points θ s . To implement this within a
numerical scheme, an interpolation approach may be

19 Please note that this usually only refers to Lyapunov-
exponents along the tangential direction of the torus correspond-
ing to an autonomous base frequency—exponents and their tan-
gential directions associated with non-autonomous frequencies
are externally prescribed and thus imposing perturbations is usu-
ally not meaningful.
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used. First, a finite number NCh of characteristics is
determined and the corresponding fundamental matri-
ces are calculated:

ψD(ρ	) = ψ(θe,	, [0, ρ[1,�1], . . . , ρ[p−1,�p−1]]),
ψD : Tp−1 �→ R

n×n, ρ[i,� j ] ∈ R mod 2π
	 = [�1, . . . , �p−1], � j ∈ [1, . . . , Nψ,i ]
NCh = ∏p−1

i=1 Nψ,i

(75)

Here, 	 is an index identifying the corresponding values
ofρ[i,� j ], (i, j = 1, . . . , p−1)on an equally space grid
over the boundary (cf. Fig. 5). Second, the unknown
fundamental matrix function values between the NCh

knownψD(ρ	) are interpolated by (p−1) dimensional
cubic splines, which gives the continuous approxima-
tion function ψAprx(ρ). Note that other interpolation
methods can equally be used.

Using this interpolated fundamental matrix function
ψAprx(ρ), any arbitrary set of vectors can be mapped
from position ρ on the first boundary to the correspond-
ing position on the opposite boundary.

In particular, the mapping used in Eq. (75) can be
evaluated for every possible position on the torus and
therefore, the evolution of Vm,i may be evaluated arbi-
trarily long as described above.

In conclusion, the stability assessment of quasi-peri-
odic motions by a combination of the approaches for
periodic and general solutions provides an universally
applicable method to identify the spectrum of 1st order
Lyapunov-exponents. The basis is the investigation of
perturbations, whose evolution can be described by a
fundamental matrix function. Since the perturbations
are assumed to be small, they can be described by
means of a linearization about the underlying solution
torus.

The periodicity of these coordinates enables the
construction of a fundamental matrix function by
interpolation over a periodic boundary solely based
on a few supporting points. Thus, the perturbation
evolution description over the entire quasi-periodic
motion, by which Lyapunov-exponents can be iden-
tified, is significantly more efficient than with a “brute
force” time integration (see also TablerefsecspsApp-
NonSysspstab3).

4 Application to nonlinear systems

In this section, the proposed method to identify the sta-
bility of quasi-periodic motions by means of the spec-

trum of 1st order Lyapunov-exponents is applied to
nonlinear dynamical systems to verify and validate it.
First of all, a step-by-step instruction is provided in
Sect. 4.1 to make the proposed approach more com-
prehensible by using cross references to the theoretical
chapters and to highlight the key steps for an implemen-
tation. Subsequently, the approach is applied to two sys-
tems exhibiting quasi-periodic motions with two base
frequencies (p = 2). Although the proposed approach
can be used for quasi-periodic motions with a higher
base frequency dimension, this contribution focuses on
p = 2 dimensions and corresponding systems from the
literature for the sake of clarity. Restricting to quasi-
periodic motions with two base frequencies, three sce-
narios are possible:

I. two unknown frequencies ω1 and ω2,
II. one known Ω and one unknown frequency ω or
III. two known frequencies Ω1 and Ω2.

In the following, the cases I and III are investigated
to demonstrate general applicability, because case II is
simply a mixture of the latter two.

In order to verify the developed approach, a sys-
tem of two coupled van- der- Pol oscillators (case
I) is analyzed in Sect. 4.2. The spectrum of 1st order
Lyapunov-exponents is computed with the proposed
approach as well as with an established method from
the literature, the CGSO, which computes the spectrum
by means of a brute force time simulation. The two
approaches are also compared in terms of numerical
cost.

In order to validate the approach, a quasi-periodically
forced Duffing equation (case III) is investigated. A
reference is made between the identified results and
findings from the literature as well as a direct compar-
ison with time simulations.

All computed results are identified with the simula-
tion program Quont, which has been implemented in
MATLAB and has been developed in the dissertation
thesis of the first author [18].

