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Abstract Model updating using multiple test data is

usually a challenging task for frictional structures. The

difficulty arises from the limitations of nonlinear

models which often overlook the uncertainties inher-

ent in contact interfaces and in actual test conditions.

In this paper, we present a parametric study for the

model calibration process of a friction-damped turbine

blade, addressing the experimentally measured

response variability in computational simulations.

On the experimental side, a recently developed test

setup imitating a turbomachinery application with

mid-span dampers is used. This setup allows measur-

ing multiple responses and contact forces under

nominally identical macroscale conditions. On the

computational side, the same system is modeled in a

commercial finite element software, and nonlinear

vibration analyses are performed with a specifically

developed in-house code. In numerical simulations,

the multivalued nature of Coulomb’s law, which stems

from the inherent variability range of static friction

forces in permanently sticking contacts, is considered

to be the main uncertainty. As the system undergoes

vibration, this uncertainty propagates into the dynamic

behavior, particularly under conditions of partial slip

in contacts, thus resulting in response variability. A

deterministic approach based on an optimization

algorithm is pursued to predict the limits of the

variability range. The model is iteratively calibrated to

investigate the sensitivity of response limits to contact

parameters and assembly misalignment. Through

several iterations, we demonstrate how uncertain

initial contact conditions can be numerically incorpo-

rated into dynamic analyses of friction-damped tur-

bine blades. The results show a satisfactory level of

accuracy between experiments and computational

simulations. This work offers valuable insights for

understanding what influences test rig response and

provides practical solutions for numerical simulations

to improve agreement with experimental results.
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R Residual vector

fc Vector of contact forces

fexc Vector of excitation forces

m Vector of multiplier coefficients

q Vector of generalized coordinates

Fclamp Static clamping force

Fexc Excitation force applied by shaker

|Fexc| Fundamental harmonic amplitude of

excitation force applied by shaker

h Harmonic number

H Maximum number of harmonics considered

i Imaginary unit number,
ffiffiffiffiffiffiffi

�1
p

kt Contact stiffness in tangential direction

N Normal load on contact elements

Nc Number of contact points

R Reaction forces measured by de-couplers

t Time

tini Initial time instant

T Contact force in tangential direction

u Relative motion in tangential direction

Upot Potential energy

v Relative motion in normal direction

w Slip displacement

a Design angle of de-couplers

DWdis Dissipated energy

g Loss factor

l Coefficient of friction

x Excitation frequency

h Design angle on dampers

f Damping ratio

h0 Static component of h

_h First time derivative of h

€h Second time derivative of h

hmin Minimum of h

hmax Maximum of h

BC Boundary condition

CF Centrifugal force

LC Load cell

1 Introduction

Friction is an inevitable phenomenon in jointed

assemblies, occurring both intentionally and uninten-

tionally depending on the specific application. In

turbomachinery applications with underplatform dam-

pers, friction is intentionally employed in bladed disks

to reduce excessive vibration amplitudes and prevent

high cycle fatigue failure of aeroengines [1–4].

Conversely, in structures with bolted joints, uninten-

tional friction arises when two or more bodies come

into contact during operation, leading to relative

motion and sliding [5–7]. Over the past four decades,

significant efforts have been devoted to the prediction

of the nonlinear dynamic behavior of structures

subject to friction in these fields.

State-of-the-art numerical solvers have demon-

strated remarkable accuracy in predicting dynamic

behavior under well-defined macroscale conditions.

However, challenges arise when uncertain test condi-

tions are encountered at micro scales. Such uncertain-

ties contribute to variations in system characteristics

and test data, leading to difficulties in updating

procedures of the nonlinear models. In the last years,

the joint mechanics and turbomachinery communities

have highly focused on the variability and repeatabil-

ity of nonlinear dynamics in assemblies. The primary

concern revolves around identifying uncertainties

present in contact interfaces [8–10] and effectively

representing them in numerical simulations. This issue

poses a challenging problem particularly in friction-

damped turbine blades: the tuning of numerical

models using multiple test data to better predict the

nonlinear dynamics of structures. Throughout the

paper, the term multiple refers to several sets of

measurement data obtained under nominally identical

macroscale conditions, but in different experiments.

A common practice in the context of model

updating involves fine-tuning the contact parameters

[11–17]. This approach is feasible for a single set of

contact parameters in cases where the effects of

uncertainties on the system behavior variability are

negligible. Once the scattering of the experimental

data increases, an uncertainty band that accounts for

non-repeatability is necessary in computational

results. To establish such an uncertainty band, several

studies have addressed uncertainties using stochastic

approaches and subsequently propagating them to

system behavior [18–21]. Monte Carlo Simulations

(MCS) [22] are widely used due to their robustness.

However, MCS are computationally expensive since it

requires a large number of samples. Reduced order

models and surrogate modeling approaches are pop-

ular techniques to increase the computational effi-

ciency. Butlin et al. [23–25] also consider the

functional form of constitutive laws as uncertain and
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employ probabilistic and/or constrained optimization

techniques to determine response bounds.

Present study considers the uncertainty arising from

the multivalued characteristics of Coulomb’s law,

particularly in static friction forces of permanently

sticking contacts. To better illustrate this uncertainty,

consider a simplified example: a single degree-of-

freedom grounded mass-spring system, with the

generalized coordinate x, subject to friction. The

governing equation for this system, with unit mass, is

given by €xþ kxþ T ¼ 0, where k represents the

spring stiffness and T represents tangential friction

force. For static equilibrium, we know that €x ¼ 0, and

Coulomb’s law states that Tj j\lN, indicating

T 2 �lN; lNð Þ. This condition implies that the static

friction force of a sticking contact can assume an

infinite number of values within a range. In other

words, the system’s equilibrium lies within the

interval of �lN=k; lN=kð Þ. Once an initial condition

is selected from this interval, the solution corresponds

to one of the infinitely many points, and the system is

considered to be in equilibrium. In reality, the actual

tangential friction force, and hence static equilibrium,

is determined by one particular loading history

experienced by the system, which is mostly unknown.

Loading history can be arbitrarily different, for

instance, due to different application patterns of initial

pre-loads and the subsequent load history, which may

involve quasi-static loading, random impulsive per-

turbations and dynamic loading across various time

scales. Consequently, static friction force of perma-

nently sticking contacts can have a memory and can

take a value within the variability range whose limits

are imposed by Coulomb’s law. The variability range

is further depicted in Fig. 1 for a more generic case

with time-dependent tangential and normal contact

forces.

The hysteretic uncertainty in static friction forces of

fully stuck contacts has been first demonstrated in the

contact mechanics community, particularly on qua-

sistatic contact problems with friction [26, 27]. Sev-

eral researchers have focused on predicting

shakedown limits to determine the extent to which

contacts retain the memory [28–31]. In the case of

vibrating systems, the long-term behavior is influ-

enced by whether this memory is preserved or lost. In

cases where all contacts experience recurrent sliding

and/or lift-off without any permanent sticking, the

system eventually loses its memory, leading to a single

long-term behavior. When at least one but not all

contacts display permanent sticking, multiple long-

term behaviors can occur if the contacts are coupled,

meaning that the normal forces are influenced by the

tangential forces and vice versa. This coupling can

arise due to structure geometry, such as contacts

aligned at an angle (geometric coupling), or due to the

elastic coupling between the normal and tangential

directions of different contacts during vibrations. In

the field of structural dynamics, Yang and Menq

[32, 33] were the first to recognize that the set of

multiple static equilibria due to different initial

conditions of static friction forces can introduce

variability in the steady-state forced response of

friction-damped structures. Over the past two decades,

several studies [34–39] have shown the possibility of

multiple responses in friction-damped turbine blades

due to this phenomenon. The effects of such variabil-

ity on the dynamics of the system cannot be disre-

garded, as it can result in significant differences of up

to 20% in resonance frequency and 300% in response

amplitudes for nominally identical cases [38, 39].

