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Abstract In the presence of spatio-temporal disper-
sion, perturbation terms of theHamiltonian type aswell
asmultiplicativewhite noise, analytical investigation of
the concatenation model having the Kerr law of nonlin-
earity is carried out in this work. The Cole–Hopf trans-
formation and direct assumptions with arbitrary func-
tions are utilized to determine several analytic solutions
to the governing equation, including multi-wave, two
solitary wave, breather, periodic cross kink, Peregrine-
like rational, and three-wave solutions. The parameter
constraints that serve as the requisite condition for the
existence of these wave solutions are also identified.
In order to explore and illustrate the propagation and
dynamical behaviors of some solutions reported in this
research, 3D graphics and their corresponding contour
plots are included. Results of this paper may be use-
ful for the experimental realization of certain nonlinear
waves in optical fibers and further understanding of
their propagation dynamics.
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1 Introduction

Since the explanation of the nonlinear evolution equa-
tions (NLEEs) for certain nonlinear phenomena appear-
ing in fluid dynamics, plasma astrophysics, optics, and
various other fields, analytic solutions of the NLEEs
have been the subjects of extensive investigations,
recently yielding many significant and compelling
results in the literature [1–23]. In this context, various
nonlinear models, such as the extended Kadomtsev-
Petviashvili (KP) equations in different dimensions
[1,2], the extended (3+1)-dimensional Ito equations [3,
4], the KdV–Calogero–Bogoyavlenskii–Schiff (KdV-
CBS) and negative-order KdV-CBS models devel-
opedwithin the framework of (3+1)-dimensional equa-
tions [5], as well as a fifth-order nonlinear integrable
equation [6], the time-dependent two members of
the KP hierarchy [7], and various Boussinesq equa-
tions [8], were investigated to explore their integra-
bility characteristics and to recover multiple-soliton
solutions and other solutions. Using Hirota’s bilin-
ear form, an examination and exploration were con-
ducted to investigate lump solutions and collisions
between lump and soliton solutions within the frame-
work of the (3+1)-dimensional extended KP equa-
tion [9]. The Hirota–Satsuma–Ito equation underwent
scrutiny employing the Hirota direct method, result-
ing in the discovery of multi-wave, breather wave,
and interaction solutions for the model [10]. Local-
ized solutions for the (2+1)-dimensional BKP equation
were obtained [11]. The study of the (2+1)-dimensional
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complex mKdV equation revealed the emergence of
rogue waves, along with a discussion on modulation
instability [12]. The examination of interaction solu-
tions for the extended Jimbo–Miwa equation in (3+1)
dimensions was conducted [13]. Lump solutions for
a (3+1)-dimensional Boussinesq-type equation were
revealed through the utilization of the long-wave limit
approach, and simultaneously, interaction solutions
were systematically formulated [14]. Hirota’s bilinear
methodwas applied to investigate the generalizedwater
wave equation, leading to the construction of lump
and lump-type solutions for the examined model [15].
The investigation of a generalized Whitham–Broer–
Kaup–Boussinesq–Kupershmidt system revealed that
the system passed the Painlevé test, and both bilin-
ear forms and N -soliton solutions of the system were
obtained [16]. Two families of hetero-Bäcklund trans-
formations, along with a family of similarity reduc-
tions, were developed for an extended coupled (2+1)-
dimensional Burgers system [17]. The auto-Bäcklund
transformations of an enlarged three-coupled KdV sys-
tem were sought and yielded some solitons to the
governing system [18]. By constructing a set of the
similarity reductions, a (3+1)-dimensional generalized
Yu-Toda-Sasa-Fukuyama system for certain interfa-
cial waves in a two-layer liquid or elastic waves in
a lattice was researched [19]. An investigation was
carried out on a generalized Darboux transformation
and solitons of the Ablowitz-Ladik equation [20]. The
N -fold Darboux transformation (DT), N -fold general-
ized DT, and multi-pole soliton solutions of the system
were reported as a result of the study conducted on
a system for ultra-short pulses in an inhomogeneous
multi-component nonlinear optical medium [21]. The
exploration of auto-Bäcklund transformationswas con-
ducted for a (3+1)-dimensional Korteweg-de Vries-
Calogero-Bogoyavlenskii-Schif equation in a fluid,
uncovering soliton solutions to the model as well [22].
A (2+1)-dimensional generalized variable-coefficient
Boiti–Leon–Pempinelli systemwas discussed, present-
ing two branches of the similarity reductions [23].

Solitons have been essentially described as the
exceptional solutions of a particular class of the
NLEEs, which may have variable or constant coeffi-
cients [24–51]. Several well-known NLEEs, such as
nonlinear Schrödinger’s equation (NLSE), complex
Ginzburg-Landau equation (CGLE), Sasa-Satsumaequa-
tion (SSE),Radhakrishnan-Kundu-Lakshmanan (RKL)
equation,Lakshmanan-Porsezian-Daniel (LPD)model,

