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Abstract This paper presents experimental results to
verify the reduced dynamics modeling and stability
analysis of an autonomous bicycle, following the theo-
retical framework presented in Part I. A self-fabricated
autonomous bicycle is introduced, and experiments are
conducted to verify its stability in uniform straight
motion (USM) and uniform circular motion (UCM).
While the experimental results are qualitatively con-
sistent with the theoretical findings, they also reveal
that the stability of the bicycle is affected by uncer-
tainties in the real system, primarily stemming from
the drift error of the gyroscope sensor used to measure
the bicycle’s lean angle. Parameter uncertainty analy-
sis confirms the gyroscope drift as the main source of
uncertainty. To compensate for this drift error, a mod-
ified linear control law with a time-varying intercept
term is proposed. This results in a three-dimensional
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reduced dynamic system governing the bicycle’s con-
trolled motion. Theoretical analysis and experiments
demonstrate that the bicycle under the modified lin-
ear control law achieves stable USM and UCM with
a desired steer angle and exhibits an interesting phe-
nomenon of a limit cycle motion when the control
parameters are set such that the trivial relative equi-
librium becomes unstable through a supercritical Hopf
bifurcation.

Keywords Autonomous bicycle · Parameter sensitiv-
ity · Modified linear control law · Relative equilibria ·
Stability analysis

1 Introduction

Part I of this paper [1] presented a linear servo-
constrained control law for balancing an autonomous
bicycle, inspired by two driving rules: steer toward a
fall (STF) and counter-steering (CST) [2–4]. Among
them, STF means that the cyclist must turn the han-
dlebars in the tilting direction to maintain the balance
of the bicycle. CST is related to a counter-intuitive
phenomenon that when riding a bicycle turning to the
right, it must first turn to the left, and vice versa.
By using the symmetry reduction theory in geometric
mechanics and restricting the bicycle’s dynamics on
the servo-constrained submanifold, the bicycle’s con-
trolled motion can be described by a two-dimensional
dynamic system. We studied the nonlinear dynami-
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cal behaviors of this system and identified the con-
trol parameters that ensure the bicycle’s motion sta-
bility in both uniform straight motion (USM) and uni-
form circular motion (UCM). Our theoretical results
and numerical simulations showed that the linear con-
trol law not only enhances the bicycle’s stability but
also explains the STF and CST driving rules based on
stability analysis. We conclude the main contributions
of Part I as follows:

1. A reduced bicycle dynamics model is established
by using the Voronets equations, which is a com-
pletely nonlinear model with minimum dimension.

2. A linear control law for bicycle steering is proposed
and a two-dimensional nonlinear model of the con-
trolled bicycle is derived.

3. The stability and bifurcation behaviors of the rel-
ative equilibria of the two-dimensional nonlinear
dynamic system are studied, and the theoretical
results demonstrate that the linear control law not
only enhances the stability of the bicycle in USM,
but also allows it to be stabilized in UCM.

4. The phenomena of STF and CST can be clearly
explained based on the stability analysis of the con-
trolled bicycle dynamics.

In this paper, we experimentally verify the theoreti-
cal results developed in Part I by designing and build-
ing a powered automatic bicycle equipped with con-
troller hardware. Historically, two common ways to
stabilize and control a riderless bicycle in the literature
are themovingmass control and the gyroscope control.
The moving mass control can be achieved by adding a
load mass moving laterally along a straight line [5] or
by using an inverted pendulum structure on the bicy-
cle’s saddle structure [6–8]. While this control method
has advantages in achieving static balance [9,10], it
increases the weight of the bicycle and is only effective
at low speeds. On the other hand, the gyroscope con-
trol utilizes the flywheel’s rotation to balance the bicy-
cle, with typical devices including the control moment
gyroscope (CMG) and reaction wheel [11–19]. The
CMG generates a gyroscopic torque to balance the
bicycle, and the most effective structure of the device is
that theflywheel of theCMGshould spinwith respect to
an axis parallel to the wheel’s spin axis and swing with
respect to the bicycle’s yaw axis [20]. However, a single
CMG generates not only the restoration torque compo-
nent but also an additional unwanted torque compo-
nent, so many researchers used a scissored-pair CMG

to cancel out the unwanted torque [21–23]. The rota-
tion axis of the reaction wheel is often set along the
longitudinal direction of the bicycle wheel to generate
a restoration torque [24–26]. The device can achieve
static balance of the bicycle, but requires a large output
torque, thus limiting its range of use.

In contrast to control strategies based on moving
mass control and gyroscope control, the autonomous
bicycle designed using a linear control law requires
only a simple hardware structure for its controller. The
main components of the autonomous bicycle consist of
a bicycle body structure, a steering motor for control-
ling the handlebar angle, a speed motor with a servo
system for maintaining a constant rear wheel rotation
speed, a lower-level controller equipped with a pro-
grammable controller and various USB ports, and a
six-axis attitude sensor for measuring the attitudes of
the bicycle’s saddle structure. A PC computer is uti-
lized for managing control instructions and data com-
munications.Adetailed description of the experimental
system for the autonomous bicycle will be provided in
Sect. 3.1.

As demonstrated in Part I of this paper, the physi-
cal parameters of the bicycle can be used to determine
the control parameters of the linear control law, ensur-
ing stable USM and UCM motion. However, in a real
bicycle system, uncertainties arising from measure-
ment errors of the bicycle’s physical parameters and
the gyroscope sensor are inevitable, and these uncer-
tainties can significantly impact the stability properties
of the controlled bicycle. To address this concern, we
will analyze the sensitivity of each physical parame-
ter of the bicycle to its stability through a parameter
sensitivity analysis. Our analysis reveals that the pre-
cision of the measured values of bicycle parameters is
sufficient for determining the control parameters of the
linear control law.Nevertheless,when the linear control
law is applied to the experimental bicycle, we observe
that while the experimental results qualitatively align
with the theoretical predictions, the bicycle struggles
to maintain the USM and UCM motion state. This dif-
ficulty arises due to drift error in the gyroscope sensor,
which prevents accurate measurement of the lean angle
of the bicycle at every moment.

Usually, the inertial devices, like the gyroscope sen-
sor used in our experiments, cannot provide a reli-
able measurement for the actual lean angle [27]. Some
researchers developed estimation algorithms based on
the extended Kalman filter to estimate the real value of
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the lean angle [28]. In this paper, we choose another
method to compensate for the measurement error,
that is, we design a modified linear control law to
make the bicycle stabilize in the desired motion state
under a large disturbance from the gyroscope drift
error. The main idea is to incorporate a time-varying
intercept term in the linear control law. Based on
the modified linear control law, we establish a three-
dimensional reduced dynamics model that governs the
controlled motion of the bicycle. Furthermore, we ana-
lyze the stability and bifurcation behaviors of the con-
trolled bicycle dynamics under the modified control
law. The results of numerical simulations and experi-
ments demonstrate that the improved control law effec-
tively eliminates the drift error of the gyroscope sen-
sor, enabling the bicycle to precisely follow both the
USM and UCM trajectories with the desired steer
angle. Moreover, the experimental observations reveal
the presence of a limit cycle motion, which is associ-
ated with the Hopf bifurcation behavior of the three-
dimensional reduced dynamics model. The main con-
tributions of Part II are as follows:

1. Based on a self-fabricated autonomous bicycle, the
stability properties of the USMandUCMaswell as
the CST turning rule for the bicycle under the linear
control law are well verified through experiments.

2. The effects of uncertainties in the real bicycle sys-
tem on the stability of relative equilibria are ana-
lyzed.

3. A modified linear control law is proposed to com-
pensate for the drift error of the gyroscope sen-
sor, and a three-dimensional nonlinear model of
the controlled bicycle is established. Its stability
is studied through theoretical analysis, numerical
simulation and experimental verification.

4. The Hopf bifurcation behavior is well exhibited in
the bicycle system under a nonlinear control law.

The rest of this paper is organized as follows. In
Sect. 2,weprovide a concise summaryof the theoretical
results presented in Part I. The experimental setup and
results are presented in Sect. 3. In Sect. 4,we investigate
the sensitivity of the bicycle’s physical parameters and
the uncertainties of the measurement sensors on the
stability of the controlled bicycle’s motion. Section5
introduces a modified linear control law to compensate
for the gyroscope sensor’s drift error. This results in
a three-dimensional dynamical system, whose stability
and the bifurcation behavior is then analyzed. In Sect. 6,

we conduct experiments to exhibit the bicycle’s motion
under the modified control law. Finally, we draw con-
clusions in Sect. 7.

2 Brief summary of the theoretical results in Part I

To enhance readability, we provide a concise summary
of the theoretical formula presented in Part I of this
paper [1]. Table 1 shows the definitions of the symbols
that appeared in Part I.

When the bicycle moves without slip on the hor-
izontal ground, its configuration space is a seven-
dimensional manifold Q with coordinates q = (θ, δ,

φr , x, y, ψ, φ f )
T , where θ is the lean angle, δ is the

steer angle, φr and φ f are the rotation angles of the
rear and front wheels, respectively, and (x, y, ψ) rep-
resent the coordinates of the planar rigid body motion
for the saddle structure. Figure1 shows the definitions
of θ, δ and φr , where the arrows denote the positive
directions of these angles. Let σ = (θ, δ, φr )

T and
s = (x, y, ψ, φ f )

T , which correspond to the indepen-
dent and dependent velocity components, respectively.
The velocity constraints of the bicycle can be written
as follows:

ṡa = −Aa
α(q)σ̇ α, a = 1, . . . , 4, (1)

where Einstein’s summation convention is used for the
indices α = 1, 2, 3.1

The Voronets equations governing the motion of the
bicycle when subjected to steering torque τδ and rear
wheel driving torque τφr can be expressed as follows:

d

dt

∂Lc

∂σ̇ α
− ∂Lc

∂σα
+ Aa

α

∂Lc

∂sa

+ ∂L

∂ ṡb
Bb

αβσ̇ β = τα, α = 1, 2, 3, (2)

where Lc is the constrainedLagrangian, i.e., the restric-
tion of the Lagrangian L on the constraint distri-
bution D induced by the velocity constraints (1),
(τ1, τ2, τ3) = (0, τδ, τφr ), and Bb

αβ (b = 1, . . . , 4, α,

β = 1, 2, 3) are curvature coefficients defined as fol-
lows:

Bb
αβ = ∂Ab

α

∂σβ
− ∂Ab

β

∂σα
+ Aa

α

∂Ab
β

∂sa
− Aa

β

∂Ab
α

∂sa
. (3)

1 As mentioned in Part I of this paper, a single term containing
repeated indices (nomore than twice) always implies summation
of that term over all the values of the index.