4.1 Step-by-step instructions for application

In this subsection, the required steps for an implementa-
tion of the stability identificationmethod in a numerical
tool are discussed. By applying the following instruc-
tion, the spectrum of 1st order Lyapunov-exponents
can be identified, with which the stability of quasi-
periodic motions can be characterized.
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Required steps
Step 1.) Calculate the torus function Z(θ) of the

quasi-periodic motion of interest by solving the par-
tial differential Eq. (10) with either a finite difference
method, a Fourier- Galerkin method or a compara-
ble method. Alternatively, solve the ordinary differen-
tial Eq. (12) by means of a shooting method for quasi-
periodic motions to obtain a finite set of characteristics
of the torus function Z(θ(t)).

Step 2.)Calculate or identify all values of the Jaco-
bian-matrix function J(θ) on the coordinate torus θ in
order to solve Eq. (62) from boundary-to-boundary by
means of a time integration. If the shooting method
for quasi-periodic motions is applied, one can jump
directly to step 5.) because discrete fundamental solu-
tions ψD along the characteristics are known due to
the involved solution process of the nonlinear equation
system (e.g., Newton-method).

Step 3.) Choose discretization points on the peri-
odic boundary (cf. Fig. 5) and evaluate the continuous
matrix functions ψ(θe, θ s) to obtain discrete matri-
ces ψD . The choice of the periodic boundary can be
arbitrarily, because each boundary is suitable for this
method. One should only be aware that the integration
time (cf. Eq. (67a)) depends on the chosen boundary.
The authors suggest taking the largest frequency νmax .

Step 4.) Solve Eq. (62) at the chosen discrete sup-
porting points over the time interval τ ∈ [0, 2π

νmax
] to

obtain discrete fundamental matrices (cf. Eq. (75)),
which map perturbations boundary-to-boundary.
Choose as initial value the identity matrix to identify
normalized fundamental matrices.

Step 5.) Interpolate the values between the support-
ing point fundamentalmatrices, whichwhere chosen or
given by applying a shooting method, by means of e.g.,
p − 1 dimensional cubic splines (cf. Fig. 5) to obtain
an approximation to a continuous fundamental matrix
function (cf. Eq. (69)). Consequently, perturbations can
be mapped arbitrarily form boundary-to-boundary.

Step 6.) Choose an arbitrary set of m orthonormal
vectors [e1(τ ), . . . , em(τ )]. The firstm vectors (cf. Eq.
(36)) span the required volumes Vm(t).Map the set of
m vectors from boundary-to-boundary (cf. Eq. (74))
starting at an arbitrary position on the periodic bound-
ary (e.g., t = 0). Determine the volumes Vm,1 of the
distorted set of m vectors (cf. Eq. (72)).

Step 7.) Re-orthonormalize and therefore re-
normalize the distorted set ofm vectors after eachmap-
ping by means of a Gram- Schmidt method. As a

result, the volumes are equivalent to one. Repeat the
mapping, volume identification and re-
orthonormalization process as long as necessary (cf.
next step). It is crucial to note that only the initial
set of vectors can be chosen arbitrarily. Once mapped,
the set should only be orthonormalized, by which the
dynamical behavior along a trajectory is considered.
The re-orthonormalization compensates for the expo-
nential growth or decay of the perturbation in the linear
system.

Step 8.) Calculate the mth order Lyapunov-
exponents (cf. Eq. (72)) by means of the identi-
fied results, from which the spectrum of 1st order
Lyapunov-exponents can be derived (cf. Eq. (46)).
Because Eq. (72) describes a converging quantity, one
can evaluate the influence of each additionalmap on the
accuracy of the exponents and decide how many map-
pings k are required to obtain the investigation specific
precision.

Step 9.) optional: Check Lyapunov-regularity of
the linearization as outlined in the last section of 2.2.2.
This involves checking the convergence of the mth
order exponents—this step can be done simultaneously
to the actual calculation of σ (n). After repeating these
calculations for the adjoint system, Eq. (43) can be
checked by comparing both spectra.

4.2 Verification example: two coupled van- der- Pol

oscillators

In order to verify the detailed approach, the spec-
trum of 1st order Lyapunov-exponents is identified
by means of the proposed method and by means of
an established approach for comparison, the continu-
ous Gram- Schmidt orthonormalization (CGSO) (cf.
[13]).

The analyzed dynamical system consists of two lin-
early coupled van- der- Pol oscillators

ẍ + ε(x2 − 1)ẋ + x = α(y − x)

ÿ + ε(y2 − 1)ẏ + (1 + β)y = α(x − y),
(76)

where ε is the non-linearity parameter, β is called the
detuning parameter and α is the coupling strength.
Two arbitrary parameter sets are chosen, which exhibit
quasi-periodic motions (see TablerefsecspsAppNon-
Sysspstab0).

