Skip to main content
Log in

Dynamics of a nonlinear vibration absorption system with time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper reveals the dynamical responses of a time-delayed nonlinear vibration absorption system under harmonic excitation. The slow and fast dynamics of the forced system are analyzed by using complex averaging method. The curves of saddle-node bifurcation and Hopf bifurcation are given. Afterward, the analytical expressions and properties of slow invariant manifold are explored. The existence of strongly modulated response is determined by discussing the geometry of the slow invariant manifold. Furthermore, abundant and interesting behaviors are observed numerically and these phenomena reach a good agreement with theoretical analysis. The results show that time delay control plays important roles in the vibration reduction performance and can regulate the response regimes, such as the generation and transition of periodic orbits and quasi-periodic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Saeed, A.S., Nasar, R.A., Al-Shudeifat, M.A.: A review on nonlinear energy sinks: designs, analysis and applications of impact and rotary types. Nonlinear Dyn. 111(1), 1–37 (2023)

    Google Scholar 

  2. Thenozhi, S., Yu, W.: Advances in modeling and vibration control of building structures. Annu. Rev. Control. 37(2), 346–364 (2013)

    Google Scholar 

  3. Dekemele, K., Habib, G., Loccufier, M.: The periodically extended stiffness nonlinear energy sink. Mech. Syst. Signal Pr. 169, 108706 (2022)

    Google Scholar 

  4. Wang, Z., Liang, S., Molnar, C.A., Insperger, T., Stepan, G.: Parametric continuation algorithm for time-delay systems and bifurcation caused by multiple characteristic roots. Nonlinear Dyn. 103(4), 3241–3253 (2020)

    Google Scholar 

  5. Gatti, G., Shaw, A.D., Goncalves, P.J.P., Brennan, M.J.: On the detailed design of a quasi-zero stiffness device to assist in the realisation of a translational Lanchester damper. Mech. Syst. Signal Pr. 164, 108258 (2022)

    Google Scholar 

  6. Mondal, J., Chatterjee, S.: Controlling self-excited vibration of a nonlinear beam by nonlinear resonant velocity feedback with time-delay. Int. J. Nonlinear Mech. 131, 103684 (2021)

    ADS  Google Scholar 

  7. Starosvetsky, Y., Gendelman, O.V.: Response regimes in forced system with non-linear energy sink: quasi-periodic and random forcing. Nonlinear Dyn. 64(1–2), 177–195 (2011)

    MathSciNet  Google Scholar 

  8. Mao, X., Zhang, L., Fan, X.: Wave attenuation of a multi-span continuous beam with variable cross sections. Acta Mech. 234, 1451–1464 (2023)

    MathSciNet  Google Scholar 

  9. Sinou, J.J., Chomette, B.: Active vibration control and stability analysis of a time-delay system subjected to friction-induced vibration. J. Sound Vib. 500, 116013 (2021)

    Google Scholar 

  10. Nayfeh, A.H., Nayfeh, N.A.: Time-delay feedback control of lathe cutting tools. J. Vib. Control 18(8), 1106–1115 (2012)

    Google Scholar 

  11. Solaiachari, S., Lakshmipathy, J.: Vibration control of an unbalanced system using a quasi-zero stiffness vibration isolator with fluidic actuators and composite material: an experimental study. J. Vib. Control 29(3–4), 689–699 (2022)

    Google Scholar 

  12. Mao, X., Ding, W.: Nonlinear dynamics and optimization of a vibration reduction system with time delay. Commun. Nonlinear Sci. Numer. Simulat. 122, 107220 (2023)

    MathSciNet  Google Scholar 

  13. Zheng, Y.G., Huang, J.W., Sun, Y.H., Sun, J.Q.: Building vibration control by active mass damper with delayed acceleration feedback: multi-objective optimal design and experimental validation. J. Vib. Acoust. 140(4), 041002 (2018)

    Google Scholar 

  14. Ding, H., Shao, Y.: NES cell. Appl. Math. Mech.-Engl. Edit. 43(12), 1793–1804 (2022)

    MathSciNet  Google Scholar 

  15. Sun, X., Zhang, S., Xu, J.: Parameter design of a multi-delayed isolator with asymmetrical nonlinearity. Int. J. Mech. Sci. 138, 398–408 (2018)