123



3110 J. Xiong et al.

Table 1 Variables
denotation Q Configuration space

D Constraint distribution

G Symmetry group

D/G Reduced constraint space

S Servo-constrained submanifold

q Coordinates of the configuration space

ζ Coordinates of the reduced constraint space

v Coordinates of the servo-constrained submanifold

v0 Relative equilibrium

θ Lean angle

δ Steer angle

φr Rotation angle of the rear wheel

(x, y, ψ) Coordinates of the planar rigid body motion for the saddle
structure

φ f Rotation angle of the front wheel

τδ Steering torque

τφr Rear wheel driving torque

L Lagrangian of the system

Lc Constrained Lagrangian of the system

Aa
α (a = 1, . . . , 4, α =
1, 2, 3)

Coefficients of the velocity constraints

Bb
αβ (b = 1, . . . , 4, α, β =
1, 2, 3)

Curvature coefficients

mαβ (α, β = 1, 2, 3) Components of the inertial mass matrix

cαβγ (α, β, γ = 1, 2, 3) Components of the inertial gyroscopic force matrix

Pα( (α = 1, 2, 3) Generalized forces induced by gravity

pc = (c0, c1, ω0)
T Control parameters

ωc Critical velocity responsible for the bicycle’s stable USM

w Wheel base

c Trail

λ Tilt angle of the steering axis

xk , zk (k = s, h) Positions of the center of mass of the saddle and head
structures

Rk (k = r, f ) Radii of the two wheels

mk (k = r, s, h, f ) Masses of the four rigid bodies

Ik,xx , Ik,yy (k = r, s, h, f )
and Ik,zz, Ik,xz (k = s, h)

Nonzero components of the inertia tensors of the four rigid
bodies

According to the derivation in Part I, Eq. (2) can be
transformed into the following form after combining
similar terms:

mαβ(r)σ̈ β + cαβγ (r)σ̇ β σ̇ γ = Pα(r) + τα,

α, β, γ = 1, 2, 3, (4)

where r = (θ, δ)T , mαβ(r) represents the inertial
mass matrix, cαβγ (r) corresponds to inertial gyro-
scopic force matrix, Pα(r) represents the generalized
force induced by gravity. Since the forms of Aa

α (a =
1, . . . , 4, α = 1, 2, 3), L and Lc are very complex,
the full expressions of the coefficients in Eq. (4) are
extremely lengthy, and cannot be listed in this paper.

123



Steering control and stability analysis 3111

Fig. 1 Definitions of the lean angle θ , steer angle δ and rotation
angle of the rear wheel φr

However, due to the symmetry inherited in the bicycle
system, these coefficients take the following properties:

c333(r) ≡ 0, P3(r) ≡ 0. (5)

And the values of coefficients cα33(r) and Pα(r) at the
point r = 0 are given by

cα33(0) = 0, Pα(0) = 0, α = 1, 2. (6)

By combiningEq. (4)with the symmetry of the bicy-
cle system, we obtain a five-dimensional dynamic sys-
tem on the reduced constraint space D/G:

ζ̇ = Y(ζ ), (7)

where G is the symmetry group of the bicycle system
on the horizontal ground, and ζ = (θ, δ, θ̇ , δ̇, φ̇r )

T

represents a set of coordinates of D/G.

Remark 1 When τδ = τφr = 0, the dynamic system (7)
is equivalent to those existing in the literature for the
uncontrolled Whipple bicycle model [29–31]. One can
refer to Sections 2.3 and 2.4 in Part I for more details
about the uncontrolled bicycle dynamics.

The linear control law presented in Part I takes the
following form:{

δ(t) = c1θ(t) + c0,

φ̇r (t) = ω0,
(8)

where pc = (c0, c1, ω0)
T represents three independent

control parameters. Equation (8) serves as two servo-
constraints imposed to the bicycle system. By restrict-
ing the system (7) on the servo-constrained submani-
fold S, we obtain a two-dimensional dynamic system
governing the bicycle’s controlled motion:

v̇ = Z(v), (9)

where v = (v1, v2)T = (θ, θ̇ )T , Z = (Z1, Z2)T , and⎧⎪⎨
⎪⎩

Z1 = v2,

Z2 = h
pc
1 (v)

m11(r(v)) + c1m12(r(v))
,

(10)

where r(v) = (v1, c1v1 + c0)T , h
pc
1 (v) = (P1(r)

−c1βγ (r)σ̇ β σ̇ γ
) ∣∣

ζ=ζ (v)
, and ζ (v) = (v1, c1v1 +

c0, v2, c1v2, ω0)
T .

We mainly focus on the relative equilibrium of the
dynamic system (9), which takes a form v0 = (θ0, 0)T .
Accordingly, the steady steer angle is given by δ0 =
c1θ0 + c0. Let us define r0 = (θ0, δ0)

T . The value
of θ0 and then that of δ0 can be computed by using the
following equation:

P1(r0) − c133(r0)ω2
0 = 0. (11)

Remark 2 When a constant actuation torque, instead
of constant angular speed, is imposed to the rear
wheel, this will lead to different results in the proper-
ties of the bicycle’s controlled dynamics. In this case,
we can no longer obtain a two-dimensional servo-
constrained submanifold, and the reduced dynamic
system becomes three-dimensional with the coordi-
nates (θ, θ̇ , φ̇r ). Meanwhile, the reduced dynamic sys-
tem cannot have a relative equilibrium in the form
of (θ, θ̇ , φ̇r ) = (θ0, 0, ω0) unless the actuation torque
is zero. Therefore, the bicycle’s stability in this case
should be discussed in a much different way.

Depending on whether δ0 is zero or not, the relative
equilibrium v0 corresponds to the bicycle’s USM or
UCM steady motion. When c1 = 0, the system (9)
always has a trivial relative equilibrium v0 = 0 related
to the USM. Based on the stability analysis, we can
characterize three regions (Region I, II, III) on the c1−
ω0 plane for which v0 = 0 is exponentially stable.
Among them, Region I complies with the STF driving
rule and it can be expressed as follows:

Region I = {(c1, ω0) | c1 < 0, ω0 > ωc} , (12)

where c1 < 0 means that the bicycle always steer
toward a fall in this region, and ωc is a critical veloc-
ity responsible for the lower speed limit to ensure the
bicycle moving in a stable USM motion state:

ωc =
√

P1,θ (0) + c1P1,δ(0)
c1c133,δ(0)

, (13)
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where the expressions of P1,θ (0), P1,δ(0), c133,δ(0) are
listed in Appendix A in Part I, and their values are only
dependent on the physical parameters of the bicycle.

Remark 3 Åström et al. [4] provided an approximate
expression for the critical speed ωc of a bicycle under a
similar control law.However, due to oversimplification,
their expression ignores the influence of many struc-
tural parameters of the bicycle on this critical speed. In
contrast, Eq. (13) gives the complete expression of ωc,
showing for the first time how its value is affected by
the various physical parameter of the Whipple bicy-
cle. More importantly, we find that ωc is a supercrit-
ical pitchfork bifurcation point of the system (9), and
when ω0 is slightly less than ωc, a pair of stable non-
trivial relative equilibria related to the bicycle’s UCM
exist.

Region II and Region III correspond to the bicycle’s
backward and forward USM with positive c1, respec-
tively. In these two regions, the bicycle’s USM is stabi-
lized by steering to the opposite side of the fall direc-
tion.However, Region II is very small, and it is impossi-
ble to be achieved in practical control due to the uncer-
tainty of the physical parameters. Region III requires a
large value of c1, which means that a stronger ability
should be assigned to the steering motor for the bicy-
cle to move in this region. Therefore, although Region
III exists theoretically, it is also difficult to achieve in
practice unless the power of the steering motor is large
enough.

Remark 4 For explaining the self-stabilization of an
uncontrolled bicycle, Kooijman et. al [2] presented an
as-yet-unproved claim that a stable bicycle must turn
toward a fall. This claim seems to be proved by the
theoretical results in associated with Region I, where
the necessary condition for the bicycle stability is that
the coupling of the leaning and steering should comply
with the STF driving rule.

When c0 �= 0, the system (9) does not have a trivial
relative equilibrium due to the lack of lateral symmetry.
For point r0 in the small neighborhood of zero, we can
obtain an approximate solution of r0 = (θ0, δ0)

T as
follows,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ0 = c133,δ(0)ω2
0 − P1,δ(0)

c1c133,δ(0)(ω2
c − ω2

0)
c0,

δ0 = P1,θ (0)

c1c133,δ(0)(ω2
c − ω2

0)
c0.

(14)

Based on the mathematical properties of the coeffi-
cients involved in (14) and the control condition c1 < 0
and ω0 > ωc, we have

θ0c0 > 0, δ0c0 < 0. (15)

Thus, if c0 < 0 (c0 > 0), i.e., the bicycle seems to
have a bias toward right (left), then θ0 < 0 and δ0 > 0
(θ0 > 0 and δ0 < 0). This means that the stable steady
motion of the bicycle is a UCM toward left (right),
corresponding to the CST driving rule.