and others, describe the propagation of solitons through
intercontinental optical fibers. The concatenationmodel,
which combines the well-known NLSE with the LPD
model and SSE, is a recent and interesting equation
that was proposed in 2014 [24,25]. The model under-
went extensive research following its introduction and
then for the model, optical solitons [26–28,30,32–34],
Painlevé analysis [26], conservation laws [28], bifurca-
tion analysis [29,32], as well as chaotic behavior [29],
quiescent optical solitons [31], implicit quiescent opti-
cal solitons [35], and dark solitary pulses and moving
fronts [36] have been reported. Afterwards, the model
was examined in birefringent fibers, and optical soli-
tons [37–39], complexitons [39], and quiescent optical
solitons [40] have also been discovered in that case.
The presentation of the concatenation model having
multiplicative white noise and the reporting of its soli-
ton solutions have occurred very recently [41]. The aim
of this research is to examine how multiplicative white
noise affects the concatenation model. Several analytic
solutions for the governing concatenation model are
derived with the assistance of direct test functions and
the Cole–Hopf transformation, and the associated con-
straint conditions for their existence are also provided.
In particular, the results presented below demonstrate
the richness of an optical fiber medium described by
concatenation model, which is measured by the diver-
sity of structures that it can support. This may have
potential application for the further experiments and
research in nonlinear optics. Following a brief presen-
tation of the model, the details are enlisted in the sub-
sequent sections of the paper.

1.1 Governing model

The stochastic concatenation model with the inclusion
of perturbation terms is formulated as follows [41]:

iqt + aqxx + bqxt + c|q|2q
+ d1

[
ρ1qxxxx + ρ2 (qx )

2 q∗ + ρ3|qx |2q

+ ρ4|q|2qxx + ρ5q
2q∗

xx + ρ6|q|4q
]

+ id2
[
ρ7qxxx + ρ8|q|2qx + ρ9q

2q∗
x

]

+ σ (q − ibqx )
dW (t)

dt
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= i
[
αqx + λ

(
|q|2q

)
x

+ μ
(
|q|2

)
x
q
]
. (1)

Here the dependent variable q(x, t), which character-
izes the wave profile, is a complex-valued function,
where x and t respectively stand for the spatial and tem-
poral coordinates as two independent variables, while
i = √−1. The linear temporal evolution is governed by
the initial term, while the terms a, b, and c are the coef-
ficients of chromatic dispersion (CD), spatio-temporal
dispersion (STD), and the Kerr law of self-phase mod-
ulation (SPM), respectively. Next, the coefficient of d1
is associated with the LPD model, and the coefficient
of d2 is sourced from the SSE. The role of σ is to sig-
nify the coefficient of noise strength, whileW (t) corre-
sponds to the standard Wiener process, and dW (t)/dt
expresses the white noise. The parameters α, λ, and μ

play a significant role as the coefficients of inter-modal
dispersion, self-steepening effect, and self-frequency
shift, respectively. It should also be noted here that in
the case of d1 = d2 = 0, the governing model sim-
plifies to the perturbed stochastic NLSE; however, if
either d1 = 0 or d2 = 0, it corresponds to the per-
turbed stochastic SSE or the perturbed stochastic LPD
model, respectively. Thus, Eq. (1), which combines the
perturbed stochastic versions of theNLSE, LPDmodel,
and SSE, is referred to as the concatenation model.

As to the novelty of this study, it is recognized that
multi-wave, two solitary wave, breather, periodic cross
kink, Peregrine-like rational, and three-wave solutions
for the perturbed stochastic concatenation model given
by Eq. (1) have not been reported. As a result and
hereby, it will make sense for us to explore multi-
wave, two solitary wave, breather, periodic cross kink,
Peregrine-like rational, and three-wave solutions to the
governing equation (1). Therefore, the findings pre-
sented in the study are novel and reported here for the
first time.

The content of this paper is as follows: In Sect. 2,
Eq. (1) will be transformed into the desired form
with the help of an assumption based on amplitude-
phase format. Next, the Cole–Hopf transformation and
three-wave hypothesis will be utilized to obtain multi-
wave solutions in Sect. 3. In Sect. 4, interactional solu-
tions will be investigated under the influence of the
double exponential function assumption. The homo-
clinic breather approach will be employed to investi-
gate breather wave solutions in Sect. 5. From Sect. 6–8,
periodic cross kink, Peregrine-like rational, and three-

wave solutions will be derived by the implementation
of various direct test functions. Finally, in Sect. 9, the
results of the research will be outlined.

2 Mathematical setup

To carry out the integration of the governing equation
(1), the employed hypothesis is

q(x, t) = P(ξ)eiφ(x,t) (2)

where the wave variable is given by

ξ = x − vt. (3)

The amplitude part is represented by the function
P(x, t) and the soliton velocity is symbolized as v,
according to the aforementioned hypothesis. Next, the
phase component is presented with the structure

φ = −κx + ωt + σW (t) − σ 2t + θ. (4)

Here κ stands for the frequency andω signifies thewave
number, while σ corresponds to the noise coefficient
and θ denotes the phase constant. Substituting (2) into
(1), one obtains the real part

−
[
ακ + aκ2 + (bκ − 1)

(
σ 2 − ω

)

+ κ3 (d2ρ7 − d1κρ1)

]
P

+
[
c − κλ − d1κ

2 (ρ2 − ρ3 + ρ4 + ρ5)

+ d2κ (ρ8 − ρ9)

]
P3

+ d1ρ6P
5 + d1 (ρ2 + ρ3) P

(
P ′)2

+
(
a − bv − 6d1κ

2ρ1 + 3d2κρ7
)
P ′′

+ d1 (ρ4 + ρ5) P
2P ′′ + d1ρ1P

(4) = 0 (5)

and the imaginary portion

(
v + α + 2aκ − bvκ + bσ 2 − bω − 4d1κ

3ρ1

+ 3d2κ
2ρ7

)
P ′
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+
[
3λ + 2μ + 2d1κ (ρ2 + ρ4 − ρ5)