    Google Scholar 

  16. Lu, X.L., Liu, Z.P., Lu, Z.: Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation. Struct. Control Hlth. 24(12), e2033 (2017)

    ADS  Google Scholar 

  17. Zang, J., Zhang, Y., Ding, H., Yang, T., Chen, L.: The evaluation of a nonlinear energy sink absorber based on the transmissibility. Mech. Syst. Signal Pr. 125, 99–122 (2019)

    Google Scholar 

  18. da Silva, J.A.I., Marques, F.D.: Multi-degree of freedom nonlinear energy sinks for passive control of vortex-induced vibrations in a sprung cylinder. Acta Mech. 232(10), 3917–3937 (2021)

    Google Scholar 

  19. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V., Jr.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)

    Google Scholar 

  20. Das, R., Bajaj, A.K., Gupta, S.: Nonlinear energy sink coupled with a nonlinear oscillator. Int. J. Nonlinear Mech. 148, 104285 (2023)

    ADS  Google Scholar 

  21. Starosvetsky, Y., Gendelman, O.V.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315(3), 746–765 (2008)

    ADS  Google Scholar 

  22. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Physica D 237(13), 1719–1733 (2008)

    ADS  MathSciNet  Google Scholar 

  23. Monjaraz-Tec, C., Kohlmann, L., Schwarz, S., Hartung, A., Gross, J., Krack, M.: Prediction and validation of the strongly modulated forced response of two beams undergoing frictional impacts. Mech. Syst. Signal Pr. 180, 109410 (2022)

    Google Scholar 

  24. Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81(1–2), 425–435 (2015)

    MathSciNet  Google Scholar 

  25. Liu, Y., Chen, G., Tan, X.: Dynamic analysis of the nonlinear energy sink with local and global potentials: geometrically nonlinear damping. Nonlinear Dyn. 101(4), 2157–2180 (2020)

    Google Scholar 

  26. Liu, Y., Mojahed, A., Bergman, L.A., Vakakis, A.F.: A new way to introduce geometrically nonlinear stiffness and damping with an application to vibration suppression. Nonlinear Dyn. 96(3), 1819–1845 (2019)

    Google Scholar 

  27. Philip, R., Santhosh, B., Balaram, B., Awrejcewicz, J.: Vibration control in fluid conveying pipes using NES with nonlinear damping. Mech. Syst. Signal Pr. 194, 110250 (2023)

    Google Scholar 

  28. Hu, H.Y., Wang, Z.H.: Dynamics of controlled mechanical systems with delayed feedback. Springer, Heidelberg (2002)

    Google Scholar 

  29. Xu, J., Sun, X.: A Multi-directional vibration isolator based on Quasi-Zero-Stiffness structure and time-delayed active control. Int. J. Mech. Sci. 100, 126–135 (2015)

    Google Scholar 

  30. Zhang, L., Stepan, G.: Exact stability chart of an elastic beam subjected to delayed feedback. J. Sound Vib. 367, 219–232 (2016)

    ADS  Google Scholar 

  31. Xu, Q., Stepan, G., Wang, Z.: Balancing a wheeled inverted pendulum with a single accelerometer in the presence of time delay. J. Vib. Control 23(4), 604–614 (2017)

    MathSciNet  Google Scholar 

  32. Zhang, X., Xu, J., Ji, J.: Modelling and tuning for a time-delayed vibration absorber with friction. J. Sound Vib. 424, 137–157 (2018)

    ADS  Google Scholar 

  33. Mao, X.C., Hu, H.Y.: Hopf bifurcation analysis of a four-neuron network with multiple time delays. Nonlinear Dyn. 55(1–2), 95–112 (2009)

    MathSciNet  Google Scholar 

  34. Chen, X., Han, S., Li, J., Sun, S.: Chaos suppression for coupled electromechanical torsional vibrations in a high-speed permanent magnet synchronous motor driven system via multitime delayed feedback control. Int. J. Bifurcat. Chaos. 30(9), 2050128 (2020)

