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Abstract In this paper various properties of discrete-
time dynamic control systems trajectories with respect
to state-space corner regions are considered. The
known notion of state-space invariance serves as a basis
for derivation of the whole family of dynamics behav-
iors for which both necessary and sufficient conditions
are derived in a general nonlinear case as well as in
the linear time-invariant case, shortly LTI-case. Spe-
cific examples are given for every case considered, and
the proposed notions are analyzed with both theoret-
ical and practical usefulness in mind. For the general
nonlinear case a geometric approach is used, which
provides a direct insight into the nature of trajectories’
behavior. In the LTI-case a geometric approach is used
as well, but it is also translated into the purely alge-
braic set of conditions allowing for a direct analysis of
system matrices. The presented family of control sys-
tems expands on the classical state-space invariance
(and positive systems) analysis, thus potentially open-
ing new research venues in this branch of control theory
and system dynamics in general.
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1 Introduction

In the field of control theory understanding system
dynamics is not only an important part of controller
design but also an objective on its own. Besides a cata-
log of well-known and almost universally sought sys-
tem properties defined in the state-space and input-
space, such as stability, reachability, observability and
controllability, there is an indefinite amount of other,
more or less specific ones. System dynamics can be
analyzed from different perspectives and, even con-
straining oneself to the state-space analysis, one can
find many mutually non-exclusive properties which—
combined or on their own—can become a key to solv-
ing many problems which arise in control theory and
controller design.

The main scope of this work is to present and ana-
lyze in a general way a set of patterns in discrete-
time systems’ trajectories by comparing their evolu-
tion against a given region in the state-space. Those
patterns emerged from a well-known theory of invari-
ant systems and as such rely on the notions like that of
corner regions. By building upon this framework, this
work aims at creating new perspectives in the field of
invariant systems, with a goal to bothwiden and deepen
the understanding of dynamic systems behavior.
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The proposed notions can be used, for example, to
shed some light on the reachability of discrete systems,
ensuring that it is impossible to omit the given corner
region when searching for points reachable from its
outside and vice versa. Thus, what mostly character-
izes the proposed properties are their natural features of
specific behavior independent of control signals from a
specific region. Therefore, the main issue of this work
is not to determine the ability to impact the system to
behave in a certain way but to determine its specific
properties that cause specific behavior independent of
excitations.

The theory of invariant systems upon which this
paper is based has been developed for years. The first
significant concepts and results of the invariance theory
were established by [1] and [2]. The theory has been
investigated and developed by [3–12] and others. State-
space invariance in particular is in a mature state due to
the amount ofwork done in the topic of positive systems
[13] and [14]. In this work we focus on discrete-time
control systems expanding on the discrete-time invari-
ant systems as introduced and analyzed in [15], where
the so-called region-invariance properties of discrete-
time control systems are considered; also, an already
known notion of the positivity of control systems has
been generalized to the general nonlinear discrete-time
control systems, general regions in state-space, and
controls from polyhedral cones in input-space. In this
work we only rely on basic results from [15], such
as the main definitions and results concerning region-
invariance of linear and nonlinear systems in general
form.

In this work, geometrical approach allows for the
unification of treatment of a broad class of corner
regions, both nonlinear and linear. Namely, thanks to
the proposed class of corner regions defined by the
means of diffeomorphisms, it is possible to uniquely
transform any nonlinear or linear corner region, both in
the state- and input-space, into the nonnegative orthants
inR

n andR
m , respectively. This provides both the pos-

sibility of a simplified geometric analysis of the issues
discussed in this work and the possibility of giving
alternative conditions that are simpler to verify in prac-
tice. Therefore, this presents an opportunity to create
a fundamental common ground for the analysis of a
broad class of dynamic systems.

The paper is organized as follows: Sect. 2 presents a
quick characterization of nonlinear and linear discrete-
time invariant control systems on corner regions (non-

linear and linear, respectively) in the state-space with
controls belonging to a region that is a polyhedral cone
in the input-space. In Sect. 3, both nonlinear and lin-
ear discrete-time control systems are characterized in
terms of various introduced properties associated with
particular regions in the state-space, completed with a
set of examples for each property considered in both
the nonlinear and LTI-case. Section4 provides conclu-
sions with the emphasis on potential future research
avenues and the applicability of this work in control
engineering problems.

1.1 Notation

This work relies on the notation as described below.
The sets of natural numbers and naturals with zero

are denoted byN andN0, respectively. The set of all real
numbers is denoted by R. The notation R

n refers to n-
dimensional vector space over the field of real numbers
R. Non-negative and non-positive real numbers (both
including zero) are denoted by R+ and R−, respec-
tively.ByR

n+ (resp.Rn−)wemean theCartesian product
of n copies of R+ (resp. R−), and call it a non-negative
(non-positive) orthant. By R

n×m we denote the set of
n×m matrices with entries from the field R. The iden-
tity matrix of dimension n × n is denoted by In×n . Let
P denote a matrix, a vector or a vector-valued function.
The notation P > 0 (resp. P < 0) means that all ele-
ments of P are positive (resp. negative). The notation
P ≥ 0 (resp. P ≤ 0) means that all elements of P
are non-negative (resp. non-positive). By P � 0 (resp.
P � 0) we mean that at least one element of P is neg-
ative (resp. positive). We call P a positive generalized
permutation matrix if it possesses exactly one positive
entry in each row and each column. A diagonal matrix
P is called strictly positive diagonal matrix if all its
diagonal entries are positive.

A square matrix P is called monotone if for all real
vectors v, Pv ≥ 0 implies v ≥ 0. By Im+ P (resp.
Im� P) we mean the set of all possible linear com-
binations with non-negative coefficients, except for all
being zeros (resp. with at least one negative coefficient)
of column vectors of matrix P . Let P ∈ R

n×m be a
matrix; then, by Vect P we denote the linear subspace
of R

n spanned by the column vectors of P . If P is a
matrix, its i th column vector is denoted Pi . For a set
S ⊂ V , by Sc wemean the complement of S, i.e., the set
of elements of V that are not in S. For a set S we denote
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the Cartesian product as Sk = S × · · · × S (k-times).
Operation “◦” denotes the composition of functions.

When dealing with time-dependent vectors and
vector-valued functions, the lower subscript denotes
the time index, whereas upper subscript indexes vec-
tor components, e.g., xik denotes the i th component of
vector x at time instant k.

2 Preliminaries

Due to the reliance of this work on the notion of state-
space invariance let us recall some of the basic con-
cepts. For a more in-depth analysis and proofs of the
invoked theorems and propositions see [15].

We consider a discrete-time control system of the
form

� : xk+1 = f (xk, uk), (1)

where xk ∈ R
n and uk ∈ R

m are the values of state and
input vectors at time index k, respectively, and f : R

n×
R
m → R

n is a system map of irrelevant class. By
x̄k = x̄k(x0, ūk−1) we mean the trajectory of �, i.e.,
the sequence (x0, . . . , xk) of states, issued from x0 and
excited by a control sequence ūk−1 = (u0, . . . , uk−1).
When dealing with trajectories of an indefinite length
issued from a given point x0 in time k = 0, we use the
notation x̄ = x̄(x0, ū), where control sequence ū =
(u0, u1, . . .). By xk = xk(x0, ūk−1)we denote the end-
point of x̄k(x0, ūk−1).

For the sake of brevity, the time-step index k is
sometimes omitted, leaving implicit time-dependence
of state and input vectors.

Throughout this work the specific state- and input-
space subsets are defined as follows in (2), (3). A non-
linear corner regionK in the state-space is a set of the
following form

K = {x ∈ R
n : ϕi (x) ≥ 0, 1 ≤ i ≤ n} =

n⋂

i=1

{ϕi ≥ 0}, (2)

where � = (ϕ1, . . . , ϕn)
T : R

n → R
n is a diffeomor-

phism (with � and �−1 differentiable).
A polyhedral cone W in the input-space is a set of

the following form

W = {u ∈ R
m : wi u ≥ 0, 1 ≤ i ≤ m} =

m⋂

i=1

{wi u ≥ 0}, (3)

where wi for i = 1, . . . ,m are rows of a nonsingular
matrix W ∈ R

m×m .
A global diffeomorphism � : R

n → R
n , defin-

ing K with the help of (2), gives rise, via x̃ = �(x),
to x-coordinates of the source R

n and x̃-coordinates
of the target R

n . For the sake of clarity and simpler
identification of the spaces we are dealing with, in
the following properties essential for further consid-
erations of the diffeomorphism�, we use R̃

n to denote
the target R

n space and consequently R̃
n+ as nonnega-

tive orthant in R̃
n . These natural properties, which are

immediate consequences of the definition of image and
preimage of �, are the following:

(i) �(K ) = R̃
n+ = {x̃ i ≥ 0} and �−1(R̃n+) = K ;

(ii) �(K c) =
(
R̃
n+
)c

and �−1
((

R̃
n+
)c) = K c.

Remark 1 The above result can of course be also
applied to the map u �→ ũ = Wu, being an isomor-
phism from R

m to R
m , defining a polyhedral cone W

by (3).

Definition 1 LetK be a nonlinear corner region inR
n

and W a polyhedral cone in R
m . A nonlinear system

� of the form (1) is said to be (K ,W)-invariant if
its trajectories x̄ = x̄(x0, ū) = (x0, x1, . . .) are such
that xi ∈ K , i ≥ 1, for each x0 ∈ K and each ū =
(u0, u1, . . .) with all ui ∈ W , i ≥ 0.

The following characterization of invariant discrete-
time control systems in the nonlinear case is important
to our work.