− d2 (ρ8 + ρ9)

]
P2P ′

+ (4d1κρ1 − d2ρ7) P
(3) = 0. (6)

From the imaginary equation given by (6), the velocity
can be computed as

v = α + 2aκ + bσ 2 − bω − 4d1κ3ρ1 + 3d2κ2ρ7

bκ − 1
(7)

with constraints

3λ + 2μ + 2d1κ (ρ2 + ρ4 − ρ5) − d2 (ρ8 + ρ9) = 0
(8)

and

4d1κρ1 − d2ρ7 = 0. (9)

Utilizing some abbreviations, Eq. (5) can be reformu-
lated as follows:

M1P + M2P
3 + M3P

5 + M4P
(
P ′)2

+ M5P
′′ + M6P

2P ′′ + P(4) = 0 (10)

where

M1 = −ακ + aκ2 + (bκ − 1)
(
σ 2 − ω

) + κ3 (d2ρ7 − d1κρ1)

d1ρ1
,

M2 = c − κλ − d1κ2 (ρ2 − ρ3 + ρ4 + ρ5) + d2κ (ρ8 − ρ9)

d1ρ1
,

M3 = ρ6

ρ1
, M4 = ρ2 + ρ3

ρ1
,

M5 = a − bv − 6d1κ2ρ1 + 3d2κρ7
d1ρ1

, M6 = ρ4 + ρ5

ρ1
.

(11)

Eq. (10) will now be examined to derive a variety of
analytical solutions to the governing model.

3 Multi-wave solutions

By means of the transformation

P = 2 (lnψ)ξ (12)

one converts Eq. (10) into

M1ψ
4ψ ′ + 2 (2M2 + M5) ψ2 (

ψ ′)3
+ 4 (4M3 + M4 + 2M6 + 6)

(
ψ ′)5 − 3M5ψ

3ψ ′ψ ′′

− 4 (2M4 + 3 (M6 + 5)) ψ
(
ψ ′)3 ψ ′′

+ 2 (2M4 + 15) ψ2ψ ′ (ψ ′′)2 + M5ψ
4ψ(3)

+ 4 (M6 + 5) ψ2 (
ψ ′)2 ψ(3) − 10ψ3ψ ′′ψ(3)

− 5ψ3ψ ′ψ(4) + ψ4ψ(5) = 0. (13)

The chosen assumption for deriving multi-wave solu-
tions to the model is [42–46]:

ψ = �1 cosh (χ1ξ + χ2) + �2 cos (χ3ξ + χ4)

+ �3 cosh (χ5ξ + χ6) (14)

where χ j for 1 ≤ j ≤ 6 are constants. Sub-
stituting (14) into (13), collecting the coefficients
of sinh (χ1ξ + χ2), cosh (χ1ξ + χ2), sin (χ3ξ + χ4),
cos (χ3ξ + χ4), sinh (χ5ξ + χ6), cosh (χ5ξ + χ6), and
then working with the resulting system, one can
uncover various sets of solutions.

(i) The first solution set is

M3 = −M1 + 4M2χ
2
1

16χ4
1

,

M5 = M1 + 4 (M4 + 4) χ4
1

2χ2
1

, M6

= 1

8

(
M1

χ4
1

+ 4M2

χ2
1

− 4 (M4 + 6)

)
,

χ3 = iεχ1, �3 = 0. (15)

The obtained results are inserted into (14), and the
hypothesis (2) along with the transformation (12)
are taken into account. Then, this process leads
to deriving the rational multi-wave solution to the
model (1) as
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q(x, t)

= 2χ1
[
�1 sinh (χ1ξ+χ2)+ ε�2 sinh (εχ1ξ − iχ4)

]
�1 cosh (χ1ξ + χ2) + �2 cosh (εχ1ξ − iχ4)

exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
.

(16)

This solution exists for χ4 = iβ1, β1 ∈ R.

(ii) The second solution set is

M3 = −M1 + 4M2χ
2
1

16χ4
1

,

M5 = M1 + 4 (M4 + 4) χ4
1

2χ2
1

,

M6 = 1

8

(
M1

χ4
1

+ 4M2

χ2
1

− 4 (M4 + 6)

)
,

χ5 = εχ1, �2 = 0. (17)

These outcomes lead to the recovery of

q(x, t)

= 2χ1
[
�1 sinh(χ1ξ+χ2)+ε�3sinh (εχ1ξ+ χ6)

]
�1 cosh (χ1ξ + χ2) + �3 cosh (εχ1ξ + χ6)

exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
.

(18)

(iii) The third solution set is

M3 = −M1 − 4M2χ
2
3

16χ4
3

,

M5 = −M1 + 4 (M4 + 4) χ4
3

2χ2
3

, M6

= 1

8

(
M1

χ4
3

− 4M2

χ2
3

− 4 (M4 + 6)

)
,

χ5 = iεχ3, �1 = 0. (19)

Considering these results, the subsequent solution
to the governing equation is formulated as

q(x, t)

= −2χ3
[
�2 sin(χ3ξ+χ4)+ε�3sin (εχ3ξ − iχ6)

]
�2 cos (χ3ξ + χ4) + �3 cos (εχ3ξ − iχ6)

exp
[
i
(
−κx+ωt+σW (t) − σ 2t+θ

)]
.