    MathSciNet  Google Scholar 

  35. Mao, X., Sun, J., Li, S.: Dynamics of delay-coupled FitzHugh-Nagumo neural rings. Chaos 28(1), 013104 (2018)

    ADS  MathSciNet  PubMed  Google Scholar 

  36. Majeed, M.A., Alhazza, K., Khorshid, E.: Multimode velocity-delayed feedback vibration control of plates using a single sensor and a single actuator. J. Vib. Control 27(21–22), 2564–2573 (2021)

    MathSciNet  Google Scholar 

  37. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    ADS  Google Scholar 

  38. Pyragas, K.: Delayed feedback control of chaos. Philos. Trans. Royal Soci. A. 364(1846), 2309–2334 (2006)

    ADS  MathSciNet  Google Scholar 

  39. Wang, Z., Hu, H., Xu, Q., Stepan, G.: Effect of delay combinations on stability and Hopf bifurcation of an oscillator with acceleration-derivative feedback. Int. J. Nonlinear Mech. 94, 392–399 (2017)

    ADS  Google Scholar 

  40. Sun, X., Xu, J., Jing, X., Cheng, L.: Beneficial performance of a quasi-zero-stiffness vibration isolator with time-delayed active control. Int. J. Mech. Sci. 82, 32–40 (2014)

    Google Scholar 

  41. Olgac, N., Elmali, H., Hosek, M., Renzulli, M.: Active vibration control of distributed systems using delayed resonator with acceleration feedback. J. Dyn. Syst. Meas. Control. 119(3), 380–389 (1997)

    Google Scholar 

  42. Vyhlidal, T., Michiels, W., Neusser, Z., Busek, J., Sika, Z.: Analysis and optimized design of an actively controlled two-dimensional resonator. Mech. Syst. Signal Pr. 178, 109195 (2022)

    Google Scholar 

  43. Pilbauer, D., Vyhlidal, T., Olgac, N.: Delayed resonator with distributed delay in acceleration feedback-design and experimental verification. Ieee-asme Trans. Mech. 21(4), 2120–2131 (2016)

    Google Scholar 

  44. Vyhlidal, T., Olgac, N., Kucera, V.: Delayed resonator with acceleration feedback—Complete stability analysis by spectral methods and vibration absorber design. J. Sound Vib. 333(25), 6781–6795 (2014)

    ADS  Google Scholar 

  45. Mohanty, S., Dwivedy, S.K.: Nonlinear dynamics of piezoelectric-based active nonlinear vibration absorber using time delay acceleration feedback. Nonlinear Dyn. 98(2), 1465–1490 (2019)

    Google Scholar 

  46. Bellizzi, S., Chung, K.W., Sampaio, R.: Response regimes of a linear oscillator with a nonlinear energy sink involving an active damper with delay. Nonlinear Dyn. 97(2), 1667–1684 (2019)

    Google Scholar 

  47. Meng, H., Sun, X., Xu, J., Wang, F.: The generalization of equal-peak method for delay-coupled nonlinear system. Physica D 403, 132340 (2020)

    MathSciNet  Google Scholar 

  48. Sika, Z., Vyhlidal, T., Neusser, Z.: Two-dimensional delayed resonator for entire vibration absorption. J. Sound Vib. 500, 116010 (2021)

    Google Scholar 

  49. Wang, F., Xu, J.: Parameter design for a vibration absorber with time-delayed feedback control. Acta Mech. Sinica. 35(3), 624–640 (2019)

    ADS  MathSciNet  Google Scholar 

  50. Huan, R., Chen, L., Sun, J.: Multi-objective optimal design of active vibration absorber with delayed feedback. J. Sound Vib. 339, 56–64 (2015)

    ADS  Google Scholar 

  51. Jenkins, R., Olgac, N.: Real-time tuning of delayed resonator-based absorbers for spectral and spatial variations. J. Vib. Acoust. 141(2), 021011 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their helpful comments and suggestions that have helped to improve the presentation.