3 Experimental setup and results

In this section, we will begin by introducing the exper-
imental system of the autonomous bicycle, which we
developed in-house. We will then proceed to verify the
bicycle’s USM and UCM motion states using the lin-
ear control law (8). Additionally, we will validate the
CST driving rule, as discussed in Section 4.2 of Part I,
through experimental testing.

3.1 Description of the experimental system

Figure 2 shows the picture of the self-made
autonomous bicycle. Basically, the mechanical struc-
ture can be regarded as a classical Whipple bicycle
consisting of four rigid bodies: a rear wheel, a saddle
structure, a head structure, and a front wheel. Based on
the definitions for the coordinate frames shown in Part
I, we can define the geometric and mass parameters
of the bicycle. For the Whipple bicycle model, there
are 25 geometric and mass parameters, including the
wheel base w, the trail c, the tilt angle of the steering
axis λ, the positions of the center of mass of the sad-
dle and head structures xk, zk (k = s, h), the radii of
the two wheels Rk (k = r, f ), the masses of the four
rigid bodies mk (k = r, s, h, f ), and the nonzero com-
ponents of the inertia tensors of the four rigid bodies
in their body-fixed frames Ik,xx , Ik,yy (k = r, s, h, f )
and Ik,zz, Ik,xz (k = s, h). The values of these param-
eters are shown in Table 1 in Part I of this paper. For
ease of reading, we present this Table 2.

The autonomous bicycle is equipped with vari-
ous electronic control components in addition to its
mechanical structure. These include a small PC host
(upper computer), a 48V@14AH lithium battery pack,
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Fig. 2 Photograph of the
autonomous bicycle

Table 2 Values of the parameters for the powered autonomous bicycle: w = 0.935m, c = 0.046m and λ = 0.175rad

Body xk zk Rk mk Ik,xx Ik,yy Ik,zz Ik,xz

Rear wheel (k = r ) / / 0.260 1.0865 0.0293 0.0584 / /

Saddle structure (k = s) 0.424 0.402 / 13.2490 0.2513 0.5147 0.3320 -0.1215

Head structure (k = h) 0.865 0.554 / 2.8315 0.0365 0.0445 0.0132 0.0157

Front wheel (k = f ) / / 0.260 1.0865 0.0293 0.0584 / /

1Units: m for length, kg for mass, and kg · m2 for moment of inertia

two servo motor modules, an MPU6050 six-axis atti-
tude sensor, and a bottom controller and interface cir-
cuit. The small PC host serves as the core unit of the
entire system, responsible for control algorithm and
information processingmanagement. The 48V@14AH
lithium battery pack, commonly used in commercial
electric vehicles, provides power to the system.

The steeringmotor module and speedmotor module
are responsible for controlling the rotation of the bicy-
cle’s handlebar and the speed of the rear wheel, respec-
tively. The steering motor module utilizes a 7020Su
drivewith a power rating of 50Wand amaximumangu-
lar velocity of 1.047rad/s. The speed motor module
incorporates a built-in motor from a commercial elec-
tric vehicle, and its motor drive is also replaced with a
7020Su drive. The control signals of these two motor
modules are communicated separately via the RS485
bus.

The low-level controller and interface circuit
includes aPLCcontroller and a circuit board containing
the power supply interfaces. The PLC controller is the
core unit to play a role of communicating with the PC
through the isolated USB toUART, with a communica-
tion speed of 1Mbps. The physical cable is a USB2.0 A
port line, which can be directly plugged into the USB
port of the PC. Figure3 shows the data collection and

Fig. 3 System flowchart of the powered autonomous bicycle

transmission process between PC host, PLC controller
and motor modules.

The process of controlling the bicycle balance is as
follows. The lower PLC computer collects the mea-
sured position information (δ, φr ) and the measured
lean angle θ̂ . The PC host receives these data, and uses
the measured lean angle θ̂ as the input, and feedbacks
the desired steer angle δd = c1θ̂0 + c0 and rear wheel
speed φ̇d

r = ω0 to the lower PLC computer to execute
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Fig. 4 Low-level PID algorithms for driving the steering motor
and the speed motor

two commands: setting the steer angle as δd and setting
the rear wheel speed as φ̇d

r . In order to ensure the two
motor modules execute accurately, low-level PID algo-
rithms are needed to drive these two motors. As shown
in Fig. 4, the steering motor is driven by a PD control
law, and the speed motor is driven by a PI control law,
respectively. In our experiments, these PID parameters
are set as follows: Kp = 5000 and Kd = 1000 for
the steering motor, and Kp = 1000 and Ki = 150 for
the speed motor. In practice, the PID parameters can
also be tuned to achieve precise execution of the linear
control law (8). Only in this way can we treat (8) as
two servo-constraints, and the dynamic modeling and
stability analysis in Part I have practical significance.

3.2 Experimental results

For bicycle with physical parameters shown in
Table 2, it can move without control in a self-stable
motion state only if the angular velocity ω0 is limited
in a range (ωs1, ωs2) = (10.25, 20.32)rad/s. For the
controlled bicycle, its critical velocity ωc responsible
for the stable USM is given by

ωc =
√
6.7342 − 129.9576

c1
. (16)

Depending on the values of the control parameters
c0, c1 and ω0, the controlled bicycle will take different
motion states. If c0 = 0 and ω0 > ωc, the bicycle will
move in a stable USM motion state. If ω0 is slightly
less than ωc, the dynamic system (9) will take a pair
of stable nontrivial relative equilibria. In this case, the
bicycle should move in a stable UCM motion state.
If c0 �= 0, the value of the relative equilibrium and its

stability will be influenced by the values of all the three
control parameters.

In order to validate these theoretical results, we
present three experiments in which we always set c1 =
−4. According to Eq. (16), the critical angular velocity
of the three experiments take the same value as ωc =
6.26rad/s. For the first experiment, we set the control
parameters with values as pc = (0rad,−4, 7rad/s)T .
Clearly, the uncontrolled bicycle in this case will lose
its self-stability sinceω0 is less thanωs1. As the bicycle
is equipped with the linear control law, it should be sta-
bilized in a USMmotion state. We call this experiment
the USM-experiment.

The second experiment is called the UCM-
experiment in which the control parameters are set
as pc = (0rad,−4, 6rad/s)T . Clearly, the angular
velocity ω0 is slightly smaller than the critical angu-
lar velocity ωc; thus, a pair of stable nontrivial relative
equilibria exist. In this case, the controlled bicycle will
enter a stable UCM state, even if its configuration is
initially set in a straight line.

The purpose of the third experiment is to validate the
CST turning rule. We call it CST-experiment in which
the control parameters take two different sets of values.
In the two sets, we fix ω0 = 7rad/s and c1 = −4, but
set c0 = ±0.1rad, respectively. Setting the values of c0
with opposite signs means that the bicycle is expected
to turn in different directions.

In these experiments, we always set the initial
configuration of the bicycle along a straight line. In
addition, an unmanned aerial vehicle (DJI Mavic 2
Pro) was used to record the bicycle’s motion. Supple-
mentary materials [32] provide video movies related
to the USM-experiment, UCM-experiment and CST-
experiment, named as USM-LC-V, UCM-LC-V and
CST-LC-V, respectively. In order to identify the bicy-
cle’s motion, a small rectangular piece of paper is
pasted on the upper surface of the saddle structure of
the bicycle, and its center marks the path of the bicy-
cle’s motion. In the following, we discuss the relevant
experimental phenomena based on the data recorded
by the measurement sensors.

The experimental results of the USM-
experiment are shown in Fig. 5. The curves of mea-
sured lean angle θ̂ (t) and steer angle δ(t) with respect
to time are plotted in Fig. 5a, b, respectively. We can
see that after an obvious perturbation in the first few
seconds, both the values of lean and steer angles can
restore to 0 at time t1 = 7.3s. However, this USM
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Fig. 5 Experimental results under the linear control law with
the control parameters pc = (0rad,−4, 7rad/s)T : a evolu-
tion of the measured lean angle θ̂ with respect to time t ;

b evolution of the measured steer angle δ with respect to
time t ; c test photographs at some different instants of time

motion only lasts a few seconds, and both the lean and
steer angles begin to deviate from 0 at t2 = 10.8s.

Figure 5c shows the configuration of the bicy-
cle at some different instants of time. The red dot-
ted line shown in Fig. 5c corresponds to the trajec-
tory of the bicycle on the horizontal ground, which
is an approximate straight line during the time inter-
val [7.33, 11.33]s. However, its subsequent motion
obviously deviates from this straight line. Clearly, cer-
tain uncertainty in the real system has an important
impact on the stability of the bicycle.

For the UCM-experiment, Fig. 6a, b shows the
experimental curves of the measured lean angle θ̂ (t)
and steer angle δ(t) over a longer period of time. We
can see that both of them converge to nonzero steady
values θ̂0 and δ0. Figure6c shows the bicycle’s configu-
ration captured by the unmanned aerial vehicle at some
different instants of time. The trajectory of the bicycle
corresponds to an approximate circle on the horizontal
ground.

Clearly, difference between the experimental and
theoretical results exists. Based on the theoretical pre-
diction, the bicycle in the stable UCM motion state

should take a constant lean angle as ±0.0935rad and a
constant steer angle as ∓0.3740rad under the control
parameters. By selecting the data of θ̂ (t) and δ(t) in
the last 20 seconds of the experiment, we obtain the
average values of these data as θ̂0 = −0.1533rad and
δ0 = 0.6131rad, which cannot exactly agree with the
theoretical values. This illustrates that the uncertain-
ties in the experimental setup also influence the UCM
motion.

The experimental results related to the CST-
experiment are shown in Figs. 7 and 8, respectively.
For the case of c0 = 0.1rad, Fig. 7a, b plots the curves
of the measured lean angle θ̂ (t) and steer angle δ(t)
with respect to time t , and Fig. 7c presents the trajec-
tory of the bicycle within the time interval [45, 70]s.
Clearly, as t tends to +∞, θ̂ (t) and δ(t) converge to
a positive steady value θ̂0 ≈ 0.1105rad and a nega-
tive steady value δ0 ≈ −0.3420rad, respectively. The
stable UCM motion is along a clockwise direction.