Proposition 1 The following conditions are equiva-
lent for the nonlinear system �:

(i) � is (K ,W)-invariant;
(ii) (ϕi ◦ f ) (x, u) ≥ 0 for all 1 ≤ i ≤ n, for each

x ∈ K and each u ∈ W;
(iii) (� ◦ f )

(
�−1(x̃),W−1ũ

) ≥ 0 for each x̃ ∈ R
n+

and each ũ ∈ R
m+.

For a linear time-invariant case we define the fol-
lowing system

� : xk+1 = Axk + Buk, (4)

where xk ∈ R
n , uk ∈ R

m , and matrices A ∈ R
n×n and

B ∈ R
n×m .
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Define a corner regionK in the form of a polyhedral
cone

K = {x ∈ R
n : ki x ≥ 0, 1 ≤ i ≤ n} =

n⋂

i=1

{ki x ≥ 0},

(5)

where ki , 1 ≤ i ≤ n, are rows of a non-singular matrix
K .

The cone K, given by (5), can be defined equiva-
lently as

K = Im+K−1 ∪ {0}, (6)

where the columns of matrix K−1 are the edge canon-
ical vectors of K (see [16]).

For such a system, we have the following result, see
[15].

Corollary 1 The linear system � is (K,W)-invariant
if and only if

K AK−1 ≥ 0 and K BW−1 ≥ 0.

3 Characterization of control systems with respect
to a specified region in state-space

Based on the notion of a nonlinear corner regionK and
that of a polyhedral cone W defined in the state- and
input-space, respectively, in this section a characteri-
zation of different properties of nonlinear and linear
discrete-time control systems due to specific regions
K in the state-space is proposed.

3.1 Nonlinear systems

Let us consider the nonlinear control system� defined
by (1) and let K be a nonlinear corner region in R

n

andW a polyhedral cone in R
m defined by (2) and (3),

respectively.

Definition 2 A nonlinear system � of the form (1) is
said to be (K ,W)-excluded if xk /∈ K for each x0 /∈
K , each uk ∈ W and all k ∈ N0.

Remark 2 The definition of (K ,W)-excluded system
simply means that any trajectory starting outside K
will never reach K at any time, that is it will always
remain outside ofK . Thus, the definition of (K ,W)-
excluded allows for the analysis of systems invariant on

some open subsets of R
n , which are actually invariant

on the complement K c of a corner region K in R
n .

Such a case may be of interest, for example, when the
regionK is considered forbiddenor undesirable for the
system. So, if the system is (K ,W)-excluded, then it
is known that its evolution will only take place outside
of K , provided that we start outside.

Proposition 2 The following conditions are equiva-
lent for the nonlinear system �:

(i) � is (K ,W)-excluded;
(ii) (� ◦ f )(x, u) � 0 for each x /∈ K and each

u ∈ W;
(iii) (� ◦ f )

(
�−1(x̃),W−1ũ

)
� 0 for each x̃ /∈ R

n+
and each ũ ∈ R

m+.

Proof (i) ⇒ (ii): Since for any xk ∈ K c and each
uk ∈ W system � does not evolve into K , i.e.,
xk+1 = f (xk, uk) /∈ K , it means that�(xk+1) = (�◦
f )(xk, uk) � 0 for any k ∈ N0, hence (�◦ f )(x, u) �

0 for any x ∈ K c and each u ∈ W .
(ii) ⇒ (iii): Since K is transformed into R

n+ with
the help of� (by the definition ofK ), and the coneW
is transformed into R

m+ by means of the transformation
matrix W (by the definition of W), putting x̃ = �(x)
and ũ = Wu, there exist x = �−1(x̃) and u = W−1ũ
such that for any x̃ and ũ the points x = �−1(x̃) and
u = W−1ũ satisfy x ∈ K and u ∈ W , respec-
tively. Therefore, the condition (� ◦ f ) (x, u) � 0
for all x /∈ K and all u ∈ W is equivalent to
(� ◦ f )

(
�−1(x̃),W−1ũ

)
� 0 for each x̃ /∈ R

n+ and
ũ ∈ R

m+.
(iii) ⇒ (i): Since for each x̃k /∈ R

n+ and each ũk ∈
R
m+ the relation (� ◦ f )(�−1(x̃k),W−1ũk) � 0 holds,

from definition of K (and thereby by the property of
�) it follows that f (�−1(x̃k),W−1ũk) /∈ K . Because
�−1(x̃k) = xk /∈ K and W−1ũk = uk ∈ W , then
f (xk, uk) = xk+1 /∈ K . Since, as it has been already
stressed, it holds for each xk /∈ K , it hence holds for
any k ∈ N0 implying system � is (K ,W)-excluded.

��

Example 1 Consider the following system

xk+1 = f (xk, uk)

=
(

− (−x1k + sin x2k
)3 + sin x2k + (

x2k
)2

u1ku
2
k

x2k

)
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with a region K ⊂ R
2 in the state-space (see Fig. 1a)

defined by

�(x) =
(−x1 + sin x2

x2

)

and a cone W ⊂ R
2 in the input-space (see Fig. 1b)

given by the matrix W = −I2×2.
From condition (ii) of Proposition 2, we get

(� ◦ f ) (x, u)

=
((−x1 + sin x2

)3 − (
x2

)2
u1u2

x2

)
� 0

for any x /∈ K and u ∈ W; indeed, this always holds
for x2 < 0 as well as for x2 ≥ 0 and −x1 + sin x2 <

0, which means that the system is (K ,W)-excluded.
Alternatively, using condition (iii) of Proposition 2, we
have

(� ◦ f ) (�−1 (x̃) ,W−1ũ)

=
((

x̃1
)3 − (

x̃2
)2

ũ1ũ2

x̃2

)
� 0

for any x̃ /∈ R
2+ and ũ ∈ R

2+, which also shows that the
system is (K ,W)-excluded.

Example 2 Let us consider the controlled Leslie–
Gower nonlinear model of two competing species S1
and S2 in the same environment, with their populations
consisting of x1k and x2k individuals at time k, respec-
tively, given by

�L-G :
(
x1k+1
x2k+1

)
=

⎛

⎝
λ1

1+α1x1k+β1x2k
x1k

λ2
1+α2x1k+β2x2k

x2k

⎞

⎠ +
(

γ1
γ2

)
u.

The uncontrolled part is the standard Leslie–Gower
model (see [17], [18]), while the control part allows
to modify the speed of changes of the densities of the
populations. The real positive parameters α1, α2, β1,
β2, γ1, γ2 correspond to various interaction cases.

One can easily see that�L−G is (R2+, R+)-invariant,
which is expected and follows from the nature of the
phenomenon described (populations x1 and x2 may
only be nonnegative). Thus, it is entirely reasonable
to limit ourselves to considering only the R

2+ region in
which trajectories of �L−G can evolve.

Moreover, taking the parameters such that α1 =
α2 = α, β1 = β2 = β, λ2 ≥ λ1 and γ2 = aγ1, with

a > 0, the�L−G is (K, R+)-invariant, whereK ⊂ R
2+

is defined by

�(x) = Kx =
(

x1

−ax1 + x2

)
.

Indeed, from condition (ii) of Proposition 1, we have

(� ◦ f )(x, u) =
⎛

⎝
λ1x1

1+αx1+βx2
+ γ1u

−aλ1x1+λ2x2

1+αx1+βx2

⎞

⎠ ≥ 0

for all x ∈ K and u ≥ 0.

Similarly, from condition (iii) of Proposition 1,we have

(� ◦ f )(K−1 x̃, ũ) =
⎛

⎝
λ1 x̃1

1+α x̃1+β(x̃2+ax̃1)
+ γ1ũ

a(λ2−λ1)x̃1+λ2 x̃2

1+α x̃1+β(x̃2+ax̃1)

⎞

⎠

≥ 0 for all x̃ ∈ R
2+ and ũ ≥ 0.

This model, but with λ1 = λ2 = λ, is also (K, R+)-
excluded in R

2+. It does not make sense to consider
this property in the entire R

2 due to the “nonnegative”
nature of the model, so we will limit to consider the
complement K̂c ⊂ Kc of the cone K in R

2+ being the
set of all x ∈ R

2+ that are not in K, i.e.,

K̂c = R
2+ \ K = {x ∈ R

2+ : x2 ≥ 0, x2 < ax1}.
Indeed, from condition (ii) of Proposition 2, we have

(� ◦ f )(x, u) =
⎛

⎝
λx1

1+αx1+βx2
+ γ1u

λ(x2−ax1)
1+αx1+βx2

⎞

⎠

� 0 for all x ∈ K̂c and u ≥ 0.

In order to use condition (iii) of Proposition 2, we first
map K̂c by means of �, which yields

(R̂2+)c = �(K̂c) = {x̃ ∈ R
2 : x̃2 < 0, ax̃1 + x̃2 ≥ 0}

⊂ (R2+)c.

Thus, we have

(� ◦ f )(K−1 x̃, ũ) =
(

λx̃1

1+α x̃1+β(x̃2+ax̃1)
+ γ1ũ

λx̃2

1+α x̃1+β(x̃2+ax̃1)

)

� 0 for all x̃ ∈ (R̂2+)c and ũ ≥ 0.

Let us recall the notation of the Cartesian product
Sk = S × · · · × S (k-times) of a set S, which we use in
the definition below and in the sequel in the context of
elements’ sequence of a set.
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Fig. 1 Regions from Ex. 1

x1

x2

K

(a) Nonlinear corner region K in the state-
space R

2

u1

u2

W

(b) Cone W in the input-space R
2

Fig. 2 Sets from Ex. 2

0
x1

x2

K

K̂c

Kc

(a) Sets in original x-coordinates

R
2
+

0
x̃1

x̃2

(R̂2
+)c

(R2
+)c

(b) Sets in x̃-coordinates

Definition 3 A nonlinear system � of the form (1) is
said to be (K ,W)-catch if � is (K ,W)-invariant
and there exist x0 /∈ K and k ∈ N such that xk ∈ K
for any ūk−1 = (u0, . . . , uk−1) ∈ Wk , i.e., with all
u j ∈ W , 0 ≤ j ≤ k − 1.