(20)

The existence condition for this solution is χ6 =
iβ2, β2 ∈ R.

(iv) The fourth solution set is

M3 = −M1 + 4M2χ
2
5

16χ4
5

,

M5 = M1 + 4 (M4 + 4) χ4
5

2χ2
5

,

M6 = 1

8

(
M1

χ4
5

+ 4M2

χ2
5

− 4 (M4 + 6)

)
,

χ1 = χ5, χ3 = iεχ5. (21)

Under this circumstance, the rational multi-wave
solution takes form as

q(x, t) = 2χ5
[
�1 sinh(χ5ξ+χ2)+ε�2sinh (εχ5ξ − iχ4) + �3 sinh (χ5ξ + χ6)

]
�1 cosh (χ5ξ + χ2) + �2 cosh (εχ5ξ − iχ4) + �3 cosh (χ5ξ + χ6)

exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
(22)

which introduces the constraint χ4 = iβ1, β1 ∈
R. Also, it should be pointed out that ε equals ±1
in all solution sets.

Figure 1 illustrates the dynamical properties of
rational multi-waves solution (22). In the (x, t)-plane,
Fig. 1a, b, and c depict the 3D graphs, while Fig. 1d, e,
and f enumerate the corresponding contour diagrams
of Fig. 1a, b, and c. The chosen parameter values are
v = 3.4, ε = −1, θ = 5, κ = 1.5, �1 = 5, �2 =
2, �3 = 7, χ2 = 9, χ4 = 12i, χ6 = 3, W (t) = σ

2 t
when σ = 0, χ5 = 2.6, ω = 0.5 in (a) and
(d), σ = 3, χ5 = 0.2, ω = 2.5 in (b) and (e),
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σ = 10, χ5 = −0.1, ω = 5.8 in (c) and (f). The
graphical presentation of themulti-wave solution given
by Eq. (22) is depicted in Fig. 1. The influence of the
noise effect σ and the parameters χ5 and ω on the
behavior of the solution is examined, as can be seen
from the chosen parameter values. It should be noted
that Fig. 1a and d are simulated in the case of (σ = 0),
while Fig. 1b, c, e, and f are depicted in the case of
σ �= 0. Also, the examination range for these graphics
is set as −5 ≤ x ≤ 5 and −5 ≤ t ≤ 5.

4 Exponential form

When recovering interactional solutions, the double
exponential function is picked as follows [44–46]:

ψ = �1 exp (χ1ξ + χ2) + �2 exp (χ3ξ + χ4) (23)

where χ j with 1 ≤ j ≤ 4 are constants. Putting
(23) into (13) and subsequently setting the coefficients

of exp (χ1ξ + χ2), exp (χ3ξ + χ4), and other terms to
zero, the following sets of solutions are identified by
overcoming the resulting system of equations:
Set-1.

M1 = 2χ2
1

[
M5+4 (2M3 + M6 + 1) χ2

1

]
,

M2 = −M5

2
− 2 (4M3 + M6 + 1) χ2

1 ,

M4 = −2 (2M3 + M6 + 3) , χ3 = −χ1. (24)

Utilizing these parameter values within (23), and con-
sidering (2) along with (12), the multi-wave interac-
tional solution is revealed as follows:

q(x, t) = 2χ1
[
�1 exp(χ1ξ+ χ2)−�2 exp(χ4−χ1ξ)

]
�1 exp(χ1ξ+ χ2)+ �2 exp(χ4 − χ1ξ)

exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
.

(25)

Set-2.

M1 = 16

9
M3χ

4
1

[
32M3 (4M3 − 3) + 9

+ 8 (3 − 8M3)
√
M3 (4M3 − 3)

]
,

M2 = −8

9
M3 (8M3 − 3) χ2

1[
8M3 − 3 − 4

√
M3 (4M3 − 3)

]
,

M4 = 12 (M3 − 1) , M5 = −4

9
(4M3 − 9) χ2

1[
8M3 − 3 − 4

√
M3 (4M3 − 3)

]
,

M6 = 3 − 8M3, χ3 = 1

3
χ1[

3 − 8M3 + 4
√
M3 (4M3 − 3)

]
. (26)

The solution derived from the second set of parameters
for the model in question is

q(x, t) =
2χ1

[
3�1 exp(χ1ξ+χ2)+�2

(
3 − 8M3+4

√
M3 (4M3−3)

)
exp

(
1
3

[
3 − 8M3+4

√
M3 (4M3− 3)

]
χ1ξ+χ4

)]

3
[
�1 exp[χ1ξ+ χ2]+�2 exp

(
1
3

[
3 − 8M3 + 4

√
M3 (4M3 − 3)

]
χ1ξ + χ4

)]

× exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
. (27)

This solitary wave solution will exist provided
M3 (4M3 − 3) > 0 holds.
The dynamic behaviors of Solution (27) are displayed
in Fig. 2. In the (x, t)-plane, Fig. 2a, b, and c demon-
strate the 3D graphs, while Fig. 2d, e, and f are the
corresponding contour diagrams of Fig. 2a, b, and c.
The picked parameter values are v = 0.7, θ = 1, κ =
1.5, �1 = 2, �2 = 5, χ2 = 3, χ4 = −4, M3 =
1.4, W (t) = σ