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12172119 and 11872169 and Natural Science Foundation of Jiangsu Province under Grant No. BK20191295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochen Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ s_{1} = (1 + \varepsilon )[\lambda + g\sin (\tau )] $$
$$ \begin{gathered} s_{2} = - \frac{1}{4}\left[ {(3kD + 2g - 4\sigma )\varepsilon^{2} + (6kD + 4g - 4\sigma )\varepsilon + 3kD + 2g - 2} \right]g\cos (\tau ) \hfill \\ \quad \quad + \frac{{\varepsilon^{2} }}{64}\left[ {32g^{2} + g(48kD - 64\sigma ) + 27k^{2} D^{2} - 96kD\sigma + 128\sigma^{2} + 16\lambda^{2} } \right] \hfill \\ \quad \quad + \frac{\varepsilon }{64}\left[ {64g^{2} + g(96kD - 64\sigma ) + 54k^{2} D^{2} - 96kD\sigma + 32\lambda^{2} + 64\sigma } \right] + \frac{g}{4}(3kD - 2) \hfill \\ \quad \quad + \frac{g}{2}\lambda (1 + \varepsilon )^{2} \sin (\tau ) + \frac{{\lambda^{2} }}{4} + \frac{{27k^{2} D^{2} }}{64} - \frac{3kD}{4} + \frac{{g^{2} }}{2} + \frac{1}{4} \hfill \\ \end{gathered} $$
$$ s_{3} = \frac{\varepsilon }{4}[\lambda + g\sin (\tau )][1 + 4\varepsilon^{2} \sigma^{2} + 4\varepsilon \sigma (1 + \sigma )] $$
$$ \begin{gathered} s_{4} = - \frac{{\varepsilon^{2} g}}{64}[8 + 16\left( {1 + \varepsilon } \right)\sigma ]\{ - 4\varepsilon \sigma^{2} + [2g(\varepsilon + 1) + 3\varepsilon kD + 3kD - 2]\sigma + \frac{3kZ}{2} + g]\} \cos (\tau ) \hfill \\ \quad \quad + \frac{{\varepsilon^{2} \lambda g}}{8}[1 + 2(1 + \varepsilon )\sigma ]^{2} \sin (\tau ) + \varepsilon^{4} \sigma^{4} - \frac{{\varepsilon^{3} {\mkern 1mu} \sigma^{3} }}{2}[2g(\varepsilon + 1) + 3\varepsilon kD + 3kD - 2] \hfill \\ \quad \quad + \varepsilon^{2} \sigma^{2} \left\{ {\frac{{(1 + \varepsilon )^{2} g^{2} }}{2} + g[\frac{3}{4}\varepsilon^{2} kD + \varepsilon ( - 1 + \frac{3}{2}kD) + \frac{3}{4}kD - \frac{1}{2}] + (\frac{{\lambda^{2} }}{4} + \frac{27}{{64}}k^{2} D^{2} )\varepsilon^{4} } \right\} \hfill \\ \quad \quad + \frac{27}{{64}}\varepsilon^{2} \sigma^{2} \left[ {\left( {\frac{32}{{27}}\lambda^{2} + 2k^{2} D^{2} - \frac{32}{9}kD} \right)\varepsilon + k^{2} D^{2} - \frac{16kD}{9} + \frac{{16\lambda^{2} }}{27} + \frac{16}{{27}}} \right] \hfill \\ \quad \quad + \varepsilon^{2} \sigma \left[ {\frac{1}{2}(\varepsilon + 1)g^{2} + \frac{1}{4}g( - 1 + 3kD + 3\varepsilon kD) + \left( {\frac{{\lambda^{2} }}{4} + \frac{27}{{64}}k^{2} D^{2} } \right)\varepsilon + \frac{27}{{64}}k^{2} D^{2} - \frac{3}{8}kD + \frac{{\lambda^{2} }}{4}} \right] \hfill \\ \quad \quad + \frac{{\varepsilon^{2} }}{16}\left( {\lambda^{2} + 3gkD + \frac{27}{{16}}k^{2} D^{2} + 2g^{2} } \right) \hfill \\ \end{gathered} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Ding, W. Dynamics of a nonlinear vibration absorption system with time delay. Nonlinear Dyn 112, 5177–5193 (2024). https://doi.org/10.1007/s11071-024-09300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09300-9

Keywords

Navigation