Remark 3 The existence of some x0 /∈ K of (K ,W)-
catch system implies the existence of a trajectory
x̄k−1 = (x0, . . . , xk−1), such that x j /∈ K for 0 ≤
j ≤ k − 1, and xk ∈ K for some k ∈ N. Therefore, in
view of the arbitrariness of the choice of x0 /∈ K , one
can choose the point xk−1 /∈ K as the initial point x0.

Additionally, since the system is (K ,W)-invariant
(from the definition of (K ,W)-catching) with x0 /∈
K and xk−1 /∈ K , there cannot exist any trajectory
x̄k−1 = x̄k−1(x0, ūk−2) = (x0, . . . , xk−1), with some
xi ∈ K , 1 ≤ i ≤ k − 2.

Remark 4 The case of a system being (K ,W)-catch
intuitively means that there exists at least one point
outside K (trap point) in the state-space from which

the system always goes toK (for any control u ∈ W)
and that it remains there (for all controls u ∈ W).

For example, a system with some separable non-
controllable part may turn out to be of this nature. An
example of such dynamics is the position inR

3 of some
mechanical system which can be bound to remain near
the surface of a given planet due to the gravitational
force and atmospheric drag acting upon it [19].

Proposition 3 The following conditions are equiva-
lent for the nonlinear system �:

(i) � is (K ,W)-catch;
(ii) � is (K ,W)-invariant and (�◦ f )(x, u) ≥ 0 for

some x /∈ K and for each u ∈ W;
(iii) � is (K ,W)-invariant and (� ◦ f )

(
�−1(x̃),

W−1ũ
) ≥ 0 for some x̃ /∈ R

n+ and each ũ ∈ R
m+.

Proof (i) ⇒ (ii): There exists some xk /∈ K such that
xk+1 = f (xk, uk) ∈ K for any uk ∈ W . The condi-
tion xk+1 ∈ K directly implies that (�◦ f )(xk, uk) ≥
0 and thus setting x = xk and u = uk gives (ii).
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x1

x2

K

Fig. 3 Nonlinear corner region K in the state-space R
2 from

Ex. 3

(ii) ⇒ (iii): Since K is transformed onto R
n+ with

the help of � (by the definition ofK ), andW is trans-
formed onto R

m+ by means of W (by definition of W),
there exists (by property of �) some x̃ = �(x) /∈ R

n+
for some x /∈ K , and ũ = Wu ∈ R

m+ for all u ∈ W .
Therefore, taking x = �−1(x̃) and u = W−1ũ, we
obtain condition (iii).

(iii) ⇒ (i): Since for some x̃k /∈ R
n+ and each

ũk ∈ R
m+ the relation (� ◦ f )(�−1(x̃k),W−1ũk) ≥ 0

holds at some time instant k, from the definition of
K (and thereby by the property of �) it follows that
f (�−1(x̃k),W−1ũk) ∈ K . Because �−1(x̃k) = xk /∈
K and W−1ũk = uk ∈ W , then f (xk, uk) = xk+1 ∈
K . Thanks to the (K ,W)-invariance, the trajectory
segment x̄ = x̄(xk+1, ū) remains within K for any
control sequence ū = (uk+1, uk+2, . . .) with u j ∈ W ,
j ≥ k + 1. ��
Example 3 Consider the following system

xk+1 = f (xk , uk)

=
⎛

⎝
(
x1k − (

x2k
)2 + x2k

)
uk +

(
x1k − (

x2k
)2 + x2k

)2

x1k − (
x2k

)2 + x2k

⎞

⎠

with a region K ⊂ R
2 in the state-space (see Fig. 3)

defined by

�(x) =
(
x1 − (

x2
)2

x2

)
,

and the cone W = R+ in the input-space.
From condition (ii) of Proposition 3, we get

(� ◦ f ) (x, u) =
((

x1 − (
x2

)2 + x2
)
u

x1 − (
x2

)2 + x2

)
≥ 0,

on one hand, for all x = (x1, x2)T ∈ K and any
u ∈ R+ (implying (K ,W)-invariance), and on the
other hand, for any x = (x1, x2)T /∈ K such that x1−

(
x2

)2 = −x2, and anyu ∈ R+. Itmeans that the system
is (K ,W)-catch. Alternatively, using condition (iii) of
Proposition 3, we have

(� ◦ f )
(
�−1(x̃),W−1ũ

)
=

((
x̃1 + x̃2

)
ũ

x̃1 + x̃2

)
≥ 0

for any x̃ = (x̃1, x̃2)T /∈ R
2+ such that x̃1 = −x̃2,

and any ũ ∈ R+, which also means that the system is
(K ,W)-catch.

Definition 4 A nonlinear system � of the form (1) is
said to be (K ,W)-escape in at most k steps if there
exists k ∈ N such that for each x0 ∈ K and any ūk−1 =
(u0, . . . , uk−1) with all u j ∈ W , 0 ≤ j ≤ k − 1, there
exists 0 ≤ k′ ≤ k such that xk′ /∈ K and k is the lowest
such number.

Proposition 4 A nonlinear system � of the form (1)
is (K ,W)-escape in at most k steps if and only if for
each x0 ∈ K and each ūk−1 = (u0, . . . , uk−1), such
that u j ∈ W , 0 ≤ j ≤ k − 1, the following conditions
hold:

(i) X1
K − ∪ X2

K − ∪ · · · ∪ Xk
K − = K ;

(ii) X1
K − ∪ X2

K − ∪ · · · ∪ Xk−1
K − � K ,

where Xi
K − = {x0 ∈ K : (� ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

i -times

)(x0, ūi−1)

� 0} for each ūi−1 ∈ W i .

The set Xi
K − consists of all initial points x0 ∈

K , such that the end-points xi of all trajectories
x̄i (x0, ūi−1), where ūi−1 ∈ W i , satisfy xi /∈ K .

Proof Based on the notation form of the � system, we
can write the state xi in the following iterative form

xi = f (xi−1, ui−1)

= f ( f (· · · f ( f (x0, u0) , u1) · · · ) , ui−2), ui−1)

= f ◦ · · · ◦ f︸ ︷︷ ︸
i-times

(x0, ūi−1) . (7)

(Sufficiency) The existence of k ∈ N such that con-
dition (i) is satisfied means that for each x0 ∈ K there
exists i ∈ N, i ≤ k such that �(xi ) � 0, i.e., xi /∈ K ,
which implies that any trajectory x̄ fromK is bound to
leave K in at most k iterations. Furthermore, satisfy-
ing condition (ii), implies that there is no k̃ < k which
satisfies condition (i).

(Necessity) If a system is (K ,W)-escape in at
most k steps then for each x0 ∈ K there exists
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k′ ∈ N, k′ ≤ k such that trajectory x̄k′−1(x0, ūk′−2) =
(x0, . . . , xk′−1) lies in K , which means that �(x j ) =
� ◦ f (x j−1, u j−1) ≥ 0, for 0 ≤ j ≤ k′ − 1; and
xk′ /∈ K implies �(xk′) � 0. All this means, taking
into account notation (7), that conditions (i) and (ii) are
met. ��

Remark 5 This property means that the system located
inside ofK is bound to leave it after a final (and well-
defined) number of time steps. Such a case may be of
interest when one wants to achieve a region in which
the system is allowed to remain no longer than for a
given amount of time. It should be noted, however, that
this property does not exclude the possibility of the
trajectory returning to K .

Remark 6 To each initial point x0 ∈ K is assigned
a number k′, what is characterized by the sets Xk′

K −,
1 ≤ k′ ≤ k. If k = 1, then there is exactly one k′, i.e.,
k′ = 1, for all x0 ∈ K . So in this sense, in general,
i.e., for k > 1, we can conclude that k′ depends on x0.
On the contrary, k′ does not depend on ūk−1, since, by
definition, each set Xk′

K −, 1 ≤ k′ ≤ k, is defined for
all possible ūk′−1.

Remark 7 The above definition of Xi
K − does not guar-

antee that such sets aremutually disjoint, i.e., in general
X j
K − ∩ Xl

K − �= ∅, j �= l. For example, if a system is
(K ,W)-escape in at most k steps, such that a trajec-
tory segment (xi , . . . , xk) lies inK c, being a continu-
ation of a trajectory issued from Xi

K −, 1 ≤ i ≤ k − 1,

then X1
K − ⊂ X2

K − ⊂ · · · ⊂ Xk
K −. These inclusions

guarantee that any trajectory (starting at any x0 ∈ K )
will be outside K at the kth time-instant.

A more strict definition would be necessary in order
to define amore general notion of (K ,W)-escapewith
both upper and lower limits for the time of escape, i.e.,
(K ,W)-escape in at least k and at most l steps. Suffi-
cient and necessary conditions for such definition could
be easily constructed with the help of X̂ i

K − defined as
follows

X̂ i
K − = {x0 ∈ K : (� ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

i-times

)(x0, ūi−1) � 0,

(� ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
j-times

)(x0, ū j−1) ≥ 0,

1 ≤ j ≤ i − 1}
for each ūi−1 ∈ W i , ū j−1 ⊂ ūi−1.

X1
K −X1

K −

X2
10

x1

x2

Fig. 4 Sets X1
K − and X2 = X2

K −\X1
K − from Ex. 4

Remark 8 The property of (K ,W)-escape in at most
k steps can be extended to its limit k → ∞ (possi-
bly in conjunction with (K ,W)-excluded) in order
to describe systems which are bound to (permanently)
leave K after some indeterminate number of steps.