This system is a classical test example for quasi-
periodic oscillations in an autonomous system. It has
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Fig. 6 Torus function of the quasi-periodic motion for set 1 parameterized in hyper time (θ1 = ω1t and θ2 = ω2t)

Fig. 7 Torus function of the quasi-periodic motion for set 2 parameterized in hyper time (θ1 = ω1t and θ2 = ω2t)

Table 1 Parameter sets for verification example in Eq. (76)

Set 1 Set 2
cf. [42, Fig. 4] cf. [43, Fig. 13]

ε 0.5 1

α 0.5 2

β 1.5 5

extensively been investigated and is known to exhibit
regular behavior in the sense of Lyapunov. Thus, reg-
ularity may be assumed.

In a first step, Eq. (76) is written as a first order ODE

[z1, z2, z3, z4] = [x, y, ẋ, ẏ] (77)

and transformed into an invariance equation. Subse-
quently, the torus function Z = [Z1, Z2, Z3, Z4] is
identified by solving Eq. (10) and Eq. (11) with a
finite difference method, by which the quasi-periodic
motions are identified.

The results of the local point approximation of the
finite difference method are depicted in Figs. 6 and 7.
In Table 2 some relevant parameters and results of both
computations are summarized.

Both manifolds are approximated using an equidis-
tant mesh with 61 nodes in θ1- and 61 nodes in θ2-
direction. Furthermore, sixth order central difference

Table 2 Parameters and computed 00results of both torus func-
tions approximated by a finite difference method

Set 1 Set 2

Discretization mesh 61 × 61 61 × 61

characteristics (NCh, Eq. (75)) 61 61

ω1 1.1612 1.4953

ω2 1.7483 2.8917

err 4.4384 · 10−4 6.0066 · 10−4

schemes are used to approximate the differentials in
Eq. (10).

In order to estimate the approximation error err of
the computed results, an embedded method is used.
Therefore, the torus function is calculated again, but
instead of using a sixth order central difference scheme,
a fourth order difference scheme is used. The error is
estimated by identifying the relative difference

err =
∣∣∣∣∣
Z̃6th − Z̃4th

Z̃6th

∣∣∣∣∣ , (78)

where Z̃6th and Z̃4th are the solution vectors of the sixth
and forth order approximation, respectively.

Considering Figs. 6 and 7, both torus functions
appear qualitatively similar. Regarding the identified
free frequencies ω1 and ω2 (cf. Table 2), it is obvi-
ous that each torus function is filled differently by the
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Fig. 8 Lyapunov-exponents of parameter set 1 identified with
the CGSO in comparison with different equidistant discretiza-
tion grids (indicated by the line color) and a varying number of

characteristics NCh of the presented approach based on the torus
function. (Color figure online)

underlying quasi-periodic motion (θ1 = ω1t, θ2 =
ω2t).

In order to get a reference solution for the spectra of
1st order Lyapunov-exponents, the CGSO is utilized
to identify a reference solution. Because the CGSO
is based on a time integration, the ode45 function20

(explicit Runge- Kutta-scheme with Dormand-

Prince (4,5) pair [17]) inMATLAB is used to solve the
equation system. To keep the transient behavior mini-
mal, initial values are chosen, which are located on the
quasi-periodic invariant tori.

20 In comparison with other available MATLAB integrators,
the ode45 had the lowest computational cost for a set accuracy.
The algorithm controls the error by using an embedded error
estimator and step width control.

All results presented in Table3 are computed on
the basis of a very large time interval t = [0, Tp] =
[0, 107]. The number of iterative mappings Nmap =
Tp
2π
ω2

= 107
2π
ω2

used for the presented approach corresponds

the physical time interval Tp of the CGSO.
It can be seen that this considerable large time inter-

val is necessary to obtain a magnitude of accuracy of
the CGSO of approximately 10−8. This can be iden-
tified by investigating σ1 and σ2, which both have to
be equal to zero, because they describe the separation
rate in tangential direction of the torus. As can be seen
from the numerical values of theLyapunov-exponents
given in Table3, the solutions are stable for both param-
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Table 3 Comparison of the spectra of 1st order Lyapunov-
exponents σ . Number of mapping Nmap is equal to physical time
Tp

Set CGSO Torus function 61× 61 Difference
(absolute)