Compared to the case of c0 = 0.1rad, the experi-
mental results in the case of c0 = −0.1rad will exhibit
opposite tendencies. Figure8a, b shows the evolutions
of θ̂ (t) and δ(t) with respect to time, respectively.
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Fig. 6 Experimental results under the linear control law with
the control parameters pc = (0rad,−4, 6rad/s)T : a evolu-
tion of the measured lean angle θ̂ with respect to time t ;

b evolution of the measured steer angle δ with respect to
time t ; c test photos at some different instants of time

Fig. 7 Experimental results
under the linear control law
with control
parameters pc =
(0.1rad,−4, 7rad/s)T : a
evolution of the measured
lean angle θ̂ with respect to
time t ; b evolution of the
measured steer angle δ with
respect to time t ; c
trajectory of the bicycle in
the time interval [45, 70]s

Clearly, the lean angle of the bicycle converges to a
negative steady value θ̂0 ≈ −0.1337rad,while the steer
angle converges to a positive value δ0 ≈ 0.4349rad.
Figure8c shows that the bicycle’s motion converges to
a stable UCM, but it moves along the anticlockwise
direction.

TheCST-experiment demonstrates that the bicycle’s
motion can converge to a stable UCM motion, and it

follows the CST steering rule, namely, θ̂0c0 > 0 and
δ0c0 < 0. Although these phenomena basically agree
with our theoretical prediction, difference between the
experimental and theoretical results exists. Firstly, the
bicycle’s motion does not enter into an ideal closed
circle trajectory. Secondly, the absolute values of steady
lean angle and steady steer angle are obviously different
between the two experiments, although theoretically
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Fig. 8 Experimental results
under the linear control law
with control
parameters pc =
(−0.1rad,−4, 7rad/s)T : a
evolution of the measured
lean angle θ̂ with respect to
time t ; b evolution of the
measured steer angle δ with
respect to time t ; c
trajectory of the bicycle in
the time interval [45, 70]s

they should be equal and take the absolute values as
|θ0| = 0.0936rad and |δ0| = 0.2742rad according to
our numerical simulations, respectively.

All three experiments demonstrate qualitative con-
sistency between the experimental and theoretical
results. However, they also reveal that the stability of
the controlled bicycle is influenced to some extent by
uncertainties inherent in the real-world bicycle system.
In the following section, we will conduct an analysis to
identify which specific uncertainties in the real system
affect the stability of the controlled bicycle.

4 Error source analysis

Real bicycle systems inherently involve uncertainties,
which may arise from various sources such as mea-
surementmethods used for determining bicycle’s phys-
ical parameters, or measurement sensors employed to
identify the motion state of the bicycle system. These
uncertainties can significantly impact the stability of
the bicycle’s motion. In particular, the critical angular
velocity ωc, which plays a crucial role in determining
the motion state of the bicycle and largely depends on
its parameters, will be examined for sensitivity to each
parameter. Subsequently, the influence ofmeasurement
sensors on the stability of bicycle motion will be ana-
lyzed based on the experimental results.

4.1 Sensitivity of bicycle’s parameters on ωc

As indicated by our theoretical analysis, the motion
trajectory and the stability properties of the controlled

bicycle are closely related to the critical velocity ωc,
whose value may be affected by the uncertainties in
measuring the bicycle’s physical parameters. In this
part, we will analyze the sensitivity of each physical
parameter to the critical velocity ωc.

For the Whipple bicycle model, there are 25 geo-
metric and mass parameters. According to the concrete
expressionofωc,wefind that the value ofωc is indepen-
dent of the following ten parameters: Ik,xx (k = r, f )
and Ik,xx , Ik,yy, Ik,zz, Ik,xz (k = s, h). We define the
remaining 15 dependent parameters into a parameter
space given by p = (p1, . . . , p15)T , corresponding
to w, c, λ, Rr , mr , Ir,yy , xs , zs , ms , xh , zh , mh , R f ,
m f , I f,yy , respectively. As a result, ωc can be written
as ωc = ωc( p). Following our previous work [30], a
dimensionless index is used to quantify the sensitivity
of each parameter pi to ωc:

L pi ( p) = ∂ωc( p)
∂pi

· pi
ωc( p)

.

Let us denote p0 = (p01, . . . , p
0
15)

T as the measured
values of these 15 parameters of the experimental bicy-
cle (see Table 2), and denote L0

pi = L pi ( p
0) as the

values of L pi calculated at p
0. According to the conti-

nuity of L pi , L
0
pi quantifies the sensitivity of pi in the

neighborhood of p0.
Table 3 lists the values of L0

pi (i = 1, . . . , 15) by
assigning c1 = −4. Clearly, ωc is insensitive about all
other parameters except Rr , xh and w. Among them,
L0
Rr

has the largest absolute value, and its negative sign
means that ωc decreases as Rr increases.

Remark 5 Although Rr is the most sensitive parameter
to ωc, the value of Rrωc is not so sensitive about Rr .
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Table 3 Values of L0
pi (i = 1, . . . , 15) under c1 = −4

Global parameters w c λ

L0
pi – 0.1651 0.0581 0.0855

Rear wheel Rr mr Ir,yy

L0
pi – 0.9880 – 0.0022 – 0.0142

Saddle structure xs zs ms

L0
pi 0.0602 -0.0410 0.0192

Head structure xh zh mh

L0
pi 0.5613 0.0484 0.0027

Front wheel R f m f I f,yy

L0
pi 0.0229 0.0087 – 0.0142

This can be explained by the following calculation:

∂(Rrωc)( p0)
∂Rr

· R0
r

(Rrωc)( p0)
= 1 + L0

Rr = 0.0120.

The analysis above demonstrates that while Rr is a
sensitive parameter for the critical angular velocity, it
does not significantly affect the critical linear velocity
of the bicycle. However, since we specify in this paper
that the bicycle is directly driven by the angular velocity
of the rear wheel, we use ωc in the sensitivity analysis,
rather than Rrωc.

Furthermore, we can numerically investigate how
each parameter affects ωc. For each parameter pi , we
change its valuewithin [0.5p0i , 1.5p0i ] and remainother
parameters p j ( j �= i) fixed at p0j , then compute the
value of ωc by using Eq. (13) and setting c1 = −4.
Figure9a–d shows how ωc varies with �pi/p0i , which
changes within the range [−0.5, 0.5]. The value of ωc

obtained from the numerical investigation is also just
sensitive to Rr , xh and w, agreeing with the finding
from Table 3 for the dimensionless indices L0

pi . In the
following, we just use L0

pi to estimate the error of ωc.
Denote by pti the true value of pi , and γi =

(pti − p0i )/p
0
i the relative error of the parameter. The

true values of all the parameters are designated as a
point pt = (pt1, . . . , p

t
15)

T in the parameter space. By
using the Taylor’s expansion formula, and neglecting
the terms higher than the first order, we can approxi-
mately compute the relative error of ωc as

∣∣γωc

∣∣ =
∣∣∣∣ωc( pt ) − ωc( p0)

ωc( p0)

∣∣∣∣ ≈
∣∣∣∣∣
15∑
i=1

L0
pi γi

∣∣∣∣∣
≤

15∑
i=1

∣∣∣L0
pi

∣∣∣ γi,max.

Thus, if the upper bound γi,max of γi is given, the
maximumerror of γωc can be estimated. For the follow-
ing parameters:w, c,λ, Rr ,mr ,ms ,mh , R f ,m f , we use
high-precision measurement tools to obtain their val-
ues; thus, the corresponding γi,max of these parameters
is estimated smaller than 0.01. Noting that the follow-
ing parameters: xs , zs , xh , zh , Ir,yy , I f,yy , are influenced
by the mass distributions of the four bodies of the bicy-
cle, we estimated their values from the bicycle’s CAD
model; thus, these parameters may take relative large
errors. We estimate that γi,max for xs , zs and zh less
than 0.05, and that for xh less than 0.025 (since the
value of x0h is almost twice the values of x0s , z

0
s , z

0
h),

and that for Ir,yy, I f,yy smaller than 0.2. Based on the
above estimation for the uncertainty of each physical
parameter, we roughly estimate the maximum relative
error of the critical speed as |γωc | ≤ 0.04. Noting that
the nominal value of ωc = 6.26rad/s based on Table 2
and setting c1 = −4, its real value should be limited in
the range [6.01, 6.51]rad/s. For the USM-experiment
where ω0 = 7rad/s, this value is obviously greater
than the upper bound of ωc caused by bicycle’s param-
eter uncertainty, so the bicycle must move in a stable
straight line in the absence of other uncertainties. For
the UCM-experiment where ω0 = 6rad/s, this value is
in the neighborhood ofωc and less than the lower bound
of ωc caused by bicycle’s parameter uncertainty; thus,
the bicycle must move in a UCM motion state in the
absence of other uncertainties.

Noting that L0
pi varies with the control parameter

c1, thus the value of γωc will also change as c1 is
assigned with a different value. Following the above
procedure, we can compute the values of L0

pi at differ-
ent c1, then estimate the maximum relative error γωc .
Figure10 shows how the upper bound of γωc changes
with the absolute value of c1. It is shown that even in
the case of |c1| = 10, the upper bound for γωc is less
than 0.08, implying that the relative error of ωc caused
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Fig. 9 Curves of ωc obtained by changing each single parameter pi (i = 1, . . . , 15), while remaining other parameters p j ( j �= i)
fixed at the values of p0j

by the uncertainties of the bicycle’s parameters is small
enough. Therefore, we can confirm that the value of ωc

obtained from the nominal values of the bicycle param-
eters listed in Table 2 is accurate enough.