Remark 9 The demand that a system starting from any
x0 ∈ K leaves the setK in the same number of k ≥ 1
steps, reduces to the only possibility, i.e., for k = 1.
This is due to the fact that any trajectory x̄k starting from
any point x0 ∈ K that leaves the setK in k > 1 steps
contains a point xk−1 ∈ K from which the system
leaves K after 1 step.

Example 4 Consider the following system

xk+1 = f (xk, uk) =
(
ex1k − ex

1
k

x2k uk

)

with region K = R
2+ in the state-space and W = R+

in the input-space. For any x0 = (x10 , x
2
0 )

T ∈ R
2+ such

that x10 �= 1, the state x1 /∈ R
2+. However, for x10 = 1,

we have x11 = 0, and then x12 = −1. Therefore,

X1
K − =

{
(x10 , x

2
0 )

T ∈ R
2+ : x10 �= 1

}

X2
K − = X1

K − ∪
{
(x10 , x

2
0 )

T ∈ R
2+ : x10 = 1

}
,

and since X1
K − ∪ X2

K − = K , system is (K ,W)-
escape in at most 2 steps (see Fig. 4).

Example 5 Consider the following system

xk+1 = f (xk, uk) =
(
x1k − 1
x2k uk

)

with region K = R
2+ in the state-space and W = R+

in the input-space. For any x0 = (x10 , x
2
0 )

T ∈ R
2+ such
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X1
K − X2 X3 X4 · · ·

1 2 3 40
x1

x2

Fig. 5 Sets X1
K − and Xi = Xi

K −\Xi−1
K − for i = 2, 3, . . .,

from Ex. 5

that x10 < 1, the state x1 /∈ R
2+. However, for x10 ≥ 1,

we have x11 ≥ 0. Therefore (see Fig. 5),

X1
K − =

{
(x10 , x

2
0 )

T ∈ R
2+ : x10 < 1

}

Xi
K − = Xi−1

K −
∪

{
(x10 , x

2
0 )

T ∈ R
2+ :

⌊
x10

⌋
= i − 1

}
, i = 2, 3, . . . ,

where
⌊
x10

⌋
denotes the integer part of x10 , and thus the

system is (K ,W)-escape in at most ∞ steps, because
K = X∞

K −. However, for each given x0 ∈ R
2+ we

know exactly the step number i at which the system
leaves K , namely this is i = ⌊

x10
⌋ + 1.

Definition 5 A nonlinear system � of the form (1) is
said to be (K ,W)-attractive in at most k steps if there
exists k ∈ N such that for all x0 /∈ K and any ūk−1 =
(u0, . . . , uk−1), with all u j ∈ W , 0 ≤ j ≤ k −1, there
exists 0 ≤ k′ ≤ k such that xk′ ∈ K and k is the lowest
such number.

Proposition 5 A nonlinear system � of the form (1) is
(K ,W)-attractive in at most k steps if and only if for
all x0 /∈ K and each ūk−1 = (u0, . . . , uk−1), such that
u j ∈ W , 0 ≤ j ≤ k − 1, and the following conditions
hold:

(i) X1
K + ∪ X2

K + ∪ · · · ∪ Xk
K + = K c;

(ii) X1
K + ∪ X2

K + ∪ · · · ∪ Xk−1
K + � K c,

where Xi
K + = {x0 /∈ K : (� ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

i -times

)(x0, ūi−1)

≥ 0} for each ūi−1 ∈ W i .

The set Xi
K + consists of all initial points x0 lying

outsideK , after issued fromwhich the system is inK
in the i th step.

Proof (Sufficiency) If condition (i) is satisfied, then
for each x0 /∈ K there exists i ∈ N, i ≤ k such that
�(xi ) ≥ 0, i.e., xi ∈ K , which implies that any tra-
jectory x̄ from outside of K is bound to enter K in
at most k iterations. Furthermore, satisfying condition
(ii), implies that there is no k̃ < k which satisfies con-
dition (i).

(Necessity) If a system is (K ,W)-attractive in at
most k steps then for each x0 /∈ K there exists k′ ∈
N, k′ ≤ k such that any trajectory x̄k′−1(x0, ūk′−2) =
(x0, . . . , xk′−1) /∈ K , which means that �(x j ) = � ◦
f (x j−1, u j−1) � 0, for 0 ≤ j ≤ k′ − 1; and xk′ ∈
K implying �(xk′) ≥ 0. All this means, taking into
account notation (7), that conditions (i) and (ii) aremet.

��
Remark 10 This propertymeans that the system located
outside of K is bound to enter K after a final (and
well-defined) number of time steps. Such property
may be considered, for example when looking for the
emergence, disappearance, and longevity of temporar-
ily restricted regions in a state-space (regions which
are not achievable from at least one initial point for a
given number of time steps). Moreover, if the system
in question is parameterized by some parameter λ, and
a continuous change in its value causes the system to
suddenly gain or lose the property of being (K ,W)-
attractive in at most k steps, or the number of such steps
k changes rapidly, this may indicate the occurrence of
a bifurcation or a high sensitivity to a given parameter,
respectively.

Remark 11 The above definition of Xi
K + does not

guarantee that these sets are mutually disjoint, i.e., in
general X j

K + ∩ Xl
K + �= ∅, j �= l. This follows from

the same reasoning as given in Remark 7. The inclu-
sions X1

K + ⊂ X2
K + ⊂ · · · ⊂ Xk

K + guarantee that
any trajectory (starting at any x0 ∈ K c) will be inside
K at the kth time-instant.

With analogous purpose of defining (K ,W)-attrac
tive in at least k steps and at most l steps the X̂ i

K +
could be defined as follows

X̂ i
K + ≡ {x0 /∈ K : (� ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

i-times

)(x0, ūi−1) ≥ 0,

(� ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
j-times

)(x0, ū j−1) � 0, 1 ≤ j ≤ i − 1}

for each ūi−1 ∈ W i , ū j−1 ⊂ ūi−1.
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X1
K +X2

0
x1

x2

Fig. 6 Sets X1
K + and X2 = X2

K +\X1
K + from Ex. 6

Remark 12 The property of (K ,W)-attractivity in at
most k steps can be extended to its limit k → ∞ (pos-
sibly in conjunction with (K ,W)-invariant) in order
to describe systems which are bound to (permanently)
enter K after some indeterminate number of steps.

Example 6 Consider the following system

xk+1 = f (xk, uk) =
(
ex

2
k+uk

x1k

)

with regionK = R
2+ in the state-space and coneW =

R+ in the input-space. For any x0 = (
a, b

)T
/∈ K ,

with a ≥ 0 and b < 0, we have x1 = (
eb+u0 , a

)T ∈ K
for any u0 ∈ W; moreover, xk ∈ K , k ≥ 1. For

any x0 = (−a, b
)T

/∈ K , with a > 0, b ∈ R, and

any u0 ∈ W , we have x1 = (
eb+u0 ,−a

)T
/∈ K , but

x2 = (
e−a+u1 , eb+u0

)T ∈ K for any ū1 ∈ W2. Hence

X1
K + = {(a, b)T /∈ K : a ≥ 0, b < 0}

X2
K + = X1

K + ∪ {(−a, b)T /∈ K : a > 0, b ∈ R},

where X1
K + � K c, X2

K + = K c, and since, obvi-

ously, X1
K + ∪ X2

K + = K c, the system is (K ,W)-
attractive in at most k = 2 steps (see Fig. 6), and then
stays inK .

3.2 Linear systems

Let us consider an LTI system � defined by (4). Con-
sider also cones K and W defined, respectively, in (5)
and (3).

Before we proceed to give the main results concern-
ing linear systems, we present some properties of the
coneK itself, whichwill be helpful further below. First,
define

K̄ = {
x ∈ R

n : − Kx ≥ 0
} = {

x ∈ R
n : Kx ≤ 0

}
,

and then we have the obvious equivalence

x ∈ K ⇔ −x ∈ K̄.

From the above property it follows that x ∈ Kc does
not imply, in general, −x ∈ Kc. Indeed, for example,
if K = R+ and x < 0, that is x ∈ R

c+, then −x ∈
R+, i.e., −x /∈ R

c+. Similarly, for K = R
n+ and any

nonzero x ∈ R
n− ⊂ (

R
n+
)c, we have −x ∈ R

n+, i.e.,
−x /∈ (

R
n+
)c. However, we have the following result.

Lemma 1 Let x ∈ R
n, where n ≥ 2. If x ∈ Kc \(K̄ \ {0}), where K̄ \ {0} ⊂ Kc, then −x ∈ Kc \ (K̃ \

{0}).
Proof Let x ∈ Kc\(K̄ \ {0}). Itmeans that both x /∈ K,
i.e., Kx � 0, and x /∈ K̄, that is Kx � 0. It means
that Kx possesses both at least one negative and one
positive element. Using these facts we conclude that
−Kx possesses also both at least one negative and one
positive element, which means that both −x /∈ K and
−x /∈ K̄. Thus, −x ∈ Kc \ (K̄ \ {0}). ��

3.2.1 (K,W)-excluded systems

Proposition 6 The following conditions are equiva-
lent for the linear system �:

(i) � is (K,W)-excluded;

(ii) Ã is invertible, R
n+ ⊂ Ã, and Im+ B̃ ⊂ ¯̃A;

(iii) Ã−1 ≥ 0 and Im+ B̃ ⊂ ¯̃A;

(iv) Ã is monotone and Im+ B̃ ⊂ ¯̃A,

where Ã = K AK−1, B̃ = K BW−1, Ã = {z ∈
R
n : Ã−1z ≥ 0} and ¯̃A = {z ∈ R

n : − Ã−1z ≥ 0}.
Proof (i)⇒ (ii): Since� is (K,W)-excluded it means
that xk+1 = Axk + Buk /∈ K for each xk ∈ Kc

and each uk ∈ W , and all k ∈ N0. Then, from the
definition of K (or from Proposition 2), we obtain
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K Axk + K Buk � 0 for each xk ∈ Kc, each uk ∈ W ,
and all k ∈ N0. This condition can be rewritten,
equivalently, as K AK−1 x̃k + K BW−1ũk � 0 for all
x̃k ∈ (

R
n+
)c, each ũk ∈ R

m+, and all k ∈ N0. Since
it should hold for any x̃k ∈ (

R
n+
)c and any arbitrary

ũk ∈ R
m+, we get Ãx̃ + B̃ũ � 0 for all x̃ ∈ (

R
n+
)c and

each ũ ∈ R
m+.