1 Tp = 1 · 107 s Nmap ≈ 2.7 · 106
2 Tp = 1 · 107 s Nmap ≈ 4.6 · 106

1 σ1 −4.5275 · 10−8 −8.0624 · 10−7 7.61 · 10−7

σ2 4.5826 · 10−8 −9.4979 · 10−7 9.96 · 10−7

σ3 −0.27619516 −0.27619455 6.11 · 10−7

σ4 −0.52350145 −0.52350016 1.29 · 10−6

2 σ1 6.7325 · 10−8 −2.616587 · 10−6 2.68 · 10−6

σ2 6.5722 · 10−8 −4.070997 · 10−6 4.14 · 10−6

σ3 −0.38552093 −0.38552099 6.88 · 10−6

σ4 −1.07304917 −1.07304880 1.67 · 10−5

eter sets: two exponents are zero (within the numerical
accuracy) and the two remaining ones are negative.

Considering the results obtained with the described
method by using the torus functions, the results are in
very good agreement with the CGSO. Concerning set
1, the accuracy of the proposed method is equivalent
to the CGSO. Concerning set 2, the accuracy deviates
slightly, although the accuracy is still very high. This
deviation stems from the higher degree of nonlinearity
(ε = 1), which results in slightly more complicated
torus functions. This would require a finer mesh for
an equivalent approximation error compared to set 1
(cf. err , Table2).

In order to investigate the influence of the numerical
parameter NCh (i.e., the number of characteristics used
for interpolation) on the spectrum of 1st order Lya-
punov-exponents, the results for different NCh and dif-
ferent torus FD discretizations are compared to results
of the CGSO. Arbitrarily, set 1 is chosen to perform
this analysis. The investigation is conducted by start-
ing with five characteristics (NCh = 5) and this number
is increased until the number of nodes on the periodic
boundary is reached (FD-discretization: 61). A number
of characteristics larger than the number of FD-nodes
on a boundary would not be reasonable, because the
accuracy of the fundamental matrix function interpo-
lation would not increase.

The results are presented in Fig. 8, where in each
figure the difference of the identified Lyapunov-
exponents is plotted over the number of characteris-
tics NCh. Considering the results for low NCh in Fig.
8, each FD discretization provides almost equal expo-

nents. Because the approximation of the fundamental
matrix function is rough when considering a low num-
ber of characteristics, the underlying approximation of
the torus function does not play a significant role.

It seems that each Lyapunov-exponent exhibits for
each discretization some sort of minimum. Analyz-
ing the minima, their occurrence for each exponent
is located at different numbers of characteristics, by
which these minima are the result of a coincidental
well approximated exponent.

In addition, one has to keep in mind that the CGSO
only ensures an approximation accuracy of approxi-
mately 10−8, by which the identified results in this
magnitude should be interpreted with caution. For a
larger number of characteristics, the errors saturate or
drop only slightly when the discretization is kept fixed.
This may imply that the error introduced by the cubic
spline interpolation is reduced as far as almost possi-
ble. Stated differently, further increasing the number of
supporting points (characteristics) for the interpolation
does not lead to a significantly higher approximation
quality of the fundamental matrix function based on the
current discretization. At that stage, the error is con-
trolled almost entirely by the discretization of the torus
itself. Consequently, accuracy can be controlled by a
combination of FDdiscretization and a number of char-
acteristics, whereas uniform convergence occurs when
the number of characteristics is chosen to be similar to
the FD discretization. As a last point, a comparison of
computational cost21 between the CGSO and the pre-
sented method is carried out. The results are listed in
Table4. The comparison is done for the two parameter
sets 1 and 2 in Table1. Here, the computation is carried
out until the value of the first Lyapunov exponent—
which should theoretically be zero—converged22 to

21 All simulations for the computational cost comparison were
done with MATLAB R2021a on a workstation with an Intel®

Xeon® CPUE5-2643@3.30GHz, 4 cores and 128GB of RAM.
For the simulations with the presented methods, the time mean
value for 100 simulations is noted. The noted computation cost
for the CGSO for set 2 A) is the mean value of 20 identical
simulations.
22 Since Lyapunov-exponents tend to oscillate with time
around a mean value (and therefore also number of mappings)
(see e.g., [20]), the floating mean value for the last 100 physical
seconds was used. For larger floating time windows, the con-
vergence time changed only insignificantly. In order to assure
comparable conditions for the computation, the initial values for
the CGSO were chosen on the torus function Z(0, 0) used as
basis by the proposed method.
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A) : σ1 ≈ 10−4 and B) : σ1 ≈ 10−5. For both the
CGSO and the proposed method, the necessary simu-
lated time Tp and the (physical) computational time Tc
are noted. In case of the presented method, Tc is the
sum of the time Tψ needed to construct the fundamen-
tal matrix function and the time TMa for the execution
of the Nmap mappings.