2 t when σ = 0, χ1 = −1.5, ω = 9
in (a) and (d), σ = 4, χ1 = −0.9, ω = 6 in (b)
and (e), σ = 10, χ1 = −3.5, ω = 25 in (c) and (f).
The interaction phenomenon of two solitary waves, as
depicted by Fig. 2, is discussed alongwith the influence
of the noise effect σ and the parameters χ1 andω on the
behavior of the solution. Also, the examination range
is set as −5 ≤ x ≤ 5 and −5 ≤ t ≤ 5.
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Fig. 1 Dynamical behavior of solution (22)

5 Homoclinic breather approach

Breather wave hypothesis is represented by [42–44]

ψ = exp [−� (χ1ξ + χ2)] + �1 exp [� (χ3ξ + χ4)]

+ �2 cos [�1 (χ5ξ + χ6)] (28)

or equivalently

ψ = sinh [−� (χ1ξ + χ2)] + cosh [−� (χ1ξ + χ2)]

+ �1 sinh [� (χ3ξ + χ4)]

+ �1 cosh [� (χ3ξ + χ4)]

+ �2 cos [�1 (χ5ξ + χ6)] (29)

where χ j (1 ≤ j ≤ 6) are constants. Inserting
(29) into (13), collecting the coefficients of each

power of sinh [� (χ1ξ + χ2)], cosh [� (χ1ξ + χ2)],
sinh [� (χ3ξ + χ4)], cosh [� (χ3ξ + χ4)],
sin [�1 (χ5ξ + χ6)], cos [�1 (χ5ξ + χ6)], as well as
other terms, and solving the system of coefficients
yields the following:

(i) The first set is

M2 = (M4 + 2M6 + 6) χ2
1� 2 − M1

4χ2
1� 2

,

M3 = − 1
4 [M4 + 2 (M6 + 3)] ,

M5 = M1 + 4 (M4 + 4) χ4
1� 4

2χ2
1� 2

,

�1 = 0, χ5 = iεχ1�
�1

.

(30)

By substituting (30) into (29), and employing (2)
along with (12), the breather solution emerges as
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Fig. 2 Dynamical behavior of solution (27)

q(x, t) = 2χ1�
[
ε�2 exp[� (χ1ξ + χ2)] sinh (εχ1�ξ − iχ6�1) − 1

]
�2 exp[� (χ1ξ + χ2)] cosh (εχ1�ξ − iχ6�1) + 1

exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
. (31)

(ii) The second set is

M2 = −13M1 + 280χ4
1� 4

66χ2
1� 2

,

M3 = 7

528

(
80 − M1

χ4
1� 4

)
,

M4 = 8

3
− 7M1

12χ4
1� 4

,

M5 = 2
(
20χ4

1� 4 − M1
)

3χ2
1� 2

,

M6 = 7M1

22χ4
1� 4

− 71

11
,

χ3 = χ1, χ5 = iεχ1�

�1
. (32)

Continuing in the samemanner, the following solu-
tion is established:
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q(x, t) =2χ1�
[− exp[−� (χ1ξ + χ2)] + �1 exp[� (χ1ξ + χ4)] + ε�2 sinh (εχ1�ξ − iχ6�1)

]
exp[−� (χ1ξ + χ2)] + �1 exp[� (χ1ξ + χ4)] + �2 cosh (εχ1�ξ − iχ6�1)

× exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
. (33)

Here, in all sets of solutions, ε = ±1. It should also
be emphasized that the solutions provided by Eqs.
(31) and (33) are valid for χ6 = iβ, β ∈ R.

Figure 3 presents the physical structure of breather
solution (33). In the (x, t)-plane, Fig. 3a, b, and c show
the 3D graphs, while Fig. 3a, e, and f list the corre-
sponding contour diagrams of Fig. 3a, b, and c. The
chosen parameter values are v = 1.5, ε = −1, θ =
1, κ = 2, � = 2.4, �1 = 3, �1 = 3, �2 =
−7, χ2 = 9, χ4 = 2, χ6 = 5i, W (t) = σ

2 t
when σ = 0, χ1 = −0.7, ω = 1.2 in (a) and
(d), σ = 5, χ1 = −0.9, ω = 3.6 in (b) and (e),
σ = 10, χ1 = 1.7, ω = 6.3 in (c) and (f). The dynam-
ical behavior of breather waves provided by Eq. (33)
is displayed in Fig. 3. Considering the same examina-
tion range in Sects. 3 and 4, the graphical presentations
for the case σ = 0 are demonstrated in Fig. 3a and d,
while Figs. 3b, c, e, and f stand for the case σ �= 0. The
influence of the parameters χ1 and ω on the behavior
of the solution is also investigated.

6 Periodic cross kink solution

The derivation of a periodic cross kink solution to the
concatenation model with multiplicative white noise is
enabled by the following assumption [47,48]:

ψ = exp (χ1ξ + χ2) + �1 exp [−(χ1ξ + χ2)]

+ �2 cos (χ3ξ + χ4)

+ �3 cosh (χ5ξ + χ6) + �4 (34)

where χ j for 1 ≤ j ≤ 6 are constants. Plug-
ging (34) into (13), collecting the coefficients of

exp (χ1ξ + χ2), exp [−(χ1ξ + χ2)], cos (χ3ξ + χ4),
sin (χ3ξ + χ4), cosh (χ5ξ + χ6), sinh (χ5ξ + χ6), and
other terms, setting them equal to zero, and solving the
resulting system leads to:
Case-1.