In the context of this uncertainty, researchers have

developed deterministic methods for the characteriza-

tion of uncertainty bands. For example, in [32], the

authors utilized geometric relations in damper kine-

matics to calculate upper and lower limits in the

response. Similarly, the authors of [40] emphasized

the use of maximum and minimum tangential forces to

estimate limiting cases with a simpler yet effective

approach. Other methodologies, which are based on

nonlinear modes [41] and optimization algorithms
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Fig. 1 Contact forces and variability range of static tangential

force in a permanently sticking contact
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[42], have been developed to predict the boundary

range of variability. The latter has also been applied to

realistic cases, such as an academic turbine blade

coupled with underplatform dampers [43], and its

efficacy has been validated through test data measured

on turbine blades. It should be noted that in order to

improve the accuracy of matching the computationally

obtained variability range with corresponding exper-

imental measurements, model calibration may still be

necessary for the aforementioned approaches.

The objective of this work is to demonstrate how a

friction-damped turbine blade model can be iteratively

calibrated using multiple test data with a parametric

study. As the main source of the response variability,

the epistemic uncertainty present in static friction

forces of permanently sticking contacts is taken into

account. A key contribution of this paper is the

adoption of a non-probabilistic strategy for the model

updating process, incorporating an optimization algo-

rithm to estimate the limits of the variability range.

The model is iteratively tuned with respect to the

sensitivity of limits to both contact parameters and the

alignment of the test setup. Substantial effort is

dedicated to calibrating the model for both linear

and nonlinear analyses. It is shown that the compu-

tational and experimental results match with a negli-

gible amount of error after a thorough updating

process of the model.

The paper is organized as follows. Section 2

describes the test setup, measurement procedures

and presents the test data. Section 3 explains the

computational background utilized in the numerical

side of the study. In Sect. 4, the comparison of the

experimental and computational results is illustrated

to show how the model calibration is performed.

Section 5 concludes the study and summarizes the key

points.

2 Test rig: a turbine blade with mid-span dampers

The experimental campaign of the current study

involves a newly designed test rig that imitates turbine

blades coupled with mid-span dampers. The test setup

has been extensively described in [44]. To present an

understanding of the experimental setup, we provide a

brief overview of its main components and measure-

ment procedures.

2.1 Main components

The complete assembly of the test rig is depicted in

Fig. 2a. Central and side blocks serve as bulky host

entities, and they are securely fastened to the table.

The side blocks carry additional components to

measure contact forces. The test rig consists of three

Fexc

BLADE

Shaker

Left 
Block

LEFT 
DAMPER

RIGHT 

DAMPER

CF

CF
Right 
Block

LC1

LC2

R3

R4
LC4

Central 
BlockFclamp

R1

LC3

R2

Shaker Stinger

(a)

De-couplersDampers

Blade

(b)

Fig. 2 a Entire assembly of the test setup, b Top view of main subcomponents: one blade, two dampers and two de-couplers
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main subcomponents: a blade, two bi-conical dam-

pers, and two L-shaped de-couplers (see Fig. 2b).

1. The blade is a slender beam specifically developed

for academic purposes and designed similarly to

those used in industrial applications [45, 46]. It is

fixed to the central block through a clamping

mechanism that ensures a substantial clamping

force (Fclamp) on the blade’s base. This mechanism

minimizes the potential friction at the blade root.

The blade is excited with a harmonic force,

Fexc(t) =|Fexc| cos(xt), by an electromagnetic

shaker that is attached to the nearby of the root

with a stinger.

2. Dampers are positioned between the blade and de-

couplers. The design of the dampers is also based

on the geometry of their industrial counterparts

[45, 46], considering shape, dimensions, and

functionality. A line contact is ensured with

specifically machined conical slots on both the

blade and the L-shaped de-couplers (see Fig. 2b).

Each damper is subjected to a static pulling force

generated by dead weights. These pre-loads

emulate the centrifugal force (CF) during real

working conditions, resulting from the rotational

speed of the bladed disk.

3. The de-couplers are connected to two blocks (left

and right) via load cells (LC). Their main function

is the separation of the contact forces exerted by

the dampers into two orthogonal reaction forces

(R). These reaction forces are then measured by

the load cells.

2.2 Measurement procedures

The tests are conducted using force-controlled

stepped-sine frequency sweeps. In addition to moni-

toring the response of the blade, measurements are

taken for the reaction forces and relative displacement

between the right damper and the blade.

Figure 3a shows the free body diagram of the de-

couplers, with T and N representing the tangential and

normal contact forces, respectively. The reaction

forces measured by load cells are denoted as R3 and

R4. The force balance equations can be expressed in

horizontal and vertical directions as

T cosðhÞ þ N sinðhÞ � R3 cosðaÞ � R4 cosðaÞ ¼ 0

T sinðhÞ � N cosðhÞ þ R3 sinðaÞ � R4 sinðaÞ ¼ 0;

ð1Þ

where a and h are 45� and 8.53�, respectively. Given
that the reaction forces are already measured, contact

forces can be easily obtained by solving the coupled

Eq. (1). Similarly, the force equilibrium on the damper

is also depicted in Fig. 3b. T0 and N0 denote the contact

T

N

R4

R3

θ

α

α

N’

T’T”

N” CF

(b)(a)

Fig. 3 Force equilibrium at the right side. a On the de-coupler:
Load cells are replaced by the measured reaction forces (R3 and

R4). Damper is replaced by contact forces (T & N). b On the

damper: The force de-coupler is replaced by contact forces (T0 &
N0). The blade is replaced by contact forces (T00 & N00)
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forces at the de-coupler side of the damper and are

equal to T and N in magnitude. T00 and N00 also

represent contact forces at the blade side. The balance

equations can then be expressed as

T 00 cosðhÞ þ N 00 sinðhÞ � T 0 cosðhÞ � N 0 sinðhÞ ¼ 0

�T 00 sinðhÞ þ N 00 cosðhÞ � T 0 sinðhÞ þ N 0 cosðhÞ � CF ¼ 0
:

ð2Þ

In Eq. (2), the inertia of the damper is considered

negligible due to low mass of the damper.

The response of the blade was measured by an

accelerometer attached to the blade tip, as shown in

Fig. 4a. To construct the hysteresis cycles, a differen-

tial laser was also utilized to measure the relative

displacement between the blade and the damper. It is

important to note that due to space limitations in the

test campaign, precise measurement of the relative

displacement was challenging. Figure 4a and 4b

illustrate the laser points and the positions of the laser

heads, respectively. One of the laser heads is directed

toward a point near the contact slot of the blade, while

the other head is pointed on top of the damper. To

facilitate the measurement, a reflective tape was

attached using an additional indenter wrapped around

the damper, as the middle section of the damper is

perfectly circular and lacks any indentation to reflect

the light back to the laser. Furthermore, one of the

laser heads was inclined at an angle of approximately

12�–15� to obtain measurements. It is worth under-

lining that the primary objective of this measurement

was to gain initial insights into the order of magnitude

of contact parameters, and the final values utilized in

numerical simulations are iteratively calibrated, as

elaborated in Sect. 4.