In the last column of Table 4 the relative reduction
of computational cost by using the presented method
over the CGSO is noted. The reduction for TMa is given
w.r.t. Tc of the CGSO.

Here, a few observations are noteworthy: The reduc-
tion in computational cost w.r.t. the CGSO is signif-
icant. For the four examples, the cost is reduced by
at least 94% between the presented method and the
CGSO. The greater part of the computational effort Tψ

is spent on the construction of the basic matrix function
ψD . This construction is not necessary, if the described
quasi-periodic shooting method is used in which case
a reduction of over 99% is achieved. It is also interest-
ing that the physical time Tp, which has to be simu-
lated with both methods, is in the same order of mag-
nitude. Please also note the reduction in convergence
speed of bothmethods for increasing the accuracy from
A) : σ1 ≈ 10−4 to B) : σ1 ≈ 10−5.

Concluding, the proposed method provides very
accurate results, whilst being rather efficient. The basis
of the stability approximation approach is a lineariza-
tion around a computed solution. Consequently, the
identification of stability measurement, here the spec-
trum of 1st order Lyapunov-exponents, depends on
the underlying approximation accuracy. Because this
approach enables an approximation of the fundamen-
tal matrix function on one periodic boundary, the accu-
racy can be controlled. The latter enables a highly time
efficient approach, if a lower accuracy is acceptable.

It is also important to stress again that this method
does not depend on the chosen discretization approach
and can be used generally for continuous torus func-
tions.

4.3 Validation example: quasi-periodically forced
Duffing equation

Having verified the developed approach, the proposed
method is validated by applying it to a bi-periodically
forced Duffing equation

ẍ + 2ζ ẋ + x + ξ x3 = f1 sin(Ω1t) + f2 sin(Ω2t).

(79)

Table 4 Comparison of computational cost for parameter set 1
and 2 (Table 1) and for reaching A: |σ1| ≈ 10−4, B: |σ1| ≈ 10−5.
Tp : physical time; Tc : computation time; Tψ : time for comput-
ing fundamental matrix function; TMa : time for mapping; NMa :
Number of mappings

Set CGSO Torus function
(61× 61)

Relative reduction
(w.r.t. CGSO)

1: A)

Tp 3500 s 3917 s −0.1192

Tc 52.307 s 2.836 s 0.9406

Tψ – 2.758 s –

TMa – 0.078 s 0.9984

Nmap – 1090 –

1: B)

Tp 37250 s 35, 938 s 0.0352

Tc 551.643 s 3.233 s 0.9931

Tψ – 2.624 s –

TMa – 0.610 s 0.9986

Nmap – 10000 –

2: A)

Tp 6575 s 6790 s −0.0327

Tc 96.741 s 3.216 s 0.9625

Tψ – 3.030 s –

TMa – 0.186 s 0.9976

Nmap – 3125 –

2: B)

Tp 65, 000 s 48, 898 s 0.2480

Tc 965.461 s 4.7239 s 0.9948

Tψ – 3.211 s –

TMa – 1.5132 s 0.9983

Nmap – 22,500 –

Equation (79) exhibits the advantage that incom-
mensurable values can be chosen for the two known
frequencies Ω1 and Ω2. Thus, the resulting motion is
expected to be quasi-periodic. Another aspect, classify-
ing Eq. (79) as a well suited validation example, is the
fact that two sources from the literature [23,33] have
analyzed the stability of the resulting quasi-periodic
motion by different approaches (cf. Sect. 1). Both used
methods to approximate the torus function based on the
multi-dimensional harmonic balance, which is almost
identical to the Fourier- - Galerkin method. In this
contribution, a finite difference method is used to iden-
tify the torus functions (cf. [18]).
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Fig. 9 Computational results of the continuation with an included stability analysis for the quasi-periodically forced Duffing equation

The parameters are chosen equivalently to the refer-
ences [23] and [33]:

ζ = 0.1, ξ = 0.2, f1 = f2 = 5, Ω2 = Ω1√
2
. (80)

The parameter Ω1 is varied in the interval [1.7, 6].
In order to get a comprehensive picture of the results,

a continuation algorithm is used (cf. [46, chapter 4]).
Specifically, the continuation variable is Ω1, the pro-
cess is initiated at Ω1 = 6 and a pseudo arc-length
method is used to continue the results.