M2 = −M1 + 16M3χ
4
1

4χ2
1

,

M5 = M1 + 4 (M4 + 4) χ4
1

2χ2
1

,

M6 = −2M3 − M4

2
− 3,

�1 = �2 = �4 = 0, χ5 = εχ1. (35)

Based on these outcomes, one secures the solution

q(x, t) = 2χ1
[
exp(χ1ξ + χ2)+ε�3 sinh (εχ1ξ+χ6)

]
exp(χ1ξ+χ2)+ �3 cosh (εχ1ξ + χ6)

exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
.

(36)

Case-2.

M2 = −M1 + 16M3χ
4
1

4χ2
1

,

M5 = M1+4 (M4 + 4) χ4
1

2χ2
1

,

M6 = −2M3 − M4

2
− 3, �2 = �4 = 0,

χ5 = εχ1. (37)

In this case, the solution is expressed as
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Fig. 3 Dynamical behavior of solution (33)

q(x, t) = 2χ1
[
exp(χ1ξ + χ2)

[
exp(χ1ξ + χ2) + ε�3 sinh (εχ1ξ + χ6)

] − �1
]

exp(χ1ξ + χ2)
[
exp(χ1ξ + χ2) + �3 cosh (εχ1ξ + χ6)

] + �1

exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
. (38)

Case-3.

M2 = −M1 + 16M3χ
4
1

4χ2
1

,

M5 = M1 + 4 (M4 + 4) χ4
1

2χ2
1

,

M6 = −2M3 − M4

2
− 3,

�1 = �4 = 0, χ3 = iχ1, χ5 = εχ1. (39)

This in turn gives rise to

123



Certain analytical solutions of the concatenation model

q(x, t) = 2χ1
[
exp(χ1ξ + χ2) + �2 sinh (χ1ξ − iχ4) + ε�3 sinh (εχ1ξ + χ6)

]
exp(χ1ξ + χ2) + �2 cosh (χ1ξ − iχ4) + �3 cosh (εχ1ξ + χ6)

exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
. (40)

Case-4.

M2 = −M1 + 16M3χ
4
1

4χ2
1

, M5=M1+4 (M4 + 4) χ4
1

2χ2
1

,

M6 = −2M3 − M4

2
− 3, �4 = 0, χ3 = iχ1,

χ5 = εχ1. (41)

By the help of this set of parameters, it is discovered
that

q(x, t) = 2χ1
[
exp(χ1ξ + χ2)

[
exp(χ1ξ + χ2) + �2 sinh (χ1ξ − iχ4) + ε�3 sinh (εχ1ξ + χ6)

] − �1
]

exp(χ1ξ + χ2)
[
exp(χ1ξ + χ2) + �2 cosh (χ1ξ − iχ4) + �3 cosh (εχ1ξ + χ6)

] + �1

× exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
. (42)

In all solution sets presented here, ε equals±1.Also,
it is important to highlight that the solutions (40) and
(42) will exist as long as the considered equation sat-
isfies the condition χ4 = iβ (β ∈ R), which stands as
the requisite condition for the existence of solutions.
The propagation characteristics of Solution (42) are
illustrated in Fig. 4. In the (x, t)-plane, Fig. 4a, b, and c
demonstrate the 3D graphs, while Fig. 4d, e, and f are
the corresponding contour diagrams of Fig. 4a, b, and
c. The parameter values that are taken in this case are
v = 0.8, ε = −1, θ = 1, κ = 0.5, �1 = −7.5, �2 =
3.9, �3 = −25.8, χ2 = 6, χ4 = 17i, χ6 =
5, W (t) = σ

2 t when σ = 0, χ1 = 2.6, ω = 3.7
in (a) and (d), σ = 4, χ1 = 5.2, ω = 43 in (b) and
(e), σ = 10, χ1 = −1.9, ω = 41 in (c) and (f). The
dynamic behaviors of the periodic cross kink solution
(42) are analyzed for various values of the parameters
σ , χ1, and ω.

7 Peregrine-like rational solitons

The adopted assumption for this solution form is [45,
49]

ψ = (χ1ξ + χ2)
2 + (χ3ξ + χ4)

2 + χ5 (43)

where χ j with 1 ≤ j ≤ 5 are constants. Inserting (43)
into (13) yields the following results:

(i) M1 = 0, M3 = − 1

32
(2M4 + 4M6 + 3) ,

M5 = −8M2,

χ5 = − (χ2χ3 − χ1χ4)
2

χ2
1 + χ2

3

. (44)

Using these results in (43), and considering (2)
along with (12) brings about the solution

q(x, t) = 4
(
χ2
1 + χ2

3

)
χ2
1 ξ + χ3 (χ3ξ + χ4) + χ1χ2

exp
[
i
(
−κx+ωt+σW (t)−σ 2t+θ

)]
.

(45)

(ii) M1 = 0, M3 = − 1

32
(2M4 + 4M6 + 3) , M5

= −8M2, χ2 = −χ3χ4

χ1
,

χ5 = −
(
χ2
1 + χ2

3

)
χ2
4

χ2
1

. (46)

From these results, one explores

q(x, t)=4

ξ
exp

[
i
(
−κx+ωt+σW (t)−σ 2t+θ

)]
.