Since it holds for all ũ ∈ R
m+, it also holds, in particu-

lar, for ũ = 0, andwe obtain Ãx̃ � 0 for all x̃ ∈ (
R
n+
)c.

Assume Ã is non-invertible; set C = ker Ã, and then
C ∩ (

R
n+
)c �= ∅ because any (at least 1-dimensional)

vector subspace inR
n has a nonempty intersectionwith(

R
n+
)c. So, take x̃ ∈ C∩(

R
n+
)c, and then Ãx̃ = 0which

leads to a contradiction.
Since Ã is the matrix of a linear isomorphism which

maps R
n onto R

n , and Ãx̃ � 0 for all x̃ ∈ (
R
n+
)c, it

follows that Ã−1 is a matrix of transformation which
maps R

n+ onto some S ⊂ R
n+, that is Ã−1z ≥ 0 for all

z ∈ R
n+, which means that R

n+ ⊂ Ã.
Condition Ãx̃ + B̃ũ � 0 for all x̃ ∈ (

R
n+
)c and each

ũ ∈ R
m+ means that, in particular, Ãx̃ + B̃ũ �= 0 for all

x̃ ∈ (
R
n+
)c and each ũ ∈ R

m+, i.e., Ãx̃ �= −B̃ũ for all
x̃ ∈ (

R
n+
)c and each ũ ∈ R

m+. In particular, Ãx̃ �= −B̃ũ
for all x̃ ∈ R

n−\{0} and each ũ ∈ R
m+, which can be

rewritten as − Ãx̃ �= −B̃ũ for all x̃ ∈ R
n+\{0} and

each ũ ∈ R
m+, i.e., Ãx̃ �= B̃ũ for all x̃ ∈ R

n+\{0}
and each ũ ∈ R

m+. It means that Im+ Ã ∩ Im+ B̃ = ∅,
that is Ã ∩ Im+ B̃ = ∅. It implies that either Im+ B̃ ∩
Ãc\( ¯̃A\{0}) �= ∅ or Im+ B̃ ⊂ ¯̃A. Knowing already

that Ã ⊃ R
n+, which implies ¯̃A ⊃ R

n−, we conclude

that Ãc\( ¯̃A\{0}) ⊂ (
R
n+
)c. Thus, assuming Im+ B̃ ∩

Ãc\( ¯̃A\{0}) �= ∅, we obtain Im+ B̃ ∩ (
R
n+
)c �= ∅.

Thanks to Lemma 1, it means that there exists some
annihilating Ãx̃ ∈ Ãc\( ¯̃A\{0}), such that Ãx̃ = −B̃ũ
for some x̃ ∈ (

R
n+
)c and some ũ ∈ R

m+, contradicting
Ãx̃ + B̃ũ � 0 for all x̃ ∈ (

R
n+
)c and each ũ ∈ R

m+.
Thus, we conclude that Im+ B̃ ⊂ ¯̃A.

(ii) ⇒ (iii): From R
n+ ⊂ Ã we know that any z ∈

R
n+ belongs also to the cone Ã, i.e., Ã−1z ≥ 0 for all

z ∈ R
n+, which implies Ã−1 ≥ 0.

(iii) ⇒ (iv): We have Ã−1 ≥ 0. Let us assume that
z = Ãx̃ ≥ 0. Then x̃ = Ã−1z ≥ 0, which means that
Ã is a monotone matrix.

(iv) ⇒ (i): Since the matrix Ã is monotone, from
its definition we have Ãx̃ ≥ 0 implies x̃ ≥ 0. Thus,

assuming Ãx̃ ≥ 0 for some x̃ ∈ (
R
n+
)c leads to a

contradiction. Therefore, Ãx̃ � 0 for any x̃ ∈ (
R
n+
)c.

Since Im+ B̃ ⊂ ¯̃A and Im� Ã ∩ R
n+ = ∅ we have

Ãx̃ + B̃ũ � 0 for all x̃ ∈ (
R
n+
)c and each ũ ∈ R

m+.
Expressing it for x̃ = Kx and ũ = Wu, we get K Ax+
K Bu ∈ (

R
n+
)c for all x ∈ Kc and each u ∈ W . From

definition of K, inequality K (Axk + Buk) � 0 means
that xk+1 = Axk + Buk does not belong to K for all
xk ∈ Kc, each uk ∈ W , and any k ∈ N0. ��
Example 7 Consider the system � defined by the
matrices

A =
(− 5

3
7
3

2
3 − 1

3

)
and B =

( 2
3 0
1
3 3

)
,

and the cones K ⊂ R
2 and W ⊂ R

2 defined be the
matrices

K =
(

1 −2
−2 1

)
and W =

(
1 1

−1 1

)
,

respectively (see Fig. 7).
Calculate

Ã = K AK−1 =
(

1 −2
−2 1

)(− 5
3

7
3

2
3 − 1

3

) (− 1
3 − 2

3
− 2

3 − 1
3

)

=
(−1 1

2 −1

)

and

B̃ = K BW−1 =
(

1 −2
−2 1

) ( 2
3 0
1
3 3

) ( 1
2 − 1

2
1
2

1
2

)

=
(−3 −3

1 2

)
.

All conditions of Proposition 6 are satisfied. Indeed, Ã
is monotone, the cone Ã = Im+ Ã ∪ {0} is such that
R
2+ ⊂ Ã (see Fig. 8), the matrix

Ã−1 =
(
1 1
2 1

)
≥ 0,

and the cone ¯̃A = Im+(− Ã)∪{0} is such that Im+ B̃ ⊂
¯̃A. Thus, the system is (K,W)-excluded.

Example 8 Consider a modified system from Exam-
ple 7 with a new matrix

B =
( 4

3 −2
2
3 2

)

and unchanged cones K ⊂ R
2 and W ⊂ R

2.
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Fig. 7 Cones from Ex. 7

K

x1

x2

(a) Cone K in the state-space R
2

W

u1

u2

(b) Cone W in the input-space R
2

Ã
¯̃A

R
2
+Im+B̃

Ãc \ ( ¯̃A \ {0})

Ãc \ ( ¯̃A \ {0})

0

Fig. 8 (K,W)-excluded system from Ex. 7

Calculate

B̃ = K BW−1 =
(

1 −2
−2 1

) ( 4
3 −2
2
3 2

) ( 1
2 − 1

2
1
2

1
2

)

=
(−3 −3

2 4

)
.

Then, Im+ B̃ ∩ ¯̃A �= ∅, but Im+ B̃ is not a subset of ¯̃A
(see Fig. 9). Thus, the system is not (K,W)-excluded.
Indeed, taking for example x̃k = (−0.1, 3)T and ũk =
(0, 1)T yields x̃k+1 = Ãx̃k + B̃ũk = (0.1, 0.8)T >

0. It corresponds to xk = (−59/30,−28/30)T and
uk = (−0.5, 0.5)T , which gives xk+1 = Axk +
Buk = (−17/30,−1/3) ∈ K, because Kxk+1 =
(0.1, 0.8)T > 0.

Remark 13 If the conditions of Proposition 6 are satis-
fied with the smallest possible inclusion, i.e., Ã = R

2+

Ã
¯̃A

R
2
+

Im+B̃

Ãc \ ( ¯̃A \ {0})

Ãc \ ( ¯̃A \ {0})

0

Fig. 9 Not (K,W)-excluded system from Ex. 8

or, equivalently, Im+ Ã = R
n+\{0}, then the matrix Ã

is a positive generalized permutation matrix (each col-
umn of the matrix Ã lies on some axis of the canonical
basis of R

n).

In the case when Ã = K AK−1 is a strictly positive
diagonal matrix (a particular form of positive general-
ized permutation matrix), we have the following result.

Corollary 2 If the following conditions are satisfied:

(i) the matrix A possesses all distinct real positive
eigenvalues;

(ii) the columns of thematrix K−1 are the eigenvectors
of A;

(iii) K BW−1 ≤ 0,

then the system � is (K,W)-excluded.
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Proof By virtue of condition (i) we know that the
matrix A is diagonalizable over the fieldR, and, thanks
to (ii), we know that K AK−1 is a diagonal matrix with
eigenvalues on the diagonal. Thus, Ã = K AK−1 is a
strictly positive diagonal matrix and, thereby, a posi-
tive generalized permutation matrix, which means that
¯̃A = R

n−. Together with condition (iii), signifying that
Im+ B̃ ⊂ R

n−, we get Im+ B̃ ⊂ ¯̃A, which implies that
the system � is (K,W)-excluded. ��
Example 9 Consider the system � defined by the
matrices

A =
( 5

3
1
3

2
3

4
3

)
and B =

( 5
3

2
3− 7

3 − 4
3

)
,

and the cones K ⊂ R
2 and W ⊂ R

2 defined be the
matrices

K =
(
1 −1
2 1

)
and W =

(
1 1

−2 −1

)
,

respectively (see Fig. 10).