The discretization of the torus functions is kept con-
stant with 61 x 61 nodes. Since the topologies of torus
functions along the solution paths are partly compli-
cated, the number of characteristic supporting points is
kept at its practical relevant maximum value M = 61.

Transforming Eq. (79) into state-space [z1, z2] =
[x, ẋ] and identifying the torus functions Z = [Z1, Z2]
by solving Eq. (10) with a finite difference method
(sixth order central differences), the quasi-periodic
motions are identified (s. Fig. 9).

Comparing Figs. 6 to 9 in [23] and Fig. 10 in [33],
the results are qualitatively equivalent. Figure 9 depicts
the two characteristic peaks, which, roughly speaking,
stem from the Duffing’s equation typical nonlinear
resonances of each individual excitation f1 sin(Ω1t)
and f2 sin(Ω2t). Please note, that in the figures of [23]
and [33] the norm of the Fourier coefficients is plotted
on the ordinate and not the maximum deflection of x .

In order to get a deeper understanding of the iden-
tified results, Figs. 10, 11 and 12 depict the identified
spectrum of 1st order Lyapunov-exponents, their con-
vergence and the estimated error of the torus function

(cf. Eq. (78)). All figures depict the results along the
continuation path, which corresponds to the arc-length
of the solution curve illustrated in Fig. 9. For the pur-
pose of orientation, the stability changes are marked by
the corresponding Ω1-value in Figs. 10, 11 and 12.
Considering the spectrum of 1st order Lyapunov-
exponents in Fig. 10, only two values are computed,
because the tangential space and, thus, the two expo-
nents equal to zero stem from the forcing mechanisms.
This is equivalent to a monodromymatrix of a periodic
motion stemming from a forced system, which does
not exhibit the Floquet-multiplier equal to 1. Regard-
ing Fig. 10, a clear and plausible progression of the
exponents is identified.

The largest Lyapunov-exponentσ1 always changes
its sign, once a stability change is encountered. At each
stability change, there exists a pointwhereσ1 = 0. This
indicates a non-hyperbolic solution, where bifurcations
of the quasi-periodic motion occur, because the con-
traction or divergence behavior of the normal space is
“indifferent”. As far as the authors are aware, a directly
applicable bifurcation theory based on the Lyapunov-
exponents does not exists, bywhich the classification of
the identified bifurcations is impossible. Nevertheless,
consideringΩ1 ∈ [3.17, 2.32, 4.54, 2.86] and compar-
ing it to Fig. 9, suggests that the identified bifurcation
can be classified as a limit point 2-torus bifurcation.
The latter nomenclature is a generalization of a limit
point bifurcation (fold-bifurcation of an equilibrium)
and a limit point cycle bifurcation (fold-bifurcation of
a periodic motion).
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Fig. 10 Computed spectrum of 1st order Lyapunov-exponents plotted over the arc-length of the continuation for the quasi-periodically
forced Duffing equation

Fig. 11 Maximal absolute deviation between the mean value
of the Lyapunov exponent mean

(
σi

)
and the value of σi both

w.r.t. the last 100 physical seconds of mapping. Graphs plotted

over the arc-length of the continuation for the quasi-periodically
forced Duffing equation

Fig. 12 Computed error estimation according to Eq. (78) plotted over the arc-length of the continuation for the quasi-periodically
forced Duffing equation
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Fig. 13 Stable motion at Ω1 = 1.7 ([σ1, σ2, σ3, σ4] =
[0, 0,−0.0616,−0.1384]): Computational results of the torus
function (TF) Z(θ1, θ2) : T2 �→ R

2 on a 61 × 61 mesh and the

time simulation (TS) at P1 (cf. Fig. 9). Trajectory predicted by
TS stays on the torus indicating stable behavior

Fig. 14 Unstable motion at Ω1 = 2.997 ([σ1, σ2, σ3, σ4] =
[0.3407, 0, 0,−0.5407]): Computational results of the torus
function (TF) Z(θ1, θ2) : T

2 �→ R
2 on a 61 × 61 mesh and

the time simulation (TS) at P4 (cf. Fig. 9). Trajectory predicted
by TS diverges from the torus indicating unstable behavior

An additional aspect verifying the identified spec-
trum of 1st order Lyapunov-exponents, is the con-
stant 2nd order Lyapunov-exponent σ (2) = σ1 + σ2.
Regarding Fig. 10, σ (2) = −0.2 ∀Ω1 holds, which
can easily be verified analytically [1, Eq. (5.4.83)], as

σ (2) = lim
T→∞

1

T

T∫

0

div f(z(t))dt

= lim
T→∞

1

T

T∫

0

−2ζdt = −0.2,

(81)

where z(t) is the state space vector and f(z(t)) is the
vector field of Eq. (79). The divergence in Eq. (81) is
a measure of sources or sinks in a vector field and is,
therefore, related to the changes over time of a spe-
cific volume that is exposed to that vector field. The
Lyapunov-exponent of order m is equivalent to the

time average of the divergence and always negative for
dissipative systems.