2.3 Test results

The comprehensive discussion on the experimental

data obtained from the test rig employed in this study

can be found in [44]. For the sake of completeness, we

present the most significant test results in this subsec-

tion, as they will be utilized in the model calibration

process in Sect. 4.

2.3.1 Linear characteristics of the stand-alone blade

We initially investigated the linear behavior of the

blade using stepped-sine frequency sweep tests

focused on the vicinity of the lowest frequency mode.

Specifically, we considered the stand-alone blade

configuration without dampers. In this setup, the blade

is firmly secured to the central host block through the

application of a substantial static load (Fclamp, see

Fig. 2a). To investigate the impact of potential

damping at the blade root on the linear characteristics,

the blade was excited using five different amplitudes

of harmonic excitation. Figure 5a presents the nor-

malized response of the blade for increasing levels of

excitation. It is evident that the responses align closely

with each other, except for the case with the lowest

excitation amplitude. This slight deviation suggests a

minor contribution of damping from the blade root. It

is important to note that completely preventing

damping at the blade root is practically impossible,

regardless of the magnitude of the applied clamping

force. Furthermore, once the dampers are engaged, the

vibration amplitudes will significantly decrease com-

pared to the free blade scenario. Consequently, the

primary source of damping will predominantly arise

from the contacts between the blade and the dampers.

(a)

Laser Head - 2

Laser Head - 1

Right Damper

Blade

Accelerometer

Laser

(b)

Fig. 4 a Laser points for the measurement of relative displacement between the blade and the damper, b back view for the position of

laser heads
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Hence, based on the results presented in Fig. 5a, it is

reasonable to conclude that the damping at the blade

root can be considered negligible. Figure 5b displays

the response of the free blade over a wider frequency

range. It shows that the mode of interest is well

separated, with a measured natural frequency of

122.25 Hz.

2.3.2 Measurement of multiple nonlinear responses

and contact forces

Coupled blade-damper configuration is tested around

the frequency range near to the lowest frequency mode

of the stuck system. The dampers are engaged to the

blade by applying pre-loads through dead weights, as

explained in SubSect. 2.1. In this study, the nominal

pre-load value on the damper was set at 5.6 kg for all

tests.

Vibration tests are performed by keeping all user-

controlled inputs identical in the macroscale test

environment. Tomeasure multiple vibration responses

and contact forces in different tests, the loading history

of the system was deliberately altered prior to the start

of each test. The ultimate strategy was to obtain the

maximum number of different arbitrarily defined

loading histories before each run, while maintaining

identical inputs across all runs during the tests. In this

way, the range of the variability in the data is increased

as extensively as possible. This was accomplished by

implementing various loading and unloading

sequences. For instance, for certain tests, the pre-

loads on the damper were initially increased or

decreased to an arbitrary value different from the

nominal one utilized during the tests. Shortly before

the start of each test, the pre-loads were then set to the

nominal value. In other cases, consecutive tests were

performed with the dampers remaining loaded, while

in different tests, the dampers were completely

unloaded and then reloaded. Furthermore, some tests

were performed with forward frequency sweeps, while

others were carried out with backward sweeps. In the

experiments, the data variability is examined for four

different subcases, each driven by one of the four

different excitation levels: 1 N, 3 N, 5 N, and 10 N.

Figure 6 shows the comprehensive view of the

experimentally obtained multiple responses of the

blade. The data exhibit a significant degree of non-

repeatability, varying by up to a factor of 2 particularly

in amplitude levels of the case with 5 N excitation

level. Figure 7 also presents the multiple contact

forces on the de-coupler sides of the left and right

dampers. The data are presented at resonance fre-

quencies of four demonstrator test cases, and both

dynamic and static components are depicted in each

subfigure. In contrast to the nonlinear response, the

degree of variability observed in the contact forces is

relatively smaller. These experimental results will

serve as the reference data for the subsequent model

calibration process discussed in Sect. 4.

It is also worth highlighting that across all excita-

tion levels, a disparity exists in the static normal force

values between the left and right dampers. This

difference indicates a misalignment present in the

assembly, as the static pre-load introduced by the dead

weights is expected to be equally shared by both sides

of the dampers under the assumption of an ideal

condition with perfect symmetry. Specifically, with a

pre-load of 5.6 kg, each side is expected to receive a

static normal load of approximately 27.5 N. However,

it is observed that the left damper shows an offset of

around 7 N. Further, no additional measurements were

conducted to visualize the actual distribution of static

forces on contact interfaces. Consequently, the

misalignment of the dampers and the application of

pre-loads will be correspondingly addressed during

the calibration process.
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Fig. 5 Linear response of the blade without dampers: a for

cases with five different excitation amplitude levels, b over a

wider frequency range for the case with |Fexc|= 1 N
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3 Computational background

In this section, the numerical background is presented

for the deterministic simulations of limits of multiple

dynamic responses and contact forces.

3.1 Finite element model and governing equations

The components of the test setup are meshed with a

commercial finite element software. Since the central

block and side blocks are quite bulky, they are

assumed to be rigid and are thus excluded from the

model. Additionally, the load cells and auxiliary

components are unified to the de-couplers, as they

are tightly bolted together. As a result, the model

consists of five distinct bodies: the blade itself, two

dampers, and two de-couplers. The finite element

model of the assembly is depicted in Fig. 8. In the

model, the blade is clamped at the root, while the de-

couplers are fixed at the far ends of the load cells. The

dampers, on the other hand, are free from any imposed

boundary conditions. 3D 20-node solid elements are

used to mesh all the components, resulting in a total of

approximately 2.5 million elements. To obtain

reduced-order system matrices, the Craig-Bampton

approach [47] is employed in the reduction process.

Generalized coordinates of many physical nodes

(including excitation, static pre-load, response moni-

toring and contact nodes) as well as 150 modal

coordinates are retained as the master degrees of

freedom in the model. It should be noted that the

model shown in Fig. 8 is the final version of the

calibration procedure that will be elaborated in

Sect. 4.
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(c) |Fexc| = 5 N

Fig. 6 Multiple nonlinear responses of the blade for different excitation amplitude levels
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Equation (3) is the generic equation of motion that

can be written with the reduced-order systemmatrices,

i.e., M, C and K, generalized coordinates, i.e., qðtÞ,
internal contact forces, i.e., fcðq; _q; tÞ, and external

forcing, i.e., fexcðtÞ as

M€qðtÞ þ C _qðtÞ þKqðtÞ þ fcðq; _q; tÞ ¼ fexcðtÞ: ð3Þ

In this study, the blade is harmonically forced, and

its steady state solution is sought using Harmonic

Balance Method [48]. Hence, the forcing, nonlinear

forces and the response can be written with their

harmonic components as

fexcðtÞ ¼ <
X

H

h¼0

f̂
h

exce
ihxt

 !

;

fcðq; _q; tÞ ¼ <
X

H

h¼0

f̂
h

ce
ihxt

 !

; and

qðtÞ ¼ <
X

H

h¼0

q̂heihxt

 !