(47)

(iii) M1 = 0,

M3 = 1

8

[
3 − M2

(
2χ2

4

χ2
1

+ 2χ5

χ2
1 + χ2

3

)]
,
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Fig. 4 Dynamical behavior of solution (42)

M4 = −15

2
− M2

(
3χ2

4

χ2
1

+ 3χ5

χ2
1 + χ2

3

)
,

M5=−8M2, M6=2M2

(
χ2
4

χ2
1

+ χ5

χ2
1 + χ2

3

)
,

χ2 = −χ3χ4

χ1
. (48)

This results in the following solution:

q(x, t) = 4χ2
1

(
χ2
1 + χ2

3

)
ξ(

χ2
1 + χ2

3

) (
χ2
1 ξ2 + χ2

4

) + χ2
1χ5

exp [i (−κx + ωt

+σW (t) − σ 2t + θ
)]

. (49)
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(iv)

M1 = 0, M3 = 3χ4
1 + 4M2χ1χ2χ3χ4 + χ2

3

[
3χ2

3 − 2M2
(
χ2
2 + χ5

)] − 2χ2
1

[
M2

(
χ2
4 + χ5

) − 3χ2
3

]
8
(
χ2
1 + χ2

3

)2 ,

M4 = −3
(
5χ4

1 − 4M2χ1χ2χ3χ4 + χ2
3

[
5χ2

3 + 2M2
(
χ2
2 + χ5

)] + 2χ2
1

[
5χ2

3 + M2
(
χ2
4 + χ5

)])
2

(
χ2
1 + χ2

3

)2 ,

M5 = −8M2, M6 = 2M2
[
(χ2χ3 − χ1χ4)

2 + (
χ2
1 + χ2

3

)
χ5

]
(
χ2
1 + χ2

3

)2 . (50)

Taking these results into consideration, the governing
equation possesses the solution

q(x, t) = 4 [χ1 (χ1ξ + χ2) + χ3 (χ3ξ + χ4)]

(χ1ξ + χ2)
2 + (χ3ξ + χ4)

2 + χ5

exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
.

(51)

Figure5 provides the dynamical behavior of Peregrine-
like rational solution (51). In the (x, t)-plane, Fig. 5a,
b, and c exhibit the 3D graphs, while Fig. 5d, e, and
f enumerate the corresponding contour diagrams of
Fig. 5a, b, and c. In this case, the values of the parame-
ters are v = 1.1, θ = 3, κ = 0.7, χ2 = 3, χ4 =
7, W (t) = σ

2 t when σ = 0, χ1 = 4.2, χ3 =
3.4, χ5 = −125, ω = 4 in (a) and (d), σ = 2, χ1 =
2.4, χ3 = −6.5, χ5 = 7, ω = 1.5 in (b) and (e),
σ = 10, χ1 = 4.7, χ3 = 16.4, χ5 = 75, ω = 53 in
(c) and (f).

From Fig. 5d, e, and f, one can clearly see that the
pulse profile remains unchanged during evolution. This
is one of the important properties of soliton, which is
highly desired in practical applications.

8 Three-wave solutions

Based on the three-wave approach, the solution is struc-
tured as [50]

ψ = �1 exp (χ1ξ + χ2) + exp [−(χ1ξ + χ2)]

+ �2 cos (χ3ξ + χ4) + �3 sin (χ5ξ + χ6) (52)

where χ j (1 ≤ j ≤ 6) are constants. Inserting
(52) into (13) and collecting the coefficients of

exp (χ1ξ + χ2), exp [−(χ1ξ + χ2)], cos (χ3ξ + χ4),
sin (χ3ξ + χ4), cos (χ5ξ + χ6), sin (χ5ξ + χ6), and
other terms, and solving the resulting system, the fol-
lowing results are acquired:
Set-1.

M3 = −M1 + 4M2χ
2
1

16χ4
1

,

M4 = M1

4χ4
1

+ M2

χ2
1

− 2M6 − 6,

M5 = −4 (M6 + 1) χ2
1 + M1

χ2
1

+ 2M2,

�1 = �2 = 0, χ5 = iεχ1. (53)

Putting these parameter values into (52), and utilizing
(2) along with (12), one gets the solution given by

q(x, t) = 2χ1
[
ε�3 exp(χ1ξ + χ2) cosh (εχ1ξ − iχ6) + i

]
�3 exp(χ1ξ + χ2) sinh (εχ1ξ − iχ6) − i

exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
.

(54)

Set-2.

M3 = −M1 + 4M2χ
2
1

16χ4
1

, M4 = M1

4χ4
1

+ M2

χ2
1

− 2M6 − 6, M5 = −4 (M6 + 1) χ2
1 + M1

χ2
1

+ 2M2, �2

= 0, χ5 = iεχ1. (55)

From the solution set, it is procured that
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Fig. 5 Dynamical behavior of solution (51)

q(x, t) = 2χ1
[
�1 exp[2 (χ1ξ + χ2)] + iε�3 exp(χ1ξ + χ2) cosh (εχ1ξ − iχ6) − 1

]
�1 exp[2 (χ1ξ + χ2)] + i�3 exp(χ1ξ + χ2) sinh (εχ1ξ − iχ6) + 1

exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
. (56)

From (54) and (56), it appears that these solutions
remain valid as long as the constraint relations�3 = iβ1

and χ6 = iβ2 (β1, β2 ∈ R) hold.
Set-3.