Figure 11 shows the deviation of the Lyapunov-
exponents σ1,2 for the last equivalent 100 physical sec-
onds of the mapping procedure from the mean value
of that time mean(σ1,2(Nmap)). This shows that both
exponents are sufficiently convergent with a deviation
smaller than 1 · 10−5.

Regarding Fig. 12, it is interesting to note that the
approximation error increases in the vicinity of the limit
point 2-torus bifurcations, because similar behavior is
not observable for the remaining stability changes at
Ω1 ∈ [1.92, 2.84, 3.54]. Another noteworthy observa-
tion is the reduced accuracy for small Ω1, which stems
from an increased complexity of the torus function.

Having validated the computational results qualita-
tively, only the quantitative verification is left open.
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Fig. 15 Stable motion at Ω1 = 2.839 ([σ1, σ2, σ3, σ4] =
[0, 0,−0.0038,−0.1962]): Computational results of the torus
function (TF) Z(θ1, θ2) : T2 �→ R

2 on a 61 x 61 mesh and the

time simulation (TS) at the stable side of P2 (cf. Fig. 9). Trajec-
tory predicted by TS stays on the torus indicating stable behavior

Fig. 16 Unstable motion at Ω1 = 2.820 ([σ1, σ2, σ3, σ4] =
[0.0046, 0, 0,−0.2046]): Computational results of the torus
function (TF) Z(θ1, θ2) : T

2 �→ R
2 on a 61 x 61 mesh and

the time simulation (TS) at the unstable side of P2 (cf. Fig. 9).
Trajectory predicted by TS diverges from the torus indicating
unstable behavior

Fig. 17 Stable motion at Ω1 = 3.54 ([σ1, σ2, σ3, σ4] =
[0, 0,−0.0040,−0.1960]): Computational results of the torus
function (TF) Z(θ1, θ2) : T2 �→ R

2 on a 61 x 61 mesh and the

time simulation (TS) at the stable side of P3 (cf. Fig. 9). Trajec-
tory predicted by TS stays on the torus indicating stable behavior
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Fig. 18 Unstable motion at Ω1 = 3.522 ([σ1, σ2, σ3, σ4] =
[0.0018, 0, 0,−0.2018]): Computational results of the torus
function (TF) Z(θ1, θ2) : T

2 �→ R
2 on a 61 x 61 mesh and

the time simulation (TS) at the unstable side of P3 (cf. Fig. 9).
Trajectory predicted by TS diverges from the torus indicating
unstable behavior

This comparison is conducted by means of a time
integration of Eq. (79) in state-space form for which
the ode45 function (explicit Runge- Kutta-scheme
using a Dormand- Prince (4,5) pair [17]) in MAT-

LAB is used. The time simulation is initiated on the
torus function and the time interval is chosen such that
a stationary motion is identified.

Subsequently, the result depictions in Fig. 13, 14,
15, 16, 17 and 18 are organized as follows:

• Left hand side: A torus function projection and a
section of the resulting stationary quasi-periodic
motion are depicted in state-space.

• Middle:The torus function Z1(θ1, θ2) and, if stable,
a section of the resulting stationary quasi-periodic
motion of z1(t) obtained by time simulations are
depicted in torus domain [θ1, θ2] ∈ T

2.
• Right hand side: The torus function Z2(θ1, θ2) and,
if stable, a section of the resulting stationary quasi-
periodic motion of z2(t) obtained by time simula-
tions are depicted in torus domain [θ1, θ2] ∈ T

2.

Arbitrarily, the two points P1 and P4 (cf. Fig. 9) are
exemplary chosen to verify the results in general. The
results are depicted in Figs. 13 and 14. As predicted
by the algorithm, the time simulation verifies that the
quasi-periodic motion is stable at P1 and unstable at
P4: the trajectory initialized on the torus stays on the
torus or diverges from it. Although the estimated error
of the results at P1 are relatively high (cf. Fig. 12), the
predicted torus function captures the underlying quasi-
periodic motion very well.