:

ð4Þ

In Eq. (4), f̂
h

exc, f̂
h

c and q̂h represent the complex

amplitude vectors of the hth harmonics. H is the

number of harmonics considered in the expansion. i
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0 /2 3 /2 2
Phase Angle [rad]

25
26
27
28
29
30
31

N
or

m
al

Fo
rc

e
[N

]

0 /2 3 /2 2
Phase Angle [rad]

-10

0

10

20

Ta
ng

en
tia

lF
or

ce
[N

] Right Damper

0 /2 3 /2 2
Phase Angle [rad]

-20

-10

0

10

20

Ta
ng

en
tia

lF
or

ce
[N

] Left Damper

0 /2 3 /2 2
Phase Angle [rad]

18
19
20
21
22
23
24

N
or

m
al

Fo
rc

e
[N

]
(c) |Fexc| = 5 N

0 /2 3 /2 2
Phase Angle [rad]

-8
-6
-4
-2
0
2
4
6
8

10

Ta
ng

en
tia

lF
or

ce
[N

] Left Damper

0 /2 3 /2 2
Phase Angle [rad]

19

20

21

22

N
or

m
al

Fo
rc

e
[N

]

0 /2 3 /2 2
Phase Angle [rad]

26

27

28

29

30

N
or

m
al

Fo
rc

e
[N

]

0 /2 3 /2 2
Phase Angle [rad]

-6
-4
-2
0
2
4
6
8

10

Ta
ng

en
tia

lF
or

ce
[N

] Right Damper

(b) |Fexc| = 3 N

0 /2 3 /2 2
Phase Angle [rad]

-6
-4
-2
0
2
4
6

Ta
ng

en
tia

lF
or

ce
[N

] Left Damper

0 /2 3 /2 2
Phase Angle [rad]

-4
-2
0
2
4
6
8

Ta
ng

en
tia

lF
or

ce
[N

] Right Damper

0 /2 3 /2 2
Phase Angle [rad]

19

20

21

22

N
or

m
al

Fo
rc

e
[N

]

0 /2 3 /2 2
Phase Angle [rad]

26

27

28

29

N
or

m
al

Fo
rc

e
[N

]

(a) |Fexc| = 1 N

0 /2 3 /2 2
Phase Angle [rad]

27

28

29

N
or

m
al

Fo
rc

e
[N

]
0 /2 3 /2 2

Phase Angle [rad]

0

2

4

6

8

Ta
ng

en
tia

lF
or

ce
[N

] Right Damper

0 /2 3 /2 2
Phase Angle [rad]

-4

-2

0

2

4

Ta
ng

en
tia

lF
or

ce
[N

] Left Damper

0 /2 3 /2 2
Phase Angle [rad]

19

20

21

N
or

m
al

Fo
rc

e
[N

]

Fig. 7 Multiple contact forces on dampers for different excitation amplitude levels
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and x denote the unit imaginary number and excita-

tion frequency, respectively. To obtain the governing

algebraic equations in the frequency domain, Eq. (4)

can be inserted into Eq. (3) and the final set can be

obtained as

�ðhxÞ2Mþ ihxCþK
� �

q̂h þ f̂
h

c ¼ f̂
h

exc ðh
¼ 0; 1; � � � ;HÞ: ð5Þ

As mentioned in Sect. 2.1, the mating pairs of the

test setup are deliberately designed to establish contact

lines in the friction interfaces. This is achieved

through the eccentric circular geometry of the dampers

and corresponding contact surfaces of the contact pads

and the blade, as depicted in Fig. 9. For each pair,

seven contact points are selected.

In this study, the normal contact force, N(t), is

governed by a linear-elastic unilateral law that can be

explicitly expressed as

NðtÞ ¼ knvðtÞ
0

�

vðtÞ [ 0, in contact

vðtÞ� 0, lift - off
; ð6Þ

where v(t) and kn represent the relative displacements

and contact stiffness value in the normal direction,

respectively. The tangential contact force is governed

by the elastic Coulomb’s law. The friction force can be

expressed with the differential form as

dTðtÞ ¼ ktduðtÞ
0

�

TðtÞ þ ktduðtÞj j � lNðtÞ; in stick

TðtÞ þ ktduðtÞj j[ lNðtÞ; in slip
:

ð7Þ

Herein, T(t) is the tangential contact force, kt is the

tangential contact stiffness and uðtÞ represents the

relative displacement in the tangential direction. l
represents the coefficient of friction in the contact.

Due to hysteretic effects, the explicit form of T(t) in

terms of uðtÞ and _uðtÞ is not directly available. To

address this phenomenon, in this study, we utilize the

Jenkins-type point contact model (see Fig. 10), which

incorporates an additional internal variable known as

slip displacement (wðtÞ). The slip displacement rep-

resents a hypothetical coordinate defining the position

of the slider within the contact element. Its value is

constant when the contact is in the stick state

( _wðtÞ ¼ 0) and changes as the contact slips. This

coordinate is treated implicitly within the harmonic

balance approach, i.e., it is not represented as a

truncated Fourier series. In this study, the complex

amplitudes of the nonlinear forces are computed using

the alternating time–frequency approach [49] with the

well-known predictor–corrector scheme [50], where

T(t) is initially predicted using an estimated value of

wðtÞ and then corrected according to Coulomb’s law.

This prediction-correction procedure continues until

Root
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Fig. 8 Finite element model of the assembly
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Fig. 9 Contact regions of the dampers with seven points

selected on each mating surface
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Fig. 10 Jenkins-type point contact element
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the system reaches a steady state with periodicity

conditions, typically requiring at least two periods.

The tangential contact force can then be expressed by

the following expression

T tð Þ ¼
kt uðtÞ � wðtÞ½ �
lNðtÞ _wðtÞj j= _wðtÞ
0

8

<

:

in stick

in slip

lift - off

; ð8Þ

where w is unknown at the initial loading instant, and

its actual value depends on the loading history. In the

literature, it is commonly assumed that the initial slip

displacement of contacts is zero, although the actual

value may differ. However, in this study, the initial

slip displacements of contacts are considered uncer-

tain, and their limit values are computed within an

optimization algorithm together with the response

limits.

3.2 Response variability and computation

of limits with an optimization algorithm

The uncertainty in slip displacements of sticking

contacts and consequently the tangential forces can

lead to significant variability in the nonlinear response

of turbine blades. To illustrate this phenomenon,

consider Eq. (5) for two identical but separate test

cases that have nominally same inputs but different

loading histories. In this scenario, the system matrices

(M, C and K) and forcing parameters (f̂
h

exc, h and x)
are identical for both cases in Eq. (5). Also assume

that both systems exhibit partial slip motion, where

some contacts are fully stuck while others experience

stick–slip behavior, and there is a normal-tangential

coupling among contacts. It was shown that the static

components of contact forces, f̂
0

c , can take different

values within a range for fully stuck contact points

based on the loading history. Consequently, f̂
0

c varies

between the two cases, leading to different system

responses, q̂h, due to the coupling present in Eq. (5).

In this study, we computationally predict the limits

of experimentally measured multiple responses using

a numerical approach based on an optimization

algorithm developed in [41]. The algorithm aims to

minimize/maximize an objective function, repre-

sented by the system’s loss factor, (g), which quan-

tifies the damping capability of the system.