4.2 Error analysis for measurement sensors
uncertainty

For the experimental bicycle system, uncertainty fac-
tors include themeasurement errors associatedwith the
measured lean angle θ̂ , the steer angle δ and the rear
wheel rotation angle φr . In addition, it is also neces-
sary to check whether the steering motor and the speed
motor can accurately output the expected values allo-
cated by the PLC controller.

In our experimental setup, we use high-precision
rotary encoders to measure δ and φr , while the value
of θ̂ is measured by a low cost attitude sensor. If the
measurement error exists in θ̂ , it plays a role of insert-
ing an additional intercept term in the linear control
law. Therefore, even if the bicycle is controlled by the
linear control law with c0 = 0, the measurement error
will cause the bicycle to deviate from the straight tra-
jectory. In the case of c0 �= 0, the additional intercept
term caused by the measurement error will change the
position of the relative equilibrium and thus change
the circular trajectory of the bicycle in UCM motion
state. The physical phenomena shown in the USM-
experiment and UCM-experiment indicate that at least
the gyroscope sensor is a major source of the measure-
ment error.
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Fig. 10 Curve of the upper bound for the relative error γωc with
respect to the steer coefficient c1

In addition to the measurement error from the gyro-
scope sensor, we should check whether the steering
motor can accurately perform the linear control law
and the rear wheel can be controlled at a given constant
angular speed. For doing this, we characterize the steer
error as δe = δ − c1θ̂ , and plot the data obtained from
the UCM-experiment in Fig. 11a. Except for the first
few seconds, the magnitude of δe is generally limited
in a small range of (−0.05rad, 0.05rad), and oscillates
around 0 (average value of δe within the time inter-
val [20, 100]s is about −1.7903× 10−5rad). Thus, we
can confirm that the steering motor works well in the
experimental setup. The uncertainty of the speedmotor
can be checked by plotting the curve of the rotation
angle of the rear wheel φr with respect to time t . As
shown in Fig. 11b for the UCM-experiment, the curve
is approximately a straight line except for the first few
seconds. The average slope of the curve within the time
interval [20, 100]s is about 5.97rad/s, which has only
a 0.5% relative error compared to the given angular
velocity ω0 = 6rad/s. This means that the angular
velocity of the rear wheel is accurately controlled by
the speed motor.

Remark 6 In practice, the time delay of controllers
caused by the transmission of signals (see Fig. 3) is dif-
ficult to avoid. Its effect on the dynamics and stability of
the bicycle can also be attributed to the precision of the
two servo motors executing the linear control law. The
previous discussion demonstrates that the influence of
time delay on the bicycle system can be negligible.

Fig. 11 Curves of the steer error δe = δ−c1θ̂ and rotation angle
of the rear wheel φr with respect to time t in the case of Fig. 6

Based on the above analysis, we can confirm that
the main source of the measurement errors comes from
the gyroscope sensor in our experimental setup. This is
a common problem when measuring the lean angle of
a bicycle or motorcycle using inertial devices [27,28].
In the following, we can estimate the drift error e0 of
the gyroscope sensor based on the following assump-
tions: (1) in each experiment, e0 is a constant value that
does not varywith the bicyclemotion; (2) themeasured
value of the steady steer angle δ0 is accurate enough;
(3) the linear control law (8) can be accurately per-
formed by the steering motor and the speed motor;
(4) the influence of the measurement uncertainties of
the bicycle’s physical parameters on its motion stabil-
ity can be neglected. Based on these assumptions, we
can use Eq. 11 to estimate the value of the steady lean
angle θ0 corresponding to the measured value of δ0.
The difference between the computed value of θ0 and
themeasured value of θ̂0 can then be roughly thought of
the drift error e0. According to the experimental data of
the UCM-experiment, we obtain θ0 = −0.1799rad as
δ0 = 0.6131rad. Noting that the gyroscope sensor out-
puts θ̂0 = −0.1533rad, the drift error is then estimated
as e0 = θ̂0 − θ0 = 0.0266rad.
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Following the above procedure, we can also esti-
mate the drift error of the gyroscope sensor in the
CST-experiment. In the case of c0 = 0.1rad, the aver-
age values of the stable lean angle and steer angle
are θ̂0 = 0.1105rad and δ0 = −0.3420rad. By sub-
stituting the value of δ0 into Eq. (11), we obtain the
corresponding lean angle as θ0 = 0.1197rad. Con-
sequently, the gyroscope drift error e0 is estimated
as e0 = θ̂0 − θ0 = −0.0092rad. In the case of
c0 = −0.1rad, we can obtain the average value of the
measured lean angle as θ̂0 = −0.1337rad, and that of
the measured steer angle as δ0 = 0.4349rad. The com-
puted value of θ0 corresponding to the measured steer
angle δ0 is θ0 = −0.1590rad. Thus, the gyroscope drift
error in this experiment is e0 = θ̂0 − θ0 = 0.0253rad.
Based on the analysis for these experimental results, the
drift error of the gyroscope sensor varies randomly in
different experiments. In order to improve the control
quality of the autonomous bicycle, the linear control
law must be modified.

5 A modified linear control law

We have confirmed that the drift error from the gyro-
scope sensor has a significant impact on the sta-
ble motion of the bicycle, and its value varies ran-
domly between different experiments. However, we
can assume that the drift error remains constant within
each experiment. To compensate for this error,we intro-
duce a modified linear control law in this section, in
which the intercept is considered as a time-varying term
instead of a constant, and its specified value is adjusted
in real-time using a saturation function. As the modi-
fied linear control law introduces a new control vari-
able, the motion of the controlled bicycle is governed
by a three-dimensional dynamical system. Similar to
the approach used for the two-dimensional system, the
values of the control parameters for the modified linear
control law can be determined through stability analy-
sis of the three-dimensional system. In this section, we
will theoretically investigate how the bicycle controlled
by the modified linear control law can achieve stable
USM and UCM motion states. Additionally, we will
explore an interesting phenomenon related to a kind of
limit cycle motion behavior.

5.1 Modified linear control law and three-dimensional
dynamic system

Note that the drift error from the gyroscope plays a
role of inserting an additional intercept term into the
linear control law. To compensate for the drift error,
we can adjust the value of the intercept term based
on the CST driving rule. Specifically, if the measured
steer angle δ is greater than its desired value δ∗ (for
USM, δ∗ = 0, while for UCM, δ∗ is a nonzero value),
we should increase the intercept term, and vice versa.
Consequently, we modify the linear control law as fol-
lows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ(t) = c1θ(t) + c̃0(t),

φ̇r = ω0,

c̃0(t) = c̃0(t0) + ε

∫ t

t0
sat

(
δ(t) − δ∗

δ1

)
dt,

(17)

where c̃0 represents a time-varying intercept term with
the initial value c̃0(t0) at the initial time t = t0, i.e., the
beginning of the control, and t is the current time. It is
worth noting that the constant drift error of the gyro-
scope only affects the value of c̃0(t0). Therefore, in the
subsequent analysis, we can use c̃0(t0) to emulate the
drift error of the gyroscope. In addition, δ∗ in Eq. (17) is
the desired steer angle, ε, δ1 are two positive constants,
and sat(·) is a saturation function given by

sat(u) =
{
u, if |u| ≤ 1,

sgn(u), if |u| > 1.
(18)

Clearly, the saturation function plays a role of limiting
the variation rate of c̃0(t) in a range [−ε, ε].

Combining Eqs. (17) with (9), we can obtain a three-
dimensional augmented system governing the dynam-
ics of the controlled bicycle under the modified lin-
ear control law. Defining the state variables of the
three-dimensional system as ṽ = (ṽ1, ṽ2, ṽ3)T =
(θ, θ̇ , c̃0)T ∈ S×R, we can express the dynamic equa-
tion of the three-dimensional system as

˙̃v = Z̃(ṽ), (19)

where Z̃ = (Z̃1, Z̃2, Z̃3)T , and⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Z̃1 = ṽ2,

Z̃2 = h̃1(ṽ)

m11(r(ṽ)) + c1m12(r(ṽ))
,

Z̃3 = εsat

(
c1ṽ1 + ṽ3 − δ∗

δ1

)
,

(20)
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where r(ṽ) = (ṽ1, c1ṽ1 + ṽ3)T , h̃1(ṽ) = (P1(r)
−c1βγ (r)σ̇ β σ̇ γ

) ∣∣
ζ=ζ (ṽ)

, and ζ (ṽ) = (ṽ1, c1ṽ1 +
ṽ3, ṽ2, c1ṽ2, ω0)

T . It is worth noting that the second
equation of (20) neglects the terms of ˙̃c0(t) and ¨̃c0(t)
induced by the modified control law since ε is small
enough.

We denote by ṽ0 = (θ0, 0, c̃0,0)T as the relative
equilibrium of (19), where θ0 and c̃0,0 are two con-
stants. Let us denote by r0 = (θ0, δ

∗)T , then θ0 and c̃0,0
are determined by the following equations:{

P1(r0) − c133(r0)ω2
0 = 0,

c1θ0 + c̃0,0 − δ∗ = 0.
(21)

Let�δ1 = {
ṽ ∈ S × R

∣∣ |c1ṽ1 + ṽ3| ≤ δ1
}
be adomain

containing ṽ0, in which the expression of Z̃3 is smooth
and can be simplified as follows:

Z̃3(ṽ) = ε

δ1

(
c1ṽ

1 + ṽ3 − δ∗) .

Therefore, the Jacobian matrix of (19) at ṽ0 is calcu-
lated as

J(ṽ0) = ∂ Z̃(ṽ0)

∂ ṽ
=

⎛
⎜⎝

0 1 0
− a0(r0)

a2(r0)
− a1(r0)

a2(r0)
− a3(r0)

a2(r0)
εc1
δ1

0 ε
δ1

⎞
⎟⎠ ,

(22)

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a0(r0) = (
c133,θ (r0) + c1c133,δ(r0)

)
ω2
0

− P1,θ (r0) − c1P1,δ(r0),

a1(r0) = 2c1ω0c123(r0) + 2c113(r0)ω0,

a2(r0) =m11(r0) + c1m12(r0),

a3(r0) =c133,δ(r0)ω2
0 − P1,δ(r0).