Since

K AK−1 =
(
1 −1
2 1

) ( 5
3

1
3

2
3

4
3

)( 1
3

1
3− 2

3
1
3

)
=

(
1 0
0 2

)

is a strictly positive diagonal matrix, and

K BW−1 =
(
1 −1
2 1

)( 5
3

2
3

− 7
3 − 4

3

)(−1 −1
2 1

)

=
(

0 −2
−1 −1

)
≤ 0,

the system � is (K,W)-excluded. Indeed, in this case,
we can see that the matrix A has two distinct eigenval-
ues λ1 = 1 and λ2 = 2, and the corresponding eigen-
vectors v1 = (1/3,−2/3)T and v2 = (1/3, 1/3)T ,
respectively, are the columns of matrix K−1.

3.2.2 (K,W)-catch systems

Proposition 7 The system � is (K,W)-catch if and
only if

(i) K AK−1 ≥ 0 and K AK−1 is not a monotone
matrix;

(ii) K BW−1 ≥ 0.

Proof (Sufficiency) Conditions K AK−1 ≥ 0 and
K BW−1 ≥ 0 guarantee (K,W)-invariance of � (an
intrinsic property of (K,W)-catch), which is due to

Corollary 1. Thanks to the condition K BW−1 ≥ 0,
any ũk ∈ R

m+ can only drive xk+1 inside the cone K.
From Proposition 6 we know that for a system with a
matrix A such that K AK−1 is not a monotone matrix
(with K BW−1 ≥ 0), there exist points in Kc from
which the state of the system evolves into the cone K.

(Necessity) Since the (K,W)-catch of � implies
(from its definition) (K,W)-invariance of�, the condi-
tions K AK−1 ≥ 0 and K BW−1 ≥ 0must hold.On the
other hand, the existence of xk ∈ Kc yielding xk+1 ∈ K
means (from the definition ofK) that K Axk+K Buk ≥
0 for some xk ∈ Kc and for each uk ∈ W . It can be
rewritten as K AK−1 x̃k + K BW−1ũk ≥ 0 for some
x̃k = Kxk ∈ (

R
n+
)c and for each ũk ∈ R

m+. Since
this condition should hold, in particular, for ũk = 0,
we get K AK−1 x̃k ≥ 0 for some x̃k ∈ (

R
n+
)c, which

in turn, by deducing from Proposition 6, holds for any
K AK−1 ≥ 0 that is not a monotone matrix. ��
Remark 14 If system� is (K,W)-catch and rank A <

n, then there exists infinitelymany x0 ∈ Kc fromwhich
the system goes into K. Indeed, rank A < n implies
ker A �= 0, i.e., there exists a nonzero vector v ∈ R

n

such that V = Vect{v} ∩ Kc �= ∅. Therefore, for any
x0 ∈ V ⊂ Kc we have Ax0 = 0 ∈ K. It means that for
(K,W)-catch systems with singular system matrix A
there exists infinitely many x0 ∈ Kc points belonging
to a subset of null space ofmatrix A of dimension n−r ,
where r = rank A. Of course, there may be other x0 ∈
Kc points outside ker A from which the system goes
into K.

Example 10 Consider system � defined by the matri-
ces

A =
( 2

3
1
3− 4

3 − 2
3

)
and B =

(−1 − 1
3

1 2
3

)
,

and the cones K ⊂ R
2 and W ⊂ R

2 defined by the
matrices

K =
(
1 −1
2 1

)
and W =

(
1 1

−2 −1

)
,

respectively (see Fig. 10). Since

K AK−1 =
(
1 −1
2 1

) ( 2
3

1
3− 4

3 − 2
3

)( 1
3

1
3− 2

3
1
3

)

=
(
0 1
0 0

)
≥ 0

and is not monotone matrix, as well as

123



4718 W. Malesza, B. Bednarski

Fig. 10 Regions from Ex. 9

x1

x2

K

(a) Cone K in the state-space R
2

u1

u2

W

(b) Cone W in the input-space R
2

K BW−1 =
(
1 −1
2 1

)(−1 − 1
3

1 2
3

) (−1 −1
2 1

)

=
(
0 1
1 1

)
≥ 0,

system� is (K,W)-catch. Indeed, ifwe take, e.g., xk =
(0, 1)T /∈ K, we get xk+1 = Axk = (1/3,−2/3)T ∈
K, because

Kxk+1 =
(
1 −1
2 1

) ( 1
3− 2
3

)
=

(
1
0

)
≥ 0.

Since rank A = 1, that is ker A = Vect{( 12 ,−1
)T }, and

(ker A)∩K �= {0}, i.e., ( 12 ,−1
)T ∈ K, we have points

x0 ∈ Im+{(− 1
2 , 1

)T } ⊂ ker A from which system �

goes to 0.
Concerning input term Bu of �, since all possible

controls u ∈ W can be parameterized as

u = W−1ũ =
(−1 −1

2 1

) (
a
b

)

=
(−a − b
2a + b

)
for all a, b ∈ R+,

term Bu ∈ K, because

K Bu =
(
1 −1
2 1

) (−1 − 1
3

1 2
3

)(−a − b
2a + b

)

=
(

b
a + b

)
≥ 0 for all a, b ∈ R+.

3.2.3 (K,W)-escape systems

Remark 15 In the case of linear system�, the property
(K,W)-escape in at most k steps is defined, naturally,
for each x0 ∈ K and each ūk−1 ∈ Wk , except the
(x0, ūk−1) = (0, 0) pair (corresponding to the system
remaining indefinitely in the equilibrium of �).

Example 11 Consider the following system (discrete
negation with delay)

xk+1 =
(

uk
−x1k

)

with region K = R
2+ in state-space and W = R+ in

input-space. Obviously xk+1 /∈ R
2+ for all x ∈ R

2+
and all u ∈ R except the (x0, ū1) = (0, 0) pair, which
means that this system is

(
R
2+, R+

)
-escape in at most

k = 1 step.

Proposition 8 A linear system � is (K,W)-escape in
at most k steps if and only if for each x0 ∈ K and each
ūk−1 ∈ Wk the following conditions hold:

(i) X1
Rn+− ∪ X2

Rn+− ∪ · · · ∪ Xk
Rn+− = R

n+;
(ii) X1

Rn+− ∪ X2
Rn+− ∪ · · · ∪ Xk−1

Rn+− � R
n+,

where

Xi
Rn+− = {x̃0 ∈ R

n+ :
(
Ãi x̃0 + Im+ R̃i

)
∩ R

n+ = ∅},
(8)

and Ã = K AK−1, B̃ = K BW−1, R̃i = (B̃, Ã B̃, . . . ,

Ãi−1 B̃).
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Proof It follows directly from Proposition 4 where we
use the fact that iterative formula (7) takes the form

xi = Ai x0 +
i−1∑

j=0

Ai− j−1Bu j ,

by which we get

Xi
K− = {x0 ∈ K : K Ai x0

+
i−1∑

j=0

K Ai− j−1Bu j � 0} ∀ūi−1 ∈ W i ,

and then

Xi
Rn+− = {x̃0 ∈ R

n+ : K Ai K−1 x̃0

+
i−1∑

j=0

K Ai− j−1BW−1ũ j � 0}

= {x̃0 ∈ R
n+ : Ãi x̃0

+
i−1∑

j=0

Ãi− j−1 B̃ũ j � 0} ∀ ¯̃ui−1 ∈ (Rm+)i ,

which can be expressed as

Xi
Rn+− = {x̃0 ∈ R

n+ :
(
Ãi x̃0 + Im+ R̃i

)
∩ R

n+ = ∅}.
��

Example 12 Consider system � defined by the matri-
ces

A =
(
0 −1
1 0

)
and B =

(
0
1

)
,

and the cones K ⊂ R
2 and W ⊂ R defined by the

matrices

K =
(−1 −1

1 −1

)
and W = 1,

respectively (see Fig. 12a). Calculate

Ã = K AK−1 =
(−1 −1

1 −1

) (
0 −1
1 0

) (− 1
2

1
2− 1

2 − 1
2

)

=
(
0 −1
1 0

)

and

B̃ = K BW−1 =
(−1 −1

1 −1

) (
0
1

)

=
(−1

−1

)
.

We have

X1
R2+− = {(a, b)T ∈ R

2+ : b �= 0} ∪ {0}
X2

R2+− = X1
R2+− ∪ {(a, 0)T ∈ R

2+ : a �= 0},

because

Ã

(
a
b

)
=

(−b
a

)
, Ã2

(
a
b

)
=

(−a
−b

)
, Ã

(
a
0

)
=

(
0
a

)
,

Ã2
(
a
0

)
=

(−a
0

)
,

Ã B̃ =
(

1
−1

)
.

Therefore, X1
R2+− � R

2+ and X1
R2+− ∪ X2

R2+− = R
2+.

Moreover,

X1
K− = {1

2
(b − a,−a − b)T ∈ K : a ≥ 0, b > 0} ∪ {0}

X2
K− = X1

K− ∪ {−1

2
(a, a)T ∈ K : a > 0},

where X1
K− � K and X1

K− ∪ X2
K− = K.

Therefore, system � is (K,W)-escape in at most 2
steps (see Fig. 11).

Proposition 9 Linear system � is (K,W)-escape in
at most k = 1 step if and only if

Im+( Ã, B̃) ∩ R
n+ = ∅,

where Ã = K AK−1 and B̃ = K BW−1.

Despite the fact that the above result follows from
Proposition 8 for k = 1, and thus for all x̃0 ∈ R

n+, a
detailed proof of it is given for clarity.