Minimization of the loss factor is employed to

determine the upper limit of the response, while

maximization is used to compute the lower limit. The

optimization problem is given as:

minimize/maximize g
with respect to ½ðq̂hÞT;mT�T;
subject to R ¼ 0

ð9Þ

where the loss factor is defined as the ratio between the

total dissipated energy in the system, DWdis, and the

maximum stored energy,Upot, [51, 52], i.e.,

g ¼ DWdis

2pUpot

: ð10Þ

In Eq. (9),m is the vector of multiplier coefficients,

representing the ratio of the initial tangential force to

Coulomb’s limit. Coefficients are implicitly defined

for each contact element as

TnðtiniÞ ¼ mn � lNnðtiniÞ n ¼ 1; 2; � � � ;Ncð Þ;
ð11Þ

where Nc is the number of contact elements. In this

way, the uncertainty in initial tangential forces is

addressed in the solution algorithm by considering

each mn as an unknown. tini represents the initial time

instant in the predictor–corrector scheme. R denotes

the residual of Eq. (5) and can be obtained as

R ¼ q̂h þ ah f̂
h

c � f̂
h

exc �Kcq̂
h

� �

ðh
¼ 0; 1; � � � ;HÞ: ð12Þ

ah is the receptance corresponding to each har-

monic, i.e., ah ¼ �ðhxÞ2Mþ ihxCþKstuck

� ��1

,

where Kstuck is the stiffness matrix of fully stuck

linear configuration. Lastly, Kc ¼ Kstuck �K. The

optimization technique utilized in this study is the

interior point method [53, 54], and it is employed with

fmincon built-in function of Matlab. The gradients are

numerically calculated with forward finite difference

method. It is worth mentioning that the optimization

algorithm utilized in this study has been successfully

demonstrated and applied in [42] with highly accurate

results and reasonable computational cost. There may

also be other optimization methods that could be more

suitable for different applications. Evaluating and

comparing different strategies, however, is beyond the

scope of this study. In achieving the objectives of the

calibration process presented in this study, the fmincon
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algorithm with the interior-point method was deemed

sufficient and effective.

4 Correlation of the results and model calibration

This section presents the calibration procedure for

both linear and nonlinear models. The linear model

refers to the model of the assembly without accounting

for friction in contact interfaces, whereas the nonlinear

model additionally incorporates frictional interaction

through contact elements. The ultimate objective of

this study is the parametric calibration of the nonlinear

model for the prediction of limits of multiple nonlinear

responses and contact forces. Several iterations are

performed to achieve the best possible agreement

between the computational results and their corre-

sponding experimental counterparts. Throughout

these iterations, all the steps taken to achieve the most

accurate results are explained in the subsequent

sections, including those that result in mismatched

outcomes, in order to provide insights into the

effective and ineffective practices during the model

updating procedure. By detailing both the successful

and unsuccessful outcomes, this study highlights the

recommended approaches as well as the pitfalls to

avoid when updating the model.

It is also worth underlining that the primary

objective of the designed test rig is to measure and

quantify the variability in the nonlinear response and

contact forces. While the test rig is not specifically

built for the characterization of the contact parameters,

efforts have been made to estimate initial values of the

contact parameters based on the available data. As a

result, before discussing the calibration of the nonlin-

ear model, estimation of the initial values of the

contact parameters and the calibration of the linear

model are presented. These procedures will be

presented separately, and an overview of the entire

calibration process is given in Fig. 11.

4.1 Estimation of initial values for tangential

contact stiffness and coefficient of friction

The initial estimation of the tangential contact stiff-

ness (kt) and friction coefficient (l) is based on the

measured hysteresis cycles and contact force ratio,

respectively. To estimate kt, two arbitrary cases with

excitation levels of 1 N and 10 N are considered, as

illustrated in Fig. 12a. In the 1 N case, a peak-to-peak

straight line is plotted, while in the 10 N case, the stick

region is approximated with a manually drawn line.

The slope of both lines represents the value of kt,

which is found to be 11.5 N/lm. However, it should be

noted that the measured relative displacement value is

not entirely accurate, and the actual value is greater

due to the inclination of the laser heads (see Fig. 4).

Consequently, the actual value of kt is considered to be

lower than the estimated value of 11.5 N/lm.

For the estimation of the friction coefficient, the

contact force ratio T(t)/N(t) is used for the 10 N

excitation case at the corresponding resonance fre-

quency (Fig. 12b). The 10 N excitation case is

deliberately chosen because it represents the largest

excitation amplitude, bringing the dampers closest to

the gross slip condition. For a damper during gross

Initial estimate 
of alignment

Initial 
value of ζ

Linear 
model

Initial modelNonlinear test data Linear test data

Nonlinear model calibration

Updated nonlinear model capable of predicting the uncertainty 
band of the nonlinear responses and contact forces

Linear model calibrationInitial 
value of kt

Initial 
value of μ

Initial 
value of kn

Fig. 11 Overview of the entire calibration process
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slip, the contact force ratio, T(t)/N(t), is expected to be

equal to the friction coefficient l, however, in our

experiments, gross slip is never achieved, as indicated

by the fact that the ratio does not remain constant over

one full vibration cycle (Fig. 12b). Nevertheless, the

maximum value of the curve provides an insight on a

lower reference, which is approximately 0.6. Conse-

quently, the actual value of coefficient of friction is

considered to be greater than this estimated reference

value due to the absence of gross slip in the

experiments.

4.2 Calibration of the linear model

The calibration of the linear model consists of two

main steps. First, model updating is performed for the

stand-alone blade by correlating experimental and

computational results of the natural frequency. In the

second step, linear model is calibrated considering

linear responses of both free and fully stuck cases.

Overview of the linear model calibration process is

depicted in Fig. 13.

In the first step, a close match is aimed between the

numerically predicted natural frequency and the

experimentally measured value of 122.25 Hz. To

explore the sensitivity of the results, ten different

linear models are constructed, considering three

specific parameters. These parameters are as follows:

1. Finite element type: Two different 3D finite

elements are employed. The first type is a low-

order element with eight nodes in a single element,

while the second type is a higher-order element

with twenty nodes.

2. Mesh density: The density refers to the number of

elements that span through the thickness of the

blade. Five different mesh densities are consid-

ered. For example, if the blade thickness is divided

into two elements, it is referred to as a 2 Elements

model. Consequently, a higher number of ele-

ments corresponds to a more intense mesh density.

3. Boundary conditions: Two distinct configurations

are created based on the boundary conditions at

the root of the model. In the first configuration, the

root is fully clamped, applying constraints to all its

nodes. In the second configuration, the constraints

are only applied to a subset of clamping nodes,

selected arbitrarily but uniformly. Hence, the

second configuration has a reduced number of

clamped nodes and is referred to as the relaxed

configuration.

Table 1 presents the iterations based on the modal

analysis results obtained from the 10 considered

models. The first four models utilize the low-order

element type with different mesh densities and

clamping conditions. However, these models do not

yield satisfactory results, as the error remains around

7%, which is high for linear simulations. Additionally,

the results show almost no sensitivity to the clamping

conditions. In the fifth model, the element type is

changed to the high-order element type, leading to a

significant improvement as the results overlap accu-

rately. This highlights the necessity of using a higher-

0 /2 3 /2 2
Phase Angle [rad]

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Fo
rc

e 
R

at
io

 ( T
 /

N
)

(b)

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Relative Displacement [m] 10-6

-10
-8
-6
-4
-2
0
2
4
6
8

10
12
14

Ta
ng

en
tia

l F
or

ce
 [N

]

(a)

|Fexc| = 1 N

|Fexc| = 10 N

1
kt1

kt

Fig. 12 Measured hysteresis curves and contact force ratio

123

Parametric study for model calibration of a friction-damped turbine blade with multiple test… 7859



Fig. 13 Overview of the

calibration process of the

linear model

Table 1 Computational modal analysis results for different stand-alone blade models

Model number Element type Mesh density Boundary condition Natural freq. [Hz] Error (%)

1 Low order 3 Elements Full 137.1 12.2

2 Low order 3 Elements Relaxed 137.0 12.1

3 Low order 4 Elements Full 131.1 7.2

4 Low order 4 Elements Relaxed 131.0 7.1

5 High order 4 Elements Full 122.1 0.12

6 High order 5 Elements Full 122.1 0.12

7 High order 2 Elements Full 122.4 0.12

8 High order 2 Elements Relaxed 121.9 0.29

9 High order 1 Element Full 122.6 0.29

10 High order 1 Element Relaxed 122.1 0.12

123

7860 E. Ferhatoglu et al.



order element type for achieving an accurate model.