M3 = −M1 + 4M2χ
2
1

16χ4
1

,

M4 = M1

4χ4
1

+ M2

χ2
1

− 2M6 − 6,

M5 = −4 (M6 + 1) χ2
1 + M1

χ2
1

+ 2M2,

�1 = 0, χ3 = iχ1, χ5 = iεχ1. (57)

Then, the solution falls out as
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q(x, t) = 2χ1
[
exp(χ1ξ + χ2)

[
�2 sinh (χ1ξ − iχ4) + iε�3 cosh (εχ1ξ − iχ6)

] − 1
]

exp(χ1ξ + χ2)
[
�2 cosh (χ1ξ − iχ4) + i�3 sinh (εχ1ξ − iχ6)

] + 1

exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
. (58)

Set-4.

M3 = −M1 + 4M2χ
2
1

16χ4
1

,

M4 = M1

4χ4
1

+ M2

χ2
1

− 2M6 − 6,

M5 = −4 (M6 + 1) χ2
1 + M1

χ2
1

+ 2M2, χ3 = iχ1,

χ5 = iεχ1. (59)

Finally, these outcomes yield the following three-wave
solution:

q(x, t) =2χ1
[
exp(χ1ξ + χ2)

[
�1 exp(χ1ξ + χ2) + �2 sinh (χ1ξ − iχ4) + iε�3 cosh (εχ1ξ − iχ6)

] − 1
]

exp(χ1ξ + χ2)
[
�1 exp(χ1ξ + χ2) + �2 cosh (χ1ξ − iχ4) + i�3 sinh (εχ1ξ − iχ6)

] + 1

× exp
[
i
(
−κx + ωt + σW (t) − σ 2t + θ

)]
. (60)

In all solution sets given here, ε = ±1.Also, it needs
to be mentioned that the solutions (58) and (60) remain
valid under the conditions �3 = iβ1, χ6 = iβ2, and
χ4 = iβ3, where β j ( j = 1, 2, 3) ∈ R.
The solution provided by Eq. (60) is depicted graphi-
cally in Fig. 6. In the (x, t)-plane, Fig. 6a, b, and c show
the 3Dgraphs,while Fig. 6a, e, and f are the correspond-
ing contour diagrams of Fig. 6a, b, and c. In Fig. 6, the
parameter values are v = 1.8, ε = −1, θ = 4, κ =
1, �1 = 3, �2 = 7, �3 = 2i, χ2 = 5, χ4 = 9i, χ6 =
11i, W (t) = σ

2 t when σ = 2, χ1 = 0.3, ω = 72
in (a) and (d), σ = 4, χ1 = 1, ω = 7.77 in (b) and
(e), σ = 0, χ1 = −0.53, ω = 3.9 in (c) and (f).
For various values of the parameters σ , χ1, and ω, the
propagation characteristics of the three-wave solution
provided by Eq. (60) are displayed in Fig. 6, along with
the examination range −5 ≤ x ≤ 5 and −5 ≤ t ≤ 5.

Before arriving at a conclusion, let us compare the
obtained analytical solutions with the experimental

results of nonlinear waves found in optical contexts.
Here, we compare for example the obtained Peregrine-
like rational soliton (51) with the Peregrine soliton that
is experimentally observed in optical fibers byKibler et
al. [51]. Different from the Peregrine soliton obtained
within the framework of the cubic NLSE [51], the
Peregrine-like rational solution presented here possess
a nontrivial phase structure which depends crucially on
the noise coefficient σ and includes the time-dependent
function W (t). This special form of the phase may
lead to chirped pulses when the function W (t) do not
exhibit a linear variation in time. There are a number of
real-world applications for this interesting frequency-
chirping property, including effective pulse amplifica-

tion or compression. It should be noted that only the two
fundamental effects, namely group velocity dispersion
and self-phase modulation nonlinearity, may be bal-
anced for the Peregrine soliton to form in a pure Kerr
optical medium. This is different from the findings of
the current study, which show that for them to exist in
the optical fiber, a balance between higher-order effects
of different nature is necessary.

9 Conclusions

The present research discussed the effect of multiplica-
tivewhite noise in the Itô sense on the analytic solutions
of the concatenationmodel, which is the conjunction of
the NLSE, LPD model, and SSE, along with the Kerr
law nonlinear form of SPM and STD, in addition to
perturbation terms of the Hamiltonian type. To achieve
this, the direct test functions, which comprise a com-
bination of exponential, trigonometric, hyperbolic, and
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Fig. 6 Dynamical behavior of solution (60)

quadratic functions, were implemented along with the
Cole–Hopf transformation. The procedure continued
with the extraction of multi-wave, two solitary wave,
breather, periodic cross kink, Peregrine-like rational,
and three-wave solutions for the perturbed stochastic
concatenation model. The restrictions on the parame-
ters essential for the existence of such solutions were
also introduced. The interaction phenomenon of the
recovered solutions is illustrated through 3D and con-
tour graphics by assigning specific values to the param-
eters.
This study illustrates the potentially rich set of localized
pulses and periodic waves in optical fiber media gov-
erned by the concatenation model. These results may
be advantageous for further understanding of the non-
linear phenomena and dynamical processes arising in
optical fibers and may be useful for experimental real-
ization of undistorted transmission of nonlinear waves
in optical waveguiding systems.
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