(23)

The expressions of coefficients a0(r0), a1(r0), a2(r0)
are the same as those defined in Eq. (50) in Part I.

5.2 Stability analysis and numerical verification

In this section, we will utilize the physical parame-
ters of the bicycle (see Table 2) to discuss the stabil-
ity of the bicycle’s motion in USM and UCM states.
Once the values of the control parameters p̃c =
(c1, ω0, ε, δ1, δ

∗)T are specified, we can use Eq. (21)
to obtain the value of the relative equilibrium ṽ0 and
analyze its stability. In order to achieve a USM motion
under the modified linear control law, we set the con-
trol parameter δ∗ = 0. In this case, we can prove that
system (19) takes the following property:

Lemma 1 When δ∗ = 0 is specified in the control
parameter set p̃c, system (19) has a lateral symmetry
and it always has a trivial relative equilibrium ṽ0 = 0,
corresponding to a USM motion state.

Proof When δ∗ = 0, system (19) has the lateral sym-
metry, i.e., if ṽ(t) (t1 < t < t2) is its solution, so
is −ṽ(t) (t1 < t < t2). Equivalently, the compo-
nents Z̃1, Z̃2, Z̃3 of the vector field Z̃ have the fol-
lowing properties: ∀ṽ ∈ S × R, we have

Z̃ i (ṽ) = −Z̃ i (−ṽ), i = 1, 2, 3. (24)

Thus, ṽ0 = 0 must be a trivial relative equilibrium of
system (19). According to the first equation of (17), the
steer angle δ0 at ṽ0 should equal zero, corresponding
to a USM motion state. ��

In order to determine the values of other control
parameters in p̃c for guaranteeing the stability of the
USMmotion state, we need to compute the eigenvalue
μ of J at ṽ0 = 0. This can be obtained by solving the
following characteristic equation:

det (μI3 − J(0)) = μ3 + b2μ
2 + b1μ + b0 = 0,

where I3 is the 3 × 3 identity matrix, and,

b2 = a1
a2

− ε

δ1
, b1 = a0

a2
− a1ε

a2δ1
, b0 = ε(c1a3 − a0)

a2δ1
.

(25)

Here, we use a0, a1, a2 and a3 to represent the values
of a0(0), a1(0), a2(0), a3(0), respectively, for simpli-
fying the description. We have the following theorem
to ensure that ṽ0 is exponentially stable:

Theorem 1 For the self-fabricated autonomous bicy-
cle with the physical parameters shown in Table 2, the
trivial relative equilibrium ṽ0 = 0 under δ∗ = 0 can be
exponentially stable if the other control parameters sat-
isfy the following conditions: (1) (c1, ω0) ∈ Region I;
(2) ε > 0, δ1 > 0; (3) ε/δ1 < α1, where α1 is a smaller
root of the following equation:

f

(
ε

δ1

)
= a1a2

(
ε

δ1

)2

− (a21 + c1a2a3)(
ε

δ1

)
+ a0a1 = 0.

(26)

Proof According to the Hurwitz criterion, ṽ0 can be
exponentially stable if and only if the following condi-
tions are satisfied:

bk > 0, k = 0, 1, 2, and b2b1 > b0.
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According to Eq. (23), we have c1a3 − a0 =
P1,θ (0) > 0, thus inequality b0 > 0 is always satis-
fied. Now, let us analyze the other conditions required
by the Hurwitz criterion.

When (c1, ω0) ∈ Region I, we always have ak >

0 (k = 0, 1, 2) (see Sect. 4.1 of Part I). According to
(25), if b2 > 0 and b1 > 0 are satisfied, we should

have ε
δ1

< min
{
a1
a2

, a0
a1

}
in the case of ε > 0 and δ1 >

0. Meanwhile, inequality b2b1 > b0 can be written

into a form as f
(

ε
δ1

)
> 0. Noting that the following

inequalities exist:

(a21 + c1a2a3)
2 > (a21 + a0a2)

2 ≥ 4(a1a2)(a0a1).

This condition ensures that (26) has two real roots:

α1,2 =
a21 + c1a2a3∓

√
(a21 + c1a2a3)2 − 4a21a0a2

2a1a2
.

(27)

Therefore, the condition f
(

ε
δ1

)
> 0 induced by the

inequality b2b1 > b0 can be satisfied only if ε
δ1

< α1 or
ε
δ1

> α2. In addition, we can easily verify that f (
a1
a2

) <

0 and f ( a0a1 ) < 0, meaning that α1 < a1
a2

, a0
a1

< α2. To
sum up the above analysis, we can conclude that under
the conditions (1) and (2), the trivial relative equilib-
rium ṽ = 0 can be exponentially stable if and only if
the condition ε/δ1 < α1 is satisfied. This proves the
theorem. ��

It is worth noting that α1 just depends on the values
of c1, ω0 and the physical parameters of the bicycle.
Once we have given the values of all the arguments
except ω0, we can think of α1 as a function of a single
variable of ω0. Numerical investigation shows that α1

is equal to zero when ω0 = ωc and its value increases
monotonically with ω0. This means that the increase
of ω0 enhances the stability of the trivial relative equi-
librium for given values of control parameters ε and
δ1. Conversely, for fixed values of ε and δ1, we can
define another critical angular velocity ω̃c such that
α1(ω̃c) = ε/δ1. It is clear that we should have ω̃c > ωc

since α1 > 0. From Theorem 1, we have the following
corollary to identify the stability of the trivial relative
equilibrium.

Corollary 1 For the self-fabricated autonomous bicy-
cle with the physical parameters shown in Table 2 and
with the control parameters satisfying δ∗ = 0 as well
as the conditions (1) and (2) in Theorem 1, the trivial

relative equilibrium ṽ0 = 0 is exponentially stable if
and only if ω0 > ω̃c.

Let us choose ε = 0.01rad/s and δ1 = 0.05rad,
and set c1 = −4. By setting α1(ω̃c) = ε/δ1, we can
use Eq. (27) to obtain ω̃c = 6.55rad/s > ωc. Thus,
the bicycle is expected to move in a straight forward
motion if ω0 > ω̃c.

In order to simulate the situation that the bicycle
can keepUSMmotion under the influence of gyroscope
drift error, we set the initial condition of (19) as ṽ(t0) =
(0, 0,−0.1rad)T at t0 = 0. Here, c̃0(t0) = −0.1rad is
used to imitate the gyroscope’s drift error. The angular
velocity is set as ω0 = 7rad/s, and the expected steer
angle is set as δ∗ = 0. Figure12a shows the numer-
ical solution of (19), where the red, blue and black
lines represent the evolutions of the lean angle θ(t),
steer angle δ(t) and intercept term c̃0(t), respectively.
Clearly, all of them converge to zero as t tends to ∞,
meaning that the motion of the bicycle will finally con-
verge to a stable USM. Figure12b shows the trajectory
of the contact point Pr of the rear wheel on the hori-
zontal ground. At the beginning, the bicycle generates a
steeringmotion satisfying the CST rule, then the trajec-
tory converges to a straight line as c̃0(t) tends to zero.
These numerical results mean that the bicycle under the
modified linear control law can achieve a stable USM
motion state even if drift error exists.

When δ∗ �= 0, the system (19) does not have trivial
relative equilibrium any more, and the relative equilib-
ria in general may not be unique. Here, we focus on the
relative equilibrium closest to 0, and the bicycle under
themodified control lawmoves in a UCMmotion state.

Without loss of generality, we set the control param-
eters c1 = −4, ω0 = 7rad/s, ε = 0.01rad/s,
δ1 = 0.05rad, and change the value of δ∗ in the
range of [−1, 1]rad. For each δ∗, the relative equi-
librium ṽ0 = (θ0, 0, c̃0,0)T can be obtained based
on Eq. (21), and the eigenvalues of the Jacobian
matrix J(ṽ0) canbenumerically calculatedbyEq. (22).
Themaximumreal part of them is denotedbyRe(μ)max.
We can also use Eq. (48) in Part I to compute
the curvature κPr of the trajectory of the contact
point Pr . Figure13a, b shows the curves of θ0, c̃0,0
and κPr ,Re(μ)max with respect to δ∗, respectively.
Clearly, all the relative equilibria are exponentially sta-
ble since Re(μ)max < 0 for each δ∗. Meanwhile, as |δ∗|
increases, both |θ0| and |c̃0,0| increase monotonically,
but κPr decreases monotonically. This agrees with the
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Fig. 12 Numerical solution of the system (19) under the
modified control law (17) with the control parameters
p̃c = (−4, 7rad/s, 0.01rad/s, 0.05rad, 0rad)T and initial condi-

tion ṽ(t0) = (0rad, 0rad/s,−0.1rad)T : a. evolutions of the lean
angle θ , the steer angle δ and the intercept term c̃0 with respect
to time t ; b. trajectory (xr (t), yr (t)) of the contact point Pr

Fig. 13 Curves of relative equilibria and related physical quantities κPr and Re(μ)max with respect to the desired steer angle δ∗ in the
case of c1 = −4, ω0 = 7rad/s, ε = 0.01rad/s, δ1 = 0.05rad

human riding experience that the larger the steer angle,
the smaller the turning radius.

Among those numerical investigation, we choose
δ∗ = 0.5rad as an example to simulate the dynamical
behavior of the controlled bicycle. The initial condition
of the system (19) is set as ṽ(t0) = (0, 0,−0.1rad)T

at t0 = 0. Figure14a shows the evolutions of the lean
angle θ(t), steer angle δ(t) and intercept term c̃0(t)with
respect to time. As t tends to ∞, all of them converge
to nonzero constants, corresponding to a nontrivial rel-
ative equilibrium. In particular, the steer angle δ con-

verges to δ∗, meaning that the desired steer angle can be
accurately controlled by the modified control law. Fig-
ure14b presents the trajectory of the contact point Pr ,
which shows that the bicycle’s motion converges to a
stable UCM motion.