Proof (Necessity) Since the system � is (K,W)-
escape in at most k = 1 step, it means that X1

K− = K,
so, for any state x0 ∈ K, state x1 /∈ K, i.e., Kx1 � 0,
thus K Ax0 + K Bu0 � 0 for all x0 ∈ K and u0 ∈ W ,
except (x0, u0) = (0, 0). It can be equivalently rewrit-
ten as K AK−1 x̃0 + K BW−1ũ0 � 0 for all x̃0 ∈ R

n+
and ũ0 ∈ R

m+, except (x̃0, ũ0) = (0, 0), which equiva-
lently can be written as Im+( Ã, B̃) ∩ R

n+ = ∅.
(Sufficiency) Condition Im+( Ã, B̃) ∩ R

n+ = ∅
means that for any z̃ ∈ Im+( Ã, B̃) we have z̃ =
Ãx̃0 + B̃ũ0 /∈ R

n+ for all x̃0 ∈ R
n+ and ũ0 ∈ R

m+,
except (x̃0, ũ0) = (0, 0). So, z = K−1 z̃ = K−1( Ãx̃0+
B̃ũ0) = Ax0 + Bu0 /∈ K, where we used x̃0 = Kx0
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Fig. 11 Sets from Ex. 12

X1
R
2
+−

X2
0

x̃1

x̃2

(a) Sets X1
R

2
+− and X2 = X2

R
2
+− \X1

R
2
+−

X1
K−

X2

x1

x2

(b) Sets X1
K− and X2 = X2

K− \X1
K−

for all x0 ∈ K, and ũ0 = Wu0 for all u0 ∈ W ,
except (x0, u0) = (0, 0). All this together means that
x1 = Ax0 + Bu0 /∈ K for all x0 ∈ K, u0 ∈ W , except
(x0, u0) = (0, 0), whence � is (K,W)-escape in at
most k = 1 step. ��

Below, necessary conditions for the system � to be
(K,W)-escape in at most k = 1 step, allowing a pre-
liminary verification of this property, are provided.

Proposition 10 If the system � is (K ,W)-escape in
at most k = 1 step then:

(i) Im+ Ã ∩ R
n+ = ∅ and Im+ B̃ ∩ R

n+ = ∅, where
Ã = K AK−1 and B̃ = K BW−1;

(ii) each column vector Ãi , 1 ≤ i ≤ n, of matrix Ã =
K AK−1, and each column vector B̃ j , 1 ≤ j ≤ m,
of matrix B̃ = K BW−1, must possess at least one
negative entry;

(iii) for each of the matrices Ã, B̃, ( Ã, B̃), the sum of
the elements of at least one of their rows must be
less than 0;

(iv) ker A ∩ K = 0 and ker B ∩ W = 0.

Proof (i) It follows from the condition of Proposi-
tion 9, which should hold for all x̃0 ∈ R

n+ and all
ũ0 ∈ R

m+, except the pair (x0, u0) = (0, 0). In
particular, for ũ0 = 0, we get Ãx̃0 � 0, where
Ã = K AK−1, for all x̃0 ∈ R

n+ \ {0}. It means
that Ãx̃0 /∈ R

n+ for all x̃0 ∈ R
n+\{0}, which equiv-

alently can be written as Im+ Ã ∩ R
n+ = ∅. Like-

wise, taking x̃0 = 0, we get K BW−1ũ0 � 0 for
all ũ0 ∈ R

m+\{0}. It means that B̃ũ0 /∈ R
n+ for all

ũ0 ∈ R
m+\{0}, which equivalently can be written

as Im+ B̃ ∩ R
n+ = ∅.

(ii) Since the system � is (K,W)-escape in at most
k = 1 step, conditions Ãx̃0 = K AK−1 x̃0 �

0 and B̃ũ0 = K BW−1ũ0 � 0 for all x0 ∈

R
n+ and u0 ∈ R

m+, except (x0, u0) = (0, 0),
are satisfied, in particular it holds true for ei =
(0, . . . , 0, 1, 0, . . . , 0)T ∈ R

n+, 1 ≤ i ≤ n, and
e j = (0, . . . , 0, 1, 0, . . . , 0)T ∈ R

m+, 1 ≤ j ≤ m,
with “1” at i th and j th entry, respectively. There-
fore, Ãi = Ãei � 0 and B̃ j = B̃e j � 0.

(iii) Since the system � is (K,W)-escape in at most
k = 1 step, conditions Ãx̃0 = K AK−1 x̃0 � 0
and B̃ũ0 = K BW−1ũ0 � 0 for all x0 ∈ R

n+ and
u0 ∈ R

m+, except (x0, u0) = (0, 0), are satisfied, in
particular it holds true for 1n = (1, . . . , 1)T ∈ R

n+,
and 1m = (1, . . . , 1)T ∈ R

m+. Therefore, Ã1n �

0, B̃1m � 0 and Ã1n + B̃1m = ( Ã, B̃)1n+m � 0
with each element corresponding to sum of ele-
ments over a particular row.

(iv) Since the system � is (K,W)-escape in at most
k = 1 step, state x1 = Ax0 + Bu0 /∈ K, and
thereby x1 �= 0, for all x0 ∈ K and u0 ∈ W ,
except the pair (x0, u0) = (0, 0), which implies
x0 /∈ ker A and u0 /∈ ker B.

��

Example 13 Consider the system � defined by the
matrices

A =
(
0 −2
0 0

)
and B =

( 1
2 1

− 1
2 0

)
,

and the cones K ⊂ R
2 and W ⊂ R

2 defined by the
matrices

K =
(−1 −1

1 −1

)
and W =

(−1 0
0 1

)
,

respectively (see Fig. 12).
Calculate
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Fig. 12 Regions from
Ex. 13

x1

x2

K

(a) Cone K in the state-space R
2

u1

u2

W

(b) Cone W in the input-space R
2

Ã = K AK−1 =
(−1 −1

1 −1

) (
0 −2
0 0

) (− 1
2

1
2− 1

2 − 1
2

)

=
(−1 −1

1 1

)

and

B̃ = K BW−1 =
(−1 −1

1 −1

) ( 1
2 1

− 1
2 0

) (−1 0
0 1

)

=
(

0 −1
−1 1

)
.

Since

Im+( Ã, B̃) ∩ R
n+ = Im+

(−1 0
1 −1

)
∩ R

2+ = ∅,

the system � is (K,W)-escape in at most k = 1 step.
Moreover, necessary conditions of Proposition 10 are
satisfied, because Im+ Ã∩R

2+ = ∅ and Im+ B̃ ∩R
2+ =

∅; each column vector of Ã and B̃ possesses one neg-
ative entry; in each of the matrices Ã, B̃ and ( Ã, B̃)

there exists at least one row whose sum of elements is
negative; and

ker A = Vect

{(
1
0

)}
, ker B = 0,

where (1, 0)T /∈ K, thus ker A ∩ K = 0 and ker B ∩
W = 0.

Example 14 Consider the system � defined by the
matrices

A =
(−2 0

0 0

)
and B =

(
0 0

−1 −1

)
,

and the cones K ⊂ R
2 and W ⊂ R

2 (as in Ex. 13)
defined by the matrices

K =
(−1 −1

1 −1

)
and W =

(−1 0
0 1

)
,

respectively (see Fig. 12). Calculate

Ã = K AK−1 =
(−1 −1

1 −1

)(−2 0
0 0

) (− 1
2

1
2

− 1
2 − 1

2

)

=
(−1 1

1 −1

)

and

B̃ = K BW−1 =
(−1 −1

1 −1

)(
0 0

−1 −1

)(−1 0
0 1

)

=
(−1 1

−1 1

)
.

Since

Im+( Ã, B̃) ∩ R
n+ = Im+

(−1 1 −1 1
1 −1 −1 1

)
∩ R

2+ �= ∅,

the system � is not (K,W)-escape in at most k = 1
step. Moreover, necessary conditions of Proposition 10
are not satisfied, because Im+ Ã ∩ R

2+ = {0} and
Im+ B̃ ∩ R

2+ �= ∅; second column vector of B̃ does
not possess any negative entry; the sum of elements in
each row of the matrices Ã, B̃ and ( Ã, B̃) is zero; and

ker A = Vect

{(
0

−1

)}
, ker B = Vect

{(−1
1

)}
,

where (0,−1)T ∈ K and (−1, 1)T ∈ W , thus ker A ∩
K �= 0 and ker B ∩ W �= 0.

Example 15 Consider the system � defined by the
matrices

A =
(− 1

4 − 7
4− 1

4
1
4

)
and B =

(
1 − 3

4
0 − 1

4

)
,

and the cones K ⊂ R
2 and W ⊂ R

2 (as in Ex. 13)
defined by the matrices

K =
(−1 −1

1 −1

)
and W =

(−1 0
0 1

)
,
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respectively (see Fig. 12). Calculate

Ã = K AK−1 =
(−1 −1

1 −1

) (− 1
4 − 7

4− 1
4

1
4

)(− 1
2

1
2− 1

2 − 1
2

)

=
(−1 − 1

2
1 1

)

and

B̃ = K BW−1 =
(−1 −1

1 −1

) (
1 − 3

4
0 − 1

4

)(−1 0
0 1

)

=
(

1 1
−1 − 1

2

)
.

Since

Im+( Ã, B̃) ∩ R
n+ = Im+

(−1 − 1
2 1 1

1 1 −1 − 1
2

)
∩ R

2+ �= ∅,

system � is not (K,W)-escape in at most k = 1
step. Indeed, e.g., for x̃0 = (0, 1)T ∈ R

2+ and ũ0 =
(0, 1)T ∈ R

2+ we have Ãx̃0 = (−1/2, 1)T /∈ R
2+

and B̃ũ0 = (1,−1/2)T /∈ R
2+, but Ãx̃0 + B̃ũ0 =

(1/2, 1/2)T ∈ R
2+. However, some necessary condi-

tions of Proposition 10 are satisfied, because: Im+ Ã ∩
R
2+ = ∅ and Im+ B̃ ∩ R

2+ = ∅; each column vector of
Ã and B̃ possesses negative entry; in the matrices Ã,
B̃ occur rows whose sum of elements is less than zero,
unlike the matrix ( Ã, B̃); and since rank A = 2 and
rank B = 2,wehave ker A∩K = 0 andker B∩W = 0.