Subsequently, the sixth model investigates the impact

of increasing mesh density. The analysis reveals that

the natural frequency has already reached a saturation

point, indicating no further improvement in model

accuracy. Additional models (7–10) were also con-

structed for further investigation, but no substantial

enhancement is observed. This highlights the strong

dependence of modal analysis results on the finite

element type employed in the model. Based on these

findings, the sixth model, depicted in Fig. 8, is

selected for the blade in the subsequent analyses.

The second step is to achieve a close alignment

between the numerically predicted linear response

curves and their experimentally measured counter-

parts. Both free (stand-alone blade) and fully stuck

(coupled blade-damper-decoupler) configurations are

considered. In the numerical simulations of fully stuck

configuration, the dampers are coupled to the blade

and de-couplers using linear springs with tangential

and normal contact stiffness values. The experimental

results for this configuration consider one arbitrary

response curve with the lowest forcing level (1 N),

although this scenario does not precisely represent the

fully stuck linear configuration due to slight dissipa-

tion in it (see Fig. 12a). Since no measurements were

taken with lower excitations, this case is utilized for

demonstrative purposes. Nevertheless, despite its

limitation, this correlation provides initial insights

into the contact stiffness parameters through a qual-

itative comparison on the response curves. The final

values will be tuned during subsequent iterations of

the nonlinear model calibration.

To investigate the sensitivity of the results, three

iterations are performed, taking into account four

parameters:

1. Tangential contact stiffness, kt: The initial esti-

mate of kt was given in Sect. 4.1 based on the

nonlinear test data. This parameter is also consid-

ered here and further calibrated with the fully

stuck linear configuration.

2. Normal contact stiffness, kn: A direct measure-

ment of kn is not available in the tests. Its initial

value is estimated based on the matching accuracy

of the resonance frequency of fully stuck linear

response curve between tests and simulations.

3. Damping ratio of the linear model (coupled blade-

damper-decoupler), f: Rayleigh damping is

specified such that f is proportional to the first

lowest frequency mode of the fully stuck linear

system. The calibrated damping ratio will provide

an upper reference value, since a slight dissipation

is present in the reference test result.

4. Boundary conditions (BC): This parameter was

taken into account when tuning the natural

frequency of the stand-alone blade and is further

calibrated here, also considering the matching

accuracy of the response curves. In the relaxed

configuration, the constraints are manually

applied by grounding the model from the clamp-

ing nodes using linear springs with adjustable stiff-

ness values (with approximately two orders of

magnitudes higher values of contact stiffness used

in the coupled blade-damper-decoupler

configuration).

Table 2 and Fig. 14 present the values of param-

eters utilized in the iterations and the corresponding

linear response curves, respectively. In the first

iteration, the resonance frequencies of the experimen-

tal and computational curves exhibit close proximity,

but a notable difference is observed in the lower

portion of the resonance region for both free and fully

stuck linear configurations. The response curves

measured in tests have a wider width compared to

the computationally predicted curves. To address this

disparity, the clamping condition is relaxed, and other

parameters are heuristically adjusted in the second

iteration. Consequently, the lower width of the exper-

imental and computational curves becomes almost

equal, but the resonance frequency of the stand-alone

blade is shifted to the left. This shift is relevant

because the root is no longer fully clamped, and a

slight elasticity is introduced through springs. The

resonance frequency error of the stand-alone blade is

around 2.5%, which cannot be considered negligible.

Table 2 Parameters used in the iterations

Iteration kt
[N/lm]

kn
[N/lm]

f
(%)

BC Meet

criterion?

Free Stuck

1 8 8 0.2 Full No No

2 6.16 6.16 0.35 Relaxed No Yes

3 4.65 6.75 0.33 Relaxed Yes Yes
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Additionally, in order to explore the effects of

neglected contributions from the sensor mass and

shaker stinger on blade dynamics, a lumped mass (for

the sensor) and linear springs (for the shaker stinger)

are implemented accordingly. Despite an increase in

resonance frequency, no further enhancement in

accuracy of the linear responses is observed. The

outcomes of this iteration indicate that the computa-

tional linear response obtained in the second iteration

should be shifted to higher frequencies as a whole. In

the third iteration, the density of the blade is slightly

decreased, and the parameters are further tuned. The

matching accuracy of the results can now be consid-

ered acceptable, as depicted in Fig. 14 for the third

iteration. The assigned density is slightly lower than

the actual nominal value of steel, which can be

justified by the fact that the manufactured geometry of

the blade may not perfectly align with the numerical

model due to geometric tolerances. It is important to

emphasize that all the calibrations conducted thus far

serve to provide initial insights into the parameters that

will be used in the calibration of the nonlinear model.

The actual values will be tuned considering the

sensitivity of uncertainty bands associated with non-

linear response and contact forces.

4.3 Calibration of the nonlinear model

In the nonlinear model calibration process, three

parameters are treated as uncertain:

1. Initial position of slip displacements of perma-

nently sticking contacts, wðtiniÞ, hence the initial

value of static tangential forces, TðtiniÞ. This

uncertainty arises due to different loading histo-

ries and is directly addressed in the optimization

algorithm that considers and solves also for the

unknown multiplier coefficients, m, during the

computation of response limits.

2. Contact parameters, i.e., kt, kn and l. The uncer-

tainty in these parameters stems from the limited

knowledge about their exact values during the

tests. The initial estimates are considered based on

the test data and linear model calibration. In each

iteration of the nonlinear model calibration pro-

cess, these parameters are assigned a specific

single value. The model is then iteratively cali-

brated to determine whether the experimental and

simulation results better align, taking into account

the sensitivity of the response limits to these

parameters.

3. The alignment of the test setup, particularly the

dampers and pre-loads. This uncertainty arises due

to the lack of precise information regarding the

system’s symmetry and the positioning of the

dampers. Initially, the configuration of the model

is taken into account with a perfect symmetry. In

each iteration, a particular configuration is con-

sidered, and this configuration is calibrated based

on the sensitivity of contact force limits to the test

alignment.
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Based on these three sources of uncertainty, the

response variability in numerical simulations is

achieved by the forward propagation of only the first

uncertainty into the nonlinear dynamics of the struc-

ture. The parameters associated to the second and the

third uncertainties are treated as having a single

specific value and configuration in each iteration of the

calibration process. An overview of the nonlinear

model calibration is shown in Fig. 15.

The calibration process consists of four iterations. It

is important to underline that this process is not

straightforward, as it entails addressing multiple uncer-

tainties associated with several parameters that need to

be considered concurrently. The objective here is to

achieve a satisfactory level of accuracy in predicting the

limits of both the multiple nonlinear responses and

contact forces. The values of the contact parameters and

the model alignment configuration are summarized in

Fig. 16. The linear damping ratio, f, is set to 0.2% in all

iterations. The initial parameters for the first iteration

are consistently selected with the findings from the

earlier sections on linear model calibration (Sect. 4.2)

and nonlinear test data (Sect. 4.1).