5.3 Hopf bifurcation at the critical velocity ω̃c

When δ∗ = 0, the controlled bicycle under the modi-
fied control law can keep in a USMmotion state only if
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Fig. 14 Numerical solution of the system (19) under the
modified control law (17) with the control parameters p̃c =
(−4, 7rad/s, 0.01rad/s, 0.05rad, 0.5rad)T and initial condi-

tion ṽ(t0) = (0rad, 0rad/s,−0.1rad)T : a. evolutions of the lean
angle θ , the steer angle δ and the intercept term c̃0 with respect
to time t ; b. trajectory (xr (t), yr (t)) of the contact point Pr

the control parameters are located in the region where
the Hurwitz criterion is satisfied. As all the values of
the control parameters except ω0 are given, the stabil-
ity of the USM motion just depends on ω0. According
to Corollary 1, the USM motion state will lose its sta-
bility if ω0 < ω̃c. It is worth noting that the Jacobian
matrix J(0) of the system (19) at the trivial relative
equilibrium ṽ0 = 0 also depends onω0 only. Therefore,
we can takeω0 as a bifurcation parameter to investigate
the dynamical behavior of the bicycle in the neighbor-
hood of ṽ0. In this part, wewill prove that the controlled
bicycle exhibits a limit cyclemotionwhenω0 is slightly
smaller than ω̃c.

Without loss of generality, we still set c1 = −4,
δ∗ = 0, ε = 0.01rad/s and δ1 = 0.05rad, such
that ω̃c = 6.55rad/s. In order to reveal the dynami-
cal behavior of the three-dimensional system (19), we
need to investigate the distribution of the eigenvalues of
J(0).Whenω0 is in the neighborhood of ω̃c, numerical
investigation shows that J(0) always has a pair of com-
plex eigenvalues μ1,2(ω0) = μr (ω0) ± iμi (ω0), and a
negative real eigenvalue μ3(ω0) < 0. Figure15 shows
the curves of μr and μi with respect to ω0. We can
observe that μr (ω̃c) = 0, and that dμr (ω̃c)/dω0 �= 0.
The distribution of the eigenvalues of J(0) means that
the trivial relative equilibrium losses its stability when
ω0 < ω̃c, while the complex eigenvalues μ1,2 passes
through the imaginary axis of the complex plane with

Fig. 15 Curves of the real part μr and imaginary part ±μi
with respect to ω0 under the control parameters c1 = −4,
ε = 0.01rad/s, δ1 = 0.05rad and δ∗ = 0rad

nonzero velocity. Accordingly, a Hopf bifurcation may
occur at ω̃c [33].

Let us denote by Jc(0) as the Jacobian matrix at
the bifurcation point ω̃c, which takes a pair of pure
imaginary rootsμ1,2(ω̃c) = ±iμi (ω̃c).Denote by u1 ∈
C
3 and u2 ∈ C

3 as the complex eigenvectors of Jc(0)
and JT

c (0), respectively, which satisfy the following
conditions:
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{
Jc(0)u1 = iμi (ω̃c)u1, JTc (0)u2 = −iμi (ω̃c)u2,

〈u1, u1〉 = 1, 〈Re[u1], Im[u1]〉 = 0, 〈u2, u1〉 = 1,

where 〈ui , u j 〉 = ūTi u j represents the inner product
of two complex eigenvectors ui and u j on C3, ūTi rep-
resents the conjugate vector transpose of ui , and Re[·]
and Im[·] represent the real and imaginary parts of a
complex vector (or a complex number), respectively.

For a three-dimensional nonlinear system (19), the
mathematical property of the trivial relative equilib-
rium ṽ0 = 0 at the bifurcation point ω̃c can be ana-
lyzed based on the value of the first Lyapunov coeffi-
cient Ly1(ω̃c). In order to compute its value, we first
define multilinear mappings: B(·, ·) : C3 × C

3 → C
3

and C(·, ·, ·) : C3 × C
3 × C

3 → C
3, where, for arbi-

trary complex vectors wi = [w1
i , w

2
i , w

3
i ]T ∈ C

3 (i =
1, 2, 3), they are given by⎧⎪⎪⎨
⎪⎪⎩

B(w1,w2) = ∂2 Z̃c(0)
∂ṽ j∂ṽk

w
j
1w

k
2,

C(w1,w2,w3) = ∂3 Z̃c(0)
∂ṽ j∂ṽk∂ṽl

w
j
1w

k
2w

l
3,

where Z̃c represents the vector field Z̃ of the sys-
tem (19) at the bifurcation point ω̃c. Relating to the
Jacobian matrix Jc(0), we can then compute the fol-
lowing inner products of complex vectors:

⎧⎪⎪⎨
⎪⎪⎩

N P1 = 〈u2,C(u1, u1, ū1)〉,
N P2 = 〈u2, B(u1, J

−1
c (0)B(u1, ū1))〉,

N P3 = 〈u2, B(ū1, (2iμi (ω̃c)I3 − Jc(0))−1B(u1, u1))〉.

where I3 is a 3 × 3 identity matrix. According to the
definition of the first Lyapunov coefficient shown in
[33], we have

Ly1(ω̃c) = 1

2μi (ω̃c)
Re [N P1 − 2N P2 + N P3] , (28)

Noting that the system (19) has a lateral symmetry
according toLemma1, all the second partial derivatives
of vector field Z̃c at ṽ0 = 0 must be zero, thus we
have B ≡ 0. Therefore, Eq. (28) can be simplified as
follows:

Ly1(ω̃c) = 1

2μi (ω̃c)
Re [N P1] . (29)

In order to avoid the complex operation for the mul-
tilinear mapping involved in C(·, ·, ·), Kuznetsov [33]

introduced a perturbation parameter τ ∈ R to dis-
turb vector field Z̃c, and indicated that Ly1(ω̃c) can be
obtained through computing the following coefficients:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = d3

dτ3

∣∣∣∣
τ=0

〈Re [u2] , Z̃c (Re [τu1])〉,

β2 = d3

dτ3

∣∣∣∣
τ=0

〈Im [u2] , Z̃c (Im [τu1])〉,

β3 = d3

dτ3

∣∣∣∣
τ=0

〈Re [u2] + Im [u2] , Z̃c (Re [τu1] + Im [τu1])〉,

β4 = d3

dτ3

∣∣∣∣
τ=0

〈Re [u2] − Im [u2] , Z̃c (Re [τu1] − Im [τu1])〉.

(30)

The first Lyapunov coefficient Ly1(ω̃c) can then be cal-
culated by

Ly1(ω̃c) = 1

2μi (ω̃c)

(
2

3
(β1 + β2) + 1

6
(β3 + β4)

)
.

(31)

If Ly1(ω̃c) < 0, the bifurcation point ω̃c corresponds
to a supercritical Hopf bifurcation in which a stable
limit cycle motion exists when ω0 is slightly less than
ω̃c.

Theorem 2 For the self-fabricated autonomous bicy-
cle with the physical parameters shown in Table 2,
a supercritical Hopf bifurcation exists at ω0 = ω̃c,
namely, the controlled bicycle exhibits a stable limit
cycle motion when ω0 is slightly less than ω̃c.

Proof Based on the concrete values of the control and
physical parameters of the self-fabricated autonomous
bicycle, we have μi (ω̃c) = 0.68. Correspondingly, the
complex eigenvectors u1 and u2 related to a pair of
pure imaginary roots μ1,2(ω̃c) = ±iμi (ω̃c) are given
by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Re [u1] = [0.54,−0.18,−0.12]T ,

Im [u1] = [0.27, 0.37, 0.67]T ,

Re [u2] = [0.87, 0.11,−0.40]T ,

Im [u2] = [0.15, 0.03, 0.67]T .

Using the finite difference formula of the third
derivative for Eq. (30), namely,

β1 = 1

8h3

〈
Re [u2] , Z̃c (Re [3hu1]) − 3Z̃c (Re [hu1])

+3Z̃c (Re [−hu1]) − Z̃c (Re [−3hu1])
〉
,

and so on, where h � 1 is a small increment, we have

β1 = −21.61, β2 = −0.07,
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β3 = −62.66, β4 = −2.94.

According to Eq. (31), we have Ly1(ω̃c) = −18.73 <

0, which means that a supercritical Hopf bifurcation
occurs at ω0 = ω̃c. Therefore, although the trivial rela-
tive equilibrium ṽ0 = 0 becomes unstable when ω0 <

ω̃c, a stable limit cycle will exist if ω0 is slightly less
than ω̃c. ��

In order to verify the above results, we set ω0 =
6rad/s < ω̃c = 6.55rad/s, and carry out numeri-
cal simulation for system (19) under the initial condi-
tion ṽ(t0) = (0, 0,−0.1rad)T at t0 = 0. Figure16a
shows the evolutions of the lean angle θ(t), steer
angle δ(t) and intercept term c̃0(t)with respect to time.
As t increases, all of them converge to periodic solu-
tions, corresponding to a stable limit cycle in the phase
space. Figure16b presents the trajectory of the contact
point Pr on the horizontal plane. We can see that in the
limit cycle motion, the bicycle turns corners with the
direction changing periodically. But overall, the hor-
izontal position of the bicycle shows a tendency to
move along a certain direction. These results mean that
although the variables θ, δ, c̃0 can return to the starting
point within each period of the limit cycle, this peri-
odic process produces nonzero displacements in the
Lie group coordinates. Essentially, this phenomenon is
related to the concept of geometric phase in geometric
mechanics [34,35].