3.2.4 (K,W)-attractive systems

Proposition 11 A linear system� is (K,W)-attractive
in at most k steps if and only if for each x0 /∈ K and
each ūk−1 ∈ Wk the following conditions hold:

(i) X1
Rn++ ∪ X2

Rn++ ∪ · · · ∪ Xk
Rn++ = R

n+;
(ii) X1

Rn++ ∪ X2
Rn++ ∪ · · · ∪ Xk−1

Rn++ � R
n+,

where

Xi
Rn++ = {x̃0 /∈ R

n+ :
(
Ãi x̃0 + Im+ R̃i

)
∩ (

R
n+
)c = ∅},

and Ã = K AK−1, B̃ = K BW−1, R̃i = (B̃, Ã B̃, . . . ,

Ãi−1 B̃).

Proof It follows directly from Proposition 5, where we
use the fact that iterative formula (7) takes the form

xi = Ai x0 +
i−1∑

j=0

Ai− j−1Bu j ,

by which we get

Xi
K+ = {x0 /∈ K : K Ai x0

+
i−1∑

j=0

K Ai− j−1Bu j ≥ 0} ∀ūi−1 ∈ W i ,

and then

Xi
Rn++ = {x̃0 /∈ R

n+ : K Ai K−1 x̃0

+
i−1∑

j=0

K Ai− j−1BW−1ũ j ≥ 0}

= {x̃0 /∈ R
n+ : Ãi x̃0

+
i−1∑

j=0

Ãi− j−1 B̃ũ j ≥ 0} ∀ ¯̃ui−1 ∈ (Rm+)i ,

which can be expressed as

Xi
Rn++ = {x̃0 /∈ R

n+ :
(
Ãi x̃0 + Im+ R̃i

)
∩ (

R
n+
)c = ∅}.

��
Example 16 Consider the system � defined by the
matrices

A =
(
0 −1
1 0

)
and B =

(
0
0

)
,

and the cones K ⊂ R
2 and W ⊂ R defined by the

matrices

K =
(−1 −1

1 −1

)
and W = 1,

respectively (see Fig. 12a). Calculate

Ã = K AK−1 =
(−1 −1

1 −1

) (
0 −1
1 0

) (− 1
2

1
2− 1

2 − 1
2

)

=
(
0 −1
1 0

)

and

B̃ = K BW−1 =
(
0
0

)
.

We have

X1
R2++ = {(a,−b)T /∈ R

2+ : a ≥ 0, b > 0},
X2

R2++ = {(−a,−b)T /∈ R
2+ : a > 0, b ≥ 0},

X3
R2++ = {(−a, b)T /∈ R

2+ : a > 0, b > 0},
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because

Ã

(
a

−b

)
=

(
b
a

)
, Ã2

(
a

−b

)
=

(−a
b

)
, Ã3

(
a

−b

)
=

(−b
−a

)
,

Ã

(−a
−b

)
=

(
b

−a

)
, Ã2

(−a
−b

)
=

(
a
b

)
, Ã3

(−a
−b

)
=

(−b
a

)
,

Ã

(−a
b

)
=

(−b
−a

)
, Ã2

(−a
b

)
=

(
a

−b

)
, Ã3

(−a
b

)
=

(
b
a

)
.

Therefore, X1
R2++ ∪ X2

R2++ � R
2+ and X1

R2++ ∪ X2
R2++ ∪

X3
R2++ = R

2+.
Moreover,

X1
K+ = {1

2
(−a − b, b − a)T /∈ K : a ≥ 0, b > 0},

X2
K+ = {1

2
(a − b, a + b)T /∈ K : a > 0, b ≥ 0},

X3
K+ = {1

2
(a + b, a − b)T /∈ K : a > 0, b > 0},

where X1
K+ ∪ X2

K+ � R
2+ and X1

K+ ∪ X2
K+ ∪ X3

K+ =
K.

Therefore, the system � is (K,W)-attractive in at
most 3 steps (see Fig. 13).

Proposition 12 The linear system � is (K,W)-attrac
tive in at most k = 1 step if and only if

(i) A ≤ 0 and B̃ ≥ 0 for n = 1;
(ii) A = 0 and B̃ ≥ 0 for n > 1.

Proof (Sufficiency) In the case of system order n = 1,
we have A = Ã. Scalars A ≤ 0 and B̃ ≥ 0 imply that
x̃1 = Ãx̃0 + B̃ũ0 ≥ 0 for all x̃0 < 0 and all ũ0 ≥ 0.
Thus, state x1 = K−1 x̃1 ∈ K for all x0 = K−1 x̃0 ∈ Kc

and all u0 = W−1ũ0 ∈ W .
For n > 1, condition A = 0 implies Ã = 0. The

matrices A = 0 and B̃ ≥ 0 imply that x̃1 = Ãx̃0 +
B̃ũ0 = B̃ũ0 ≥ 0 for all x̃0 ∈ (

R
n+
)c and all ũ0 ∈ R

m+.
Thus, state x1 = K−1 x̃1 ∈ K for all x0 = K−1 x̃0 ∈ Kc

and all u0 = W−1ũ0 ∈ W .
(Necessity) Since the system is (K,W)-attractive in

at most k = 1 step, state x1 = Ax0 + Bu0 ∈ K for
all x0 ∈ Kc and all u0 ∈ W . It is equivalent to say
x̃1 = Ãx̃0 + B̃ũ0 ∈ R

n+ for all x̃0 ∈ (
R
n+
)c and all

ũ0 ∈ R
m+. In particular, it holds for ũ0 = 0, and then

Ãx̃0 ∈ R
n+ for all x̃0 ∈ (

R
n+
)c.

Let us assume that the system order n > 1. With-
out loss of generality let’s choose specific x̃0 = (x̃10 ,

. . . , x̃ j−1
0 ,−ξ, x j+1

0 , . . . , x̃n0 )T ∈ (
R
n+
)c \ (

R
n−\{0}),

for 1 ≤ j ≤ n, and n > 1, where ξ > 0, and

x̃ i0 ∈ R, i ∈ {1, . . . , n}, i �= j , are almost arbi-
trary real numbers (neither all negative nor zero). Since
−x̃0 ∈ (

R
n+
)c \ (

R
n−\{0}) too (by Lemma 1), relations

Ãx̃0 ≥ 0 and − Ãx̃0 ≥ 0 imply Ãx̃0 = 0 (recall that
we assume ũ0 = 0). It follows that either Ã = 0 or any
specific x̃0 ∈ ker Ã; however, because among specific
x̃0’s there exist n independent vectors, we finally get
Ã = 0. Nonsingularity of K implies A = 0.

For n = 1, the relation Ãx̃0 ≥ 0 for all x̃0 < 0
implies Ã ≤ 0. Since Ã = A, we get A ≤ 0.

Since, in particular, x̃1 = Ãx̃0 + B̃ũ0 ∈ R
n+ holds

for an arbitrarily small x̃0 ∈ (
R
n+
)c and arbitrarily big

ũ0 ∈ R
m+, we get B̃ ≥ 0. ��

Remark 16 It is worth noting that the conditions of
Proposition 12donot dependonK. In the case ofn = 1,
this is because there are only two possible cones, i.e.,
K = R+ andK = R−. Regardless ofwhether the scalar
K defines R+ or R−, we have Ã = K AK−1 = A.

In the case of n > 1, the matrix A = 0, making
Ã = K AK−1 = 0. Thus, for u = 0, the transition in
one step from any x0 ∈ Kc is always to the origin.

Example 17 Let us consider the scalar system xk+1 =
axk + buk , where a ≤ 0, b ≥ 0, together with the
conesK = R+ andW = R+. Obviously, it is (K,W)-
attractive in at most k = 1 step.

Example 18 Let us consider the scalar system xk+1 =
axk + buk , where a ≤ 0, b ≥ 0, together with
the cones K = R− and W = R−. Obviously, it
is (K,W)-attractive in at most k = 1 step, because
b̃ = KbW−1 = b ≥ 0.

4 Conclusions

The aim of research presented in this work was to char-
acterize various distinctive trajectory evolution types of
a general nonlinear discrete-time control system. This
was done with respect to a nonlinear region defined in
the system’s state-space and with controls belonging to
polyhedral cones in the input-space. This approachwas
derived from an existing basis of knowledge concern-
ing region-invariant systems. The main result of this
study is the introduction of four different classes of the
dynamic systems in question and providing practically
verifiable conditions to check the nature of the sys-
tem against the introduced definitions. Both the deriva-
tion and the conditions themselves were based on the
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Fig. 13 Sets from Ex. 16

X1
R
2
++

X2
R
2
++

X3
R
2
++

x̃1

x̃2

(a) Sets Xi
R

2
++, i = 1, 2, 3

X1
K+

X2
K+

X3
K+

x1

x2

(b) Sets Xi
K+, i = 1, 2, 3

approach used in the section concerning invariance
analysis. The choice of a particularly weak assump-
tions regarding model structure and state-space region
definitionminimized the applicability limit of thiswork
allowing real-world systems to be tested against them.

The nonlinear definitions and proofs were trans-
lated to a linear time-invariant case in the next sec-
tions. This opened the possibility to introduce a more
convenient set of system verification methods which
resolve to a usage of a purely algebraic set of condi-
tions, i.e., most of the conditions were expressed using
matrices, their products and inverses. For this reason,
from a purely computational point of view, algorithms
enabling faster performance of this type of operations
may prove helpful, especially in the case of large-sized
matrices. Methods for such fast calculations, such as
fast matrix multiplication, were presented in [20]. The
analysis of both general nonlinear and specific linear
cases together with a collection of examples creates
a theoretical framework with perspectives for further
development.

The presented approach to control systems analysis
opens new questions in the field of system invariance
and related systems. An example of such question is
the potential existence of a closed catalog of system
families dependent on their relation to state- and input-
space regions.
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