In order to demonstrate the accuracy of the pro-
posed method, two arbitrarily chosen predicted stabil-

ity changes are investigated. Regarding the identified
limit point 2-torus bifurcations, the transition from a
stable to an unstable quasi-periodic motion is plausi-
ble. Consequently, two of the additionally appearing
stability transitions are investigated (P2 and P3). The
results are verified by investigating in a similar manner
as described above the stable and unstable side of the
transition (s. Fig. 15, 16, 17 and 18).

Considering Figs. 15 and 16 and Figs. 17 and 18, an
equivalent behavior can be observed. First, the stabil-
ity of the quasi-periodic motion is predicted correctly.
Second, because the continuation parameter change is
marginally, in both cases the torus functions are almost
identical. Nevertheless, the stability characteristic of
the quasi-periodic motion changes within the regarded
intervals, which is verified by time simulation: in both
unstable cases, another quasi-periodic torus solution
is approached by the trajectory. These motion may
stem from a quasi-periodic period doubling bifurcation
occurring at these stability changes (cf. [23]). Because
this contribution focuses on the stability identification
method, the latter findings are not further pursued in
this work.

Concluding this subsection, the usefulness of the
presented approach has been validated qualitatively
and quantitatively by means of a quasi-periodically
forced Duffing equation. The computational results
havebeenvalidated qualitatively by comparing the con-
tinuation path with findings from the literature. Fur-
thermore, a quantitative validation of the identified sta-
bility characteristics has been conducted by initiating
time simulations on exemplary torus functions. Besides
the time simulations, the analytical criterion of Eq. (81)
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validates the identified Lyapunov-exponents (cf. Figs.
13, 14, 15, 16, 17 and 18).

5 Conclusion

In this contribution, an approach to efficiently calculate
the Lyapunov- exponents of quasi-periodic solutions
is presented. For regular systems, these results may be
used to assess the stability of the considered solutions.

The basic idea is similar to the standard approach
for periodic problems, where the mapping over one
period—the monodromy-matrix—is used to assess
stability. Different to periodic problems, for quasi-
periodic systems the notion of periodicity is not obvi-
ous beforehand and it is not possible to identify a sin-
gle characteristic mapping similar to the monodromy
matrix.Within this contribution, the periodicities inher-
ent to quasi-periodic problems are identified and a
matrix function is introduced which allows efficient
iterations of mappings over arbitrarily long time inter-
vals. Based on this, an efficient calculation of Lya-

punov-exponents is possible.
To this end a hyper-time parametrization of the

investigatedquasi-periodicmotion is introduced,which
allows to describe the invariant manifold by means
of torus functions: eventually, these torus functions
reveal generalized periodicities inherent to the prob-
lem. These periodicities allow for a systematical for-
mulation of an arbitrarily long sequence of mappings
bymeans of a simple interpolation of a priori calculated
fundamental matrices. Based on this sequence of map-
pings the spectrum of 1st order Lyapunov-exponents
may then efficiently be calculated with arbitrary pre-
cision by means of a standard re-orthonormalization
technique. For systems whose linearizations are Lya-
punov regular, their stability can be derived from the
calculated Lyapunov-exponents. Please note that this
approach is actually independent of the method chosen
to determine the torus manifold on which the quasi-
periodic motion is embedded. Consequently, it may for
instance be applied to Fourier-Galerkin approaches
as well as to shooting approaches.

The presented method has been verified and vali-
dated by application to two nonlinear dynamical sys-
tems and the results were analyzed. First, as verifica-
tion example, a system of two coupled van- der- Pol

oscillators has been analyzed bymeans of the proposed
method as well as by using an established method,

namely the continuous Gram- Schmidt orthonormal-
ization. The accuracy of the identified Lyapunov-
exponents dependents on the resolution of the com-
puted underlying torus solution, the number of char-
acteristics and the number of mappings. A sufficient
convergence of the values of the exponents must thus
be checked and assured. The presented method sig-
nificantly outperforms the Gram- Schmidt orthonor-
malization for this example in terms of computational
cost and also can be applied to unstable quasi-periodic
motions, which are the main advantages. As validation
example, a quasi-periodically forced Duffing equa-
tion has been investigated. The computational results
of the proposed method coincide with results available
in the literature and a comparison with time simula-
tions initiated on the identified torus functions (quasi-
periodic invariant manifolds) confirm the predicted
stability characteristics. Furthermore the investigation
revealed other branches of quasi-periodic solutions,
which have been identified at the investigated stabil-
ity changes (bifurcation points) and will be analyzed in
future works.
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