6 Experiments under the modified linear control
law

In this section, we conduct experiments to verify the
physical phenomena found from our theoretical analy-
sis for the bicycle under themodified linear control law.
Both the USM and UCM motion states will be exhib-
ited and a stable limit cycle motion of the controlled
bicycle is successfully revealed.

We conduct three experiments using control param-
eters consistent with the numerical examples presented
in Sect. 5. Specifically, we set c1 = −4, ε = 0.01rad/s
and δ1 = 0.05rad, resulting in ω̃c = 6.55rad/s. To test
the robustness of themodified control law against gyro-
scope drift errors,we set the initial value of the intercept
term as c̃0(t0) = −0.1rad at t0 = 0. Generally, due to
the presence of the drift error e0, the true intercept of
the modified control law should be c̃0(t) + c1e0.

The first experiment, called as USM-M-experiment,
is conducted to verify the USM motion by setting
δ∗ = 0 and ω0 = 7rad/s > ω̃c. In this case, the trivial
relative equilibrium ṽ0 = 0 is stable, thus the bicy-
cle motion should converge to a stable USM motion
state. The experiment lasts about 36 seconds until the
bicycle arrived at the boundary of the experimental
site. Figure17a–c shows the curves of the measured
lean angle θ̂ , steer angle δ and intercept term c̃0 with
respect to time t . We can see that both θ̂ and δ are
subject to large disturbances at the initial stage, but
after t ≥ 20s, the disturbances decreases. In particular,
although the value of δ goes into the neighborhood of 0,
a relative large error exists in the measured value of θ̂ .
This means that the gyroscope sensor contains certain
drift error. Figure17d shows the trajectory of the con-
tact point Pr of the rear wheel, which exhibits that the
bicycle under the modified control law can achieve a
long-distance stable USM motion state. Here, as the
range of the bicycle’s motion is relatively large, it is
not possible to capture the entire process of the bicycle
using the unmanned aerial vehicle. Therefore, we uti-
lize the experimental data of θ̂ , δ, φr and their numeri-
cal derivatives to solve the reconstruction equation (31)
in Part I, and then calculate the trajectory (xr (t), yr (t))
of Pr . However, the process of the bicycle converging to
theUSMwas captured andpresented in thevideomovie
USM-MC-V in the supplementary materials [36].

When the bicycle moves in a USM motion state,
the true steady value of the lean angle should be equal
to θ0 = 0. However, we see from Fig. 17a that θ̂ (t)
converges to a negative constant θ̂0 which approxi-
mately equals −0.0134rad, corresponding to the gyro-
scope sensor with a drift error e0 = −0.0134rad. On
the other hand, due to the effect of the drift error, the
control variable c̃0(t) should theoretically converge to
a constant which equals −c1e0 = −0.0536rad (since
the true intercept term c̃0(t) + c1e0 should converge
to 0). Figure17c shows that c̃0(t) indeed converges to
the neighborhood of that value.

The second experiment, called as UCM-M-
experiment, was carried out to examine the bicycle’s
motion in a stable UCM state with a desired steer angle
δ∗. We set ω0 = 7rad/s and δ∗ = 0.5rad. Theoreti-
cally, system (19) in this case has an exponentially sta-
ble nontrivial relative equilibrium which equals ṽ0 =
(θ0, 0, c̃0,0)T = (−0.1893, 0,−0.2574)T .

Figure 18a–c presents the curves of the measured
lean angle θ̂ (t), measured steer angle δ(t) and time-
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Fig. 16 Numerical solution of the system (19) under the
modified control law (17) with the control parameters
p̃c = (−4, 6rad/s, 0.01rad/s, 0.05rad, 0rad)T and initial condi-

tion ṽ(t0) = (0rad, 0rad/s,−0.1rad)T : a evolutions of the lean
angle θ , the steer angle δ and the intercept term c̃0 with respect
to time t ; b trajectory (xr (t), yr (t)) of the contact point Pr

Fig. 17 Experimental results under the modified linear
control law (17) with the control parameters p̃c =
(−4, 7rad/s, 0.01rad/s, 0.05rad, 0rad)T and with the initial
value of the intercept term c̃0(0) = −0.1rad: a evolution of the

measured lean angle θ̂ with respect to time t ; b evolution of the
measured steer angle δ with respect to time t ; c evolution of the
intercept term c̃0 with respect to time t ; d trajectory (xr (t), yr (t))
of the contact point Pr
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Fig. 18 Experimental results under the modified linear
control law (17) with the control parameters p̃c =
(−4, 7rad/s, 0.01rad/s, 0.05rad, 0.5rad)T and with the initial
value of the intercept term c̃0(0) = −0.1rad: a evolution of

the measured lean angle θ̂ with respect to time t ; b evolution of
the measured steer angle δ with respect to time t ; c evolution of
the intercept term c̃0 with respect to time t ; d trajectory of the
bicycle in the time interval [30, 60]s

varying intercept term c̃0(t) with respect to time.
The experiment lasts 100 seconds. These three vari-
ables converge to constants approximately equal θ̂0 =
−0.1852rad, δ0 = 0.5001rad and ˆ̃c0,0 = −0.2408rad,
respectively, meaning that the bicycle’s motion con-
verges to a stable UCMmotion state. Figure18d shows
the trajectory of the bicycle on the horizontal plane
within the time interval [30, 60]s. Clearly, the trajectory
forms an approximate cycle. The bicycle in the stable
UCM motion was recorded in the video movie UCM-
MC-V presented in supplementary materials [36].

Clearly, the error between δ0 and δ∗ is negligible,
indicating that the steer angle converges to the desired
value. However, due to the drift error of the gyro-
scope sensor, difference between the theoretical pre-
dicted values of (θ0, c̃0,0) and the measured values
of (θ̂0, ˆ̃c0,0) exists. Basically, we can estimate the value
of the drift error e0 in two ways: on the one hand, we
have e0 = θ̂0−θ0 = 0.0041rad according to the exper-
imental data of the lean angle; on the other hand, we
have e0 = (c̃0,0 − ˆ̃c0,0)/c1 = 0.0041rad based on the

data of the intercept term. The values of e0 calculated
by the two methods are the same, which indicates that
the theoretical model is accurate enough.

The third experiment, called asLCM-M-experiment,
was conducted to verify the bicycle’s limit cyclemotion
when ω0 is slightly less than ω̃c. We set ω0 = 6rad/s
and δ∗ = 0rad. In this case, system (19) has an unsta-
ble trivial relative equilibrium ṽ0 = 0, but a stable limit
cycle will occur. Figure19d shows the trajectory of the
bicycle within about one period of the limit cycle. We
can see that the bicycle turns corners with the direction
changing alternately. Although the variables θ̂ , δ, c̃0
can return to the starting point within each period of
the limit cycle, the horizontal displacement of the bicy-
cle is nonzero, agreeing with the theoretical prediction
shown in Fig. 16d. The bicycle in the stable limit cycle
motion was recorded in the video movie LCM-MC-V
presented in supplementary materials [36].

Figure 19a–c shows the curves of the measured val-
ues of lean angle θ̂ (t), steer angle δ(t) and the time-
varying intercept term c̃0(t) with respect to time t . The
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Fig. 19 Experimental results under the modified linear
control law (17) with the control parameters p̃c =
(−4, 6rad/s, 0.01rad/s, 0.05rad, 0rad)T and with the initial
value of the intercept term c̃0(0) = −0.1rad: a evolution of

the measured lean angle θ̂ with respect to time t ; b evolution of
the measured steer angle δ with respect to time t ; c evolution of
the intercept term c̃0 with respect to time t ; d trajectory of the
bicycle in the time interval [30, 70]s

experiment lasts 120 seconds. Agreeing with the the-
oretical prediction, these three variables all exhibit a
tendency to oscillate periodically, corresponding to a
stable limit cycle in phase space. On the other hand,
the up and down peaks of δ are basically symmetrical
around δ = 0, meaning that the measurement accuracy
of the steer angle is high enough.ByobservingFig. 19a,
c, we can find that the curves of θ̂ (t) and c̃0(t) are not
symmetrical around zero coordinate axis. The reason is
the existence of the drift error of the gyroscope sensor.

7 Conclusion

In conclusion, this paper presents experimental verifi-
cation of the theoretical and numerical results obtained
in Part I, while addressing uncertainties inherent in real
bicycle systems. The experimental results are qualita-
tively consistent with the theoretical predictions, con-
firming the stability of the bicycle system under dif-
ferent control parameters for uniform straight motion

(USM) and uniform circular motion (UCM), as well
as adherence to counter-steering (CST) driving rule.
Error source analysis reveals that the drift error of the
gyroscope sensor is the major source of system error.

To compensate for the drift error, a modified linear
control law is proposed, which incorporates a time-
varying intercept term modulated by the CST driving
rule. The three-dimensional equations governing the
dynamics of the controlled bicycle are analyzed for sta-
bility, and the control parameters for stable USM and
UCM states are determined. The modified control law
enhances the robustness of the system against distur-
bances, and theoretical analysis suggests the possibility
of a supercriticalHopf bifurcation leading to limit cycle
motion with alternating direction changes and nonzero
horizontal plane displacement.

Experiments conducted to verify the dynamical
behaviors of the controlled bicycle under the modi-
fied control law demonstrate stable USM, UCM, and
limit cycle motion states, which are consistent with
the theoretical predictions. Overall, this paper not only
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confirms the theoretical results from Part I, but also
presents an effective control method to handle uncer-
tainties in real bicycle systems.

The study of this paper may also find possible appli-
cations in smart transportation. In this paper, we show
that the control laws, whether linear or nonlinear, can
be used as servo constraints to improve the dynamic
quality of the original bicycle systems. When other
intelligent algorithms are added, such as the error cor-
rection algorithm, the movement of the bicycle will be
more flexible and intelligent. Clearly, the study of this
paper can provide a crucial theoretical foundation for
the realization of autonomous smart bicycles and hold
significant practical significance for the future of smart
transportation.
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