4.3.1 Iteration 1

This iteration serves as an initial attempt to gain a

general understanding of the overall results. The

alignment is considered with a perfect symmetry.

Figure 17a–d presents the test results of the multiple

nonlinear responses and the predicted limits obtained

through optimization for four different excitation

levels. The upper limits align closely with the

resonance regime of the experimental curves, while

the lower limits exhibit a pronounced softening

behavior. Further, the resonance frequency of the

lower limits shift toward smaller values as the

excitation level increases. To comprehend the main

cause of this phenomenon, the contact states of the

lower limits at the resonance frequencies are investi-

gated. It is observed that while many contact points

alternate between stick–slip states, full separation

occurs at certain contact points. This implies that the

optimization algorithm converges to a particular

contact configuration where some contact nodes are

fully separated, resulting in the system’s loss factor

reaching its maximum value for the computation of

lower limit. The number of points undergoing full

separation increases with larger excitations, leading to

higher stiffness loss for the lower limit. Conversely,

the surfaces remain in contact for the upper limits,

with no damping present even in cases with 1 N and 3

N excitations. The optimization simulations provide

the theoretical limits that the experimental curves can

reach, successfully capturing the variability range of

the test data in terms of amplitudes. However, the

Test-analysis correlation on limits 
of contact force

Test-analysis correlation on 
limits of nonlinear response

Meet criterion? Meet criterion?

Updated nonlinear model capable of predicting the uncertainty 
band of the nonlinear responses and contact forces
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Nonlinear model
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Nonlinear 
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Fig. 15 Overview of the

calibration process of the

nonlinear model
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resonance frequency of the upper limit could be

slightly shifted to a higher frequency by further tuning

of the contact parameters.

In addition to capturing the response variability, the

optimization algorithm determines the limits of static

tangential contact forces. Figure 18 depicts the mea-

sured multiple contact forces and the predicted limits

from the first iteration for the 10 N excitation case. The

dynamic components of the upper limit closely match

the experimental data, while those of the lower limit

are noticeably smaller. This is relevant because the

response curve of the upper limit for |Fexc|= 10 N (see

Fig. 17d) closely resembles the experimental curves,

indicating that the contact forces are expected to be

similar as well. Figure 18 demonstrates that the

predicted limits of tangential static forces effectively

capture the range of variability observed in the test

results, indicating the correct functioning of the

optimization algorithm. However, as also mentioned

in Sect. 2.3.2, there exists a disparity in the measured

static normal force values between the left and right

dampers, indicating a misalignment in the assembly.

The predicted limits and measured results of static

normal forces on the left damper show significant

discrepancies, indicating that the symmetric configu-

ration does not accurately reflect the actual scenario.

The results for other excitation levels follow a similar

pattern, but they are not presented here for the sake of

brevity. To address the difference in normal forces and

account for the misalignment, the pre-loads on the

dampers are adjusted accordingly in the next iteration.

4.3.2 Iteration 2

The contact parameters are heuristically tuned to

achieve a slight upward shift in the resonance

frequency of the upper limits, while still ensuring that

the predicted limits effectively capture the measured

range of response variability. Through fine calibration,

it is found that among the three contact parameters, kt
exhibits greater sensitivity in influencing the behavior

of the limits. Therefore, kt is slightly modified, while

kn and l are set to relatively higher values (refer to the

final values in Fig. 16).

Additionally, the position of the dead weights on

the dampers is altered to mimic the misalignment
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Fig. 17 Measured multiple nonlinear responses and predicted limits for the 1st iteration
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present in the actual system. This calibration is

performed based on the deviation ratio between the

test and simulation results of normal contact forces.

First, the ratio between the average values of the

normal static components of the upper and lower

limits and those obtained using the test data (Fig. 18)

are calculated. Subsequently, the pre-load on the

dampers is shifted by proportioning this ratio to the

horizontal length of the damper, either toward the

blade side or the decoupler side. For instance, as the

ratio is approximately 20% ( 25:5� 21ð Þ=21� 100)

for the left damper, the preload is shifted toward the

blade side by 20% of the horizontal length of the

damper to reduce the normal force values of predicted

limits. Analogously, for the right damper, the preload

is slightly shifted toward the decoupler side to increase

the limit values of the static components. Note that the

contact forces given in Fig. 18 are for the de-coupler

side of the dampers. Simplified schematic of the

alignment of the pre-loads are shown in Fig. 16.

Figure 19 shows the measured multiple nonlinear

response and the predicted limits. The trend of the

limits for different excitation levels remains similar to

the previous iteration, effectively capturing the range

of variability with acceptable accuracy. This outcome

indicates that changing the position of the pre-loads

does not significantly impact the response behavior;

instead, its influence is more prominent on the contact

forces, as depicted in Fig. 20, particularly on the

normal contact forces. More specifically, for 10 N

excitation case in Fig. 20a, the computed normal force

curves corresponding to the upper limit closely align

with the test data. The deviation between the normal

static components of the test data and limits is also

compensated on both dampers. Further, the variability

range of the static tangential forces is effectively
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Fig. 19 Measured multiple nonlinear responses and predicted limits for the 2nd iteration
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captured on the left damper, while there is a slight

discrepancy for the right damper. To compare the

contact forces obtained also with other excitation

amplitudes, Fig. 20b presents the results for the 1 N

forcing level. The results for this case are not as

satisfactory as those for the 10 N case. The static

components of the computational results deviate

significantly from their experimental counterparts,

which cannot be considered negligible. This implies

that further tuning, particularly regarding the align-

ment of the pre-loads, is necessary to enhance the

matching accuracy between the computed and exper-

imental results.

4.3.3 Iteration 3

The contact parameters that provided accurate results

in the previous iteration are retained with the same

values for this iteration. The focus in this iteration is on

adjusting the pre-loads on the dampers to better

represent the misalignment in the model, particularly

introducing an inclination angle on the application of

the pre-loads. The inclination angles for the pre-loads

are determined through a heuristically performed

sensitivity analysis, which involves performing sev-

eral analyses with different inclination angles. The

objective is to achieve the highest possible matching

accuracy for all excitation cases. Based on the

sensitivity analysis, the inclination angles are set to 3

degrees for the left damper and 5 degrees for the right

damper, both inclined toward the left side (see

Fig. 16). The position of the pre-loads remains the

same as in the previous iteration.

The optimization algorithm successfully computes

the variability in the measured nonlinear response, as

depicted in Fig. 21. This shows that contact parame-

ters have been accurately calibrated. The results of the

contact forces for all excitation levels are presented in

Fig. 22. The key observations from the results are as

follows:

1. The dynamic components of the contact forces

and their amplitudes exhibit good consistency

between the experimental tests and simulations for

all excitation levels.

2. The predicted limits of the multiple static tangen-

tial forces align accurately with the experimental

data. Although small deviations are still present,

they can be considered negligible, as the overall

agreement between the experimental and compu-

tational results is coherent. This demonstrates that

the optimization algorithm successfully predicts

not only the limits of the nonlinear response but
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Fig. 20 Measured multiple contact forces and predicted limits for the 2nd iteration
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also the limits of the static tangential forces, which

was the main objective of the calibration process.

3. Some unavoidable discrepancies are observed in

the static components of the normal forces

between the tests and simulations. The largest

deviation, approximately 7%, is observed on the

left damper for the 5 N excitation case (see

Fig. 22c). It is important to note that the presented

model updating procedure simultaneously consid-

ers the results of 20 different cases (16 for contact

forces and 4 for responses) by employing multiple

parameters to achieve maximum agreement

between predictions and tests for a complex

structure. Therefore, it is natural to expect slight

deviations in certain results, while the overall

results can be considered satisfactory in terms of

accuracy, particularly when considering the

predicted limits of the measured multiple nonlin-

ear response and static tangential contact

forces.

Consequently, based on the results of this iteration,

it can be inferred that the comprehensive model

calibration can be deemed successful using the

selected contact parameters and alignment configura-

tion of the test assembly.

4.3.4 Iteration 4

To further improve the matching accuracy of the

normal contact forces, an additional iteration is carried

out, despite the satisfactory results obtained in the

previous iteration. In this iteration, the left damper is

rotated, as illustrated in an exaggerated manner in

Fig. 16. The rotation is modeled by introducing initial
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Fig. 21 Measured multiple nonlinear responses and predicted limits for the 3rd iteration
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gaps into the contact elements. These gaps are

distributed proportionally along the contact line with

linearly increasing values. By introducing this rotation

and modeling the corresponding initial gaps, the aim is

to achieve a more accurate representation of the

misalignment in the model and consequently improve

the matching accuracy of the normal contact forces. A

sensitivity analysis is conducted to explore the impact

of various rotation angles on the results in separate

analyses. For demonstration, the case with a rotation

angle of 0.35 degrees is presented here. It should be

noted that the contact parameters remain unchanged

from the previous iteration.

In this iteration, as depicted in Fig. 23, there is a

noticeable difference in the resonance frequencies of

the limits compared to the experimental data. Unlike

the previous three iterations, the resonance frequen-

cies of the limits, including the upper limit, are

considerably lower than their experimental counter-

parts. Only for the 10 N excitation case, the resonance

frequency remains similar to the previous iterations.

The shift in frequencies is attributed to the occurrence

(a) |Fexc| = 1 N (b) |Fexc| = 3 N

(d) |Fexc| = 10 N(c) |Fexc| = 5 N
nt

ia
lF

orExperimental
Comp.- Upper limit
Comp.- Lower limit

0 /2 3 /2 2
Phase Angle [rad]

25
26
27
28
29
30
31

N
or

m
al

Fo
rc

e
[N

]
0 /2 3 /2 2

Phase Angle [rad]

-20

-10

0

10

20

Ta
ng

en
tia

lF
or

ce
[N

] Right Damper

0 /2 3 /2 2
Phase Angle [rad]

-20

-10

0

10

20

Ta
ng

en
tia

lF
or

ce
[N

] Left Damper

0 /2 3 /2 2
Phase Angle [rad]

18
19
20
21
22
23
24

N
or

m
al

Fo
rc

e
[N

]

0 /2 3 /2 2
Phase Angle [rad]

-20

-10

0

10

20

Ta
ng

en
tia

lF
or

ce
[N

] Left Damper

0 /2 3 /2 2
Phase Angle [rad]

19
20
21
22
23
24
25

N
or

m
al

Fo
rc

e
[N

]

0 /2 3 /2 2
Phase Angle [rad]

23
24
25
26
27
28
29
30

N
or

m
al

Fo
rc

e
[N

]

0 /2 3 /2 2
Phase Angle [rad]

-20

-10

0

10

20

Ta
ng

en
tia

lF
or

ce
[N

] Right Damper

0 /2 3 /2 2
Phase Angle [rad]

27

28

29

30

N
or

m
al

Fo
rc

e
[N

]
0 /2 3 /2 2

Phase Angle [rad]

-4
-2
0
2
4
6
8

Ta
ng

en
tia

lF
or

ce
[N

] Right Damper

0 /2 3 /2 2
Phase Angle [rad]

-6
-4
-2
0
2
4
6

Ta
ng

en
tia

lF
or

ce
[N

] Left Damper

0 /2 3 /2 2
Phase Angle [rad]

19

20

21

22

N
or

m
al

Fo
rc

e
[N

]

0 /2 3 /2 2
Phase Angle [rad]

-16

-8

0

8

16

Ta
ng

en
tia

lF
or

ce
[N

] Left Damper

0 /2 3 /2 2
Phase Angle [rad]

-20

-10

0

10

20

Ta
ng

en
tia

lF
or

ce
[N

] Right Damper

0 /2 3 /2 2
Phase Angle [rad]

19
20
21
22
23
24

N
or

m
al

Fo
rc

e
[N

]
0 /2 3 /2 2

Phase Angle [rad]
23
24
25
26
27
28
29

N
or

m
al

Fo
rc

e
[N

]

Fig. 22 Measured multiple contact forces and predicted limits for the 3rd iteration
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of full separation at some contact nodes. The initial

gaps introduced due to the rotation of the left damper

remain open at low vibration levels at small excitation

cases, leading to full separation at certain contact

points. As the forcing levels increase, more mating

points come into contact, resulting in a shift of the

resonance frequency of the upper limit curve to higher

values, as observed from Fig. 23a to Fig. 23d. Further,

as the nonlinearity level increases due to the stick–

slip-separation phenomenon at higher excitations, the

optimization algorithm faces challenges in finding the

minimum value of the loss factor. This results in a

jumping behavior of the upper limit curves, as shown

in Fig. 23c and 23d. It is important to note that the

algorithm converges even for jumping responses,

however the obtained value of the loss factor may

not represent the global minimum. Since the nonlinear

responses do not already match well in this iteration,

the contact forces are not provided as part of the

analysis.

In summary, after an extensive calibration process

involving multiple iterations with several parameters,

the third iteration resulted in the highest level of

agreement between the experimental tests and the

computational simulations. The specific values of the

contact parameters and the alignment configuration

used in the third iteration were presented in Fig. 16,

reflecting the culmination of the calibration efforts to

achieve an accurate representation of the system’s

behavior.

5 Summary and conclusion

This study presents a deterministic model calibration

process using multiple test data of a friction-damped
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turbine blade coupled with mid-span dampers. An

optimization algorithm is employed to predict the

limits of the measuredmultiple nonlinear response and

contact forces. This algorithm specifically addresses

the epistemic uncertainty associated with the static

tangential forces of permanently sticking contacts.

The model is iteratively tuned, taking into account the

sensitivity of the limits to both contact parameters and

the alignment of the test setup. The adoption of this

non-probabilistic approach constitutes a novel contri-

bution to the field, because the challenges associated

with model updating procedures for friction-damped

turbine blades with multiple test data are typically

addressed using statistical and stochastic techniques in

the community.

The main findings and interpretations of the current

study can be summarized as follows:

• The limits of the variability in the nonlinear

response are primarily influenced by the contact

parameters, except when an initial gap is intro-

duced in the contact elements.

• The variability limits of the contact forces are

mainly affected by the alignment of the damper’s

positioning and the application of preload.

• Despite small discrepancies observed in a few

cases, the overall accuracy of the results can be

considered satisfactory.

• The optimization algorithm effectively addresses

the uncertainty associated with the static tangential

forces in permanently sticking contacts.

• The calibration of the linear model is crucial for

gaining initial insights into the values of tangential

and normal contact stiffness.

This study sheds light on various practical aspects

involved in the process of matching computational and

experimental results through several iterations of the

model. As a result, it provides a framework for

designers engaged in the calibration procedures of

frictional turbine blade models with multiple test data.
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